
Fretish Semantics
version Oct 2019

References

• Louise E. Moser, P. M. Melliar-Smith, Y. S. Ramakrishna, George Kutty, Laura K. Dillon:
The Real-Time Graphical Interval Logic Toolset. CAV 1996: 446-449

• Laura K. Dillon, George Kutty, Louise E. Moser, P. M. Melliar-Smith, Y. S. Ramakrishna:
A Graphical Interval Logic for Specifying Concurrent Systems.
ACM Trans. Softw. Eng. Methodol. 3(2): 131-165 (1994)

https://dblp.uni-trier.de/pers/hd/m/Moser:Louise_E=
https://dblp.uni-trier.de/pers/hd/m/Melliar=Smith:P=_M=
https://dblp.uni-trier.de/pers/hd/r/Ramakrishna:Y=_S=
https://dblp.uni-trier.de/pers/hd/k/Kutty:George
https://dblp.uni-trier.de/db/conf/cav/cav96.html
https://dblp.uni-trier.de/pers/hd/k/Kutty:George
https://dblp.uni-trier.de/pers/hd/m/Moser:Louise_E=
https://dblp.uni-trier.de/pers/hd/m/Melliar=Smith:P=_M=
https://dblp.uni-trier.de/pers/hd/r/Ramakrishna:Y=_S=
https://dblp.uni-trier.de/db/journals/tosem/tosem3.html

scope semantics – infinite state

In the following slides we define the intervals that are relevant for the scopes described. The formulas for
the rest are applied then to each of these intervals with conjunction – but we present them separately.
Defined intervals are highlighted in blue.

in
Notes

• using box here to stress the invariant
(like Kansas State patterns) although
in original box is not needed for
always.

• Interval not defined if MODE never
occurs in first interval formula

• Second interval formula adds the
possibility to extend for ever when
mode does not end and is only
applicable to the after until semantics

• Options:
• in: {afteruntil, between}

[)
MODE ⌝ MODE

current – equivalent to (after MODE until ⌝ MODE)

alternative – ignores interval that starts but does not end
equivalent to (between MODE and ⌝ MODE)
To get this we simply remove the second part of the disjunction

[)

MODE
[)

⌵

MODE
△

before

[)
MODE

alternative – we simply remove the second part of the disjunction

[)

⌵

[)
⌝ MODE

current – if mode never occurs we still check.

△

Notes

• If mode happens at beginning of
execution then interval is not defined
and all properties are trivially true

• In our implementation we use weak
to capture the second part of the
disjunction

• Options:
• Same as for in because before also sets an

interval from FTP to particular point

after

[)

current – if we never exit the mode then no requirement is imposed

[)
△

MODE ⌝ MODE

Notes
• If mode never happens all properties are

trivially true
• Options:

• Here we always have an after until semantics –
no other option is meaningful

only scopes negate the main formulas (see defs later)

• only in = same as in ⌝ MODE

• All only modes have a special way of negating the formula that follows – we discuss this when we present the
timing-satisfaction

only before

MODE

[)

current – if mode never occurs we ignore
Notes

This makes sense for all cases; we
should not differentiate alternative.

[)
△

only after

alternative – we simply remove the third part of the disjunction

[)

⌵

[)
MODE

current – if mode never exits we still check.

[)
MODE ⌝ MODE

MODE
[)

Notes

• If mode never exits we check

• If mode never happens we check
(consistent with semantics of before –
must similarly use “weak” in SALT)

• There is no special case (except third)
for “(not mode) happens at FTP”
because we only care if it follows a
mode and this can never occur at FTP
(this refers to our implementation) .⌵

[)
⌝ MODE

△

scope semantics –finite state

In the following slides we define the intervals that are relevant for the scopes described. The formulas for the
rest are applied then to each of these intervals with conjunction – but we present them separately. Defined
intervals are highlighted in blue.

in
Notes

• using box here to stress the invariant
(like Kansas State patterns) although
in original box is not needed for
always.

• Interval not defined if MODE never
occurs in first interval formula

• Second interval formula adds the
possibility to extend for ever when
mode does not end and is only
applicable to the after until semantics

[)
MODE ⌝ MODE

current – considers interval that starts but ends at EE (execution ended)
EE flags the time point after the last time point of the execution
equivalent to (after MODE until ⌝ MODE)

alternative – ignores interval that starts but does not end by EE
equivalent to (between MODE and ⌝ MODE)
To get this we simply remove the second part of the disjunction

[)

EE

[)

⌵

MODE U EE

before

[)
MODE

alternative – we simply remove the second part of the disjunction

[)

⌵

[)
⌝ MODE U EE

current – if mode never occurs we still check.
Notes

• If mode happens at beginning of
execution then interval is not defined
and all properties are trivially true

• In our implementation we use weak
to capture the second part of the
disjunction

EE

after

[)

current – if we never exit the mode then no requirement is imposed

[)
MODE ⌝ MODE

Notes

• If mode never happens all properties
are trivially true

EE

only scopes negate the main formulas (see defs later)

• only in = same as in ⌝ MODE for scope but then (special) negate the formula – more about this later

only before

MODE

[)

current – if mode never occurs we ignore
Notes

This makes sense for all cases, we
should not differentiate alternative.

[)

EE

only after

alternative – we simply remove the third part of the disjunction

[)

⌵

MODE U EE

current – if mode never exits we still check.

[)
MODE ⌝ MODE

MODE

[)

Notes

• If mode never exits we check

• If mode never happens we check
(consistent with semantics of before –
must similarly use “weak” in SALT)

• There is no special case (except third)
for “(not mode) happens at FTP”
because we only care if it follows a
mode and this can never occur at FTP
(this refers to our implementation) .

⌵

[)
⌝ MODE U EE

EE

EE

△

timing semantics – same for finite and infinite

The context that we refer to here are the blue intervals defined by the scope previously,
i.e., the semantics here refers to each interval in blue

basic timing – no conditions, no real time

P
immediately P[)

P
always P[)

P
eventually P[)

⌝ P
never P[)

adding conditions – pattern

[)
⌝ COND

COND

[)

⌵

=>

COND =>

[)

[)

GIL for plain timing

GIL for plain timing

adding conditions – example: eventually P

[)
⌝ COND

COND

[)

⌵

=>

COND
=>

[)

P

[)

P

basic timing – no real time, negations (all cases)

• not (immediately P) = immediately (not P)
• not (always P) = eventually (not P)
• not (never P) = eventually P
• not (eventually P) = always (not P)

real time – same for finite and infinite

We need to take care of the following plus their negations:
within n
for n
after n

We use EOS (end of scope) to denote the time point right after the end of each scope interval,
which coincides with the right point of an interval in the GIL diagrams since these intervals are
open to the right: [..).

Conditions simply apply the pattern so no need to write explicitly.

within n P

⌵

[)

EOS

P

len(0, n)
[)

[)
len(0, n]

for n P

⌵

[)

⌝ P

[)

[)
len[n, n]

P

Notes

• No double arrow for (not P)
happening because P can last
for more than n time units

RT timing – negations (all cases)
In general, if an interval is too short, then it is usually not enough evidence
of the violation of only.

• not (within n P) = for n (not P) ✓
• not (for n P) = within n (not P) ✓
• not (after n P) = (within n P) or (for (n+1) not P) ✓

• EOS is therefore only needed for within, not for, after, not after

