
OpenGrok - a wicked fast source browser

OpenGrok is a fast and usable source code search and cross reference
engine, written in Java. It helps you search, cross-reference and navigate
your source tree. It can understand various program file formats and
version control histories like SCCS, RCS, CVS, Subversion and Mercurial.

OpenGrok is the tool used for the OpenSolaris Source Browser.

Requirements

 * Latest Java http://java.sun.com/ (At least 1.5)
 * A servlet container like Tomcat (5.x or later)
 http://tomcat.apache.org/
 supporting Servlet 2.4 and JSP 2.0
 * Exuberant Ctags http://ctags.sourceforge.net/
 * Subversion 1.3.0 or later if SVN support is needed
 http://subversion.tigris.org/
 * Mercurial 0.9.3 or later if Mercurial support is needed
 http://www.selenic.com/mercurial/wiki/
 * JFlex Ant task (If you want to build OpenGrok)
 http://www.jflex.org/

Usage

SRC_ROOT refers to the directory containing your source tree.
OpenGrok analyzes the source tree and builds a search index along with
cross-referenced hypertext versions of the source files. These generated
data files will be stored in DATA_ROOT directory.

OpenGrok setup Step.0 - Setting up the Sources.
--
Source base must be available locally for OpenGrok to work efficiently. No
changes are required to your source tree. If the code is under source control
management (SCM) OpenGrok requires the checked out source tree under SRC_ROOT.
It is possible for some SCM systems to use a remote repository (Subversion),
but this is not recommended due to the performance penalty. CVS must have a
local repository.
Note that OpenGrok ignores symbolic links.

Using command line interface.

Step.1 - Populate DATA_ROOT Directory
=====================================
Option 1. OpenGrok: There is a sample shell script OpenGrok that is suitable
for using in a cronjob to run regularly. Modify the variables in the script
to point appropriate directories, or as the code suggests factor your local
configuration into a seperate file and simplify future upgrades.

Option 2. opengrok.jar: You can also directly use the Java application. If
the sources are all located in a directory SRC_ROOT and the data and
hypertext files generated by OpenGrok are to be stored in DATA_ROOT, run

 $ java -jar opengrok.jar -s SRC_ROOT -d DATA_ROOT

See opengrok.jar manual below for more details.

Step.2 - Configure and Deploy source.war Webapp
===
To configure the webapp source.war, look into the parameters defined in
web.xml of source.war file and change them (see note1) appropriately.

 * HEADER: is the fragment of HTML that will be used to display title or
 logo of your project
 * SRC_ROOT: the absolute path name of the root directory of your source tree
 * DATA_ROOT: absolute path of the directory where OpenGrok data
 files are stored

Optional Step.3 - Path Descriptions

OpenGrok uses path descriptions in various places (For eg. while showing
directory listings or search results) Example descriptions are in paths.tsv
file. You can list descriptions for directories one per line tab separated
format path tab description. Refer to example 4 below.

Note 1 - Changing webapp parameters: web.xml is the deployment descriptor
for the web application. It is in a Jar file named source.war, you can
change the :

 * Option 1: Unzip the file to TOMCAT/webapps/source/ directory and
 change the source/WEB-INF/web.xml and other static html files like
 index.html to customize to your project.

 * Option 2: Extract the web.xml file from source.war file

 $ unzip source.war WEB-INF/web.xml

 edit web.xml and re-package the jar file.

 $ zip -u source.war WEB-INF/web.xml

 Then copy the war files to <i>TOMCAT</i>/webapps directory.

 * Option 3: Edit the Context container element for the webapp

Copy source.war to TOMCAT/webapps

 When invoking OpenGrok to build the index, use -w <webapp> to set the
 context.

 After the index is built, there's a couple different ways to set the
 Context for the servlet container:
 - Add the Context inside a Host element in TOMCAT/conf/server.xml

 <Context path="/<webapp>" docBase="source.war">
 <Parameter name="DATA_ROOT" value="/path/to/data/root" override="false" />

<Parameter name="SRC_ROOT" value="/path/to/src/root" override="false" />
<Parameter name="HEADER" value='...' override="false" />

 </Context>

 - Create a Context file for the webapp

 This file will be named `<webapp>.xml'.

 For Tomcat, the file will be located at:
 `TOMCAT/conf/<engine_name>/<hostname>', where <engine_name>
 is the Engine that is processing requests and <hostname> is a Host
 associated with that Engine. By default, this path is
 'TOMCAT/conf/Catalina/localhost' or 'TOMCAT/conf/Standalone/localhost'.

 This file will contain something like the Context described above.

