

Second Edition

Computability,
Complexity, and
Languages

Fundamentals of
Theoretical Computer Science

Martin D. Davis

Department of Computer Science

Courant Institute of Mathematical Sciences
New York University

New York, New York

Ron Sigal

Departments of Mathematics and Computer Science
Yale University
New Haven, Connecticut

Elaine J. Weyuker

Department of Computer Science

Courant Institute of Mathematical Sciences
New York University

New York, New York

ACADEMIC PRESS

Harcourt, Brace & Company
Boston San Diego New York
London Sydney Tokyo Toronto

This book is printed on acid-free paper

Copyright © 1994, 1983 by Academic Press, Inc.

All rights reserved

No part of this publication may be reproduced or
transmitted in any form or by any means, electronic
or mechanical, including photocopy, recording, or
any information storage and retrieval system, without
permission in writing from the publisher.

ACADEMIC PRESS, INC.
525 B Street, Suite 1900, San Diego, CA 92101-4495

United Kingdom Edition published by
ACADEMIC PRESS LIMITED
24-28 Oval Road, London NW1 7DX

Library of Congress Cataloging-in-Publication Data
Davis, Martin 1928-

Computability, complexity, and languages: fundamentals of
theoretical computer science /Martin D. Davis, Ron Sigal,
Elaine J. Weyuker. --2nd ed.

p. cm. --(Computer science and applied mathematics)

Includes bibliographical references and index.

ISBN 0-12-206382-1

1. Machine theory. 2. Computational complexity. 3. Formal
languages. I. Sigal, Ron. II. Weyuker, Elaine J. III. Title.

IV. Series.

QA267.D38 1994

511.3—dc20 93-26807
CIp

Printed in the United States of America
94 9596 9798 BC 987654321

To the memory of Helen and Harry Davis
and to
Hannah and Herman Sigal
Sylvia and Marx Weyuker

Virginia Davis, Dana Latch, Thomas Ostrand
and to
Rachel Weyuker Ostrand

Contents

Preface
Acknowledgments
Dependency Graph

1 Preliminaries

. Sets and n-tuples

. Functions

Alphabets and Strings

. Predicates

. Quantifiers

. Proof by Contradiction
. Mathematical Induction

- N N R N

Part 1 Computability

2 Programs and Computable Functions
1. A Programming Language

. Some Examples of Programs

. Syntax

. Computable Functions

. More about Macros

wn B~ W

vii

xiii
xvii
Xix

O 00 N N B QW = =

15

17
17
18
25
28
32

viii

3 Primitive Recursive Functions

1.

X NN A LN

Composition

Recursion

PRC Classes

Some Primitive Recursive Functions
Primitive Recursive Predicates

Iterated Operations and Bounded Quantifiers
Minimalization

Pairing Functions and Gédel Numbers

4 A Universal Program

AN AL

7.
*8.

*9

. Coding Programs by Numbers

. The Halting Problem

. Universality

. Recursively Enumerable Sets

. The Parameter Theorem

. Diagonalization and Reducibility

Rice’s Theorem

The Recursion Theorem

. A Computable Function That Is Not Primitive Recursive

5 Calculations on Strings

1.

NN AN

Numerical Representation of Strings

. A Programming Language for String Computations
. The Languages . and .%,

. Post—Turing Programs

. Simulation of ., in "

. Simulation of & in .%

6 Turing Machines

AN AW

. Internal States

. A Universal Turing Machine

. The Languages Accepted by Turing Machines
. The Halting Problem for Turing Machines

. Nondeterministic Turing Machines

. Variations on the Turing Machine Theme

7 Processes and Grammars
1. Semi-Thue Processes
2. Simulation of Nondeterministic Turing Machines by

Semi-Thue Processes

Contents

39
39
40
42
44
49
52
55
59

65
65
68
70
78
85
88
95
97
105

113
113
121
126
129
135
140

145
145
152
153
157
159
162

169
169

171

Contents

NoWnhkAwWw

Unsolvable Word Problems

Post’s Correspondence Problem

Grammars

Some Unsolvable Problems Concerning Grammars
Normal Processes

8 C(lassifying Unsolvable Problems

1.

A A R ol N

Using Oracles

Relativization of Universality
Reducibility

Sets r.e. Relative to an Oracle

The Arithmetic Hierarchy

Post’s Theorem

Classifying Some Unsolvable Problems
. Rice’s Theorem Revisited

Recursive Permutations

Part 2 Grammars and Automata

9 Regular Languages

10

1.

NN AN

*

Finite Automata

. Nondeterministic Finite Automata

. Additional Examples

. Closure Properties

. Kleene’s Theorem

. The Pumping Lemma and Its Applications
. The Myhill-Nerode Theorem

Context-Free Languages

Context-Free Grammars and Their Derivation Trees
Regular Grammars

Chomsky Normal Form

Bar-Hillel’s Pumping Lemma

Closure Properties

Solvable and Unsolvable Problems

Bracket Languages

Pushdown Automata

Compilers and Formal Languages

A

o

o ®© N

176
181
186
191
192

197
197
201
207
211
215
217
224
230
231

235

237
237
242
247
249
253
260
263

269
269
280
285
287
291
297
301
308
323

X

Contents

11 Context-Sensitive Languages

1.
2.
3.

The Chomsky Hierarchy
Linear Bounded Automata
Closure Properties

Part 3 Loygic

12 Propositional Calculus

13

1.

Nk v

Q
1
2
3
4.
5
6
*7
*8

Formulas and Assignments

Tautological Inference

Normal Forms

The Davis—Putnam Rules

Minimal Unsatisfiability and Subsumption
Resolution

The Compactness Theorem

uantification Theory

. The Language of Predicate Logic
. Semantics
. Logical Consequence

Herbrand’s Theorem

. Unification

. Compactness and Countability

. Godel’s Incompleteness Theorem

. Unsolvability of the Satisfiability Problem in Predicate Logic

Part4 Complexity

14 Abstract Complexity

15

1.
2.
3.
4.

The Blum Axioms

The Gap Theorem

Preliminary Form of the Speedup Theorem
The Speedup Theorem Concluded

Polynomial-Time Computability

1.
2.
3.
4.

Rates of Growth

P versus NP

Cook’s Theorem

Other NP-Complete Problems

327
327
330
337

345

347
347
352
353
360
366
367
370

375
375
377
382
388
399
404
407
410

417

419
419
425
428
435

439
439
443
451
457

Contents

Part 5 Semantics

16 Approximation Orderings

1.

kv

Programming Language Semantics
Partial Orders

Complete Partial Orders
Continuous Functions

Fixed Points

17 Denotational Semantics of Recursion Equations

A

Syntax

Semantics of Terms

Solutions to W-Programs

Denotational Semantics of W-Programs
Simple Data Structure Systems
Infinitary Data Structure Systems

18 Operational Semantics of Recursion Equations

1.
2.
3.

Operational Semantics for Simple Data Structure Systems
Computable Functions
Operational Semantics for Infinitary Data Structure Systems

Suggestions for Further Reading
Notation Index

Index

xi

465

467
467
472
475
486
494

505
505
511
520
530
539
544

557
557
575
584

593
595
599

Preface

Theoretical computer science is the mathematical study of models of
computation. As such, it originated in the 1930s, well before the existence
of modern computers, in the work of the logicians Church, Godel, Kleene,
Post, and Turing. This early work has had a profound influence on the
practical and theoretical development of computer science. Not only has
the Turing machine model proved basic for theory, but the work of these
pioneers presaged many aspects of computational practice that are now
commonplace and whose intellectual antecedents are typically unknown to
users. Included among these are the existence in principle of all-purpose
(or universal) digital computers, the concept of a program as a list of
instructions in a formal language, the possibility of interpretive programs,
the duality between software and hardware, and the representation of
languages by formal structures, based on productions. While the spotlight
in computer science has tended to fall on the truly breathtaking technolog-
ical advances that have been taking place, important work in the founda-
tions of the subject has continued as well. It is our purpose in writing this
book to provide an introduction to the various aspects of theoretical
computer science for undergraduate and graduate students that is suffi-
ciently comprehensive that the professional literature of treatises and
research papers will become accessible to our readers.

We are dealing with a very young field that is still finding itself.
Computer scientists have by no means been unanimous in judging which

xiii

Xiv Preface

parts of the subject will turn out to have enduring significance. In this
situation, fraught with peril for authors, we have attempted to select topics
that have already achieved a polished classic form, and that we believe will
play an important role in future research.

In this second edition, we have included new material on the subject of
programming language semantics, which we believe to be established as an
important topic in theoretical computer science. Some of the material on
computability theory that had been scattered in the first edition has been
brought together, and a few topics that were deemed to be of only
peripheral interest to our intended audience have been eliminated. Nu-
merous exercises have also been added. We were particularly pleased to be
able to include the answer to a question that had to be listed as open in
the first edition. Namely, we present Neil Immerman’s surprisingly
straightforward proof of the fact that the class of languages accepted by
linear bounded automata is closed under complementation.

We have assumed that many of our readers will have had little experi-
ence with mathematical proof, but that almost all of them have had
substantial programming experience. Thus the first chapter contains an
introduction to the use of proofs in mathematics in addition to the usual
explanation of terminology and notation. We then proceed to take advan-
tage of the reader’s background by developing computability theory in the
context of an extremely simple abstract programming language. By system-
atic use of a macro expansion technique, the surprising power of the
language is demonstrated. This culminates in a universal program, which is
written in all detail on a single page. By a series of simulations, we then
obtain the equivalence of various different formulations of computability,
including Turing’s. Our point of view with respect to these simulations is
that it should not be the reader’s responsibility, at this stage, to fill in the
details of vaguely sketched arguments, but rather that it is our responsibil-
ity as authors to arrange matters so that the simulations can be exhibited
simply, clearly, and completely.

This material, in various preliminary forms, has been used with under-
graduate and graduate students at New York University, Brooklyn College,
The Scuola Matematica Interuniversitaria—Perugia, The University of Cal-
ifornia-Berkeley, The University of California—Santa Barbara, Worcester
Polytechnic Institute, and Yale University.

Although it has been our practice to cover the material from the second
part of the book on formal languages after the first part, the chapters on
regular and on context-free languages can be read immediately after
Chapter 1. The Chomsky—Schiitzenberger representation theorem for con-
text-free languages in used to develop their relation to pushdown au-
tomata in a way that we believe is clarifying. Part 3 is an exposition of the
aspects of logic that we think are important for computer science and can

Preface XV

also be read immediately following Chapter 1. Each of the chapters of Part
4 introduces an important theory of computational complexity, concluding
with the theory of NP-completeness. Part 5, which is new to the second
edition, uses recursion equations to expand upon the notion of computabil-
ity developed in Part 1, with an emphasis on the techniques of formal
semantics, both denotational and operational. Rooted in the early work of
Godel, Herbrand, Kleene, and others, Part 5 introduces ideas from the
modern fields of functional programming languages, denotational seman-
tics, and term rewriting systems.

Because many of the chapters are independent of one another, this book
can be used in various ways. There is more than enough material for a
full-year course at the graduate level on theory of computation. We have
used the unstarred sections of Chapters 1-6 and Chapter 9 in a successful
one-semester junior-level course, Introduction to Theory of Computation,
at New York University. A course on finite automata and formal languages
could be based on Chapters 1, 9, and 10. A semester or quarter course on
logic for computer scientists could be based on selections from Parts 1 and
3. Part 5 could be used for a third semester on the theory of computation
or an introduction to programming language semantics. Many other ar-
rangements and courses are possible, as should be apparent from the
dependency graph, which follows the Acknowledgments. It is our hope,
however, that this book will help readers to see theoretical computer
science not as a fragmented list of discrete topics, but rather as a unified
subject drawing on powerful mathematical methods and on intuitions
derived from experience with computing technology to give valuable in-
sights into a vital new area of human knowledge.

Note to the Reader

Many readers will wish to begin with Chapter 2, using the material of
Chapter 1 for reference as required. Readers who enjoy skipping around
will find the dependency graph useful.

Sections marked with an asterisk (*) may be skipped without loss of
continuity. The relationship of these sections to later material is given in
the dependency graph.

Exercises marked with an asterisk either introduce new material, refer
to earlier material in ways not indicated in the dependency graph, or
simply are considered more difficult than unmarked exercises.

A reference to Theorem 8.1 is to Theorem 8.1 of the chapter in which
the reference is made. When a reference is to a theorem in another
chapter, the chapter is specified. The same system is used in referring to
numbered formulas and to exercises.

Acknowledgments

It is a pleasure to acknowledge the help we have received. Charlene
Herring, Debbie Herring, Barry Jacobs, and Joseph Miller made their
student classroom notes available to us. James Cox, Keith Harrow, Steve
Henkind, Karen Lemone, Colm O’Dunlaing, and James Robinett provided
helpful comments and corrections. Stewart Weiss was kind enough to
redraw one of the figures. Thomas Ostrand, Norman Shulman, Louis
Salkind, Ron Sigal, Patricia Teller, and Elia Weixelbaum were particularly
generous with their time, and devoted many hours to helping us. We are
especially grateful to them.

Acknowledgments to Corrected Printing

We have taken this opportunity to correct a number of errors. We are
grateful to the readers who have called our attention to errors and who
have suggested corrections. The following have been particularly helpful:
Alissa Bernholc, Domenico Cantone, John R. Cowles, Herbert Enderton,
Phyllis Frankl, Fred Green, Warren Hirsch, J. D. Monk, Steve Rozen, and
Stewart Weiss.

xvii

xviii Acknowledgments

Acknowledgments to Second Edition

Yuri Gurevich, Paliath Narendran, Robert Paige, Carl Smith, and particu-
larly Robert McNaughton made numerous suggestions for improving the
first edition. Kung Chen, William Hurwood, Dana Latch, Sidd Puri,
Benjamin Russell, Jason Smith, Jean Toal, and Niping Wu read a prelimi-
nary version of Part 5.

