JNISpice
version 2.0.0

spice.basic
Class SubObserverRecord

java.lang.Object
  extended by spice.basic.Vector3
      extended by spice.basic.SubObserverRecord

public class SubObserverRecord
extends Vector3

Class SubObserverRecord supports sub-observer point computations.

A SubObserverRecord instance consists of

See the detailed documentation of constructor SubObserverRecord(String, Body, Time, ReferenceFrame, AberrationCorrection, Body) for code examples.

Files

Appropriate SPICE kernels must be loaded by the calling program before methods of this class are called.

The following data are required:

The following data may be required:

Kernel data are normally loaded once per program run, NOT every time a method of this class is called.

Class SubObserverRecord Particulars

Using DSK data

DSK loading and unloading

DSK files providing data used by this class are loaded by calling KernelDatabase.load(java.lang.String) and can be unloaded by calling KernelDatabase.unload(java.lang.String) or KernelDatabase.clear(). See the documentation of KernelDatabase.load(java.lang.String) for limits on numbers of loaded DSK files. For run-time efficiency, it's desirable to avoid frequent loading and unloading of DSK files. When there is a reason to use multiple versions of data for a given target body---for example, if topographic data at varying resolutions are to be used---the surface list can be used to select DSK data to be used for a given computation. It is not necessary to unload the data that are not to be used. This recommendation presumes that DSKs containing different versions of surface data for a given body have different surface ID codes.

DSK data priority

A DSK coverage overlap occurs when two segments in loaded DSK files cover part or all of the same domain---for example, a given longitude-latitude rectangle---and when the time intervals of the segments overlap as well.

When DSK data selection is prioritized, in case of a coverage overlap, if the two competing segments are in different DSK files, the segment in the DSK file loaded last takes precedence. If the two segments are in the same file, the segment located closer to the end of the file takes precedence.

When DSK data selection is unprioritized, data from competing segments are combined. For example, if two competing segments both represent a surface as a set of triangular plates, the union of those sets of plates is considered to represent the surface.

Currently only unprioritized data selection is supported. Because prioritized data selection may be the default behavior in a later version of the routine, the UNPRIORITIZED keyword is required in the constructors' `method' arguments.

Version and Date

Version 2.0.0 10-JAN-2017 (NJB)

Upgraded to support DSK-based surface representations.

This class now is derived from class Vector3.

Version 1.0.0 22-NOV-2009 (NJB)


Field Summary
static java.lang.String INTERCEPT_ELLIPSOID
           
static java.lang.String NEAR_POINT_ELLIPSOID
           
 
Constructor Summary
SubObserverRecord()
          No-arguments constructor
SubObserverRecord(java.lang.String method, Body target, Time t, ReferenceFrame fixref, AberrationCorrection abcorr, Body observer)
          Compute a specified sub-observer point; create a record containing the result.
SubObserverRecord(SubObserverRecord subpt)
          Copy constructor.
 
Method Summary
 Vector3 getSubPoint()
          Return the sub-observer point.
 Vector3 getSurfaceVector()
          Return the observer to sub-observer point vector.
 TDBTime getTargetEpoch()
          Return the target epoch.
 
Methods inherited from class spice.basic.Vector3
add, assign, cross, dist, dot, getElt, hat, isZero, lcom, lcom, negate, norm, perp, proj, rotate, rotate, scale, sep, sub, toArray, toString, ucross
 
Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait
 

Field Detail

NEAR_POINT_ELLIPSOID

public static final java.lang.String NEAR_POINT_ELLIPSOID
See Also:
Constant Field Values

INTERCEPT_ELLIPSOID

public static final java.lang.String INTERCEPT_ELLIPSOID
See Also:
Constant Field Values
Constructor Detail

SubObserverRecord

public SubObserverRecord(java.lang.String method,
                         Body target,
                         Time t,
                         ReferenceFrame fixref,
                         AberrationCorrection abcorr,
                         Body observer)
                  throws SpiceException
Compute a specified sub-observer point; create a record containing the result.

Code Examples

The numerical results shown for these examples may differ across platforms. The results depend on the SPICE kernels used as input, the compiler and supporting libraries, and the machine specific arithmetic implementation.