Using Findbugs

If you want to run Findbugs (http://findbugs.sourceforge.net/) on OpenGrok,
you have to download Findbugs to your machine, and install it where you have
checked out your OpenGrok source code, under the lib/findbugs directory,
like this:

 cd ~/.ant/lib
 wget http://..../findbugs-x.y.z.tar.gz
 gtar -xf findbugs-x.y.z.tar.gz
 mv findbugs-x.y.z findbugs

You can now run ant with the findbugs target:

 ant findbugs
 ...
 findbugs:
 [findbugs] Executing findbugs from ant task
 [findbugs] Running FindBugs...
 [findbugs] Warnings generated: nnn
 [findbugs] Output saved to findbugs/findbugs.html

Now, open findbugs/findbugs.html in a web-browser, and start fixing bugs!

If you want to install findbugs some other place than ~/.ant/lib, you can untar the
.tar.gz file to a directory, and use the findbugs.home property to tell ant where to find
findbugs, like this (if you have installed fundbugs under the lib directory):

 ant findbugs -Dfindbugs.home=lib/findbug

There is also a findbugs-xml ant target that can be used to generate XML files that can
later be parsed, e.g. by Hudson.

Using Emma

If you want to check test coverage on OpenGrok, download Emma from
http://emma.sourceforge.net/. Place emma.jar and emma-ant.jar in the
opengrok/trunk/lib directory, or ~/.ant/lib.

Now you can instrument your classes, and create a jar file:

 ant emma-instrument

If you are using NetBeans, select File - "opengrok" Properties
- libraries - Compile tab. Press the "Add JAR/Folder" and select
lib/emma.jar and lib/emma_ant.jar

If you are not using netbeans, you have to edit the file
nbproject/project.properties, and add "lib/emma.jar" and
"lib/emma_ant.jar" to the javac.classpath inside it.

Now you can put the classes into jars and generate distributables:

 ant dist

The classes inside opengrok.jar should now be instrumented.
If you use opengrok.jar for your own set of tests, you need
emma.jar in the classpath.If you want to specify where to store
the run time analysis, use these properties:

 emma.coverage.out.file=path/coverage.ec
 emma.coverage.out.merge=true

The coverage.ec file should be placed in the opengrok/trunk/coverage
directory for easy analyzation.

If you want to test the coverage of the unit tests, you can
run the tests:

 ant test (Or Alt+F6 in NetBeans)

Now you should get some output saying that Emma is placing runtime
coverage data into coverage.ec.

To generate reports, run ant again:

 ant emma-report

Look at coverage/coverage.txt, coverage/coverage.xml and

coverage/coverage.html to see how complete your tests are.

Using Checkstyle

To check that your code follows the standard coding conventions,
you can use checkstyle from http://checkstyle.sourceforge.net/

First you must download checkstyle from http://checkstyle.sourceforge.net/ ,
You need Version 5.0-beta01 (or newer). Extract the package you have
downloaded, and create a symbolic link to it from ~/.ant/lib/checkstyle,
e.g. like this:

 cd ~/.ant/lib
 unzip ~/Desktop/checkstyle-5.0-beta01.zip
 ln -s checkstyle-5.0-beta01 checkstyle

You also have to create symbolic links to the jar files:

 cd checkstyle
 ln -s checkstyle-5.0-beta01.jar checkstyle.jar
 ln -s checkstyle-all-5.0-beta01.jar checkstyle-all.jar

To run checkstyle on the source code, just run ant checkstyle:

 ant checkstyle

Output from the command will be stored in the checkstyle directory.

If you want to install checkstyle some other place than ~/.ant/lib, you can
untar the .tar.gz file to a directory, and use the checkstyle.home property
to tell ant where to find checkstyle, like this (if you have installed
checkstyle under the lib directory):

 ant checkstyle -Dcheckstyle.home=lib/checkstyle

Using PMD

To check the quality of the OpenGrok code you can also use PMD
from http://pmd.sourceforge.net/.

How to install:

 cd ~/.ant/lib
 unzip ~/Desktop/pmd-bin-4.2.2.zip
 ln -s pmd-4.2.2/ pmd

You also have to make links to the jar files:

 cd ~/.ant/lib/pmd/lib
 ln -s pmd-4.2.2.jar pmd.jar
 ln -s jaxen-1.1.1.jar jaxen.jar

To run PMD on the rource code, just run ant pmd:

 ant pmd

Outout from the command will be stored in the pmd subdirectory.

 % ls pmd
 pmd_report.html pmd_report.xml

If you want to install PMD some other place than ~/.ant/lib, you can
unzip the .zip file to a directory, and use the pmd.home property
to tell ant where to find PMD, like this (if you have installed
PMD under the lib directory):

 ant pmd -Dpmd.home=lib/pmd-4.2.3

AUTHORS

Chandan B.N, Sun Microsystems. https://blogs.sun.com/chandan
Trond Norbye, norbye.org
Knut Pape, eBriefkasten.de
Martin Englund, Sun Microsystems
Knut Anders Hatlen, Sun Microsystems