Dependency Graph

Chapter 1
/ Prelimineries
Chapter 9 Chapter 2 Chapter 12 =
ular Languages Programs and Propositional Calculus
Computabie Functi
| Chapter 10 Chapter 3
Context-Free Languages
Recursive Functions
Chapter 16 * Chapter 4 Chapter 8
Approximation A Universal Program Classifying Unsolvabie
Orderings Probiems
\
Chapter 5
Chapter 17 Caiculations on Chapter 14
Denotational Semantics Stings Abstract Compilexity
of Recursion Equdlom/
Chapter 6 Chapter 15
Chapter 18 Turing P Time [—
Operational Semantics Computability
of Recursion Equations
Chapter 7
/ Processes and Grammars
Chapter 11 Chapter 13
[+ S Quaentification Theory
Languages

A solid line between two chapters indicates the dependence of the un-
starred sections of the higher numbered chapter on the unstarred sections
of the lower numbered chapter. An asterisk next to a solid line indicates
that knowledge of the starred sections of the lower numbered chapter is
also assumed. A dotted line shows that knowledge of the unstarred
sections of the lower numbered chapter is assumed for the starred sections

of the higher numbered chapter.

xix

1

Preliminaries

1. Sets and n-tuples

We shall often be dealing with sets of objects of some definite kind.

Thinking of a collection of entities as a set simply amounts to a decision to

regard the whole collection as a single object. We shall use the word class

as synonymous with set. In particular we write N for the set of natural

numbers 0,1,2,3,.... In this book the word number will always mean

natural number except in contexts where the contrary is explicitly stated.
We write

acs
to mean that a belongs to S or, equivalently, is a member of the set S, and

a&sS

to mean that a does not belong to S. It is useful to speak of the empty set,
written &, which has no members. The equation R = S, where R and §
are sets, means that R and S are identical as sets, that is, that they have
exactly the same members. We write R C S and speak of R as a subset of
S to mean that every element of R is also an element of S. Thus, R = § if
and only if R € S and S c R. Note also that for any set R, & € R and
R C R. We write R C S to indicate that R € § but R # S. In this case R

1

2 Chapter 1 Preliminaries

is called a proper subset of S. If R and § are sets, we write R U § for the
union of R and S, which is the collection of all objects which are members
of either R or S or both. R N S, the intersection of R and S, is the set of
all objects that belong to both R and §. R — S, the set of all objects that
belong to R and do not belong to S, is the difference between R and S. §
may contain objects not in R. Thus R —§ = R — (R N §). Often we will
be working in contexts where all sets being considered are subsets of some
fixed set D (sometimes called a domain or a universe). In such a case we
write § for D — S, and call S the complement of S. Most frequently we
shall be writing S for N — S. The De Morgan identities

RUS=RNS,
RNS=RUS

are very useful; they are easy to check and any reader not already familiar
with them should do so. We write

{a,,a,,...,a,}

for the set consisting of the n objects a,,a,,...,a,. Sets that can be
written in this form as well as the empty set are called finite. Sets that are
not finite, e.g., N, are called infinite. It should be carefully noted that a
and {4} are not the same thing. In particular, a € S is true if and only if
{a} S. Since two sets are equal if and only if they have the same
members, it follows that, for example, {a, b, c} = {a, ¢, b} = {b, a, c}. That
is, the order in which we may choose to write the members of a set is
irrelevant. Where order is important, we speak instead of an n-tuple or a
list. We write n-tuples using parentheses rather than curly braces:

(a,,...,a,).

Naturally, the elements making up an n-tuple need not be distinct. Thus
(4,1,4,2) is a 4-tuple. A 2-tuple is called an ordered pair, and a 3-tuple is
called an ordered triple. Unlike the case for sets of one object, we do not
distinguish between the object a and the 1-tuple (a). The crucial property of
n-tuples is

(a],az,...,an)=(b],b2,...,bn)
if and only if
a, =b,, a, =b,, cees and a,=0b,.

Ifs,,S,,...,S, are given sets, then we write §; X S, X -+ X §, for the
set of all n-tuples (a,,a,,...,a,)such that a, € §,,a4, € S,,...,a, €S,.

2. Functions 3

S§; XS, X -+ xS, is sometimes called the Cartesian product of
8$:,8,,...,8,.Incase §; =S, = --- =§, = 8§ we write S” for the Carte-
sian product §; X §, X ==+ X §,.

2. Functions

Functions play an important role in virtually every branch of pure and
applied mathematics. We may define a function simply as a set f, all of
whose members are ordered pairs and that has the special property

(a,b) efand (a,c) €f implies b =c.

However, intuitively it is more helpful to think of the pairs listed as the
rows of a table. For f a function, one writes f(a) = b to mean that
(a, b) € f; the definition of function ensures that for each a there can be
at most one such b. The set of all a such that (a, b) € f for some b is
called the domain of f. The set of all f(a) for a in the domain of f is
called the range of f.

As an example, let f be the set of ordered pairs (n,n*) for n € N.
Then, for each n € N, f(n) = n*. The domain of f is N. The range of f is
the set of perfect squares.

Functions f are often specified by algorithms that provide procedures
for obtaining f(a) from a. This method of specifying functions is particu-
larly important in computer science. However, as we shall see in Chapter
4, it is quite possible to possess an algorithm that specifies a function
without being able to tell which elements belong to its domain. This makes
the notion of a so-called partial function play a central role in computabil-
ity theory. A partial function on a set S is simply a function whose domain
is a subset of S. An example of a partial function on N is given by g(n)
= Vn, where the domain of g is the set of perfect squares. If f is a partial
function on S and a € §, then we write f(a)| and say that f(a) is defined
to indicate that a is in the domain of f; if a is not in the domain of f, we
write f(a)? and say that f(a) is undefined. If a partial function on S has
the domain S, then it is called total. Finally, we should mention that the
empty set & is itself a function. Considered as a partial function on some
set S, it is nowhere defined.

For a partial function f on a Cartesian product §; X S, X -+ X §,, we
write f(a,,...,a,) rather than f((a,,...,a,)). A partial function f on a
set §” is called an n-ary partial function on S, or a function of n variables
on S. We use unary and binary for 1-ary and 2-ary, respectively. For n-ary
partial functions, we often write f(x,,...,x,) instead of f as a way of
showing explicitly that f is n-ary.

4 Chapter 1 Preliminaries

Sometimes it is useful to work with particular kinds of functions. A
function f is one-one if, for all x,y in the domain of f, f(x) = f(y)
implies x = y. Stated differently, if x # y then f(x) # f(y). If the range of
f is the set S, then we say that f is an onfo function with respect to S, or
simply that f is onto S. For example, f(n) = n? is one—one, and f is onto
the set of perfect squares, but it is not onto N.

We will sometimes refer to the idea of closure. If S is a set and f is a
partial function on S, then S is closed under f if the range of f is a subset
of S. For example, N is closed under f(n) = n?, but it is not closed under
h(n) = Vn (where h is a total function on N).

3. Alphabets and Strings

An alphabet is simply some finite nonempty set A of objects called
symbols. An n-tuple of symbols of A is called a word or a string on A.
Instead of writing a word as (4, a,,...,a,) we write simply a,a, --- a,. If
u = a,a, - a,, then we say that n is the length of u and write |u| = n.
We allow a unique null word, written 0, of length 0. (The reason for using
the same symbol for the number zero and the null word will become clear
in Chapter 5.) The set of all words on the alphabet A is written 4*. Any
subset of A* is called a language on A or a language with alphabet A. We
do not distinguish between a symbol a € 4 and the word of length 1
consisting of that symbol. If u,v € 4%, then we write uv for the word
obtained by placing the string v after the string u. For example, if
A ={a,b,c}, u =bab, and v = caa, then

uv = babcaa and vu = caabab.

Where no confusion can result, we write uv instead of uv. It is obvious
that, for all u,

and that, for all u, v, w,
u(ow) = (uv)w.

Also, if either uv = uw or vu = wu, then v = w.
If u is a string, and n € N, n > 0, we write

u["]: uu - u.
n

We also write ul®) = 0. We use the square brackets to avoid confusion with
numerical exponentiation.

4. Predicates 5

If u € A*, we write u® for u written backward; i.e., if u = a,a, - a,,
for a,,...,a, € A, then u® =aq, - a,a,. Clearly, 0F = 0 and (u)* =
vRuR for u,v € A*.

4. Predicates

By a predicate or a Boolean-valued function on a set S we mean a ftotal
function P on S such that for each a € S, either

P(a) = TRUE or P(a) = FALSE,

where TRUE and FALSE are a pair of distinct objects called truth values.
We often say P(a) is true for P(a) = TRUE, and P(a) is false for
P(a) = FALSE. For our purposes it is useful to identify the truth values
with specific numbers, so we set

TRUE =1 and FALSE = 0.

Thus, a predicate is a special kind of function with values in N. Predicates
on a set S are usually specified by expressions which become statements,
either true or false, when variables in the expression are replaced by
symbols designating fixed elements of S. Thus the expression

x <5

specifies a predicate on N, namely,

1 if x=0,1,2,3,4
Px) = {O otherwise.
Three basic operations on truth values are defined by the tables in Table
4.1. Thus if P and Q are predicates on a set S, there are also the
predicates ~P, P & Q, P V Q. ~P is true just when P is false; P & Q is
true when both P and Q are true, otherwise it is false; P vV Q is true when
either P or Q or both are true, otherwise it is false. Given a predicate P

Table 4.1
)4 ~p p q p&q PVq
1 1 1 1 1
1 0 0 1 0 1
_— 1 0 0 1
0 0 0 0

6 Chapter 1 Preliminaries

on a set S, there is a corresponding subset R of S, namely, the set of all
elements a € S for which P(a) = 1. We write

R = {a € S|P(a)}.
Conversely, given a subset R of a given set S, the expression
X E€R

defines a predicate on S, namely, the predicate defined by

_J1 if xeR
P(")‘{o if x&R.

Of course, in this case,
R = {x € S|P(x)}.

The predicate P is called the characteristic function of the set R. The close
connection between sets and predicates is such that one can readily
translate back and forth between discourse involving one of these notions
and discourse involving the other. Thus we have

{(xeSIPX)& X))} ={xeS|IPx)}n{xeSIOokx)},
{xeSIPx) vOx)} ={xeS|IPx)}U{xeS o),
{xesS| ~Px)}=S—-{xeS|PkX)}.

To indicate that two expressions containing variables define the same
predicate we place the symbol < between them. Thus,

x<S5ex=0VvVx=1Vvx=2Vx=3Vx=4.

The De Morgan identities from Section 1 can be expressed as follows in
terms of predicates on a set S:

P(x) & Q(x) & ~(~P(x) v ~Q(x)),
P(x) V O(x) & ~(~P(x) & ~Q(x)).

5. Quantifiers

In this section we will be concerned exclusively with predicates on N™ (or
what is the same thing, m-ary predicates on N) for different values of m.
Here and later we omit the phrase “on N” when the meaning is clear.

5. Quantifiers 7

Thus, let P(¢, x,,...,x,) be an (n + 1)-ary predicate. Consider the predi-
cate QO(y, x,,..., x,) defined by

oy, xy,...,x,) @ P(0,x,,...,x,) VP, x,...,x,)
Vo VP, Xy, X)),

Thus the predicate Q(y, x,,..., x,) is true just in case there is a value of
t <y such that P(¢,x,,..., x,) is true. We write this predicate Q as

@A, P, x,,...,x,).

The expression “(3¢)_ ,” is called a bounded existential quantifier. Similarly,
we write (V¢) _ , P(¢, x,,..., x,) for the predicate

PO, x,....,x,) & P(1,x;,...,x,) & & P(y,x;,...,x,).

This predicate is true just in case P(t,x,,...,x,) is true for all t <y.
The expression “(V¢) _,” is called a bounded universal quantifier. We also
write (31) ,P(¢,x;,...,x,) for the predicate that is true just in
case P(t,x,,...,x,) is true for at least one value of ¢ <y and
V), P(t, x;,...,x,) for the predicate that is true just in case
P(t, xy,...,x,) is true for all values of ¢ < y.

We write

0(xy,...,x,) & @ADP(,x,,...,x,)

for the predicate which is true if there exists some ¢t € N for which
P(t, x,,...,x,) is true. Similarly, (VO)P(¢, x,,...,x,) is true if
P(t,x,,...,x,) is true for all £ € N.

The following generalized De Morgan identities are sometimes useful:

~(Elt)SyP(t,x1 ey X,) & (Vt)sy ~P(t,x,,...,x,),
~@0P(,x,,....,x,) & (Vt) ~P(t,x,,...,x,).
The reader may easily verify the following examples:
Ay)x+y=4) ox <4,
@Ay)x+y=4) o Qy)_(x+y=4),

Vy) oy =0 x=0,
Ay, (x+y=4dHeo(x+z24&x<4).

8 Chapter 1 Preliminaries
6. Proof by Contradiction

In this book we will be calling many of the assertions we make theorems
(or corollaries or lemmas) and providing proofs that they are correct. Why
are proofs necessary? The following example should help in answering this
question.

Recall that a number is called a prime if it has exactly two distinct
divisors, itself and 1. Thus 2, 17, and 41 are primes, but 0, 1, 4, and 15 are
not. Consider the following assertion:

n* —n + 41is prime for all n € N.
This assertion is in fact false. Namely, for n = 41 the expression becomes

412 — 41 + 41 = 412,

which is certainly not a prime. However, the assertion is true (readers with
access to a computer can easily check this!) for all n < 40. This example
shows that inferring a result about all members of an infinite set (such as
N) from even a large finite number of instances can be very dangerous. A
proof is intended to overcome this obstacle.

A proof begins with some initial statements and uses logical reasoning to
infer additional statements. (In Chapters 12 and 13 we shall see how the
notion of logical reasoning can be made precise; but in fact, our use of
logical reasoning will be in an informal intuitive style.) When the initial
statements with which a proof begins are already accepted as correct, then
any of the additional statements inferred can also be accepted as correct.
But proofs often cannot be carried out in this simple-minded pattern. In
this and the next section we will discuss more complex proof patterns.

In a proof by contradiction, one begins by supposing that the assertion
we wish to prove is false. Then we can feel free to use the negation of what
we are trying to prove as one of the initial statements in constructing a
proof. In a proof by contradiction we look for a pair of statements
developed in the course of the proof which contradict one another. Since
both cannot be true, we have to conclude that our original supposition was
wrong and therefore that our desired conclusion is correct.

