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1. Introduction
COVID-19 has caused the first severe pandemic of the XXI century that brought around
3.3 million fatal outcomes around the world as of May 2021. In this project, we will answer
the following utterly important question during a pandemic time: Is a diet considered an
important factor to protect ourselves from COVID-19? To answer this question, we will
analyze the effect of a diet in different countries on COVID-19 recovery rate. The
conclusion from this analysis will help us to understand what should be the optimal diet to
mitigate the negative health effects from COVID-19. The dataset for this project was
collected by Maria Ren and taken from Kaggle. This data was collected with an aim to
learn more about how a healthy diet could help combat the COVID-19. The implications of
our analysis could be crucial to understand what people should have in their diet to
increase the possibility of recovery from COVID-19.

2. Exploratory Data Analysis
Originally, the dataset contained 31 variables, but we use 26 variables in our analysis. We
have excluded the variables called Population, Death, Confirmed and Active, because
they were highly correlated with our response variable called Recoved. In addition, a
variable containing undernourished rates was excluded from our model, as it was highly
correlated with a variable containing obesity rates for different countries. The variables we
included in our analysis provide information about the country, percentage of energy
intake in kcal from different types of food, obesity rate, and recovery rates from
COVID-19. The following table briefly describes the type and a brief description of these
variables:

Table 1. Variables description

Variable Type Description

Country Categorical Country in which observation was taken

Alcoholic.Beverages Numerical Percentage of energy intake from
alcoholic beverages

Animal.Products Numerical Percentage of energy intake from animal
products

Animal.fats Numerical Percentage of energy intake from animal
fats

Aquatic.Products..Other Numerical Percentage of energy intake from aquatic
products

Cereals...Excluding.Beer Numerical Percentage of energy intake from cereal,
excluding beer

Eggs Numerical Percentage of energy intake from eggs

Fish..Seafood Numerical Percentage of energy intake from fish
seafood



Fruits...Excluding.Wine Numerical Percentage of energy intake from fruits,
excluding wine

Meat Numerical Percentage of energy intake from meat

Milk...Excluding.Butter Numerical Percentage of energy intake from milk,
excluding butter

Miscellaneous Numerical Percentage of energy intake from
miscellaneous products

Offals Numerical Percentage of energy intake from offals

Oilcrops Numerical Percentage of energy intake from oilcrops

Pulses Numerical Percentage of energy intake from pulses

Spices Numerical Percentage of energy intake from spices

Starchy.Roots Numerical Percentage of energy intake from starchy
roots

Stimulants Numerical Percentage of energy intake from
stimulants

Sugar.Crops Numerical Percentage of energy intake from sugar
crops

Sugar...Sweeteners Numerical Percentage of energy intake from sugar
and sweeteners

Treenuts Numerical Percentage of energy intake from treenuts

Vegetal.Products Numerical Percentage of energy intake from vegetal
products

Vegetable.Oils Numerical Percentage of energy intake from
vegetable oils

Vegetables Numerical Percentage of energy intake from
vegetables

Obesity Numerical Obesity rate in percent

Recovered Numerical Percentage of people recovered from
COVID-19



Figure 1. Correlation matrix of all variables

The above figure demonstrates a correlation magnitude between any two individual
variables. Here, our target variable is Recovered. It is interesting to note that
Vegetal.Products and Animal.Products (Milk, Meat, Eggs, Animal Fats) have a strong
negative correlation. There are a few variables, e.g. Fish..Seafood, Miscellaneous and
Aquatic.Products.Other that have a negligible effect on the recovery rate. From statistics
theory, the linear model performs better on the test data when we have less parameters.
Hence, we can remove the variables that do not have a linear relationship with the target
variable. By looking at the correlation plot, we can see that the following variables in the
training data have insignificant correlation with the recovery rate at 1% significance level
and are denoted by the “crossed” symbol: 1. Aquatic..Products..Other; 2. Fish..Seafood;
3. Miscellaneous; 4. Fruits..Excluding..Wine; 5. Spices; 6. Sugar.Crops. Therefore we can
remove these variables from our training data.