  1. Find the sub-Earth point on Mars for a specified time.

    Compute the sub-Earth points using both triaxial ellipsoid and topographic surface models. Topography data are provided by a DSK file. For the ellipsoid model, use both the "intercept" and "near point" sub-observer point definitions; for the DSK case, use both the "intercept" and "nadir" definitions.

    Display the locations of both the Earth and the sub-Earth point relative to the center of Mars, in the IAU_MARS body-fixed reference frame, using both planetocentric and planetographic coordinates.

    The topographic model is based on data from the MGS MOLA DEM megr90n000cb, which has a resolution of 4 pixels/degree. A triangular plate model was produced by computing a 720 x 1440 grid of interpolated heights from this DEM, then tessellating the height grid. The plate model is stored in a type 2 segment in the referenced DSK file.

    Use the meta-kernel shown below to load the required SPICE kernels.

    KPL/MK 
    
    File: SubObserverRecordEx1.tm 
    
    This meta-kernel is intended to support operation of SPICE 
    example programs. The kernels shown here should not be 
    assumed to contain adequate or correct versions of data 
    required by SPICE-based user applications. 
    
    In order for an application to use this meta-kernel, the 
    kernels referenced here must be present in the user's 
    current working directory. 
    
    The names and contents of the kernels referenced 
    by this meta-kernel are as follows: 
    
       File name                        Contents 
       ---------                        -------- 
       de430.bsp                        Planetary ephemeris 
       mar097.bsp                       Mars satellite ephemeris 
       pck00010.tpc                     Planet orientation and 
                                        radii 
       naif0012.tls                     Leapseconds 
       megr90n000cb_plate.bds           Plate model based on 
                                        MEGDR DEM, resolution 
                                        4 pixels/degree. 
    
    \begindata 
    
       KERNELS_TO_LOAD = ( 'de430.bsp', 
                           'mar097.bsp', 
                           'pck00010.tpc', 
                           'naif0012.tls', 
                           'megr90n000cb_plate.bds' ) 
    \begintext 
    
    

    Example code begins here.

    //
    // Program SubObserverRecordEx1
    //
    
    import spice.basic.*;
    import static spice.basic.AngularUnits.*;
    
    //
    // Find the sub-Earth point on Mars for a specified time. 
    //
    public class SubObserverRecordEx1
    {
       //
       // Load SPICE shared library.
       //
       static{ System.loadLibrary( "JNISpice" ); }
    
    
       public static void main( String[] args )
    
          throws SpiceException
       {
          //
          // Local constants
          //
          final String                      META   = "SubObserverRecordEx1.tm";
          final int                         NMETH  = 4;
    
          //
          // Local variables
          //
          AberrationCorrection              abcorr = 
                                               new AberrationCorrection( "CN+S" );
    
          Body                              obsrvr = new Body( "Earth" );
          Body                              target = new Body( "Mars"  );
    
          LatitudinalCoordinates            latCoordsObs;
          LatitudinalCoordinates            latCoordsSub;
    
          PlanetographicCoordinates         pgrCoordsObs;
          PlanetographicCoordinates         pgrCoordsSub;
    
          ReferenceFrame                    fixref =
                                               new ReferenceFrame( "IAU_MARS" );
    
          String[]                          submth =  
                                            {
                                               "Intercept/ellipsoid",
                                               "Near point/ellipsoid",
                                               "Intercept/DSK/Unprioritized",
                                               "Nadir/DSK/Unprioritized"
                                            };
    
          String                            tdbstr = "2008 AUG 11 00:00:00 UTC";
    
          SubObserverRecord                 subrec;
    
          TDBTime                           et;
    
          Vector3                           obspos;
          Vector3                           srfvec;
    
          double                            dist;  
          double                            f;
          double                            odist;
          double                            opclat;
          double                            opclon;
          double                            opgalt;
          double                            opglat;
          double                            opglon;
          double[]                          radii;
          double                            re;
          double                            rp;
          double                            spclat;
          double                            spclon;
          double                            spcrad;
          double                            spgalt;
          double                            spglat;
          double                            spglon;
    
          int                               i;
          int                               n;
    
    
          try
          {
             //
             // Load kernels.
             //
             KernelDatabase.load( META );
    