We give two examples here of proof by contradiction. There will be
many in the course of the book. Our first example is quite famous. We
recall that every number is either even (i.e., = 2n for some n € N) or odd
(i.e., = 2n + 1 for some n € N). Moreover, if m is even, m = 2n, then
m? = 4n? = 2-2n? is even, while if m is odd, m = 2n + 1, then m? =
4n® + 4n + 1 =2Q2n* + 2n) + 1 is odd. We wish to prove that the
equation

= (m/n)’ 6.1)

7. Mathematical Induction 9

has no solution for m, n € N (that is, that V2 is not a “rational” number).
We suppose that our equation has a solution and proceed to derive a
contradiction. Given our supposition that (6.1) has a solution, it must have
a solution in which m and n are not both even numbers. This is true
because if m and n are both even, we can repeatedly “cancel” 2 from
numerator and denominator until at least one of them is odd. On the
other hand, we shall prove that for every solution of (6.1) m and n must
both be even. The contradiction will show that our supposition was false,
i.e., that (6.1) has no solution.

It remains to show that in every solution of (6.1), m and n are both
even. We can rewrite (6.1) as

m? = 2n?,
which shows that m? is even. As we saw above this implies that m is even,
say m = 2k. Thus, m? = 4k? = 2n?, or n? = 2k*. Thus, n? is even and
hence n is even. u

Note the symbol B, which means “the proof is now complete.”
Our second example involves strings as discussed in Section 3.

Theorem 6.1. Let x € {a, b}* such that xa = ax. Then x = al") for some
neN.

Proof. Suppose that xa = ax but x contains the letter b. Then we can
write x = al"lbu, where we have explicitly shown the first (i.e., leftmost)
occurrence of b in x. Then

a"bua = aa™bu = al"* pu.

Thus,

bua = abu.
But this is impossible, since the same string cannot have its first symbol be
both b and a. This contradiction proves the theorem. []
Exercises

1. Prove that the equation (p/q)* = 3 has no solution for p,q € N.

2. Prove that if x € {a, b}* and abx = xab, then x = (ab)'"™ for some
n € N.

7. Mathematical Induction

Mathematical induction furnishes an important technique for proving
statements of the form (Vn)P(n), where P is a predicate on N. One

10 Chapter 1 Preliminaries

proceeds by proving a pair of auxiliary statements, namely,

P(0)
and
(Vn)(If P(n) then P(n + 1)). (7.1)

Once we have succeeded in proving these auxiliary statements we can
regard (Vn)P(n) as also proved. The justification for this is as follows.

From the second auxiliary statement we can infer each of the infinite set
of statements:

If P(0) then P(1),
If P(1) then P(2),
If P(2) then P(3),... .

Since we have proved P(0), we can infer P(1). Having now proven P(1) we
can get P(2), etc. Thus, we see that P(n) is true for all n and hence
(Vn)P(n) is true.

Why is this helpful? Because sometimes it is much easier to prove (7.1)
than to prove (Vr)P(n) in some other way. In proving this second auxiliary
proposition one typically considers some fixed but arbitrary value k of n
and shows that if we assume P(k) we can prove P(k + 1). P() is then
called the induction hypothesis. This methodology enables us to use P(k) as
one of the initial statements in the proof we are constructing.

There are some paradoxical things about proofs by mathematical induc-
tion. One is that considered superficially, it seems like an example of
circular reasoning. One seems to be assuming P(k) for an arbitrary k,
which is exactly what one is supposed to be engaged in proving. Of course,
one is not really assuming (Vn)P(n). One is assuming P(k) for some
particular k in order to show that P(k + 1) follows.

It is also paradoxical that in using induction (we shall often omit the
word mathematical), it is sometimes easier to prove statements by first
making them ‘‘stronger.” We can put this schematically as follows. We
wish to prove (Vn)P(n). Instead we decide to prove the stronger assertion
(VnX P(n) & Q(n)) (which of course implies the original statement). Prov-
ing the stronger statement by induction requires that we prove

P(0) & Q(0)
and
Yn)lIf P(n) & Q(n) then P(n + 1) & Q(n + 1)].

In proving this second auxiliary statement, we may take P(k)& Q(k) as
our induction hypothesis. Thus, although strengthening the statement to

7. Mathematical Induction 11

be proved gives us more to prove, it also gives us a stronger induction
hypothesis and, therefore, more to work with. The technique of deliber-
ately strengthening what is to be proven for the purpose of making proofs
by induction easier is called induction loading.

It is time for an example of a proof by induction. The following is useful
in doing one of the exercises in Chapter 6.

Theorem 7.1. For all n € N we have £7_(2i + 1) = (n + 1)2

Proof. For n = 0, our theorem states simply that 1 = 12, which is true.
Suppose the result known for n = k. That is, our induction hypothesis is

k
YQi+1)=(k+1)"
i=0

Then
k+1 k
YQRi+1D=YQi+D+2k+1+1
i=0 i=0
=(k+1D*+2(k+1D+1
=(k + 2"
But this is the desired result for n = k + 1. [|

Another form of mathematical induction that is often very useful is
called course-of-values induction or sometimes complete induction. In the
case of course-of-values induction we prove the single auxiliary statement

~vm)lIf (Ym),, . ,P(m) then P(n)], (7.2)

and then conclude that (Vn)P(n) is true. A potentially confusing aspect of
course-of-values induction is the apparent lack of an initial statement
P(0). But in fact there is no such lack. The case n = 0 of (7.2) is

If (Ym),, .o P(m) then P(0).

But the “induction hypothesis” (Vm),, . , P(m) is entirely vacuous because
there is no m € N such that m < 0. So in proving (7.2) for n = 0 we really
are just proving P(0). In practice it is sometimes possible to give a single
proof of (7.2) that works for all »n including n = 0. But often the case
n = 0 has to be handled separately.

To see why course-of-values induction works, consider that, in the light
of what we have said about the n = 0 case, (7.2) leads to the following

12 Chapter 1 Preliminaries

infinite set of statements:

P(0),

If P(0) then P(1),

If P(0) & P(1) then P(2),

If P(0) & P(1) & P(2) then P(3),

Here is an example of a theorem proved by course-of-values induction.

Theorem 7.2. There is no string x € {a, b}* such that ax = xb.

Proof. Consider the following predicate: If x € {a, b}* and |x| = n, then
ax # xb. We will show that this is true for all n € N. So we assume it true
for all m < k for some given k and show that it follows for k. This proof
will be by contradiction. Thus, suppose that |x| =k and ax = xb. The
equation implies that g is the first and b the last symbol in x. So, we can
write x = aub. Then

aaub = aubb,
ie.,
au = ub.

But |u| < |x|. Hence by the induction hypothesis au # ub. This contradic-
tion proves the theorem.]

Proofs by course-of-values induction can always be rewritten so as to
involve reference to the principle that if some predicate is true for some
element of N, then there must be a least element of N for which it is true.
Here is the proof of Theorem 7.2 given in this style.

Proof. Suppose there is a string x € {a, b}* such that ax = xb. Then
there must be a string satisfying this equation of minimum length. Let x
be such a string. Then ax = xb, but, if |u| < |x|, then au # ub. However,
ax = xb implies that x = aub, so that au = ub and |u| < |x|. This contra-
diction proves the theorem.]

Exercises

1. Prove by mathematical induction that X!, i = n(n + 1)/2.

2. Here is a “proof” by mathematical induction that if x,y € N, then
x =y. What is wrong?

7. Mathematical Induction 13

Let

x if x>y

max(x, y) = { y otherwise

for x,y € N. Consider the predicate
(Vx)(VY)[If max(x,y) = n, thenx =y].

For n = 0, this is clearly true. Assume the result for n = k, and let
max(x,y) =k + 1. Let x;, =x — 1, y;, =y — 1. Then max(x,, y,) = k.
By the induction hypothesis, x; =y, and therefore x =x, +1 =
yy+1=y.

3. Here is another incorrect proof that purports to use mathematical
induction to prove that all flowers have the same color! What is
wrong?

Consider the following predicate: If S is a set of flowers containing
exactly n elements, then all the flowers in § have the same color. The
predicate is clearly true if n = 1. We suppose it true for n = k and
prove the result for n = k + 1. Thus, let S be a set of k + 1 flowers. If
we remove one flower from § we get a set of k flowers. Therefore, by
the induction hypothesis they all have the same color. Now return the
flower removed from S and remove another. Again by our induction
hypothesis the remaining flowers all have the same color. But now
both of the flowers removed have been shown to have the same color
as the rest. Thus, all the flowers in S have the same color.

Show that there are no strings x, y € {a, b}* such that xay = ybx.

5. Give a “one-line” proof of Theorem 7.2 that does not use mathemati-
cal induction.

Part 1

Ccomputability

2

Programs and
Computable Functions

1. A Programming Language

Our development of computability theory will be based on a specific
programming language .. We will use certain letters as variables whose
values are numbers. (In this book the word number will always mean
nonnegative integer, unless the contrary is specifically stated.) In particu-
lar, the letters

Xl XZ X3

will be called the input variables of &, the letter Y will be called the
output variable of .%, and the letters

Z1 Z2 23

will be called the local variables of .. The subscript 1 is often omitted; i.e.,
X stands for X, and Z for Z,. Unlike the programming languages in
actual use, there is no upper limit on the values these variables can
assume. Thus from the outset, % must be regarded as a purely theoretical
entity. Nevertheless, readers having programming experience will find
working with % very easy.

In % we will be able to write “instructions” of various sorts; a
“program” of & will then consist of a list (i.e., a finite sequence) of

17

18 Chapter 2 Programs and Computable Functions

Table 1.1
Instruction Interpretation
VeV+1 Increase by 1 the value of the variable V.
VeV-1 If the value of V is 0, leave it unchanged; otherwise decrease by 1 the

value of V.
IF V' #+ 0 GOTO L If the value of V is nonzero, perform the instruction with label L next;
otherwise proceed to the next instruction in the list.

instructions. For example, for each variable V' there will be an instruction:
VeV+1
A simple example of a program of . is

X<X+1
X<X+1

“Execution” of this program has the effect of increasing the value of X by
2. In addition to variables, we will need “labels.” In .% these are

A B, C, D E A, B,C, D, E, A,

Once again the subscript 1 can be omitted. We give in Table 1.1 a
complete list of our instructions. In this list V' stands for any variable and
L stands for any label.

These instructions will be called the increment, decrement, and condi-
tional branch instructions, respectively.

We will use the special convention that the output variable Y and the
local variables Z; initially have the value 0. We will sometimes indicate the
value of a variable by writing it in lowercase italics. Thus x; is the value of
Xs.

Instructions may or may not have labels. When an instruction is labeled,
the label is written to its left in square brackets. For example,

[B] Z<27Z-1

In order to base computability theory on the language %, we will
require formal definitions. But before we supply these, it is instructive to
work informally with programs of .%.

2. Some Examples of Programs

(a) Our first example is the program

[A4] X<X-1
Y<Y+1
IF X # 0 GOTO 4

2. Some Examples of Programs 19

If the initial value x of X is not 0, the effect of this program is to copy x
into Y and to decrement the value of X down to 0. (By our conventions
the initial value of Y is 0.) If x = 0, then the program halts with Y having
the value 1. We will say that this program computes the function

1 if x=0
f(x)—{x

otherwise.

This program halts when it executes the third instruction of the program
with X having the value 0. In this case the condition X # 0 is not fulfilled
and therefore the branch is not taken. When an attempt is made to move
on to the nonexistent fourth instruction, the program halts. A program will
also halt if an instruction labeled L is to be executed, but there is no
instruction in the program with that label. In this case, we usually will use
the letter E (for “exit”) as the label which labels no instruction.

(b) Although the preceding program is a perfectly well-defined pro-
gram of our language ., we may think of it as having arisen in an attempt
to write a program that copies the value of X into Y, and therefore
containing a “bug” because it does not handle 0 correctly. The following
slightly more complicated example remedies this situation.

[A4] IF X # 0 GOTO B
Z<Z+1
IF Z # 0 GOTO E
[B] X<X-1
Y<Y+1
Z<Z+1
IF Z # 0 GOTO 4

As we can easily convince ourselves, this program does copy the value of
X into Y for all initial values of X. Thus, we say that it computes the
function f(x) = x. At first glance.Z’s role in the computation may not be
obvious. It is used simply to allow us to code an unconditional branch. That
is, the program segment

Z<Z+1

IF Z # 0 GOTO L 2.1

has the effect (ignoring the effect on the value of Z) of an instruction

GOTO L

such as is available in most programming languages. To see that this is true
we note that the first instruction of the segment guarantees that Z has a
nonzero value. Thus the condition Z # 0 is always true and hence the next
instruction performed will be the instruction labeled L. Now GOTO L is

20 Chapter 2 Programs and Computable Functions

not an instruction in our language ., but since we will frequently have use
for such an instruction, we can use it as an abbreviation for the program
segment (2.1). Such an abbreviating pseudoinstruction will be called a
macro and the program or program segment which it abbreviates will be
called its macro expansion.

The use of these terms is obviously motivated by similarities with the
notion of a macro instruction occurring in many programming languages.
At this point we will not discuss how to ensure that the variables local to
the macro definition are distinct from the variables used in the main
program. Instead, we will manually replace any such duplicate variable
uses with unused variables. This will be illustrated in the “expanded”
multiplication program in (e). In Section 5 this matter will be dealt with in
a formal manner.

(c) Note that although the program of (b) does copy the value of X
into Y, in the process the value of X is “destroyed” and the program
terminates with X having the value 0. Of course, typically, programmers
want to be able to copy the value of one variable into another without the
original being “zeroed out.” This is accomplished in the next program.
(Note that we use our macro instruction GOTO L several times to shorten
the program. Of course, if challenged, we could produce a legal program of
&% by replacing each GOTO L by a macro expansion. These macro
expansions would have to use a local variable other than Z so as not to
interfere with the value of Z in the main program.)

[A] If X+# 0GOTO B
GOTO C

[B] XeX-1
Y<Y+1
Z<7Z+1
GOTO 4

[C] IF Z +# 0 GOTO D
GOTO E

[D] Z<7Z-1
X<X+1
GOTO C

In the first loop, this program copies the value of X into both Y and Z,
while in the second loop, the value of X is restored. When the program
terminates, both X and Y contain X’s original value and z = 0.

