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ABSTRACT

Weakly-supervised semantic segmentation (WSSS) is
introduced to narrow the gap for semantic segmentation per-
formance from pixel-level supervision to image-level su-
pervision. Most advanced approaches are based on class
activation maps (CAMs) to generate pseudo-labels to train
the segmentation network. The main limitation of WSSS
is that the process of generating pseudo-labels from CAMs
which use an image classifier is mainly focused on the most
discriminative parts of the objects. To address this issue, we
propose Puzzle-CAM, a process minimizes the differences
between the features from separate patches and the whole
image. Our method consists of a puzzle module (PM) and
two regularization terms to discover the most integrated re-
gion of in an object. Without requiring extra parameters,
Puzzle-CAM can activate the overall region of an object us-
ing image-level supervision. In experiments, Puzzle-CAM
outperformed previous state-of-the-art methods using the
same labels for supervision on the PASCAL VOC 2012 test
dataset. Code associated with our experiments is available at
https://github.com/OFRIN/PuzzleCAM.

Index Terms— Semantic segmentation, Deep learning,
Neural Networks

1. INTRODUCTION

Semantic segmentation is a fundamental approach using
convolutional neural networks (CNNs) with the aim of cor-
rectly predicting the pixel-wise classification of an image.
Recently, fully-supervised semantic segmentation (FSSS)
has achieved remarkable progress [1, 2, 3]. However, pro-
ducing large-scale training datasets with precise pixel-level
annotations per image is considerably expensive and requires
labor-intensive and time-consuming tasks. To solve this issue,
many researchers have focused on weakly supervised seman-
tic segmentation (WSSS), which is used to train networks
using image-level annotations, scribbles, bounding boxes,
and points. Image-level supervision can be more easily con-
ducted than other approaches in a group of weak supervision
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Fig. 1: A comparisons of CAMs generated from tiled and
original image: (a) conventional CAMs from the original im-
age, (b) generated CAMs from the tiled images, and (c) pre-
dicted CAMs by the proposed Puzzle-CAM.

processes. In this study, we only focused on learning semantic
segmentation models using image-level supervision.

Most previous methods [4, 5, 6] using WSSS are based
on the class activation maps (CAMs) [7] to achieve good per-
formance. However, the generated CAMs are usually focused
on small parts of the semantic objects to efficiently classify
them, which prevents the segmentation models from learning
pixel-level semantic knowledge. Moreover, we can see that
the CAMs generated from isolated patches in the tiled im-
age are no different those gained from the original image. As
shown in Fig. 1, CAMs of the tiled image comprising tiled
patches are significantly inconsistent compare to those of the
original image. The differences are factored in enlarging the
supervision gap between FSSS and WSSS by even more.

The above observations gave us the inspiration to address
WSSS issues by using an attention-based feature learning
method. To detect integrated regions of objects, we propose
Puzzle-CAM for WSSS training. Our method applies consis-
tency regularization that corresponds to the generated CAMs
from the tiled and original images to provide self-supervision.
To improve the network prediction consistency further, we
introduce a puzzle-module (PM) that splits the image and
merges CAMs generated from the tiled image. Puzzle-CAM
consists of a Siamese neural network with reconstructing
regularization loss that reduces the differences between the
original and merged CAMs. Our experiments yielded both
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Fig. 2: The overall architecture of the proposed Puzzle-CAM showing the integration of reconstructing regularization and the
puzzle module.

quantitative and qualitative results that demonstrate the supe-
riority of our approach.

Our main contributions are as follows:

• We propose Puzzle-CAM that incorporates reconstruct-
ing regularization with a puzzle module (PM), to ef-
fectively enhance the quality of CAMs without adding
layers.

• Puzzle-CAM outperformed existing state-of-the-art
methods with the same level of supervision on the
PASCAL VOC 2012 dataset.

2. RELATED WORK

In this section, we introduce some works, including attention
mechanisms using CNNs and WSSS, both of which are com-
ponents of Puzzle-CAM.

2.1. Attention Mechanisms Using CNNs

These provides a fine-grained information on the features
learned in CNNs. Simonyan et al. [8] used the error back-
propagation strategy to visualize semantic regions whereas
the combined attention model used the global average pool-
ing (GAP) layer in CNNs to generate the CAMs [7] more
efficiently. Last, a final classifier is used to generate attention
maps. To the best of our knowledge, which attention mecha-
nism is chosen does not have a great effect on achieving high
performance with WSSS, and so we based Puzzle-CAM on
the combined attention model because it is more manageable
than the other attention mechanism.