             //
             // Convert the UTC request time string to seconds past
             // J2000, TDB, represented by a TDBTime instance.
             //
             et = new TDBTime( tdbstr );
    
             //
             // Look up the target body's radii. We'll use these to
             // convert Cartesian to planetographic coordinates. Use
             // the radii to compute the flattening coefficient of
             // the reference ellipsoid.
             //
             radii = target.getValues( "RADII" );
    
             //
             // Let `re and `rp' be, respectively, the equatorial and
             // polar radii of the target.
             //
             re = radii[0];
             rp = radii[2];
    
             f  = ( re - rp ) / re;
    
             //
             // Compute the sub-observer point using light time and stellar
             // aberration corrections. Use both ellipsoid and DSK 
             // shape models, and use all of the "near point," 
             // "intercept," and "nadir" sub-observer point definitions. 
             //
             for ( i = 0;  i < NMETH;  i++ )
             {
                System.out.format ( "%nSub-observer point computation " +
                                    "method = %s%n",  submth[i]           );
    
                subrec = new SubObserverRecord ( submth[i], target, et, 
                                                 fixref,    abcorr, obsrvr ); 
                //
                // Compute the observer's distance from `subrec'.
                //
                srfvec = subrec.getSurfaceVector();
                odist  = srfvec.norm();  
    
                //
                // Convert sub-observer point rectangular coordinates to
                // planetographic longitude, latitude and altitude. 
                // Convert radians to degrees.
                //
                pgrCoordsSub = 
    
                   new PlanetographicCoordinates( target, subrec, re, f );
    
                spglon = pgrCoordsSub.getLongitude() * DPR;
                spglat = pgrCoordsSub.getLatitude()  * DPR;
                spgalt = pgrCoordsSub.getAltitude();
    
    
                //
                // Convert sub-observer point rectangular coordinates to
                // planetocentric latitude and longitude. Convert radians to 
                // degrees.
                //
                latCoordsSub = new LatitudinalCoordinates( subrec );
    
                spcrad    = latCoordsSub.getRadius();
                spclon    = latCoordsSub.getLongitude() * DPR; 
                spclat    = latCoordsSub.getLatitude()  * DPR; 
    
                //
                // Compute the observer's position relative to the center
                // of the target, where the center's location has been
                // adjusted using the aberration corrections applicable
                // to the sub-point. Express the observer's location in
                // planetographic coordinates.
                //
                obspos = subrec.sub( srfvec );
    
                pgrCoordsObs = 
    
                   new PlanetographicCoordinates( target, obspos, re, f );
    
                opglon = pgrCoordsObs.getLongitude() * DPR;
                opglat = pgrCoordsObs.getLatitude()  * DPR;
                opgalt = pgrCoordsObs.getAltitude();
    
                //
                // Convert the observer's rectangular coordinates to
                // planetocentric radius, longitude, and latitude.
                // Convert radians to degrees.
                //
                latCoordsObs = new LatitudinalCoordinates( obspos );
    
                opclon    = latCoordsObs.getLongitude() * DPR; 
                opclat    = latCoordsObs.getLatitude()  * DPR; 
    
    
                //
                // Write the results.
                // 
                System.out.format( 
                    "%n"                                                       +
                    " Computation method = %s%n%n"                             +
                    "  Observer altitude relative to spheroid (km) = %21.9f%n" +
                    "  Length of SRFVEC                       (km) = %21.9f%n" +
                    "  Sub-observer point altitude            (km) = %21.9f%n" +
                    "  Sub-observer planetographic longitude (deg) = %21.9f%n" +
                    "  Observer planetographic longitude     (deg) = %21.9f%n" +
                    "  Sub-observer planetographic latitude  (deg) = %21.9f%n" +
                    "  Observer planetographic latitude      (deg) = %21.9f%n" +
                    "  Sub-observer planetocentric longitude (deg) = %21.9f%n" +
                    "  Observer planetocentric longitude     (deg) = %21.9f%n" +
                    "  Sub-observer planetocentric latitude  (deg) = %21.9f%n" +
                    "  Observer planetocentric latitude      (deg) = %21.9f%n" +
                    "%n",
                    submth[i], 
                    opgalt,
                    odist,
                    spgalt, 
                    spglon,
                    opglon, 
                    spglat, 
                    opglat, 
                    spclon, 
                    opclon,
                    spclat,
                    opclat      );
    