We wish to use this program to justify the introduction of a macro which
we will write

VeV’

2. Some Examples of Programs 21

the execution of which will replace the contents of the variable I by the
contents of the variable I’ while leaving the contents of V' unaltered.
Now, this program (c) functions correctly as a copying program only under
our assumption that the variables Y and Z are initialized to the value 0.
Thus, we can use the program as the basis of a macro expansion of
V < V' only if we can arrange matters so as to be sure that the corre-
sponding variables have the value 0 whenever the macro expansion is
entered. To solve this problem we introduce the macro

Veo

which will have the effect of setting the contents of V' equal to 0. The
corresponding macro expansion is simply

[L] VeV-1
IF V # 0GOTO L

where, of course, the label L is to be chosen to be different from any of
the labels in the main program. We can now write the macro expansion of
V < V' by letting the macro V « 0 precede the program which results
when X is replaced by V' and Y is replaced by V' in program (c). The
result is as follows:

Ve

[A4] IF V' + 0 GOTO B
GOTO C

[B] V' < V' -1
Ve<V+1
Z<7Z+1
GOTO 4

[C] IF Z # 0 GOTO D
GOTO E

[D] Z—Z7Z-1
V< V' +1
GOTO C

With respect to this macro expansion the following should be noted:

1. It is unnecessary (although of course it would be harmless) to include
a Z < 0 macro at the beginning of the expansion because, as has
already been remarked, program (c) terminates with z = 0.

2. When inserting the expansion in an actual program, the variable Z
will have to be replaced by a local variable which does not occur in
the main program.

22

Chapter 2 Programs and Computable Functions

3. Likewise the labels A, B,C, D will have to be replaced by labels
which do not occur in the main program.

4. Finally, the label E in the macro expansion must be replaced by a
label L such that the instruction which follows the macro in the main
program (if there is one) begins [L].

(d) A program with two inputs that computes the function

is as follows:

[B]

[A4]

flxy,x,) =x +x,

Y « X,

Z < X,

IF Z # 0 GOTO 4
GOTO E
Z<7Z-1
Y<Y+1
GOTO B

Again, if challenged we would supply macro expansions for “Y « X,”
and “Z <« X,” as well as for the two unconditional branches. Note that Z
is used to preserve the value of X,.

(e) We now present a program that multiplies, i.e. that computes
f(x,,x,) = x, -x,. Since multiplication can be regarded as repeated addi-
tion, we are led to the “program”

[B]

(4]

Z, < X,

IF Z, # 0 GOTO A4
GOTO E
Z,<272,—1

Z, <X +Y
Y« Z,

GOTO B

Of course, the “instruction” Z, < X, + Y is not permitted in the lan-
guage .. What we have in mind is that since we already have an addition
program, we can replace the macro Z, < X, +Y by a program for
computing it, which we will call its macro expansion. At first glance, one
might wonder why the pair of instructions

Z, X, +Y

Y < Z,

2. Some Examples of Programs 23

was used in this program rather than the single instruction
Y<X +Y

since we simply want to replace the current value of Y by the sum of its
value and x,. The sum program in (d) computes Y = X, + X,. If we were
to use that as a template, we would have to replace X, in the program by
Y. Now if we tried to use Y also as the variable being assigned, the macro
expansion would be as follows:

Y < X,
Z <Y

[B] IF Z # 0 GOTO 4
GOTO E

[A] Z—7Z-1
Y<Y+1
GOTO B

What does this program actually compute? It should not be difficult to see
that instead of computing x, + y as desired, this program computes 2x;, .
Since X, is to be added over and over again, it is important that X, not be
destroyed by the addition program. Here is the multiplication program,
showing the macro expansion of Z;, « X, + Y:

Z, < X,

[B] IF Z, # 0 GOTO 4
GOTO E

(4] Z,<Z,—-1
Z, <X,
Z,<Y

[B,] IFZ,+# 0GOTO A4, | Macro Expansion of
GOTO E, Z, <X, +Y

[4,] Z,«<2Z,-1
Z, «Z +1
GOTO B,

(E,] Ye<Z,
GOTO B

Note the following:

1. The local variable Z, in the addition program in (d) must be replaced
by another local variable (we have used Z,) because Z, (the other
name for Z) is also used as a local variable in the multiplication
program.

24 Chapter 2 Programs and Computable Functions

2. The labels A, B, E are used in the multiplication program and hence
cannot be used in the macro expansion. We have used A4,, B,, E,
instead.

3. The instruction GOTO E, terminates the addition. Hence, it is
necessary that the instruction immediately following the macro ex-
pansion be labeled E,.

In the future we will often omit such details in connection with macro
expansions. All that is important is that our infinite supply of variables and
labels guarantees that the needed changes can always be made.

(f) For our final example, we take the program

Y « X,
Z < X,

[C] IF Z # 0 GOTO 4
GOTO E

[A] IF Y+ 0GOTO B
GOTO 4

[B] Y<Y-1
Z<7Z-1
GOTO C

If we begin with X, =5, X, = 2, the program first sets Y = 5 and Z = 2.
Successively the program sets Y =4, Z =1 and Y = 3, Z = 0. Thus, the
computation terminates with Y =3 =5 — 2. Clearly, if we begin with
X, =m, X, =n, where m > n, the program will terminate with Y =
m — n.

What happens if we begin with a value of X, less than the value of X,
e.g., X; = 2, X, = 57 The program sets Y = 2 and Z = 5 and successively
sets Y=1,Z =4and Y = 0, Z = 3. At this point the computation enters
the “loop”™:

[A] IFY # 0GOTO B
GOTO 4

Since y = 0, there is no way out of this loop and the computation will
continue “forever.” Thus, if we begin with X, = m, X, = n, where m < n,
the computation will never terminate. In this case (and in similar cases) we
will say that the program computes the partial function

X, — X, if x >x,

g(xi, x;) = 1 if x, <x,.

(Partial functions are discussed in Chapter 1, Section 2.)

3. Syntax 25

Exercises

1. Write a program in % (using macros freely) that computes the
function f(x) = 3x.

2. Write a program in % that solves Exercise 1 using no macros.

Let f(x) = 1if x is even; f(x) = 0 if x is odd. Write a program in %
that computes f.

4. Let f(x) = 1if x is even; f(x) undefined if x is odd. Write a program
in & that computes f.

5. Let f(x,,x,) =1if x; = x,; f(x,,x,) =0 if x; # x,. Without using
macros, write a program in % that computes f.

6. Let f(x) be the greatest number n such that n? < x. Write a program
in & that computes f.

7. Let ged(x,, x,) be the greatest common divisor of x, and x,. Write a
program in % that computes gcd.

3. Syntax

We are now ready to be mercilessly precise about the language %. Some
of the description recapitulates the preceding discussion.
The symbols

X X, X; -
are called input variables,
Z1 Z2 Z3 e
are called local variables, and Y is called the output variable of . The
symbols
A, B, C, D, E, A, B, -

are called labels of #. (As already indicated, in practice the subscript 1 is
often omitted.) A statement is one of the following:

VeV+1
VeV-1
VeV

IFV # 0GOTO L

where V' may be any variable and L may be any label.

26 Chapter 2 Programs and Computable Functions

Note that we have included among the statements of . the “dummy”
commands V <« V. Since execution of these commands leaves all values
unchanged, they have no effect on what a program computes. They are
included for reasons that will not be made clear until much later. But their
inclusion is certainly quite harmless.

Next, an instruction is either a statement (in which case it is also called
an unlabeled instruction) or [L] followed by a statement (in which case the
instruction is said to have L as its label or to be labeled L). A program is
a list (i.e., a finite sequence) of instructions. The length of this list is called
the length of the program. It is useful to include the empty program of
length 0, which of course contains no instructions.

As we have seen informally, in the course of a computation, the
variables of a program assume different numerical values. This suggests
the following definition:

A state of a program 2 is a list of equations of the form V' = m, where I
is a variable and m is a number, including an equation for each variable
that occurs in £ and including no two equations with the same variable.
As an example, let & be the program of (b) from Section 2, which contains
the variables X Y Z. The list

X =4, Y =3, zZ=3

is thus a state of 2. (The definition of state does not require that the state
can actually be “attained” from some initial state.) The list

X, =4, X, =5, Y =4, Z=4

is also a state of . (Recall that X is another name for X, and note that
the definition permits inclusion of equations involving variables not actu-
ally occurring in &.) The list

X =3, Z=3
is not a state of & since no equation in Y occurs. Likewise, the list
X =3, X =4, Y=2, Z =2

is not a state of &: there are two equations in X.

Let o be a state of & and let V' be a variable that occurs in o. The
value of V at o is then the (unique) number g such that the equation
V = q is one of the equations making up o. For example, the value of X
at the state

is 4.

3. Syntax 27

Suppose we have a program £ and a state o of 2. In order to say what
happens “next,” we also need to know which instruction of & is about to
be executed. We therefore define a snapshot or instantaneous description
of a program 2 of length n to be a pair (i, c) where]l <i <n + 1,and o
is a state of . (Intuitively the number i indicates that it is the ith
instruction which is about to be executed; i = n + 1 corresponds to a
“stop” instruction.)

If s = (i, o) is a snapshot of & and V is a variable of %, then the value
of V at s just means the value of V at o.

A snapshot (i, o) of a program £ of length n is called terminal if
i =n + 1.If (i, o) is a nonterminal snapshot of 2, we define the successor
of (i, o) to be the snapshot (j, 7) defined as follows:

Case 1. The ith instruction of & is V< VV+ 1 and o contains the
equation V' =m. Then j =i+ 1 and 7 is obtained from o by
replacing the equation V' =m by VV=m + 1 (i.e., the value of V
at 7 is m + 1).

Case 2. The ith instruction of & is V< V' —1 and o contains the
equation V' =m. Then j =i+ 1 and 7 is obtained from o by
replacing the equation V=mby V=m —1if m # 0;if m =0,
T= 0.

Case 3. The ith instruction of L is V< V. Then r= o0 and j =i + 1.

Case 4. The ith instruction of & is IF VV # 0 GOTO L. Then r = o, and
there are two subcases:

Case 4a. o contains the equation V' = 0. Then j =i + 1.

Case 4b. o contains the equation V' = m where m # 0. Then, if there is

an instruction of & labeled L, j is the least number such that
the jth instruction of & is labeled L. Otherwise, j = n + 1.

For an example, we return to the program of (b), Section 2. Let o be
the state

X=4, Y=0, Z=0

and let us compute the successor of the snapshots (i, o) for various values
of i.

For i = 1, the successor is (4, o) where o is as above. For i = 2, the
successor is (3, 7), where 7 consists of the equations

X =4, Y=0, Z=1.

For i = 7, the successor is (8, o). This is a terminal snapshot.

A computation of a program 2 is defined to be a sequence (i.e., a list)
$1585,--.,5, of snapshots of % such that s,,, is the successor of s; for
i =1,2,...,k — 1 and s, is terminal.

28 Chapter 2 Programs and Computable Functions

Note that we have not forbidden a program to contain more than one
instruction having the same label. However, our definition of successor of
a snapshot, in effect, interprets a branch instruction as always referring to
the first statement in the program having the label in question. Thus, for
example, the program

[A4] X<X-1
IF X # 0 GOTO 4
[A4] X<X+1

is equivalent to the program

[A4] XeeX-1
IF X # 0 GOTO 4
X<X+1

Exercises

1. Let & be the program of (b), Section 2. Write out a computation of %
beginning with the snapshot (1, o), where o consists of the equations
X=2Y=0,Z=0.

2. Give a program £ such that for every computation s,,...,s, of %,
k =>5.

3. Give a program &£ such that for any n > 0 and every computation
s;=Q,0),s,,...,5, of & that has the equation X =n in o, k =
2n + L

4. Computable Functions

We have been speaking of the function computed by a program 2. It is
now time to make this notion precise.

One would expect a program that computes a function of m variables to
contain the input variables X, X,,..., X,,, and the output variable Y,
and to have all other variables (if any) in the program be local. Although
this has been and will continue to be our practice, it is convenient not to
make it a formal requirement. According to the definitions we are going to
present, any program £ of the language % can be used to compute a
function of one variable, a function of two variables, and, in general, for
each m > 1, a function of m variables.

Thus, let & be any program in the language .% and let r,,...,r,, be m
given numbers. We form the state o of % which consists of the equations

X, =r, X,=r,, ces Xp ="ps Y=0

4. Computable Functions 29

together with the equations I = 0 for each variable V' in & other than
Xi5--» X,,Y. We will call this the initial state, and the snapshot (1, o),
the initial snapshot.

Case 1. There is a computation s,, S, , ..., s, of P beginning with the initial
snapshot. Then we write y3"(r,,r,,...,r,) for the value of the
variable Y at the (terminal) snapshot s, .

Case 2. There is no such computation; i.e., there is an infinite sequence

$,,58,,585,... beginning with the initial snapshot where each s, ,
is the successor of s;. In this case ¢5"(r,,...,r,) is undefined.

Let us reexamine the examples in Section 2 from the point of view of
this definition. We begin with the program of (b). For this program &, we
have

D(x) =x

for all x. For this one example, we give a detailed treatment. The following
list of snapshots is a computation of 2:

1,{X=r,Y=0,Z=0)}),
@G {x=r,Y=0,Z=0),
G, {X=r-1,Y=0,Z=0}),
6,{X=r—-1,Y=1,Z=0}),
TAXx=r-1,Y=1,Z=1)}),
,{xX=r-1Y=1,2Z=1}),

1,{XxX=0,Y=r,Z=r)}),
Q{x=0Y=r,Z=r}),
B {X=0Y=r,Z=r+1}),
8, {X=0Y=r,Z=r+1}).

We have included a copy of % showing line numbers:

[4] IFX+#0GOTOB (1
Z<Z+1 (2)
IF Z # 0 GOTO E (3)
[B] X<X-1 4)
Y<Y+1 (5)
Z<Z+1 (6)

IF Z # 0 GOTO 4 N

30 Chapter 2 Programs and Computable Functions

For other examples of Section 2 we have

@ () = {: if r=0

otherwise,
®.©) =7,
@ ¢9r,r)=r +r,,
© YPr,r) =r "y,
@ _n-n if ri>r,
® ¥ (rl’rz)_{T if r <r,.
Of course in several cases the programs written in Section 2 are abbrevia-
tions, and we are assuming that the appropriate macro expansions have
been provided.