When the feature variables are highly correlated, they have almost the same effect on the
target variable and cause a problem of multicollinearity in a linear model. In such cases,
the inverse of our design matrix does not exist and we get infinitely many solutions for
beta parameters of our linear model. Hence, in order to build a linear model, we need to
ensure that our design matrix does not have highly correlated features. We have already
mentioned that Animal.Products and Vegetal.Products are highly correlated according to
the correlation plot and if we include both of these variables in our linear model it will



cause a multicollinearity. Since Animal.Products (e.g. Meat, Aquatic.Animals, Eggs, Milk,
etc.) and Vegetal.Products (e.g. Alcohol, Oilcrops, Pulses, etc.) are just a combination of
many variables that we already have in our model, we will drop these two variables to
avoid multicollinearity problems. This step will ensure that the inverse of our design matrix
exists.

After removing the mentioned variables, we obtain the following correlation plot:

Figure 2. Correlation matrix of chosen variables

From Figure below, we can see that most of the countries include Vegetal Products
(variable 8) in their diet. The second major food type included in the diet is cereals
excluding beer. Animal Products is the third most included food item in the diet by various
countries.

Figure 3. Boxplots of variables



3. Methodology
In this project, we are trying to solve a regression problem. There are two methods of
regression: parametric regression and non-parametric regression. We will first build
parametric regression models and test their performance. Afterwards, we will build
non-parametric regression models. Finally, we will compare performance for all models.

3.1 Linear Regression

The first model that we have used in our project is the most simple, which is a linear
regression model. To assess the performance of the model, we separated our data into
training (80%) and testing (20%) sets. After we constructed the model with the response
variable Recovered and with explanatory variables containing all the variables, except
those that were excluded in Exploratory Data Analysis part, we also excluded
Cereals...Excluding.Beer variable, which had a very high Variance Inflation Factor (VIF) =
17.78, to avoid multicollinearity in our model. Afterwards, we performed regression
diagnostics and found that the residuals were not normally distributed according to the
Shapiro-Wilk test and heteroskedasticity was present in our model according to
Breush-Pagan test. These two factors violate the assumptions for linear regression
modelling, so we had to use a transformation of the response variable and robust
standard errors to avoid misleading results. The inverse Box-Cox transformation was
used and 1 was added to remove the possibility of dividing by 0 in testing set prediction,
so we got 1/(Recovered + 1) as our Response variable. Using the robust standard errors
to combat heteroskedasticity did not change the significance of our variables and
considering the fact that we have sufficiently large training sample size (n = 131), we
expect that the results are precise enough with non-robust standard errors.

1) The formula for our linear regression model is:

1 / (Recovered + 1) ~ Alcoholic.Beverages + Animal.fats + Eggs + Meat +
Milk...Excluding.Butter + Offals + Oilcrops + Pulses + Starchy.Roots + Stimulants +
Sugar...Sweeteners + Treenuts + Vegetable.Oils + Vegetables + Obesity

Train RMSE: 0.224
Test RMSE: 0.239

We got a good performance for this model. Next, we will assess the performance of the
reduced models using variable selection by stepwise elimination using BIC and AIC
criterias, lasso regression and Principal Components regression.