    
             } // End of method loop
    
          } // End of try block
    
          catch ( SpiceException exc )
          {
             exc.printStackTrace();
          }
    
       } // End of main method 
    
    }
    
    

    When this program was executed on a PC/Linux/gcc/64-bit/java 1.5 platform, the output was:

    
    Sub-observer point computation method = Intercept/ellipsoid
    
     Computation method = Intercept/ellipsoid
    
      Observer altitude relative to spheroid (km) =   349199089.540947000
      Length of SRFVEC                       (km) =   349199089.577642700
      Sub-observer point altitude            (km) =           0.000000000
      Sub-observer planetographic longitude (deg) =         199.302305029
      Observer planetographic longitude     (deg) =         199.302305029
      Sub-observer planetographic latitude  (deg) =          26.262401237
      Observer planetographic latitude      (deg) =          25.994936751
      Sub-observer planetocentric longitude (deg) =         160.697694971
      Observer planetocentric longitude     (deg) =         160.697694971
      Sub-observer planetocentric latitude  (deg) =          25.994934171
      Observer planetocentric latitude      (deg) =          25.994934171
    
    
    Sub-observer point computation method = Near point/ellipsoid
    
     Computation method = Near point/ellipsoid
    
      Observer altitude relative to spheroid (km) =   349199089.540938700
      Length of SRFVEC                       (km) =   349199089.540938700
      Sub-observer point altitude            (km) =          -0.000000000
      Sub-observer planetographic longitude (deg) =         199.302305029
      Observer planetographic longitude     (deg) =         199.302305029
      Sub-observer planetographic latitude  (deg) =          25.994936751
      Observer planetographic latitude      (deg) =          25.994936751
      Sub-observer planetocentric longitude (deg) =         160.697694971
      Observer planetocentric longitude     (deg) =         160.697694971
      Sub-observer planetocentric latitude  (deg) =          25.729407227
      Observer planetocentric latitude      (deg) =          25.994934171
    
    
    Sub-observer point computation method = Intercept/DSK/Unprioritized
    
     Computation method = Intercept/DSK/Unprioritized
    
      Observer altitude relative to spheroid (km) =   349199089.541017230
      Length of SRFVEC                       (km) =   349199091.785406700
      Sub-observer point altitude            (km) =          -2.207669751
      Sub-observer planetographic longitude (deg) =         199.302304999
      Observer planetographic longitude     (deg) =         199.302304999
      Sub-observer planetographic latitude  (deg) =          26.262576677
      Observer planetographic latitude      (deg) =          25.994936751
      Sub-observer planetocentric longitude (deg) =         160.697695001
      Observer planetocentric longitude     (deg) =         160.697695001
      Sub-observer planetocentric latitude  (deg) =          25.994934171
      Observer planetocentric latitude      (deg) =          25.994934171
    
    
    Sub-observer point computation method = Nadir/DSK/Unprioritized
    
     Computation method = Nadir/DSK/Unprioritized
    
      Observer altitude relative to spheroid (km) =   349199089.541007700
      Length of SRFVEC                       (km) =   349199091.707172300
      Sub-observer point altitude            (km) =          -2.166164622
      Sub-observer planetographic longitude (deg) =         199.302305000
      Observer planetographic longitude     (deg) =         199.302305000
      Sub-observer planetographic latitude  (deg) =          25.994936752
      Observer planetographic latitude      (deg) =          25.994936751
      Sub-observer planetocentric longitude (deg) =         160.697695000
      Observer planetocentric longitude     (deg) =         160.697695000
      Sub-observer planetocentric latitude  (deg) =          25.729237570
      Observer planetocentric latitude      (deg) =          25.994934171
    
    
  2. Use this constructor to find the sub-spacecraft point on Mars for the Mars Reconnaissance Orbiter spacecraft (MRO) at a specified time, using both the 'Ellipsoid/Near point' computation method and an ellipsoidal target shape, and the "DSK/Unprioritized/Nadir" method and a DSK-based shape model.

    Use both LT+S and CN+S aberration corrections to illustrate the differences.