As indicated, we are permitting each program to be used with any
number of inputs. If the program has n input variables, but only m < n
are specified, then according to the definition, the remaining input vari-
ables are assigned the value 0 and the computation proceeds. If on the
other hand, m values are specified where m > n the extra input values are
ignored. For example, referring again to the examples from Section 2, we
have

(C) (;)2)("1,"2) =Tr,
(G %)(71) =r+0=r,
YNr ,ry,r3) =1 +ry.

For any program & and any positive integer m, the function
(X, ..., x,,) is said to be computed by 2. A given partial function g
(of one or more variables) is said to be partially computable if it is
computed by some program. That is, g is partially computable if there is a
program 2 such that
glry,...,r,) =i (r,...,r,)
forall ry,...,r, . Here this equation must be understood to mean not only
that both sides have the same value when they are defined, but also that
when either side of the equation is undefined, the other is also.

As explained in Chapter 1, a given function g of m variables is called
total if g(r,,...,r,) is defined for all r,,...,r, . A function is said to be
computable if it is both partially computable and total.

Partially computable functions are also called partial recursive, and
computable functions, i.e., functions that are both total and partial recur-
sive, are called recursive. The reason for this terminology is largely histori-
cal and will be discussed later.

Our examples from Section 2 give us a short list of partially computable
functions, namely: x,x +y,x-y, and x — y. Of these, all except the last
one are total and hence computable.

4. Computable Functions 31

Computability theory (also called recursion theory) studies the class of
partially computable functions. In order to justify the name, we need some
evidence that for every function which one can claim to be “computable”
on intuitive grounds, there really is a program of the language % which
computes it. Such evidence will be developed as we go along.

We close this section with one final example of a program of %

[A4] X<X+1
IF X # 0 GOTO 4

For this program 2, ¢{(x) is undefined for all x. So, the nowhere
defined function (see Chapter 1, Section 2) must be included in the class of
partially computable functions.

Exercises
1. Let & be the program

IF X # 0 GOTO 4
[A4] X<X+1

IF X # 0 GOTO 4
[A4] Y<Y+1

What is ¢5(x)?
2. The same as Exercise 1 for the program

[B] IF X + 0 GOTO 4
Z<Z+1
IF Z # 0 GOTO B
[A4] XX

The same as Exercise 1 for the empty program.
4. Let & be the program

Y « X,
[A4] IF X, =0GOTO E
Y<Y+1
Ye<Y+1
X,<X,—-1
GOTO 4
What is ¢5(r))? ¢&(r,,r)? Sy, 1y, 13)?
5. Show that for every partially computable function f(x,,..., x,), there

is a number m > 0 such that f is computed by infinitely many
programs of length m.

32

6.

5.

Chapter 2 Programs and Computable Functions

(a) For every number k > 0, let f, be the constant function f,(x) =
k. Show that for every k, f, is computable.

(b) Let us call an % program a straightline program if it contains no
(labeled or unlabeled) instruction of the form IF V' # 0 GOTO
L. Show by induction on the length of programs that if the length
of a straightline program 2 is k, then ¢$(x) < k for all x.

(¢) Show that, if & is a straightline program that computes f,, then
the length of & is at least k.

(d) Show that no straightline . program computes the function
f(x) = x + 1. Conclude that the class of functions computable by
straightline % programs is contained in but is not equal to the
class of computable functions.

Let us call an % program 2 forward-branching if the following
condition holds for each occurrence in & of a (labeled or unlabeled)
instruction of the form IF VV'# 0 GOTO L. If IF VV'# 0 GOTO L is
the ith instruction of &, then either L does not appear as the label of
an instruction in 2, or else, if j is the least number such that L is the
label of the jth instruction in &, then i <j. Show that a function is
computed by some forward-branching program if and only if it is
computed by some straightline program (see Exercise 6).

Let us call a unary function f(x) partially n-computable if it is com-
puted by some . program £ such that & has no more than n
instructions, every variable in % is among X,Y,Z,,...,Z,, and every
label in & is among A4,,...,A,,E.

(a) Show that if a unary function is computed by a program with no
more than n instructions, then it is partially n-computable.

(b) Show that for every n > 0, there are only finitely many distinct
partially n-computable unary functions.

(¢) Show that for every n > 0, there are only finitely many distinct
unary functions computed by .% programs of length no greater
than n.

(d) Conclude that for every n > 0, there is a partially computable
unary function which is not computed by any . program of
length less than 7.

More about Macros

In Section 2 we gave some examples of computable functions (i.e., x + y,
x -y) giving rise to corresponding macros. Now we consider this process in
general.

5. More about Macros 33

Let f(x,...,x,) be some partially computable function computed by
the program . We shall assume that the variables that occur in & are all
included in the list Y, X,,..., X,,Z,,...,Z, and that the labels that
occur in & are all included in the list E, 4,,..., A;. We also assume that
for each instruction of % of the form

IF V' # 0 GOTO A4,

there is in % an instruction labeled A;. (In other words, E is the only
“exit” label.) It is obvious that, if % does not originally meet these
conditions, it will after minor changes in notation. We write

P=PY,X,,.... X\, Zyr s Zi3 E, Ay, A)

in order that we can represent programs obtained from £ by replacing the
variables and labels by others. In particular, we will write

G =P(Z s Zi1r 3 Lmins Lmsntise s Lmentis
EpiApiise-sAmep)
for each given value of m. Now we want to be able to use macros like
We—fW,,...,V,)

in our programs, where V,,...,V,,W can be any variables whatever. (In
particular, W might be one of V,,...,V,.) We will take such a macro to be
an abbreviation of the following expansion:

Z,<0

Zpiy <V,
Zpiy = Vs
Z,., <V,
z <0

Zm+n+2 <0

m+n

m+n+1

Zm+n+k <0
@,
[E,] We2Z,

Here it is understood that the number m is chosen so large that none of
the variables or labels used in &, occur in the main program of which the
expansion is a part. Notice that the expansion sets the variables corre-
sponding to the output and local variables of & equal to 0 and those
corresponding to X,,..., X, equal to the values of V;,...,V,, respec-
tively. Setting the variables equal to 0 is necessary (even though they are

34 Chapter 2 Programs and Computable Functions

all local variables automatically initialized to 0) because the expansion may
be part of a loop in the main program; in this case, at the second and
subsequent times through the loop the local variables will have whatever
values they acquired the previous time around, and so will need to be

reset. Note that when &, terminates, the value of Z,, is f(V,...,V,), so
that W finally does get the value f(V,,..., V).
If f(V,,...,V,)is undefined, the program &,, will never terminate. Thus

if f is not total, and the macro
WefV,,...,V,)

is encountered in a program where V/;,...,V, have values for which f is
not defined, the main program will never terminate.
Here is an example:

Z <X X,
Y« Z+X,

This program computes the function f(x,, x,, x;), where

(x; —x,) + x5 if x >x,

f(x,,xz,x3)= 0 if X <Xx,.

In particular, f(2,5,6) is undefined, although (2 — 5) + 6 = 3 is positive.
The computation never gets past the attempt to compute 2 — 5.

So far we have augmented our language .% to permit the use of macros
which allow assignment statements of the form

Wef(V,,...,V.),

where f is any partially computable function. Nonetheless there is avail-
able only one highly restrictive conditional branch statement, namely,

IF V# 0GOTO L

We will now see how to augment our language to include macros of the
form

IF P(V,,...,V,) GOTO L

where P(x,,..., x,) is a computable predicate. Here we are making use of
the convention, introduced in Chapter 1, that

TRUE =1, FALSE = 0.

5. More about Macros 35

Hence predicates are just total functions whose values are always either 0
or 1. And therefore, it makes perfect sense to say that some given
predicate is or is not computable.

Let P(x,,...,x,) be any computable predicate. Then the appropriate
macro expansion of

IF P(Vy,...,V,) GOTO L
is simply

Z < PWV,,....V,)
IF Z # 0 GOTO L

Note that P is a computable function and hence we have already shown
how to expand the first instruction. The second instruction, being one of
the basic instructions in the language ., needs no further expansion.

A simple example of this general kind of conditional branch statement
which we will use frequently is

IFV=0GOTO L

To see that this is legitimate we need only check that the. predicate P(x),
defined by P(x) = TRUE if x =0 and P(x) = FALSE otherwise, is
computable. Since TRUE =1 and FALSE = 0, the following program
does the job:

IF X +# 0 GOTO E
Y<Y+1

The use of macros has the effect of enabling us to write much shorter
programs than would be possible restricting ourselves to instructions of the
original language .. The original “assignment” statements V « V' + 1,
V< V — 1 are now augmented by general assignment statements of the
form W « f(V,,...,V,) for any partially computable function f. Also, the
original conditional branch statements IF V' # 0 GOTO L are now aug-
mented by general conditional branch statements of the form IF
P(V;,...,V,) GOTO L for any computable predicate P. The fact that any
function which can be computed using these general instructions could
already have been computed by a program of our original language &
(since the general instructions are merely abbreviations of programs of .%)
is powerful evidence of the generality of our notion of computability.

Our next task will be to develop techniques that will make it easy to see
that various particular functions are computable.

36

Chapter 2 Programs and Computable Functions

Exercises

1.

(a) Use the process described in this section to expand the program
in example (d) of Section 2.

(b) What is the length of the . program expanded from example
(e) by this process?

Replace the instructions

Z, <X, +Y
Y« Z,

in example (e) of Section 2 with the instruction Y « X, + Y, and
expand the result by the process described in this section. If 2 is the
resulting % program, what is ¢(r,, r,)?

Let f(x), g(x) be computable functions and let A(x) = f(g(x)). Show
that 4 is computable.

Show by constructing a program that the predicate x; < x, is com-
putable.

Let P(x) be a computable predicate. Show that the function f
defined by

x; +x, if P(x; +x;,)
) otherwise

f(xl’x2)={

is partially computable.
Let P(x) be a computable predicate. Show that

1 if there are at least » numbers n such that P(n) =1

EXp(r) = { 1 otherwise

is partially computable.

Let 7 be a computable permutation (i.e., one—one, onto function) of
N, and let ! be the inverse of , i.e.,

m '(y) =x ifandonlyif 7(x)=y.

Show that 7! is computable.

Let f(x) be a partially computable but not total function, let M be a
finite set of numbers such that f(m)1 for all m € M, and let g(x) be

5. More about Macros 37

10.

an arbitrary partially computable function. Show that

g(x) ifxeM
f(x) otherwise

h(x) = {

is partially computable.

Let " be a programming language that extends . by permitting
instructions of the form V <« k, for any k > 0. These instructions
have the obvious effect of setting the value of V' to k. Show that a
function is partially computable by some .#* program if and only if it
is partially computable.

Let .’ be a programming language defined like .% except that its
(labeled and unlabeled) instructions are of the three types

VeV
Ve<V+1
If V+V'GOTO L

These instructions are given the obvious meaning. Show that a
function is partially computable in %’ if and only if it is partially
computable.

3

Primitive Recursive Functions

1. Composition

We want to combine computable functions in such a way that the output
of one becomes an input to another. In the simplest case we combine
functions f and g to obtain the function

h(x) = f(g(x)).

More generally, for functions of several variables:

Definition. Let f be a function of k variables and let g,,..., g, be
functions of n variables. Let

h(x,,....,x,) =f(g(xy,.es)y 8(Xp 5ty x,)).

Then h is said to be obtained from f and g,,..., g, by composition.
Of course, the functions f, g,,..., g, need not be total. A(x,,..., x,)
will be defined when all of z; = g/(x;,...,x,),..., 2z, = g(xy,...,x,) are

defined and also f(z,,..., z,) is defined.
Using macros it is very easy to prove

Theorem 1.1. If 4 is obtained from the (partially) computable functions
f, 81,8 by composition, then A is (partially) computable.

39

40 Chapter 3 Primitive Recursive Functions

The word partially is placed in parentheses in order to assert the
correctness of the statement with the word included or omitted in both
places.

Proof. The following program obviously computes #:
Z, < g(X,,.... X))

Z, - g(X,,.... X))
Y f(Z,....,2Z)

If f,g:,--., 8 are not only partially computable but are also total, then
SO is A. []

By Section 4 of Chapter 2, we know that x,x +y,x-y, and x —y are
partially computable. So by Theorem 1.1 we see that 2x =x + x and
4x? = (2x)-(2x) are computable. So are 4x? + 2x and 4x* — 2x. Note
that 4x* — 2x is total, although it is obtained from the nontotal function
x — y by composition with 4x? and 2x.

2. Recursion

Suppose k is some fixed number and
h(t + 1) =g(¢t, h(1)),

where g is some given fotal function of two variables. Then 4 is said to be
obtained from g by primitive recursion, or simply recursion.'

2.1

Theorem 2.1. Let 4 be obtained from g as in (2.1), and let g be
computable. Then 4 is also computable.

Proof. We first note that the constant function f(x) = k is computable;
in fact, it is computed by the program

Y<Y+1

Y<Y+1 .
. k lines

Yev+1

! Primitive recursion, characterized by Equations (2.1) and (2.2), is just one specialized
form of recursion, but it is the only one we will be concerned with in this chapter, so we will
refer to it simply as recursion. We will consider more general forms of recursion in Part 5.

2. Recursion 41

Hence we have available the macro Y « k. The following is a program
that computes A(x):

Y <k

[A4] IF X = 0GOTO E
Y < g(Z,Y)
Z<Z+1
XeX-1
GOTO 4

To see that this program does what it is supposed to do, note that, if Y
has the value h(z) before executing the instruction labeled A, then it has
the value g(z,h(z)) = h(z + 1) after executing the instruction Y «
g(Z,Y). Since Y is initialized to k = h(0), Y successively takes on the
values #(0), A(1),..., h(x) and then terminates.]

A slightly more complicated kind of recursion is involved when we have

h(x,,...,x,,0) = yeees X)),
(x, x,,0) = f(x, x,) 2.2)

h(x,,....x,, t + 1) =g, h(x,,...,x,,),x,...,X,).

Here the function 4 of n + 1 variables is said to be obtained by primitive
recursion, or simply recursion, from the total functions f (of n variables)
and g (of n + 2 variables). The recursion (2.2) is just like (2.1) except that
parameters x,,..., x, are involved. Again we have

Theorem 2.2. Let h be obtained from f and g as in (2.2) and let f, g be
computable. Then 4 is also computable.

