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1 Introduction

The traditional triangulation technique involves throwing two eyes of ender and intersecting the
lines they trace. This traditional model will work perfectly every time if the user is able to read
the angle of the ender eye perfectly. However, this is not possible since the user has to point their
crosshair manually at the eye, adding a measurement error. In this paper I will present a model
that accounts for the error, and has multiple benefits over the traditional method:

• More reliable results by incorporating the ’8,8 strat’.

• Gives a certainty value (probability) of the predicted stronghold chunk location, so the player
can know whether or not the prediction should be trusted.

• Any number of measurements can be included to increase the precision indefinetly (as opposed
to 2 with the traditional triangulation).

• Uses statistical stronghold generation mechanics to give more accurate predictions.

2 Model

2.1 Closest stronghold

An ender eye always points to the nearest stronghold, meaning that closer chunks in the direction
of the ender eye generally have a higher probability of having a stronghold than farther chunks. In
this section the math that is used to model this is presented.

Let nk denote the number of strongholds in the k:th ring. The positions of the strongholds
pre-snapping is given by

(−ri sinφi, ri cosφi) , φ ∼ U(0, 2π), φi = φ+
2iπ

nk
, ri ∼ U(ak, bk), i = 0, . . . , nk − 1.

Then two snapping steps are performed, first the points are snapped to the nearest chunk origin
((0, 0) in the chunk), then the points are snapped up to 7 chunks away in both dimensions, approx-
imately uniformly distributed. Let φ′i denote the polar angle of the (8, 8) position of stronghold i
post-snapping, and ri its distance from (0, 0). The difference between the stronghold positions pre
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and post snapping is at most 8 + 7 × 16 + 8 blocks in both dimensions, which means the maxi-
mum distance the stronghold can move during snapping is 128

√
2 blocks. In turn, this means that

|φ+ 2iπ
nk
− φ′i| ≤ arctan

(
128
√

2/ak
)
< 128

√
2/ak, and

φ′i = φi + δi,

where all δi are independent and less than 128
√

2/ak. It is also made the assumption that all δi
are identically distributed continuous random variables, which isn’t true but is a practical approx-
imation.

When an ender eye is thrown let j denote the index of the stronghold it points towards. The
probability that j = i given φ′i, r

′
i satisfies

p(j = i|φ′i, r′i) ∝ f(φ′i, r
′
i|j = i)p(j = i) ∝ f(φ′i, r

′
i|j = i),

since p(j = i) is constant due to symmetry. Let p = (φp, rp) denote the position of the player when
they throw the eye, let ri denote the position of stronghold i, and let di = |ri−p|. Since stronghold
j is closer than any other stronghold it also holds that

dj ≤ di, ∀i 6= j,

which implies

p(j = i|φ′i, r′i) =
∏
l 6=i

p(di ≤ dl|φ′i, r′i).

We obtain

p(di ≤ dl|φ′i, r′i) = 1− p(di < dl|φ′i, r′i) = 1−
∫ 2π

0

∫ R1

R0

f(φ′l, r
′
l|φ′i, r′i)dr′ldφ′l,

where the integration bounds R0 and R1 (not including the derivation here) are given by

Rm = di
sinαk

sin(φp − φ′l)
, m = 0, 1

α0 = β − (φp − φ′l)
α1 = π − (φp − φ′l)− β

β = arcsin

(
rp
di

sin(φp − φ′l)
)
.

If strongholds i and l are in different rings φ′i and φ′l are independent and we obtain

p(di ≤ dl|φ′i, r′i) = 1−
∫ 2π

0

∫ R1

R0

f(φ′l, r
′
l)dr

′
ldφ
′
l = 1−

∫ 2π

0

1

2π
(Fr(R1)− Fr(R0))dφ′l.

If strongholds i and l are in the same ring φ′l = φ′i + (i−l)2π
nk

− δi + δl = φ′i + (i−l)2π
nk

+ ∆il and by a
change of variables we get

p(di ≤ dl|φ′i, r′i) = 1−
∫ 2π

0

∫ R1

R0

f∆(φ′i +
(i− l)2π

nk
+ ∆il, r

′
l)dr

′
ld∆il

= 1−
∫ 2π

0

f∆(φ′i +
(i− l)2π

nk
+ ∆il)(Fr(R1)− Fr(R0))d∆il.
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Putting it all together:

f(φ′i, r
′
i|j = i) ∝

∏
l 6=i

p(di ≤ dl|φ′i, r′i).