    Convert the spacecraft to sub-observer point vector obtained from this constructor into the MRO_HIRISE_LOOK_DIRECTION reference frame at the observation time. Perform a consistency check with this vector: compare the Mars surface intercept of the ray emanating from the spacecraft and pointed along this vector with the sub-observer point.

    Perform the sub-observer point and surface intercept computations using both triaxial ellipsoid and topographic surface models.

    For this example, the topographic model is based on the MGS MOLA DEM megr90n000eb, which has a resolution of 16 pixels/degree. Eight DSKs, each covering longitude and latitude ranges of 90 degrees, were made from this data set. For the region covered by a given DSK, a grid of approximately 1500 x 1500 interpolated heights was produced, and this grid was tessellated using approximately 4.5 million triangular plates, giving a total plate count of about 36 million for the entire DSK set.

    All DSKs in the set use the surface ID code 499001, so there is no need to specify the surface ID in the `method' strings passed to the SubObserverRecord and SurfaceIntercept constructors.

    Use the meta-kernel shown below to load the required SPICE kernels.

    KPL/MK
    
    This meta-kernel is intended to support operation of SPICE
    example programs. The kernels shown here should not be
    assumed to contain adequate or correct versions of data
    required by SPICE-based user applications.
    
    In order for an application to use this meta-kernel, the
    kernels referenced here must be present in the user's
    current working directory.
    
    The names and contents of the kernels referenced
    by this meta-kernel are as follows:
    
       File name                        Contents
       ---------                        --------
       de430.bsp                        Planetary ephemeris
       mar097.bsp                       Mars satellite ephemeris
       pck00010.tpc                     Planet orientation and
                                        radii
       naif0012.tls                     Leapseconds
       mro_psp4_ssd_mro95a.bsp          MRO ephemeris
       mro_v11.tf                       MRO frame specifications
       mro_sclkscet_00022_65536.tsc     MRO SCLK coefficients
                                        parameters
       mro_sc_psp_070925_071001.bc      MRO attitude
       megr90n000eb_*_plate.bds         Plate model DSKs based
                                        on MEGDR DEM, resolution
                                        16 pixels/degree.
    
    \begindata
    
       KERNELS_TO_LOAD = (
    
          'de430.bsp',
          'mar097.bsp',
          'pck00010.tpc',
          'naif0012.tls',
          'mro_psp4_ssd_mro95a.bsp',
          'mro_v11.tf',
          'mro_sclkscet_00022_65536.tsc',
          'mro_sc_psp_070925_071001.bc',
          'megr90n000eb_LL000E00N_UR090E90N_plate.bds'
          'megr90n000eb_LL000E90S_UR090E00S_plate.bds'
          'megr90n000eb_LL090E00N_UR180E90N_plate.bds'
          'megr90n000eb_LL090E90S_UR180E00S_plate.bds'
          'megr90n000eb_LL180E00N_UR270E90N_plate.bds'
          'megr90n000eb_LL180E90S_UR270E00S_plate.bds'
          'megr90n000eb_LL270E00N_UR360E90N_plate.bds'
          'megr90n000eb_LL270E90S_UR360E00S_plate.bds'  )
    
    \begintext
    

    Example code begins here.

     //
    // Program SubObserverRecordEx2
    //
    
    import spice.basic.*;
    import static spice.basic.AngularUnits.*;
    
    //
    // This program finds the sub-spacecraft point on Mars for the 
    // Mars Reconnaissance Orbiter spacecraft (MRO) at a specified time,
    // using both the 'Ellipsoid/Near point' computation method and an
    // ellipsoidal target shape, and the "DSK/Unprioritized/Nadir"
    // method and a DSK-based shape model. 
    //
    public class SubObserverRecordEx2
    {
       //
       // Load SPICE shared library.
       //
       static{ System.loadLibrary( "JNISpice" ); }
    
    
       public static void main( String[] args )
    
          throws SpiceException
       {
          //
          // Local constants
          //
          final String                      META   = "SubObserverRecordEx2.tm";
          final int                         NCORR  = 2;
          final int                         NMETH  = 2;
    
          //
          // Local variables
          //
          AberrationCorrection[]            abcorr = {
                                               new AberrationCorrection( "LT+S" ),
                                               new AberrationCorrection( "CN+S" ) };
    
