--- title: ARIMA keywords: fastai sidebar: home_sidebar nb_path: "nbs/arima.ipynb" ---
arima(ap, order=(2, 1, 1), seasonal={'order': (0, 1, 0), 'period': 12},
include_mean=False, method='CSS-ML')['coef']
predict_arima(res, 10)
predict_arima(res_intercept, 10)
newdrift = np.arange(ap.size + 1, ap.size + 10 + 1).reshape(-1, 1)
newxreg = np.concatenate([newdrift, np.sqrt(newdrift)], axis=1)
predict_arima(res_xreg, 10, newxreg=newxreg)
myarima(ap, order=(2, 1, 1), seasonal={'order': (0, 1, 0), 'period': 12},
constant=False, ic='aicc', method='CSS-ML')['aic']
arima_string(res_Arima_ex)
arima_string(res_Arima)
mod = auto_arima_f(ap, period=12, method='CSS-ML', trace=True)
print_statsforecast_ARIMA(mod)
model = AutoARIMA()
model = model.fit(ap)
model.predict(h=7)
model.predict(h=7, level=80)
model.predict(h=7, level=(80, 90))
model.predict_in_sample()
model.predict_in_sample(level=50)
model.predict_in_sample(level=(80, 90))
model.model_.summary()
model.summary()
model_x = AutoARIMA(approximation=False)
model_x = model_x.fit(ap, np.hstack([np.sqrt(drift), np.log(drift)]))
model_x.predict(h=12, X=np.hstack([np.sqrt(newdrift), np.log(newdrift)]), level=(80, 90))
model_x.predict_in_sample()
model_x.predict_in_sample(level=(80, 90))
model_x.summary()