
Detection guideline log4j

Version 0.3 - December 21, 2021

What is log4shell?

• Log4shell is a zero-day vulnerability in log4j, a popular Java logging-framework

• This allows an attacker to run arbitrary code on a remote system: remote code execution

• The scope (a lot of software uses log4j) and the impact result in the CVSS score of 10.0

• Mitigation includes disabling functions in log4j, patching with 2.17 or patch software with log4j
functionality

• In order to check whether your systems might be compromised, this guide is written to guide
through detection methods on different systems

About this guide

This guide is written as a high-over guide for the following two scenarios:

• Your infrastructure was exposed between December 1st (first time log4j vulnerability was
exploited) and date of patching

• Your infrastructure might be exploited, and you want to know how to check this

Disclaimer

• This guide is written on a best-effort basis and is updated on the date mentioned on the first
slide. As attack paths, scope and impact of this vulnerability develop quickly, we advise to read
this guide as a general detection overview

• This guide is made by the cyber security community. If you have comments or additions to this
guide, please raise an issue on the NCSC log4shell GitHub

https://github.com/NCSC-NL/log4shell

Reading guide

This guide is divided in the following parts:

• Flow of the attack

• Scope of the vulnerability

• General mitigation advice for

• Network

• Systems

• Logging

Mapping of attack path on MITRE ATT&CK framework

Reconnaissance (1)

Active scanning

Gather host information

Initial access (2)

Exploit Public-Facing
Application

Execution (3)

Command and Scripting
Interpreter

Impact (4)

Data Encrypted for
Impact

Resource Hijacking

Tactic

Technique

* click on links for general detection methods

https://attack.mitre.org/techniques/T1595/
https://attack.mitre.org/techniques/T1592/
https://attack.mitre.org/techniques/T1190/
https://attack.mitre.org/techniques/T1059/
https://attack.mitre.org/techniques/T1486/
https://attack.mitre.org/techniques/T1496/

Figure 1

How does the attack work? Figure 1 (initial access)

• Log4j logs information entered by a person or from a system who visits the application (step 1
+ 2)

• Specifically crafted strings (starting with ${jdni:protocol) entered by this person or system will
be executed as log4j interpretes this as a query (step 3)

• This can result in remote code execution, information disclosure or denial of service

• The payload can be entered in HTTP headers, input fields, etc

• Examples: ${jndi:ldap(s), ${jdni:dns or ${jdni:rmi

• Requests coming from different source IPs

• Some logged malicious source IPs can be found here

• Please be aware that blocking these IPs can result in blocking of legit services, so use this
list to cross-check your own logged source IPs

https://github.com/NCSC-NL/log4shell/tree/main/iocs

Scope of the vulnerability

Detection of possible abuse/compromise of systems by using the log4j vulnerability, known as

- CVE-2021-44228 (initial CVE with remote code execution)

- CVE-2021-4104

- CVE-2021-45046

–Software vulnerable to this CVEs are listed on GitHub

–Currently >3000 products listed: list of vulnerable software

–List in CSV and JSON format released every day

https://github.com/NCSC-NL/log4shell/blob/main/software/README.md

General advice

• First attempts were seen on December 1, 2021, so look back to December 1, 2021

• Start hunting for exploitation within your network (step 3 in Figure 1)

• Try to automate as much as possible and run your playbooks regularly

• Short term detection capabilities. Long term is not within scope, like adding honeypots in your
network

• See for yourself what is feasible to do

• This guide could be outdated (please check the publishing date on first slide). The most recent
guide is published on the NCSC website (Dutch) or Apache website (English)

What could attackers abuse to exploit the vulnerability?

'Everything with an input field', like:

• Search bar

• URL path

• HTTP headers like User-Agent, Authorization, Referer

Where could you detect possible abuse of the vulnerability?

1. Network

–NetFlow

2. Systems

–Endpoint Detection & Response

3. Logging

– IDS logging

–Access & error logs

–Stack traces

• Forensic Images

• Honeypot

• Firewall Logging

• Host integrity checker

1. Network

• Look for outgoing network or web connections from your servers to the internet

• Outgoing network connections may go to non-standard ports or over standard HTTP and
HTTP/S ports

• Look for suspicious curl or wget user-agents to external IP addresses

• By search the DNS logging for queries to suspicious or known malicious sites

• IP addresses that are used for scanning are often also used for an outbound connection

• Many DNS requests from 1 server. Deviating from normal behavior. The exact same domain.

• System with itself baselining with a period in the past. Create also a baseline for the present.
Make a delta between the past and present. Look for different ports or DNS requests to strange
addresses. Narrow down the list of systems running which are known to be running log4j

1. Network

• Snort/Suricata rules

• Use a good list of bad IP addresses. Use the list shared by the NCSC through MISP.

• Look at the JNDI payloads, regex the IP addresses and domain names from there, then look at
outgoing connections to the IP addresses. IP addresses can be encoded in different ways.
Octal, Hexadecimal etc...

• Consider that the payload can be base64 encoded and all kind of obfuscation techniques are
used

• Monitor LDAP protocol. Non-standard ports are used for LDAP. Outbound LDAP is not normal.
Same goes for several other protocols. Assume nonstandard ports for protocols

• Check the firewall for inbound connection e.g., LDAP, RMI etc....

• Check for ICMP traffic (Time Exceeded) traffic. Match the source IP addresses with the MISP
list

2. Systems

• Suspicious execution of common command line tools used to download files, such as: curl,
wget, or powershell

> Check out one of the IOC lists of files downloaded after compromise

> This list includes cryptominers, Mirai botnets, etc

• The creation of suspicious or unexpected programs or services on an endpoint

• An increase in CPU and memory usage on a server, because many attackers place
cryptominers on exploited systems

• Security software for endpoints/server that generates alerts about tool usage or activity after
the compromise

• After compromise, remove your endpoint from the network, create a forensic image, reinstall
the endpoint and, examine the forensic image. Cleaning your system is not feasible.

https://github.com/NCSC-NL/log4shell/blob/main/iocs/README.md

3. Logging

Credits to Gerrit Kortlever - Deloitte

3. Logging

Credits to Gerrit Kortlever - Deloitte

3. Logging

Credits to Gerrit Kortlever - Deloitte

3. Logging

Credits to Gerrit Kortlever - Deloitte

Read more

• NCSC log4shell GitHub

• Apache log4j vulnerability guide

Mitigation and detection guide: https://github.com/NCSC-NL/log4shell/tree/main/detection_mitigation

This page contains an overview of any detection and mitigation software regarding the Log4j vulnerability. On

this page NCSC-NL will maintain a list of all known rules to detect Log4j presence or (suspected) exploitation.

https://github.com/NCSC-NL/log4shell
https://logging.apache.org/log4j/2.x/
https://github.com/NCSC-NL/log4shell/tree/main/detection_mitigation

Contributions to this guide

A big thank you to the following people or organisations for contributing to this guide:

• Karl Lovink, Belastingdienst

• Gerrit Kortlever, Deloitte