Proof. The proof is almost the same as for Theorem 2.1. The following
program computes hA(x,,...,x,, X, , 1)

Y« f(X,,....X,)
[4] IFX,,,=0GOTOE
Y «g(Z,Y,X,,...., X,)

Z<7Z+1
‘Xvn+l(_‘Xvn+1_1

GOTO 4 ™

42 Chapter 3 Primitive Recursive Functions
3. PRC Classes

So far we have considered the operations of composition and recursion.
Now we need some functions on which to get started. These will be

s(x)=x+1,
n(x) =0,
and the projection functions
ul(x;,...,x,) =x;, l<i<n.

[For example, uj(x,,x,, x;,x,) = x5.] The functions s, n, and u? are
called the initial functions.
Definition. A class of total functions & is called a PRC? class if

1. the initial functions belong to %,
2. a function obtained from functions belonging to & by either composi-
tion or recursion also belongs to &.

Then we have

Theorem 3.1. The class of computable functions is a PRC class.

Proof. By Theorems 1.1, 2.1, and 2.2, we need only verify that the initial
functions are computable.
Now this is obvious; s(x) = x + 1 is computed by

Y<X+1
n(x) is computed by the empty program, and u/(x,,...,x,) is computed
by the program
Y « X, |

4

Definition. A function is called primitive recursive if it can be obtained
from the initial functions by a finite number of applications of composition
and recursion.

It is obvious from this definition that

? This is an abbreviation for “primitive recursively closed.”

3. PRC Classes 43

Corollary 3.2. The class of primitive recursive functions is a PRC class.

Actually we can say more:

Theorem 3.3. A function is primitive recursive if and only if it belongs to
every PRC class.

Proof. 1If a function belongs to every PRC class, then, in particular, by
Corollary 3.2, it belongs to the class of primitive recursive functions.
Conversely let a function f be a primitive recursive function and let &
be some PRC class. We want to show that f belongs to &. Since f is a
primitive recursive function, there is a list f,, f,,..., f, of functions such
that f, = f and each f; in the list is either an initial function or can be
obtained from preceding functions in the list by composition or recursion.
Now the initial functions certainly belong to the PRC class . Moreover
the result of applying composition or recursion to functions in & is again a
function belonging to . Hence each function in the list f|,..., f, belongs
to #. Since f, = f, f belongs to #.]

Corollary 3.4. Every primitive recursive function is computable.

Proof. By the theorem just proved, every primitive recursive function
belongs to the PRC class of computable functions. [|

In Chapter 4 we shall show how to obtain a computable function that is
not primitive recursive. Hence it will follow that the set of primitive
recursive functions is a proper subset of the set of computable functions.

Exercises
1. Let # be a PRC class, and let g,, g,, g5, 84 belong to . Show that if

hl(x»y’z) =81(Z,y,X),
hz(X) =g2(X,X,X), and
h3(w,x,) z) = hl(g3(w’ y),z, g4(2, g4(y,z))),

then h,, h,, h, also belong to Z.
Show that the class of all total functions is a PRC class.

3. Let n >0 be some given number, and let & be a class of total
functions of no more than n variables. Show that # is not a PRC
class.

44 Chapter 3 Primitive Recursive Functions

4. Let @ be a PRC class, let & belong to &, and let
f(x) = h(g(x)) and
g(x) = h(f(x)).
Show that f belongs to % if and only if g belongs to &.

5. Prove Corollary 3.4 directly from Theorems 1.1, 2.1, 2.2, and the proof
of Theorem 3.1.

4. Some Primitive Recursive Functions

We proceed to make a short list of primitive recursive functions. Being
primitive recursive, they are also computable.

1 x+y

To see that this is primitive recursive, we have to show how to obtain this
function from the initial functions using only the operations of composi-
tion and recursion.

If we write f(x, y) = x + y, we have the recursion equations

f(x,0) =x,
fOuy + D =flx,y) + 1.
We can rewrite these equations as
f(x,0) = ul(x),
flx,y + 1) =gy, f(x,y),x),

where g(x,, x,, x;) = s(u3(x,, x,, x3)). The functions u}(x), u3(x,, x,, x3),
and s(x) are primitive recursive functions; in fact they are initial functions.
Also, g(x,, x,, x;) is a primitive recursive function, since it is obtained by
composition of primitive recursive functions. Thus, the preceding is a valid
application of the operation of recursion to primitive recursive functions.
Hence f(x,y) = x + y is primitive recursive.

Of course we already knew that x + y was a computable function. So we
have only obtained the additional information that it is in fact primitive
recursive.

2. x-y
The recursion equations for h(x, y) = x-y are

h(x,0) =0,
h(x,y + 1) = h(x,y) + x.

4. Some Primitive Recursive Functions 45

This can be rewritten

h(x,0) = n(x)
h(x,y +1) =g(y,h(x,y), x).

Here, n(x) is the zero function,
g(x,, x5, x3) = f(u3(x,, x5, x3), u3(x,, x5, x3)),

fxy,x,) is x; +x,, and ui(x,, x,, x3), u3(x;, x,, x3) are projection func-
tions. Notice that the functions n(x), u3(x,, x,, x;), and u3(x,, x,, x;) are
all primitive recursive functions, since they are all initial functions. We
have. just shown that f(x,,x,) =x, +x, is primitive recursive, so
8(x,, x,,x;) is a primitive recursive function since it is obtained from
primitive recursive functions by composition. Finally, we conclude that

h(x,y)=x-y
is primitive recursive.
3 x!
The recursion equations are
0'=1,

(x + D!'=x!-s(x).
More precisely, x! = h(x), where
h(0) =1,
h(t + 1) = g(¢, h(2)),

and
g(x;,x) =s(x))x,.
Finally, g is primitive recursive because
g(x,,xy) =s(u(x,,x,)) - ud(x,, x,)

and multiplication is already known to be primitive recursive.

In the examples that follow, we leave it to the reader to check that the
recursion equations can be put in the precise form called for by the
definition of the operation of recursion.

46 Chapter 3 Primitive Recursive Functions

4. x
The recursion equations are
x°=1,
xYtl =xY . x.

Note that these equations assign the value 1 to the “indeterminate” 0°.

5 pk)

The predecessor function p(x) is defined as follows:

(x)= x_l lf x*o
p 0 if x=0.

It corresponds to the instruction in our programming language X « X — 1.
The recursion equations for p(x) are simply

P(O) = Oa
plt+1) =1t

Hence, p(x) is primitive recursive.

6. x—y
The function x = y is defined as follows:
Lo |x=y if x>y
TV 1 o if x<y.

This function should not be confused with the function x — y, which is
undefined if x <y. In particular, x = y is total, while x — y is not.

We show that x —y is primitive recursive by displaying the recursion
equations:

x—0=x,
x =+ 1) =p(x~1).

7. lx =yl

The function |x — y| is defined as the absolute value of the difference
between x and y. It can be expressed simply as

lx—yl=(x<y)+ (y ~x)

and thus is primitive recursive.

4. Some Primitive Recursive Functions 47

8

al)

The function a(x) is defined as

[u—y

if x=0

alx) = {0 if x#0.

a(x) is primitive recursive since

alx) =1-+x.

Or we can simply write the recursion equations:

a(0) =1,
a(t+1) =0.
Exercises
1. Give a detailed argument that x”, p(x), and x —y are primitive
recursive.
2. Show that for each k, the function f(x) = k is primitive recursive.
3. Prove that if f(x) and g(x) are primitive recursive functions, so is
fx) + g(x).
4. Without using x +y as a macro, apply the constructions in the
proofs of Theorems 1.1, 2.2, and 3.1 to give an . program that
computes x - y.
5. For any unary function f(x), the nth iteration of f, written f”, is
Fr(x) = fCo f(x) -+0),
where f is composed with itself n times on the right side of the
equation. (Note that f°(x) = x.) Let 1,(n, x) = f"(x). Show that if f
is primitive recursive, then 1 s is also primitive recursive.
6.* (a) Let E(x)=0 if x is even, E(x) = 1 if x is odd. Show that
E(x) is primitive recursive.

(b) Let H(x) =x/2if x is even, (x — 1)/2 if x is odd. Show that
H(x) is primitive recursive.

7% Let f(0) =0, f(1) = 1, f(2) = 2%, f(3) = 3¥" = 3%, etc. In general,

f(n) is written as a stack n high, of n’s as exponents. Show that f is
primitive recursive.

48

8.*

9.*

10.*

11.*

Chapter 3 Primitive Recursive Functions

Let k be some fixed number, let f be a function such that f(x + 1)
<x + 1 for all x, and let
h(0) =k
h(t + 1) = g(h(f(t + 1))).

Show that if f and g belong to some PRC class &, then so does A.
[Hint: Define f'(x) = min,_,f'(x) = 0. See Exercise 5 for the
definition of f'(x).]

Let g(x) be a primitive recursive function and let f(0, x) = g(x),
f(n + 1, x) = f(n, f(n, x)). Prove that f(n, x) is primitive recursive.

Let COMP be the class of functions obtained from the initial

functions by a finite sequence of compositions.

(a) Show that for every function f(x,,...,x,) in COMP, either
f(xy,...,x,) =k for some constant k, or f(x,,...,x,) =
x; + k for some 1 <i < n and some constant k.

(b) An n-ary function f is monotone if for all n-tuples (x,,..., x,),
(yy,.-.,y,) such that x;, <y, 1<i<n, f(x,...,x,) <
f(yi,...,¥,). Show that every function in COMP is monotone.

(¢c) Show that COMP is a proper subset of the class of primitive
recursive functions.

(d) Show that the class of functions computed by straightline .
programs is a proper subset of COMP. [See Exercise 4.6 in
Chapter 2 for the definition of straightline programs.]

Let &, be the class of all functions obtained from the initial

functions by any finite number of compositions and no more than

one recursion (in any order).

(a) Let f(x,,...,x,) belong to COMP. [See Exercise 10 for the
definition of COMP.] Show that there is a k > 0 such that
fxy,...,x,) <max{x,,...,x,} + k.

(b) Let

h0) = ¢
h(t + 1) = g(¢, h(1)),
where c is some given number and g belongs to COMP. Show
that there is a & > 0 such that A(¢) <tk + c.
(c) Let

h(x,,...,x,,0) = f(x,,...,x,)
A(x ..., x,,t+ 1) =g, h(x,,...,x,,8), X ,...,X,),

5. Primitive Recursive Predicates 49

where f, g belong to COMP. Show that there are k,/ > 0 such

that h(x,,..., x,,t) <tk + max{x,,..., x,} + L.
(@ Let f(x,,...,x,) belong to &,. Show that there are k,/ > 0
such that f(x,,...,x,) < max{x;,...,x,} -k + [

(e) Show that £, is a proper subset of the class of primitive
recursive functions.

5. Primitive Recursive Predicates

We recall from Chapter 1, Section 4, that predicates or Boolean-valued
functions are simply total functions whose values are 0 or 1. (We have
identified 1 with TRUE and 0 with FALSE.) Thus we can speak without
further ado of primitive recursive predicates.

We continue’ our list of primitive recursive functions, including some
that are predicates.
9. x=y
The predicate x =y is defined as 1 if the values of x and y are the same
and 0 otherwise. Thus we wish to show that the function

1 if x=y
d(x,y)—{o if x#y

is primitive recursive. This follows immediately from the equation

d(x,y) = a(x —y|).

10. x<y

This predicate is simply the primitive recursive function a(x = y).
Theorem 5.1. Let & be a PRC class. If P, Q are predicates that belong to
&, then so are ~P,PV Q,and P & Q2

Proof. Since ~P = a(P), it follows that ~P belongs to . (a was
defined in Section 4, item 8.)

3 See Chapter 1, Section 4.

50 Chapter 3 Primitive Recursive Functions

Also, we have
P& Q=P-Q,

so that P & Q belongs to #.
Finally, the De Morgan law

PVQe~(~P&~Q)
shows, using what we have already done, that P vV Q belongs to & |

A result like Theorem 5.1 which refers to PRC classes can be applied to
the two classes we have shown to be PRC. That is, taking & to be the class
of all primitive recursive functions, we have

Corollary 5.2. If P, Q are primitive recursive predicates, then so are ~P,
Pv Q,and P & Q.

Similarly taking % to be the class of all computable functions, we have
Corollary 5.3. If P,Q are computable predicates, then so are ~P,
Pv Q,and P & Q.

As a simple example we have

11. x<y
We can write
x<yex<y& ~(x=y),
or more simply
x<ye~(y<x).

Theorem 5.4 (Definition by Cases). Let & be a PRC class. Let the
functions g, 4 and the predicate P belong to #. Let

g(xy,...,x,) if P(x,,...,x,)
h(xyy...,x,) otherwise.

flxy,..,x,) =
Then f belongs to &.

This will be recognized as a version of the familiar “if...then...,
else...” statement.

Proof. The result is obvious because
flxy,...,x,)

=g(x;,cc0,x,) P(xy,..,x,) +h(xy,...,x,) a(P(x,y,...,x,)).
|

5. Primitive Recursive Predicates 51

Corollary 5.5. Let ¥ be a PRC class, let n-ary functions g;,..., &,/
and predicates P,,..., P, belong to &, and let

P(xy,...,x,) & P(x;,...,x,) =0
foralll <i<j<mandall x,,...,x,.If

gi(xy,...,x,) if P(xy,...,x,)

flxyy..x,) =

8m(Xys.eusx,) if P,(x;,...,x,)
h(xy,...,x,) otherwise,

then f also belongs to #.

Proof. We argue by induction on m. The case for m =1 is given by
Theorem 5.4, so let

gx,,....x,) if P(x,...,x,)
(x;,...,x,) =) L
flx ms1(X15eaes X)) it P, (x,...,x,)
h(xy,...,x,) otherwise,
and let
8me1 (X150, x,) if P, (x;,...,x,)
h'(x,,....,x,) = .
h(x,,...,x,) otherwise.
Then
g(xy,...,x,) if P(x,...,x,)
flx,...,x,) =

gm(xi,...,x,) if P,(x,...,x,)
h'(xy,...,x,) otherwise,

and A’ belongs to & by Theorem 5.4, so f belongs to & by the induction
hypothesis.]

Exercise

1. Let us call a predicate trivial if it is always TRUE or always FALSE.
Show that no nontrivial predicates belong to COMP (see Exercise 4.10
for the definition of COMP.)

