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1 Calibration Optics & Variables

To begin, we have light falling on the calibration optics. This light originates from the solar disk, passes through Earth’s
atmosphere, the telescope objective, and the diffuser/opal (and perhaps one or two other optical elements as well). We
assume that it has a single Stokes vector which is constant across CoMP’s illuminated field of view, and each component
of this Stokes vector may, in general, need to be determined. These components are the first 4 unknowns:

Sin =


s0
s1
s2
s3

 (1)

This light passes through the calibration stage, which may either be empty (clears) or contain the calibration optics,
first the cal polarizer, then the retarder (if present). If the polarizer is present, its Mueller matrix is applied to the data,
consisting of

Mpol = τpol


1 cos 2θpol sin 2θpol 0

cos 2θpol cos2 2θpol cos 2θpol sin 2θpol 0
sin 2θpol sin 2θpol cos 2θpol sin2 2θpol , 0

0 0 0 0

 , (2)

where τpol is overall transmission of the polarizer and θpol its angle with respect to some fiducial. We assume that θpol
for each distinct configuration of the calibration optics are known except for some overall additive error ∆θpol which is
the same for all configurations.

Next, the retarder’s Mueller matrix is applied, if it is present (note that the retarder is only present, as the calibration
is currently done, when the polarizer is also present). This is

Mret = τret


1 0 0 0
0 cos2 2θret + sin2 2θret cos(δ) cos 2θret sin 2θret(1− cos(δ)) − sin 2θret sin(δ)
0 cos 2θret sin 2θret(1− cos(δ)) sin2 2θret + cos2 2θret cos δ cos 2θret sin δ
0 sin 2θret sin δ − cos 2θret sin δ cos δ

 , (3)

where τret is the overall transmission of the retarder, θret is the angle of the retarder with respect to the same fiducial,
and δ is its retardance angle. Using these, we can calculate the Stokes vector of light entering the CoMP polarization
analyzer as

Scal = MrMpSin, (4)

if both polarizer and retarder are present,
Scal = MpSin, (5)

if only the polarizer is present, and
Scal = Sin, (6)

if neither polarizer nor retarder are present. Taken together, this is the model for the calibration optics, and we use it to
specify the light entering the CoMP polarization analyzer (which we want to calibrate). It has a total of nine ‘calibrator
variables’: [

s0 s1 s2 s3 τpol ∆θpol τret θret δ.
]

(7)
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2 Polarimeter Optics & Variables

The CoMP polarization analyzer can measure six distinct polarization states, which are called I+Q, I-Q, I+U, I-U, I+V,
and I-V. Each of these has what I have called a polarization ‘response’ vector, R. For light falling on the polarization
analyzer with Stokes vector S (in the calibration problem, this light comes from the calibration optics, discussed below),
the flux Φ measured by the detector is taken to be the inner product of S and R:

Φ = R · S. (8)

Ideally, the response vectors would match their names; that is,

RI+Q =


1
1
0
0

 , RI−Q =


1
−1
0
0

 , RI+U =


1
0
1
0

 , RI−U =


1
0
−1
0

 , RI+V =


1
0
0
1

 , RI−V =


1
0
0
−1

 , (9)

so that, for instance, I+Q has the same response to I and Q and no response to the other Stokes vector components. In
reality, however, the components of these vectors deviate from these ideal values and we must solve for them. Moreover,
the components vary spatially across CoMP’s field of view, so we must solve for (for instance)

RI+Q =


rI+Q
0 (x, y)

rI+Q
1 (x, y)

rI+Q
2 (x, y)

rI+Q
3 (x, y)

 . (10)

To simplify the spatial variation, we assume that the spatial variation can be represented by a sum of two-dimensional
basis functions, fi(x, y) with linear coefficients cij , for example:

rI+Q
i (x, y) =

∑
j

cI+Q
ij fj(x, y). (11)

For simplicity, the fj are chosen so that the spatial variation is fit to a simple bilinear function:
f0
f1
f2
f3

 =


1
x
y
xy

 . (12)

However, it is straightforward to substitute a larger and/or more complicated set of basis functions in their place.
Our objective is to solve for the coefficients cij for each state of the polarization analyzer, and we do so by obtaining

a set of data ΦD
k for several different Stokes vectors Sk (individual components ski ) produced by the calibration optics.