          Body                              obsrvr = new Body( "MRO"  );
          Body                              target = new Body( "Mars" );
    
          LatitudinalCoordinates            latCoords;
    
          Matrix33                          xform;
    
          ReferenceFrame                    fixref =
                                               new ReferenceFrame( "IAU_MARS" );
    
          ReferenceFrame                    hiref = 
                                               new ReferenceFrame( 
                                                 "MRO_HIRISE_LOOK_DIRECTION" );
    
          String[]                          sinmth = { "Ellipsoid",
                                                       "DSK/Unprioritized" };
    
          String[]                          submth = { "Ellipsoid/Near point",
                                                       "DSK/Unprioritized/Nadir" };
    
          String                            tdbstr = "2007 SEP 30 00:00:00 TDB";
    
          SubObserverRecord                 subrec;
    
          SurfaceIntercept                  surfx;
    
          TDBTime                           et;
          TDBTime                           trgepc;
    
          Vector3                           mrovec;
          Vector3                           srfvec;
    
          boolean                           found;
    
          double                            alt;
          double                            dist;  
          double                            lat;
          double                            lon;
          double                            radius;
    
          int                               i;
          int                               j;
    
    
          try
          {
             //
             // Load kernels.
             //
             KernelDatabase.load( META );
    
             //
             // Convert the TDB request time string to ET (seconds past
             // J2000, TDB), represented by a TDBTime instance.
             //
             et = new TDBTime( tdbstr );
    
             //
             // Compute the sub-spacecraft point using each method. 
             // Compute the results using both LT+S and CN+S aberration 
             // corrections.
             //
             for ( i = 0;  i < NMETH;  i++ )
             {
                System.out.format ( "%nSub-observer point computation " +
                                    "method = %s%n",  submth[i]           );
    
                for ( j = 0;  j < NCORR;  j++ )
                {
                   subrec 
    
                      = new SubObserverRecord ( submth[i], target,    et, 
                                                fixref,    abcorr[j], obsrvr ); 
                   //
                   // Compute the observer's altitude above `subrec'.
                   //
                   srfvec = subrec.getSurfaceVector();
                   alt    = srfvec.norm();  
    
                   //
                   // Express `srfvec' in the MRO_HIRISE_LOOK_DIRECTION
                   // reference frame at epoch `et'. Since `srfvec' is expressed
                   // relative to the IAU_MARS frame at `trgepc', we must
                   // call getPositionTransformation(ReferenceFrame,
                   // Time,Time) to compute the position transformation matrix
                   // from IAU_MARS at `trgepc' to the MRO_HIRISE_LOOK_DIRECTION
                   // frame at time `et'.
                   //
                   trgepc = subrec.getTargetEpoch();
    
                   xform  = fixref.getPositionTransformation( hiref, trgepc, et );
    
                   mrovec = xform.mxv( srfvec );
    
                   //
                   // Convert sub-observer point rectangular coordinates to
                   // planetocentric latitude and longitude. Convert radians to 
                   // degrees.
                   //
                   latCoords = new LatitudinalCoordinates( subrec );
    
                   radius    = latCoords.getRadius();
                   lon       = latCoords.getLongitude() * DPR; 
                   lat       = latCoords.getLatitude()  * DPR; 
    
                   //
                   // Write the results.
                   // 
                   System.out.format( 
                              "%n"                                               +
                              "   Aberration correction = %s%n%n"                +
                              "      MRO-to-sub-observer vector in%n"            +
                              "      MRO HIRISE look direction frame%n"          +
                              "         X-component             (km) = %21.9f%n" +
                              "         Y-component             (km) = %21.9f%n" +
                              "         Z-component             (km) = %21.9f%n" +
                              "      Sub-observer point radius  (km) = %21.9f%n" +
                              "      Planetocentric latitude   (deg) = %21.9f%n" +
                              "      Planetocentric longitude  (deg) = %21.9f%n" +
                              "      Observer altitude          (km) = %21.9f%n",
                              abcorr[j],
                              mrovec.getElt(0),
                              mrovec.getElt(1),
                              mrovec.getElt(2),         
                              radius,
                              lat,
                              lon,
                              alt         );
    