To be able to numerically estimate the integral above we need to know the distribution of ∆.
Let riφ denote the distance in the φ direction that stronghold i is moved due to snapping. Then,

using small angle approximation, we get ∆il ≈
rlφ
rl
− riφ

ri
≈ rlφ−r

i
φ

ak
. Let q = rlφ − riφ, values from

q’s distribution is sampled, with the assumption that snapping is uniform on the 15 × 15 grid
centered on (0, 0). In reality the (0, 0) offset has a slightly higher probability (around 0.06, because
of ocean strongholds)1, and biome snapping favors offsets towards the edges, but these effects are
not that significant and assuming a uniform distribution is a good approximation. The samples
from q’s distribution can then be used to fit a distribution, since q is bounded we choose to fit a
β distribution. The fit reveals that q is approximately β(5.5, 5.5)-distributed, see Figure 1. Note
that q ∈ [−7.5×

√
2× 2, 7.5×

√
2× 2], since the maximum snapping distance along an axis is 7.5

chunks, 0.5 when the closest chunk is chosen, and 7 when the ”biome snapping” step occurs. Thus,
the pdf of ∆ in ring k is approximately proportional to

f∆(∆) ∝
(

1 +
ak∆

15
√

2

)4.5(
1− ak∆

15
√

2

)4.5

, |∆| < 15
√

2

ak
.

Figure 1: The sampled density of q (10M samples) compared to the pdf of a β(5.5, 5.5) distribution.

1Source: Matthew Bolan
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2.2 Measurement error

Let the set of grid points

G = {gk ∈ R2 : gk is in one of the 8 stronghold rings, gk = (16i+ 8, 16j + 8), i, j ∈ Z}

denote the set of all chunk centers (8,8) where strongholds can spawn (after ”biome snapping”
occurs). Let si ∈ G denote the location of the i:th stronghold. What we ultimately want is to
assign a value to the probability P (si = gk) for each k = 1, . . . ,K based on eye throws, and choose
the gk that maximizes P (si = gk) as our prediction. At the time of throw n, let γn,gk denote the true
angle (in degrees) to chunk center gk from the player, and let αn denote the angle that is measured
by the player. It is assumed that the measurement error is normally distributed with mean 0 and
variance σ2, which is standard practice for measurement errors and testing has confirmed it to be
a fitting distribution. This gives us:

αn = γn,s + εn, εn ∼ N(0, σ2).

Thus, the conditional probability density of αn given that si = gk is

p(αn|s = gk) =
1

σ
√

2π
e−(αn−γn,gk )2/2σ2

.

Let α = (α1, . . . , αN ) denote the vector containing all αn (all throws by the player). If we assume
that the measurement errors εn are independent we get the joint conditional probability density

p(α|s = gk) =

N∏
n=1

1

σ
√

2π
e−(αn−γn,gk )2/2σ2

.

Using Bayes’ theorem we get the following expression for the probability of chunk location gk
containing the stronghold, given the eye throws:

P (si = gk|α) =
p(α|s = gk)P (si = gk)

p(α)
∝ P (si = gk)

N∏
n=1

e−(αn−γn,gk )2/2σ2

where P (si = gk) is the prior probability mass funciton of the strongholds, and p(α) is the prior dis-
tribution of α. More specifically, P (si = gk) is the probability that that chunk gk has a stronghold,
so
∑
g∈G P (si = g) = 128 because there are 128 strongholds. I wont go into detail as to exactly how

P (si = gk) is calculated because it is not important, but basically it is calculated by first integrating
the pre-snapping stronghold density over the chunk region, and then performing a convolution step
which models biome snapping. Finally, we obtain the posterior distribution, where we also take
into account that si has to be the closest stronghold:

P (si = gk|α, i = j) ∝ P (si = gk|α)f(φ′i, r
′
i|j = i)

The posterior distribution is used to give the player the probability of each chunk containing the
stronghold.
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3 Notes

In practice the probabilities p(α|si = gi) are not calculated for all chunks in G, doing so is too
computationally intensive. Also, the prior P (si = gk) is not calculated exactly in practice, mainly
because the convolution step is very expensive. Instead, a post-snapping density is approximated
and the convolution can be skipped entirely. Also, it is possible that the assumption that E[εn] = 0
is false if the player doesnt know where to aim on the eye, but this can be corrected by a guide, for
example. The parameter σ is set depending on how accurate the player is. For players that are just
introduced to the tool I have found σ = 0.1 to be a good value. For a user that is experienced at
measuring eyes at 30 FOV σ = 0.03 is a good value. For someone who measures subpixels flawlessly
the value of σ can be as low as 0.010 − 0.005. In practice, the smaller σ is, the more ’certain’ the
algorithm will be that its prediction is correct.

4 Examples

The model has been tested in creative mode, and the model has been better or equally good
at predicting the correct chunk than other triangulation methods. An example of the calculator
working in a real run can be seen at https://youtu.be/zK96gjkLTGc?t=871.
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