For a given polarization analyzer state (e.g., I+Q) and Stokes vector, our model prediction of the flux (ΦM ) is given by
combining Equations 8, 10, and 11:

ΦM
k (x, y) =

∑
ij

ski cijfj(x, y). (13)

To solve for the coefficients, we must measure at least as many linearly independent calibration Stokes vectors as the
the Stokes vector has components (i.e., 4), and we solve for the coefficients by minimizing the χ2 between the modeled
flux, ΦM (from Equation 8), and the flux recorded in the data, ΦD:

χ2 =
∑
kxy

(
ΦD
k (x, y)− ΦM

k (x, y)
)2

σ2
k(x, y)

(14)
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where σ2
k(x, y) is the estimated uncertainty in the measurements at each pixel (assumed to be propotional to the shot

noise). χ2 is minimized where its derivative is zero (and since this is a quadratic form, it has only one global extremum):

∂χ2

∂cij
= −2

∑
kxy

(
ΦD
k (x, y)− ΦM

k (x, y)
)

σ2
k(x, y)

∂ΦM
k (x, y)

∂cij
= 0 (15)

Expanding further, this becomes ∑
kxy

ΦD
k (x, y)−

∑
lm skl clmfm(x, y)

σ2
k(x, y)

ski fj(x, y) = 0, (16)

or ∑
lm

clm
∑
kxy

ski fj(x, y)s
k
l fm(x, y)

σ2
k(x, y)

=
∑
kxy

ΦD
k (x, y)s

k
i fj(x, y)

σ2
k(x, y)

. (17)

Since {ij} and {lm} always appear together in the same way in this expression, we can flatten them into a single index
whose dimensions are the product of the dimensions of the Stokes vector and the number of basis functions (typically,
4× 4 = 16). Concretely, we have single column vectors structured like[

c00 c01 c02 c03 c10 c11 c12 c13 c20 c21
c22 c23 c30 c31 c32 c33

]
, (18)[

f0 f1 f2 f3 f0 f1 f2 f3 f0 f1
f2 f3 f0 f1 f2 f3

]
, (19)

and [
sk0 sk0 sk0 sk0 sk1 sk1 sk1 sk1 sk2 sk2
sk2 sk2 sk3 sk3 sk3 sk3

]
. (20)

This is change of notation allows us to write Equation 17 in the form of a familiar matrix inversion problem:

A · c = b, (21)

where A is given by (collapsing {ij} → i and {lm} → l)

Ail ≡
∑
kxy

ski fi(x, y)s
k
l fl(x, y)

σ2
k(x, y)

, (22)

the components of c are clm → cl, and b is given by

bi =
∑
kxy

ΦD
k (x, y)s

k
i fi(x, y)

σ2
k(x, y)

(23)

With these in hand, it is trivial to solve for the coefficients by inverting Equation 21:

c = A−1 · b (24)

This gives us the coefficients which define the response vector for a single state of the polarimeter (e.g., cI+Q
ij ), and

for a single beam (and beam setting) on the detector. The codes treats the two beams on the detector by performing the
calculation twice, once for the upper annulus (above the diagonal) and once for the lower one, computing independent
coefficients for each. The overall chi2 of the fit to this polarimeter state and beam setting is then computed by patching
the two sections together and computing the difference with the data in the usual way. We the proceed to do the same
thing for each polarimeter state, producing a set of best fit coefficients and chi2 values for each, given the Stokes vector
produced by the calibration optics (which depend on the calibrator variables from Equation 7). Note that this assumes
that the Stokes responses of each polarimeter state are completely independent and unknown a priori.
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3 Searching for the Calibrator Variables

The previous section describes how the coefficients for the polarimeter response (the ‘polarimeter variables’) are deter-
mined given a known set of input calibrator variables, but these are not precisely known and we also need to solve for
them. To do this, we have a wrapper code which allows the computation described above to be called by an amoeba or
similar algorithm which searches over the calibrator variables for the overall best χ2. In this way, we find the best fitting
combination of all variables, since the linear inversion finds the best polarimeter coefficients for each set of calibrator
variables tried by the amoeba, while the amoeba deals with finding the best set of calibrator variables.