2.2. Weakly Supervised Semantic Segmentation

Unlike FSSS, which requires a pixel-wise labels for an im-
age, WSSS employs lower level labeling, such as bounding

boxes [9], scribbles [10], and image-level classification labels
[4, 6]. Recently, the performance of WSSS has been signifi-
cantly boosted by incorporating the CAMs. Most of previous
WSSS methods refine the CAMs generated by the image clas-
sifier to approximate the segmentation mask [4, 11, 12, 13, 6].
AffinityNet [4] trains an additional network to learn similari-
ties between the pixels, which often generates a transition ma-
trix and multiplies with CAM to adjust its activation coverage.
IRNet [11] generates a transition matrix from the boundary
activation map and extends the method to achieve weakly su-
pervised instance segmentation (WSOS) and WSSS. SEAM
[5] aims to refine class activation maps using a pixel corre-
lation module that captures context appearance information
for each pixel and alters the original CAMs by using learned
affinity attention maps.

3. METHODOLOGY

3.1. Motivation

Most WSSS approaches are based on CAMs to obtain a seg-
mentation mask using image-level supervision. Usually, the
CAMs are focused on the discriminative region of object. The
well-known reason is that a normal image classifier only uses
the classification loss, which induces a partial region to be ac-
tivated in objects during training. The CAMs generated from
a tiled image causes over-activation since the image does not
have global-context information. To address this issue, we
propose Puzzle-CAM improves network for consistent pre-
diction matching partial and full features. Puzzle-CAM con-
tains designed loss functions to match the CAMs generated
from a tiled image with the original image (see Fig. 2).



3.2. The Employed CAM Method

We first introduce the CAM method for producing the initial
attention map. Given the feature extractor F , and classifier
θ, we generate CAMs A which is the collection of CAM for
entire classes. After training the classifier by image-level su-
pervision, we apply the weights of the c-channel classifier as
θc on the feature map f = F (I) from an input Image I to
obtain CAM of class c as follows:

Ac = θ>c f. (1)

The generated CAM is normalized by using the maximum
value of Ac. Finally, we obtain the CAMs for entire classes
A by concatenating Ac from every class.

3.3. The Puzzle Module

When matching partial and full features, the key is to nar-
row the gap between FSSS and WSSS. The puzzle module
consists of tiling and merging modules. From an input im-
age I of size W × H , the tiling module generated a tiled,
non-overlapping images {I1,1, I1,2, I2,1, I2,2} size ofW/2×
H/2. For each Ii,j , we generate CAMs Ai,j . Finally, the
merging module attaches allAi,j into a single CAMsAre that
has the same shape as the CAMs of I , As.

3.4. Loss Design of Puzzle-CAM

We employed a GAP layer at the end of the network to incor-
porate prediction vector Ŷ = σ(G(Ac)) for image classifica-
tion and to adopt multi-label soft margin loss for the classifi-
cation task. For notational convenience, we define Yt as

Ŷt =

{
Ŷ , if Y = 1

1− Ŷ , otherwise
(2)

`cls(Ŷ , Y ) = −log(Yt). (3)

The CAMs of the original (As) and tiled images (Are)
converted using the GAP layer as prediction vectors Ŷ s =
G(As) and Ŷ re = G(Are), respectively. The classification
losses for the original and reconstructed images are respec-
tively calculated as follows:

Lcls = `cls(Ŷ
s, Y ), (4)

Lp−cls = `cls(Ŷ
re, Y ). (5)

These two classification losses are used to improve the
performance of the image classification. To reinforce the
CAMs from the original image, we added reconstructing reg-
ularization to correspond with the original and reconstructed
CAMs. The reconstruction loss for the original CAM can be
easily defined as:

Table 1: Ablation study for each loss function consisting of
Puzzle-CAM using ResNet-50 as their backbone.

Lcls Lp−cls Lre mIoU (%)
X 47.82
X X 47.70
X X 49.21
X X X 51.53

Lre = ‖As −Are‖1 . (6)

In summary, the final loss of Puzzle-CAM is defined as:

L = Lcls + Lp−cls + αLre. (7)

where α is the balance of the weights for the different
losses. The classification losses, Lcls and Lp−cls, are used to
roughly estimate the region of the object. The reconstruction
loss, Lre, is used to narrow the gaps between the pixel- and
image-level supervision processes. We report details of the
network training settings and probe into the effectiveness of
the proposed module in the experiments section.

4. EXPERIMENTAL RESULTS

4.1. Implementation Details

We evaluated our method using the PASCAL VOC 2012
dataset [14]. The dataset is separated into 1,464 images for
training, 1,449 for validation, and 1,456 for testing. Fol-
lowing the experimental protocol used in previous methods,
we took additional annotations from the Semantic Boundary
Dataset [15] to build an augmented training set with 10,582
images. The images were randomly re-scaled in the range
of [320, 640] and then cropped by 512 × 512 as the network
inputs. For all experiments, we set maximum α = 4 and lin-
early ramped up α to its maximum value until a half epochs.
During inference, we utilized classifiers without the puzzle
module. Thus, we adopted multi-scale and horizontal flip to
generate pseudo-segmentation labels. We made the model
train the dataset on four TITAN-RTX GPUs.