2) The formula for linear regression with variables selected using BIC stepwise
elimination:

1 / (Recovered + 1) ~ Oilcrops + Stimulants + Obesity

Train RMSE: 0.241
Test RMSE: 0.251



3) The formula for linear regression with variables selected using AIC stepwise
elimination:

1 / (Recovered + 1) ~ Animal.fats + Eggs + Meat + Oilcrops + Stimulants + Obesity

Train RMSE: 0.228
Test RMSE: 0.232

4) The Lasso regression is used for variable selection and it shrinks the estimated
coefficient towards 0, which helps us to choose the coefficients that are different from zero
and make our estimated coefficients to work better on testing set, but at the same time
avoid over-fitting. The formula for model with variables selected using Lasso with lambda
= 0.71:

1 / (Recovered + 1) ~ Alcoholic.Beverages + Animal.fats + Eggs + Meat +
Milk...Excluding.Butter + Oilcrops + Starchy.Roots + Stimulants +
Sugar...Sweeteners + Treenuts + Vegetable.Oils + Vegetables + Obesity

Train RMSE: 0.227
Test RMSE: 0.241

5) Next, we use Principal Components Analysis to reduce the dimensionality of our
dataset by transforming our set of variables to a smaller set that contains most of the
information of the larger set. In Principal Components regression, we do not need to worry
about the multicollinearity problem, as the Principal Components are mutually orthogonal.
10 Principal Components were selected for Principal Components regression using
Cross-Validation:

Figure 4. Root Mean Squared Error of Prediction (RMSEP) vs. number of components

The model with 10 Principal Components has yielded the following results:



Train RMSE: 0.236
Test RMSE: 0.252

From these results using different techniques to select variables, we can see that the
linear regression model with variables selected using AIC criteria performed the best both
in terms of Train RMSE and Test RMSE. Therefore, we are going to interpret the results
from this model.

Table 2. Coefficients for linear regression model with variables selected using AIC criteria

By looking at the Table above, we can see that having animal fats, eggs and stimulants in
the diet is predicted to positively affect the recovery rate from COVID-19, whereas meat
and oilcrops are expected to negatively impact the recovery rate. In regards to obesity
rate, we get a counter-intuitive result, as the higher obesity rate should decrease the
recovery rate. This could happen, as we could have an omitted variable bias, as the error
term could contain the variable that is highly correlated with obesity rate. Therefore, we
disregard the implication regarding the positive impact of high obesity rate. The model’s
coefficients can be interpreted in the following way: 1 unit increase in percentage of
energy intake from stimulants holding other factors constant is predicted to decrease
1/(Recovered+1) by 0.2344 that means that this change increases the recovery rate.

3.2 Non-Parametric Regression Models
In non-parametric regression methods, the relationship between predictor and response
variables is defined based on information derived from the data unlike an equation in
parametric (multiple linear) regression methods. We will train below four non-parametric
methods and assess their performance in this section.

1. Kernel Regression
2. KNN Regression
3. Decision Tree Regression
4. Extreme Gradient Boosting Regression

The dataset is split into training(80%) and testing sets(20%). The training set is further
split into estimation(80%) and validation set(20%). For cross-validation, 5 fold
cross-validation is done..



3.2.1 Kernel Regression
Kernel regression is a non-parametric regression algorithm. We will use the Gaussian
kernel for our model. Here, the tuning parameter is lambda, which is also called
bandwidth. The bandwidth controls the flexibility of the model. Smaller values of
bandwidth makes the model more sensitive and it becomes overfit if the value of
bandwidth is too small. Values of bandwidth are tuned from 0.01 to 0.1 with a difference of
0.005. Below results are obtained for reduced and full model.

Figure 5. Kernel Regression Model Tuning

We can observe from the above plot that cross-validated RMSE is reduced slowly as the
value of bandwidth increases initially. After a certain threshold, increasing bandwidth does
not result in reduction in cross validated RMSE.

Table 3. Kernel Regression Model Results

Model Formula Best
Bandwidth

Cross Validation
RMSE

Test
RMSE

Kernel Full
Model

1/ (Recovered+1) ~. 0.02 0.230 0.252

Kernel
Reduced
Model

1 / (Recovered+1) ~
Animal fats + Sugar
Sweeteners + Oil Crops
+ Stimulants + Obesity +
Eggs + Tree Nuts

0.035 0.227 0.263

3.2.2 KNN Regression

K-nearest neighbours (KNN) Regression is a very simple nonparametric regression
algorithm. The prediction for a new record is made based on values of K-nearest points
based on cartesian distance by default. The performance of KNN models depends upon
the value of K. Smaller values of K tend to overfit the data, resulting in low bias but high



variance. Choice of K should be done such that we achieve low bias as well as low
variance considering bias-variance trade off. It is also a good idea to choose minimum
features for the KNN algorithm since it avoids the curse of dimensionality.