4 Demodulation using the Calibration Solution

We have now solved, from the calibration data, for the full set of polarimeter response vectors, RI+Q, RI−Q, RI+U ,
RI−U , RI+V , and RI−V . We then want to turn around and apply them to a set of solar data to find the ‘true’ Stokes
vector for the data. We have measured data for each polarimeter state, ΦD

I+Q,Φ
D
I−Q,Φ

D
I+U ,Φ

D
I−U ,Φ

D
I+V , and ΦD

I−V

and the known response vectors listed. We want to find the observed Stokes vector, SO, which in our model should
determine the ΦD according to Equation 8:

ΦM
i (x, y) = Ri(x, y) · SO(x, y) =

∑
j

rij(x, y)s
O
j (x, y), (25)

where i now indexes the various states of the polarimeter (I+Q, I-Q, etc.), and r and s are the components of the R and
S vectors, as before. The χ2 between the data and this model has the usual form:

χ2 =
∑
i

(
ΦD
i (x, y)− ΦM

i (x, y)
)2

σ2
i (x, y)

=
∑
i

(
ΦD
i (x, y)−

∑
j r

i
j(x, y)s

O
j (x, y)

)2
σ2
i (x, y)

(26)

As before, we want to minimize χ2 by finding the ‘model’ parameters (in this case, sOj ) for which its derivative
vanishes:

∂χ2

∂sOj
= −2

∑
i

(
ΦD
i (x, y)−

∑
k r

i
k(x, y)s

O
k (x, y)

)
σ2
i (x, y)

rij(x, y) = 0, (27)

or, ∑
k

sOk (x, y)
∑
i

rij(x, y)r
i
k(x, y)

σ2
i (x, y)

=
∑
i

ΦD
i (x, y)

σ2
i (x, y)

rij(x, y). (28)

This has the same familiar matrix form we encountered in Equation 21:

A · c = b, (29)

where we now have c(x, y) = SO(x, y) (components ck(x, y) = sOk (x, y)),

Ajk(x, y) ≡
∑
i

rij(x, y)r
i
k(x, y)

σ2
i (x, y)

, (30)

and

bj(x, y) =
∑
i

ΦD
i (x, y)

σ2
i (x, y)

rij(x, y). (31)

Its solution, as before, is
SO(x, y) = A−1(x, y) · b(x, y). (32)

4



This is what we want at the end of the day. It is the Stokes vector which best fits the input data - we have, in one swoop,
demodulated and crosstalk corrected, taking into account the varying uncertainty levels in the data. As described here,
it requires computing the inverse of the 4× 4 A matrix (the rik matrix is 4x6, but the 6 dimension index is summed over
in the matrix product which computes A) at each pixel. It is likely possible to optimize this somewhat by taking account
of our model of the spatial variation of rik, but that would come at the expense of programmer time, and 4 × 4 matrix
inversion should be quick enough that the CPU time required is manageable.

We should also be able to perform inversions without data from the full six polarimeter states (e.g., full inversion
while missing I-Q, or inversion of I, Q, and U with no V data) with a reduced rank solution – removing the appropriate
rows and/or columns from the rik matrix and employing the same procedure otherwise.

5 To Do List

There is more software to be written before a calibrated set of data can be produced. They are, in list form:

1. Standardize on data format for storing the calibration coefficients. The example script writes a structure with the
necessary information to an IDL save file, but we should probably move to something more portable.

2. Write the core code to do the demodulation and correction of Section 4. I will attempt this tomorrow, but will not
have time to test this code (that depends on the next point).

3. Incorporate into pipeline code which reads the calibration files, as well as all of the data necessary to do the
demodulation/correction (e.g., I+-Q/U data if this is a Stokes V file), and puts them into the correct data structures
for the demodulation/correction code to run. It will also need to check and see if a reduced rank solution should
be carried out instead, and rearrange the data and calibration information accordingly.

4. Once these new demodulated data have been produced, the rest of the pipeline *should* be able to proceed as
usual.
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