                   //
                   // Consistency check: find the surface intercept on
                   // Mars of the ray emanating from the spacecraft and having
                   // direction vector `mrovec' in the MRO HIRISE look direction
                   // reference frame at `et'. Call the intercept point
                   // `xpoint'. `xpoint' should coincide with `subrec', up to a
                   // small round-off error.
                   //
                   surfx = new SurfaceIntercept( sinmth[i], target, et,    fixref,  
                                                 abcorr[j], obsrvr, hiref, mrovec );
    
                   if ( !surfx.wasFound() )
                   {
                      System.out.format ( "Bug: no intercept%n" );        
                   }
                   else
                   {
                      //
                      // Report the distance between `surfx' and `subrec'.
                      //
                      System.out.format( "      Intercept comparison error " +
                                         "(km) = %21.9f\n\n",
                                         surfx.getIntercept().dist( subrec )  );
                   }
    
                } // End of aberration correction loop
    
             } // End of method loop
    
          } // End of try block
    
          catch ( SpiceException exc )
          {
             exc.printStackTrace();
          }
    
       } // End of main method 
    
    }
    
    

    When this program was executed on a PC/Linux/gcc/64-bit/java 1.5 platform, the output was:

    Sub-observer point computation method = Ellipsoid/Near point
    
       Aberration correction = LT+S
    
          MRO-to-sub-observer vector in
          MRO HIRISE look direction frame
             X-component             (km) =           0.286933229
             Y-component             (km) =          -0.260425939
             Z-component             (km) =         253.816326386
          Sub-observer point radius  (km) =        3388.299078378
          Planetocentric latitude   (deg) =         -38.799836378
          Planetocentric longitude  (deg) =        -114.995297227
          Observer altitude          (km) =         253.816622175
          Intercept comparison error (km) =           0.000002144
    
    
       Aberration correction = CN+S
    
          MRO-to-sub-observer vector in
          MRO HIRISE look direction frame
             X-component             (km) =           0.286933107
             Y-component             (km) =          -0.260426683
             Z-component             (km) =         253.816315915
          Sub-observer point radius  (km) =        3388.299078376
          Planetocentric latitude   (deg) =         -38.799836382
          Planetocentric longitude  (deg) =        -114.995297449
          Observer altitude          (km) =         253.816611705
          Intercept comparison error (km) =           0.000000001
    
    
    Sub-observer point computation method = DSK/Unprioritized/Nadir
    
       Aberration correction = LT+S
    
          MRO-to-sub-observer vector in
          MRO HIRISE look direction frame
             X-component             (km) =           0.282372596
             Y-component             (km) =          -0.256289313
             Z-component             (km) =         249.784871247
          Sub-observer point radius  (km) =        3392.330239436
          Planetocentric latitude   (deg) =         -38.800230156
          Planetocentric longitude  (deg) =        -114.995297338
          Observer altitude          (km) =         249.785162334
          Intercept comparison error (km) =           0.000002412
    
    
       Aberration correction = CN+S
    
          MRO-to-sub-observer vector in
          MRO HIRISE look direction frame
             X-component             (km) =           0.282372464
             Y-component             (km) =          -0.256290075
             Z-component             (km) =         249.784860121
          Sub-observer point radius  (km) =        3392.330239564
          Planetocentric latitude   (deg) =         -38.800230162
          Planetocentric longitude  (deg) =        -114.995297569
          Observer altitude          (km) =         249.785151209
          Intercept comparison error (km) =           0.000000001
       

Throws:
SpiceException

SubObserverRecord

public SubObserverRecord()
No-arguments constructor


SubObserverRecord

public SubObserverRecord(SubObserverRecord subpt)
                  throws SpiceException
Copy constructor. This constructor creates a deep copy.

Throws:
SpiceException
Method Detail

getSubPoint

public Vector3 getSubPoint()
Return the sub-observer point.


getTargetEpoch

public TDBTime getTargetEpoch()
                       throws SpiceException
Return the target epoch.

Throws:
SpiceException

getSurfaceVector

public Vector3 getSurfaceVector()
Return the observer to sub-observer point vector.


JNISpice
version 2.0.0

JNISpice Alpha Test Version 2.0.0 28-JAN-2017 (NJB)