52 Chapter 3 Primitive Recursive Functions
6. Iterated Operations and Bounded Quantifiers

Theorem 6.1. Let & be a PRC class. If f(¢,x,,...,x,) belongs to &,
then so do the functions

y
gy, x;,.0x) =Y ft,x1,...,x,)
t=0

and
y
h(y,x,,..x) =T1fG,x,...,x,).
=0

A common error is to attempt to prove this by using mathematical
induction on y. A little reflection reveals that such an argument by
induction shows that

g(O;x1,nwxn)’g(l’x]""’xn)""

all belong to &, but not that the function g(y, x,,..., x,), one of whose
arguments is y, belongs to &.
We proceed with the correct proof.

Proof. We note the recursion equations
g0, x,,...,x,) =f0,x,,...,x,),
gt +1,x;,...,x,)=g(t,x,,....,x,) +ft + 1,x,,...,x,),

and recall that since + is primitive recursive, it belongs to %.
Similarly,

h0,x,,...,x,) =f0,x,,...,x,),
e+ 1,x,,...,x,) =h(t,x;,....x,) flt + 1,x,...,x,). []
Sometimes we will want to begin the summation (or product) at 1

instead of 0. That is, we will want to consider

y
gy, x;,..,x) =Y flt,x,,...,x,)
=1

or
y

h(y,x;,...,x,) = [1f(t,x;,...,x,).

t=1

6. Iterated Operations and Bounded Quantifiers 53

Then the initial recursion equations can be taken to be
g0, x,,...,x,) =0,
h(0,x,,...,x,) =1,

with the equations for g(t + 1, x,,...,x,) and A(t + 1,x,,...,x,) as in
the preceding proof. Note that we are implicitly defining a vacuous sum to
be 0 and a vacuous product to be 1. With this understanding we have
proved

Corollary 6.2. If f(¢,x,,...,x,) belongs to the PRC class &, then so do
the functions

y
gy, x;,...,x,) =Y flt,x;,...,x,)

=1
and

y
h(y,x,....,x) =[1ft, x;,...,x,).
=1

We have

Theorem 6.3. If the predicate P(¢, x,,..., x,) belongs to some PRC class
&, then so do the predicates*

Vo), ,P(t,x),...,x,) and Q) _,P(t,x;,...,x,).
Proof. We need only observe that

. ;
vV, P, x,,...,x,) < I1PG, x,....x)| =1
| =0 i

and

. ;
A0 P, x,,...,x,) = | L P x,...,x,)| #0.]
t=0

Actually for the universal quantifier it would even have been correct to
write the equation

y
Vo) P(t,x;,...,x,) = I1PG, x,...,x,).
t=0

* See Chapter 1, Section 5.

54 Chapter 3 Primitive Recursive Functions

Sometimes in applying Theorem 6.3 we want to use the quantifier
Vo), or 3o, .
That the theorem is still valid is clear from the relations
@A, Py, .x,) = @) [t+y & P(t,x,,...,x,)],
V)Pt xy . x,) @ (V) [t =y VP x,,...,x)]

We continue our list of examples.

12. ylx
This is the predicate “y is a divisor of x.” For example,
3112 is true

while
3|13 is false.

The predicate is primitive recursive since

ylx & 31)_ (y-1=x).

13. Prime(x)

The predicate “x is a prime” is primitive recursive since
Prime(x) x> 1&(V)_{t=1Vvi=xV ~ (f|x)}.

(A number is a prime if it is greater than 1 and it has no divisors other
than 1 and itself.)

Exercises
1. Let f(x) = 2x if x is a perfect square; f(x) = 2x + 1 otherwise. Show
that f is primitive recursive.

2. Let o(x) be the sum of the divisors of x if x # 0; o(0) =0 [e.g.,
0(6) =1+ 2+ 3 4+ 6 = 12]. Show that o(x) is primitive recursive.

3. Let w(x) be the number of primes that are < x. Show that 7(x) is
primitive recursive.

4. Let SQSM(x) be true if x is the sum of two perfect squares; false
otherwise. Show that SQSM(x) is primitive recursive.

7. Minimalization 55

5. Let @ be a PRC class, let P(¢, x,..., x,) be a predicate in &, and let
gy, z,x,...,x,) =), ., ., P(t,x,...,x,) and
h(y,z,x;,...,x,) = @30, ., ., PUt,x,...,x,),

(where (V) _, ., P(t, x,,...,x,) and (31), ., _, P(t,x,,..., x,) mean
that P(t,x,,...,x,) is true for all ¢ (respectively, for some ¢) from y
to z). Show that g, & also belong to &.

6. Let RP(x, y) be true if x and y are relatively prime (i.e., their greatest
common divisor is 1). Show that RP(x, y) is primitive recursive.

7. Give a sequence of compositions and recursions that shows explicitly
that Prime(x) is primitive recursive.

7. Minimalization

Let P(t,x,,...,x,) belong to some given PRC class . Then by Theorem
6.1, the function

u

y
gy, x,c,x) = Y [la(P@,x,,...,x,))

u=01t=0
also belongs to #. (Recall that the primitive recursive function a was
defined in Section 4.) Let us analyze this function g. Suppose for definite-
ness that for some value of ¢, <y,
P(t,x,,...,x,) =0 for <1,
but
P(ty, x;,...,x,) =1,
i.e., that ¢, is the least value of t <y for which P(t, x,,..., x,) is true. Then
u 1 if u<t

tl:!)a(P(t,x,,...,x,,))={0 it w1,

Hence,

ey, xy,..,x)= Y 1=1,,
u<ty

so that g(y, x,,..., x,) is the least value of ¢ for which P(¢,x,...,x,) is
true. Now, we define

minP(¢,x,,...,x,) =

t<y

gy, xy,...,x,) it (30, P, x,...,x,)
0 otherwise.

56 Chapter 3 Primitive Recursive Functions

Thus, min, SyP(t, Xys...,X,) is the least value of t <y for which
P(t, xy,...,x,) is true, if such exists; otherwise it assumes the (default) value
0. Using Theorems 5.4 and 6.3, we have

Theorem 7.1. If P(t,x,,...,x,) belongs to some PRC class & and
f(y,xy,...,x,) =min, _ P(t, x,,..., x,), then f also belongs to &.

The operation “min, _,” is called bounded minimalization.

Continuing our list:
4. |x/yl

[x/y] is the “integer part” of the quotient x/y. For example, |7/2] = 3
and |2/3] = 0. The equation

lx/y]l = min[(t + 1) -y > x]

shows that | x/y] is primitive recursive. Note that according to this equa-
tion, we are taking [x/0] = 0.

15. Rlx,y)

R(x, y) is the remainder when x is divided by y. Since
x R(x,y)
- = I.x/yJ + s
y y

we can write
R(x,y) =x =(y-lx/yD,
so that R(x, y) is primitive recursive. [Note that R(x,0) = x.]

16. p,

Here, for n > 0, p, is the nth prime number (in order of size). So that p,
be a total function, we set p, = 0. Thus, p, =0, p, =2, p, =3, p; =5,
etc.

Consider the recursion equations

po =0,

p,., = min [Prime(s)& t>p,].
t<p,!+1

To see that these equations are correct we must verify the inequality

Pus1 < (p 1+ 1. 7.1

7. Minimalization 57

To do so note that for 0 < i < n we have

(p)!1+1 1
Pl g

Di pPi

b

where K is an integer. Hence (p,)!+ 1 is not divisible by any of the
primes p;, p,,..., p,- So, either (p,) !+ 1 is itself a prime or it is divisible
by a prime > p,. In either case there is a prime g such that p, <g <
(p,) !+ 1, which gives the inequality (7.1). (This argument is just Euclid’s
proof that there are infinitely many primes.)

Before we can confidently assert that p, is a primitive recursive func-
tion, we need to justify the interleaving of the recursion equations with
bounded minimalization. To do so, we first define the primitive recursive
function

h(y, z) = min[Prime(s) & ¢ > y].

t<z

Then we set
k(x) =h(x,x!'+ 1),

another primitive recursive function. Finally, our recursion equations
reduce to

Do = 0,
Pni1 = k(p,),

so that we can conclude finally that p, is a primitive recursive function.
It is worth noting that by using our various theorems (and appropriate
macro expansions) we could now obtain explicitly a program of .% which
actually computes p,. Of course the program obtained in this way would
be extremely inefficient.
Now we want to discuss minimalization when there is no bound. We
write

minP(x,,...,x,,y)
y

for the least value of y for which the predicate P is true if there is one. If
there is no value of y for which P(x,,...,x,,y) is true, then
min, P(x,,...,x,,y) is undefined. (Note carefully the difference with
bounded minimalization.) Thus unbounded minimalization of a predicate
can easily produce a function which is not total. For example,

x—y=min[y + z = x]
z

58 Chapter 3 Primitive Recursive Functions

is undefined for x <y. Now, as we shall see later, there are primitive
recursive predicates P(x,y) such that min, P(x,y) is a total function
which is not primitive recursive. However, we can prove

Theorem 7.2. If P(x,,...,x,,y) is a computable predicate and if
g(xy,...,x,) = minP(x,,...,x,,y),
y

then g is a partially computable function.

Proof. The following program obviously computes g:

[4] IFP(X,,...,X,,Y)GOTOE

Y<Y+1
GOTO 4

Exercises

1. Let h(x) be the integer n such that n < V2x < n + 1. Show that A(x)
is primitive recursive.

2. Do the same when A(x) is the integer n such that
n<(1+V2)x<n+Ll

3. piscalled a larger twin prime if p and p — 2 are both primes. (5, 7, 13,
19 are larger twin primes.) Let 7(0) = 0, T(n) = the nth larger twin
prime. It is widely believed, but has not been proved, that there are
infinitely many larger twin primes. Assuming that this is true prove
that T(n) is computable.

4. Let u(n) be the nth number in order of size which is the sum of two
squares. Show that u(n) is primitive recursive.

5. Let R(x,t) be a primitive recursive predicate. Let

g(x,y) = max R(x,1),
t<y

i.e., g(x,y) is the largest value of ¢ <y for which R(x,?) is true; if
there is none, g(x, y) = 0. Prove that g(x, y) is primitive recursive.

6. Let gcd(x, y) be the greatest common divisor of x and y. Show that
ged(x, y) is primitive recursive.

7. Let lem(x, y) be the least common multiple of x and y. Show that
lem(x, y) is primitive recursive.

8. Pairing Functions and Gédel Numbers 59

8. Give a computable predicate P(x,,...,x,,y) such that the function
min, P(x,,...,x,,y) is not computable.

9.* A function is elementary if it can be obtained from the functions s, n,
uj, +, — by a finite sequence of applications of composition, bounded
summation, and bounded product. (By application of bounded summa-

tion we mean obtaining the function Y)_, f(¢, x;,...,x,) from
flt, x,,..., x,), and similarly for bounded product.)
(a) Show that every elementary function is primitive recursive.

(b)
()

(@
(e)

®

Show that x -y, x”, and x! are elementary.

Show that if n + 1-ary predicates P and Q are elementary, then
so are ~P, PV Q, P & Q (VO)_ ,P(t,x,...,x,),
@ P, x,,...,x,), and min, _ , P(t, x,,..., X,).

Show that Prime(x) is elementary.

Let the binary function exp,(x) be defined

expy(x) = x

€Xpy . (x) = 2601,

Show that for every elementary function f(x,,..., x,), there is a
constant k such that f(x,,..., x,) < exp,(max{x,,..., x,})). [Hint:
Show that for every n there is an m > n such that x - exp,(x) <
exp,,(x) for all x.]

Show that exp (x) is not elementary. Conclude that the class of
elementary functions is a proper subset of the class of primitive
recursive functions.

8. Pairing Functions and Gédel Numbers

In this section we shall study two convenient coding devices which use
primitive recursive functions. The first is for coding pairs of numbers by
single numbers, and the second is for coding lists of numbers.

We define the primitive recursive function

(x,yy=2*Qy +1) - 1.

Note that 2*2y + 1) # 0 so

(x,y) +1=2"Qy + 1.

If z is any given number, there is a unique solution x, y to the equation

(x,y) =z, 8.1

60 Chapter 3 Primitive Recursive Functions

namely, x is the largest number such that 2*[(z + 1), and y is then the
solution of the equation

2y +1=(z+1)/2%

this last equation has a (unique) solution because (z + 1) /2* must be odd.
(The twos have been “divided out.”) Equation (8.1) thus defines functions

x=1(z), y =r(z).
Since Eq. (8.1) implies that x,y <z + 1 we have

I(z) <z, r(z) <z.

Hence we can write

I(Z) = min[(ay)sz(z = <x»y>)],

X<z

r(z) = min[(3x) _,(z = {x,y))],

y<z

so that I(z), r(z) are primitive recursive functions.
The definition of /(z), 7(z) can be expressed by the statement

(x,y)=zex=02)&y=r(2).
We summarize the properties of the functions {x, y», /(z), and r(z) in
Theorem 8.1 (Pairing Function Theorem). The functions {x, y), /(z), and
r(z) have the following properties:

1. they are primitive recursive;
2. Ix,) =x,r{x,¥)) =y;
3. {l(2),1(2)) = z;

4. I(2),r(2) < z.

We next obtain primitive recursive functions that encode and decode
arbitrary finite sequences of numbers. The method we use, first employed
by Godel, depends on the prime power decomposition of integers.

We define the Gdodel number of the sequence (a,,...,a,) to be the
number

n
la,,...,a,] = I-[lp;".
i

Thus, the Gédel number of the sequence (3,1,5,4,6) is
[3,1,5,4,6] = 23-31.5%.74.11°.

For each fixed n, the function [a,,..., a,] is clearly primitive recursive.

8. Pairing Functions and Gédel Numbers 61
Godel numbering satisfies the following uniqueness property:

Theorem 8.2. If[a,,...,a,] =[b,,...,b,], then
a,=b,, i=1,...,n.
This result is an immediate consequence of the uniqueness of the
factorization of integers into primes, sometimes referred to as the unique
factorization theorem or the fundamental theorem of arithmetic. (For a

proof, see any elementary number theory textbook.)
However, note that

la,,...,a,] =1lay,...,a,,0] (8.2)

because p’,, = 1. This same result obviously holds for any finite number
of zeros adjoined to the right end of a sequence. In particular, since

1=20=2030=203050 — ...
it is natural to regard 1 as the Godel number of the “empty” sequence of
length 0, and it is useful to do so.