The dataset is split into training(80%) and testing sets(20%). The training set is further
split into estimation(80%) and validation set(20%). For cross-validation, 5 fold
cross-validation is done. Values of K are tuned from 1 to 30. Below results are obtained.

Figure 6. KNN model tuning

When the value of k is low, the model does not perform well on the validation set. As the
value of K increases, cross-validated RMSE keeps reducing and it becomes flat after the
value of k crosses a certain threshold. Here, the threshold is 26.

Table 4. KNN Model Results

Model Formula Best K Cross Validation
RMSE

Test RMSE

KNN Full
Model

1/ (Recovered+1) ~. 18 0.243 0.25

KNN
Reduced
Model

1/ (Recovered+1) ~
Tree Nuts
Alcoholic.Beverages +
Oil Crops + Stimulants
+ Obesity + Eggs

12 0.244 0.26



3.2.3 Decision Tree Regression

Decision tree regression is another nonparametric regression algorithm. For a decision
tree, to avoid overfitting, and to be able to generalize well, we prune the decision tree
using below criteria.

minimize{RSS + cp* TreeSize}

This idea is similar to the regularization problem solved by using ridge or lasso
regression. When we use a lower value of complexity parameter (cp), a deeper tree
having many nodes is created. Here, we have tuned the values of cp from 0 to 0.15. First,
a decision tree model considering all features was trained. Below features were identified
as important.

Figure 7. Decision tree variable importance

After looking at the variable importance plot, first 6 variables were chosen for training a
reduced model. Below plot shows variation of cross validated RMSE with values of cp for
full and reduced models.

Figure 8. Decision tree model tuning



Below figure shows decision boundaries for recovery prediction based on the reduced
model with value of cp equal to 0.07. We can see that the decision tree is not very large or
complex and also gives lower test RMSE.

Figure 8. Decision tree decision boundary

Table 5. Decision Tree Model Results

Model Formula Best cp Cross Validation
RMSE

Test RMSE

Decision
Tree Full
Model

1/ (Recovered+1) ~. 0.035 0.262 0.266

Decision
Tree
Reduced
Model

1 / (Recovered+1) ~ Tree
Nuts Alcoholic.Beverages
+ Oil Crops + Stimulants
+ Obesity + Eggs

0.05 0.261 0.258

3.2.4 XGBoost Regression

XGBoost (Extreme Gradient Boosting) is an ensemble learning algorithm. The model
learns from previously grown trees and builds subsequent trees. After training with all
variables, below variables are found important in predicting recovery.

Figure 9. XGBoost variable importance



Table 6. XGBoost Model Results

Model Formula Cross Validation
RMSE

Test RMSE

XGBoost 1/ (Recovered+1) ~. 0.035 0.249

From the table, it can be seen that the model obtained very low cross-validation RMSE as
well as lowest test RMSE among all the non-parametric models tried. This proves that
ensemble models perform better than an individual model.

4. Discussion and conclusions

As we may already know from nutrition policies and promotion, the diet plays an important
role in building a strong immunity to resist different illnesses and viruses including
COVID-19. In this project, we analyzed the effect of diet in different countries on
COVID-19 recovery rate. We built and trained parametric as well as non-parametric
regression models. Below are the key outcomes from this analysis.

● Eggs is the most important factor which is related to recovery followed by obesity.
● Extreme Gradient Boosting based model achieved lowest cross-validated RMSE.

Through this project, we implemented the concepts learned from the course Applied
Regression and Design (STAT 425). The learnings from this project will help us solve
industry problems through regression techniques.