4.2. Ablation Studies

We conducted ablation studies on the main components of
Puzzle-CAM under the mIoU metric (see Table 1), for which
its baseline achieved mIoU = 47.82%. With the proposed
reconstructing regularization Lre of the tiled patches, the
baseline was boosted to mIoU = 49.21%, while the pro-
posed classification loss from the tiled patches Lp−cls is sim-
ilar to the baseline. Both the Lre and the Lp−cls consistently
improved the baseline by a 3.71% gain.

We visualized the CAMs according to using combina-
tions of loss functions individually (see 3). If the classifi-
cation losses are only employed (Lp−cls), the result shows no
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Fig. 3: The visualization of the predicted tags and CAMs by
using combinations of loss functions. The final CAMs (d) not
only suppresses over-activation but also expands CAMs into
complete object activation coverage .

Table 2: Quality of the pseudo semantic segmentation labels
in mIoU, evaluated on the PASCAL VOC 2012 training set
[14]. RW: random walk with AffinityNet [4], dCRF: dense
conditional random field [16].

Method Backbone CAM CAM CAM+RW
(%) +RW (%) +dCRF (%)

AffinityNet [4] ResNet-50 47.82 58.10 59.70
Puzzle-CAM ResNet-50 51.53 64.16 64.70
Puzzle-CAM ResNeSt-50 57.59 69.48 69.91
Puzzle-CAM ResNeSt-101 61.85 71.92 72.46
Puzzle-CAM ResNeSt-269 62.45 74.14 74.67

marginal difference. Meanwhile, if the reconstruction loss is
only employed (Lre), the result shows the improved localiza-
tion ability for some class than the original, but it failed to
predict several classes. When the entire losses are combined,
the result shows the improved localization without suffering
the classification.

4.3. Comparisons with Existing State-of-the-art methods

To further improve the accuracy of pseudo pixel-level anno-
tations, we followed the approach in [4] to train AffinityNet
based on Puzzle-CAM. We adopted ResNeSt architecture that
universally improves the learned feature representations to
boost performance across image classification, object detec-
tion, instance segmentation and semantic segmentation. In
Table 2, we report the performances with the original CAMs
used by the baseline AffinityNet [4] and Puzzle-CAM.

The final synthesized pseudo-labels achieved 74.67%
mIoU on the PASCAL VOC 2012 train set. Puzzle-CAM
was then used to train the segmentation model DeepLabv3+
[1] with the ResNeSt-269 [18] backbone using the pseudo-
labels in full supervision to achieve the final segmentation

Table 3: Comparison of Puzzle-CAM and existing state-
of-the-art methods on the PASCAL VOC 2012 dataset. I,
image-level labels; S external saliency models.

Method Backbone Sup val test
AffinityNet [4] Wide-ResNet-38 I 61.7 63.7

DSRG [12] ResNet-101 I + S 61.4 63.2
SeeNet [13] ResNet-101 I + S 63.1 62.8
IRNet [4] ResNet-50 I 63.5 64.8

FickleNet [6] ResNet-101 I + S 64.9 65.3
ICD [17] ResNet-101 I 64.1 64.3

SEAM [5] Wide-ResNet-38 I 64.5 65.7
Ours (Puzzle-CAM) ResNeSt-101 I 66.8 -
Ours (Puzzle-CAM) ResNeSt-269 I 69.5 -

Fig. 4: Qualitative segmentation results on the PASCAL VOC
2012 val set. Top: original images. Middle: ground truth.
Bottom: prediction of the segmentation model trained using
the pseudo-labels from Puzzle-CAM.

results. Table 3 reports a comparison of the mIoU for pro-
posed method and the previous approaches. Compared to the
baseline methods, Puzzle-CAM had remarkably improved
performances on both val and test sets with the same set-
tings for training. Fig. 2 shows some qualitative results on
test set, which illustrates that the proposed method worked
well on both large and small objects.

5. CONCLUSIONS

In this paper, we proposed the Puzzle-CAM algorithm to
narrow the supervision gaps between FSSS and WSSS us-
ing image-level labels. To improve the network for gener-
ating consistent CAM, we designed a puzzle module and
adopted reconstructing regularization to match partial and
full features. Not only did Puzzle-CAM consistently gen-
erate features from local tiled patches but it also fitted the
shape of the ground truth masks better. The segmentation
network trained by our synthesized pixel-level pseudo-labels
achieved state-of-the-art performance on the PASCAL VOC
2012 dataset, which proves the effectiveness of our approach.
We believe that the concepts of Puzzle-CAM as a training
module can be generalized and will benefit other weakly-
and semi-supervised tasks, such as semantic and instance
segmentation.
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