If one adjoins 0 to the left end of a sequence, the Godel number of the
new sequence will not be the same as the Godel number of the original
sequence. For example,

[2,3] =2%-3° =108,
and
(2,3,0] =2%-3%-5% =108,
but
[0,2,3] =2°-3%2.5% = 1125.
We will now define a primitive recursive function (x); so that if
x=\la,...,a,l,
then (x); = a;. We set

(x); = min(~p!*1| x).
t<x

Note that (x), = 0, and (0); = 0 for all i.
We shall also use the primitive recursive function
Lt(x) = min((x), # 0& (Vj) ., (j <i Vv (x)j=0)).

1<X

(Lt stands for “length.”) Thus, if x = 20 = 22-5' = [2,0, 1], then (x); = 1,
but (x), = (x)s = -+ = (x), = 0. So, Lt(20) = 3. Also, Lt(0) = Lt(1) = 0.

62 Chapter 3 Primitive Recursive Functions

If x > 1, and Lt(x) = n, then p, divides x but no prime greater than p,
divides x. Note that Lt([a,,...,a,]) = n if and only if a, # 0.
We summarize the key properties of these primitive recursive functions.

Theorem 8.3 (Sequence Number Theorem).

a; if 1<i<n
a. ([ay,...,a,D, = .
(la, b {0 otherwise.
b. [(x);,...,(x),] =x if n > Lt(x).
Our main application of these coding techniques is given in the next
chapter. The following exercises indicate that they can also be used to

show that PRC classes are closed under various interesting and useful
forms of recursion.

Exercises

1. Let f(x,,...,x,) be a function of n variables, and let f'(x) be a unary
function defined so that f'([x,,...,x,]) =f(x;,...,x,) for all
X{,...,X,. Show that f’ is partially computable if and only if f is
partially computable.

2. Define Sort([x,,...,x,]) =[y;,...,y,], where y,,...,y, is a permu-
tation of x,,..., x, such that y, <y, < -+ <y,. Show that Sort(x) is
primitive recursive.

3. Let FO)=0, F1)=1, F(n +2)=F(n + 1) + F(n). [F(n) is the
nth so-called Fibonacci number.] Prove that F(n) is primitive recur-
sive.

4. (Simultaneous Recursion) Let
hiy(x,0) = f1(x),
h,(x,0) = f,(x),
hi(x,t +1) =g(x,h(x,1),h,(x,1)),
hy(x,t + 1) = g,(x,h(x,1), h,(x,1)).

Prove that if f,, f,, g,, g, all belong to some PRC class &, then A, , h,
do also.

5.* (Course-of-Values Recursion)
(a) For f(n) any function, we write

£(0) = 1, f(n) = [£(0), FQ1),..., f(n — D]if n # 0.

8. Pairing Functions and Gédel Numbers 63

Let
f(n) = g(n,f(n))

for all n. Show that if g is primitive recursive so is f.
(b) Let

f0) =1, f(1) =4, f(2) =6,
Flx+3)=f(x) + flx+ D> + flx + 2.

Show that f(x) is primitive recursive.
(¢) Let

h(0) =3

h(x + 1) =) h(s).

=0
Show that & is primitive recursive.
6.* (Unnested Double Recursion) Let

fQ0,y) =g,(y)
fx +1,0) = g,(x)
fx+1L,y+ 1D =h(x,y, f(x,y + D, f(x + 1,).

Show that if g;, g,, and A all belong to some PRC class &, then f also
belongs to &.

4

A Universal Program

1. Coding Programs by Numbers

We are going to associate with each program % of the language % a
number, which we write #(4), in such a way that the program can be
retrieved from its number. To begin with we arrange the variables in order
as follows:

YX Z X, Z, Xy Z,4....
Next we do the same for the labels:
A B C, D E A, B, C, D, E, A,4....

We write #(1), #(L) for the position of a given variable or label in the
appropriate ordering. Thus #(X,) =4, #(Z,) = #(Z) = 3, #(E) =5,
#(B,) = 7.

Now let I be an instruction (labeled or unlabeled) of the language .%.
Then we write

#(I) = {a,{b,c))

where

1. if I is unlabeled, then a = 0; if I is labeled L, then a = #(L);
2. if the variable V is mentioned in I, then ¢ = #(V') — 1;

65

66 Chapter 4 A Universal Program

3. if the statement in [is
VeV or Ve<V+1 or Ve<V-1,

then b = 0 or 1 or 2, respectively;
4. if the statement in [is

IFV + 0GOTO L’
then b = #(L') + 2.

Some examples:
The number of the unlabeled instruction X « X + 1 is

0,(1,1)) =<0,5) = 10,
whereas the number of the instruction

[A] X<X+1

(1,(1,1)) =<1,5) = 21.

Note that for any given number g there is a unique instruction /I with
#(1) = q. We first calculate I(g). If I(g) = 0, I is unlabeled; otherwise [
has the I(g)th label in our list. To find the variable mentioned in I, we
compute i = r(r(q)) + 1 and locate the ith variable V' in our list. Then,
the statement in / will be

VeV if I(r(¢g)) =0,
VeV+1 if 1(r(g)) =1,
Ve<V-1 if 1(r(q)) =2,

IFV#0GOTOL if j=1I(r(q)) —2>0

and L is the jth label in our list.
Finally, let a program £ consist of the instructions I, I,,..., I,. Then
we set

#(2) = [#U), #(I),..., #(I)] - 1. (1.1)

Since Godel numbers tend to be very large, the number of even rather
simple programs usually will be quite enormous. We content ourselves
with a simple example:

[4] X<X+1
IF X # 0 GOTO 4

1. Coding Programs by Numbers 67

The reader will recognize this as the example given in Chapter 2 of a
program that computes the nowhere defined function. Calling these in-
structions I, and I,, respectively, we have seen that #(I,) = 21. Since I,
is unlabeled,

#(1,) = €0,¢3,1)) = €0,23) = 46.
Thus, finally, the number of this short program is

221 . 346 - 1.

Note that the number of the unlabeled instruction Y « Y is
0,€0,0>) =<0,0) = 0.

Thus, by the ambiguity in G6del numbers [recall Eq. (8.2), Chapter 3], the
number of a program will be unchanged if an unlabeled Y « Y is tacked
onto its end. Of course this is a harmless ambiguity; the longer program
computes exactly what the shorter one does. However, we remove even
this ambiguity by adding to our official definition of program of .% the
harmless stipulation that the final instruction in a program is not permitted to
be the unlabeled statement Y « Y.

With this last stipulation each number determines a unique program. As
an example, let us determine the program whose number is 199. We have

199 + 1 =200 =23-3°.52=13,0,2].
Thus, if #(2) = 199, 2 consists of 3 instructions, the second of which is
the unlabeled statement Y « Y. We have
3=142,0) =¢2,40,0)
and
2=40,1) =<0,(1,0)).
Thus, the program is

[BlY « Y
Y<Y
Y<Y+1

a not very interesting program that computes the function y = 1.
Note also that the empty program has the number 1 — 1 = 0.

Exercises

1. Compute #(2) for 2 the programs of Exercises 4.1, 4.2, Chapter 2.
2. Find & such that #() = 575.

68 Chapter 4 A Universal Program
2. The Halting Problem

In this section we want to discuss a predicate HALT(x, y), which we now
define. For given y, let & be the program such that #() =y. Then
HALT(x, y) is true if $$’(x) is defined and false if 5 (x) is undefined. To
put it succinctly:

HALT(x, y) < program number y eventually halts on input x.

We now prove the remarkable:

Theorem 2.1. HALT(x, y) is not a computable predicate.

Proof. Suppose that HALT(x, y) were computable. Then we could con-
struct the program 2:

[4] IFHALT(X, X) GOTO 4

(Of course & is to be the macro expansion of this program.) It is quite
clear that % has been constructed so that

O(x) = undefined if HALT(x, x)
z 0 if ~HALT(x,x).

Let #(2) = y,. Then using the definition of the HALT predicate,
HALT(x, y,) & ~HALT(x, x).
Since this equivalence is true for all x, we can set x = y,:

HALT(y,,y,) « ~HALT(y,, y,)-
But this is a contradiction.]

To begin with, this theorem provides us with an example of a function
that is not computable by any program in the language .. But we would
like to go further; we would like to conclude the following:

There is no algorithm that, given a program of .% and an input to
that program, can determine whether or not the given program will
eventually halt on the given input.

In this form the result is called the unsolvability of the halting problem. We
reason as follows: if there were such an algorithm, we could use it to check
the truth or falsity of HALT(x, y) for given x, y by first obtaining program
@ with #(&) = y and then checking whether & eventually halts on input
x. But we have reason to believe that any algorithm for computing on

2. The Halting Problem 69

numbers can be carried out by a program of . Hence this would contradict
the fact that HALT(x, y) is not computable.

The last italicized assertion is a form of what has come to be called
Church’s thesis. We have already accumulated some evidence for it, and we
will see more later. But, since the word algorithm has no general definition
separated from a particular language, Church’s thesis cannot be proved as
a mathematical theorem.

In fact, we will use Church’s thesis freely in asserting the nonexistence
of algorithms whenever we have shown that some problem cannot be
solved by a program of .%.

In the light of Church’s thesis, Theorem 2.1 tells us that there really is
no algorithm for testing a given program and input to determine whether it
will ever halt. Anyone who finds it surprising that no algorithm exists for
such a “simple” problem should be made to realize that it is easy to
construct relatively short programs (of %) such that nobody is in a position
to tell whether they will ever halt. For example, consider the assertion
from number theory that every even number > 4 is the sum of two prime
numbers. This assertion, known as Goldbach’s conjecture, is clearly true for
small even numbers: 4 =2+ 2, 6 =3 + 3, 8§ =3 + 5, etc. It is easy to
write a program £ of % that will search for a counterexample to
Goldbach’s conjecture, that is, an even number n > 4 that is not the sum
of two primes. Note that the test that a given even number n is a
counterexample only requires checking the primitive recursive predicate

~(3x) . ,(Qy) ., [Prime(x) & Prime(y) & x +y = n].

The statement that £ never halts is equivalent to Goldbach’s conjecture.
Since the conjecture is still open after 250 years, nobody knows whether
this program & will eventually halt.

Exercises

1. Show that HALT(x, x) is not computable.
2. Let HALT(x, y) be defined

HALT(x, y) < program number y never halts on input x.

Show that HALT(x, y) is not computable.

3. Let HALT'(x) be defined HALT!(x) < HALT(/(x), r(x)). Show that
HALT'(x) is not computable.

70 Chapter 4 A Universal Program

4. Prove or disprove: If f(x,,...,x,) is a total function such that for
some constant k, f(x,,...,x,) <k for all x,,...,x,, then f is
computable.

5. Suppose we claim that & is a program that computes HALT(x, x).
Give a counterexample that shows the claim to be false. That is, give
an input x for which & gives the wrong answer.

6. Let

Flx) = x if Goldbach’s conjecture is true
0 otherwise.

Show that f(x) is primitive recursive.

3. Universality

The negative character of the results in the previous section might lead

one to believe that it is not possible to compute in a useful way with

numbers of programs. But, as we shall soon see, this belief is not justified.
For each n > 0, we define

ON(xy .., x,,¥) = ¢8(xy,..0,x,), where #(P) =y.
One of the key tools in computability theory is

Theorem 3.1 (Universality Theorem). For each n > 0, the function
®"(x,,...,x,,y) is partially computable.

We shall prove this theorem by showing how to construct, for each
n > 0, a program %, which computes ®). That is, we shall have for each
n >0,

Pt ey Xy X i) = Pxy X, X,).

The programs %, are called universal. For example, %, can be used to
compute any partially computable function of one variable, namely, if f(x)
is computed by a program £ and y = #(), then f(x) = ®V(x,y) =
¥i2(x, y). The program %, will work very much like an interpreter. It
must keep track of the current snapshot in a computation and by “decod-
ing” the number of the program being interpreted, decide what to do next
and then do it.

In writing the programs %, we shall freely use macros corresponding to
functions that we know to be primitive recursive using the methods of
Chapter 3. We shall also freely ignore the rules concerning which letters
may be used to represent variables or labels of .%.

3. Universality 71

In considering the state of a computation we can assume that all
variables which are not given values have the value 0. With this under-
standing, we can code the state in which the ith variable in our list has the
value a; and all variables after the mth have the value 0, by the Gdédel
number [a,,...,a,,]. For example, the state

Y=0, X, =2, X, =1
is coded by the number
[0,2,0,1] = 3%-7 = 63.

Notice in particular that the input variables are those whose position in
our list is an even number.
Now in the universal programs, we shall allocate storage as follows:

K will be the number such that the Kth instruction is about to be
executed;
S will store the current state coded in the manner just explained.

We proceed to give the program %, for computing
Y=®o"(X,,....X,, X,).

We begin by exhibiting %, in sections, explaining what each part does.
Finally, we shall put the pieces together. We begin:

ZeX,, +1
n
S « l_[(Pzi)X'
i=1
K<1
If X,,, = #(), where £ consists of the instructions I,,..., Im, then Z

gets the value [#(1),...,#(l,)] [see Eq. (1.1). S is initialized as
[0, X,,0, X,,...,0, X,], which gives the first n input variables their appro-
priate values and gives all other variables the value 0. K, the instruction
counter, is given the initial value 1 (so that the computation can begin with
the first instruction). Next,

[C] IFK=1«(Z)+1VK=0GOTOF

If the computation has ended, GOTO F, where the proper value will be
output. (The significance of K = 0 will be explained later.) Otherwise, the
current instruction must be decoded and executed:

U<« r((Z)x)
P < Druy+1

72 Chapter 4 A Universal Program

(Z2)g = {a,{b,c)) is the number of the Kth instruction. Thus, U = {b, c)
is the code for the statement about to be executed. The variable mentioned
in the Kth instruction is the (¢ + 1)th, i.e., the (r(U) + 1)th, in our list.
Thus, its current value is stored as the exponent to which P divides S:

IF I[(U) = 0 GOTO N
IF I(U) = 1 GOTO 4
IF ~(P|S) GOTO N
IF I(U) =2 GOTO M

If /(U) = 0, the instruction is a dummy V' < V and the computation need
do nothing to S. If /(U) = 1, the instruction is of the form V « V + 1, so
that 1 has to be added to the exponent on P in the prime power
factorization of S. The computation executes a GOTO A (for Add). If
I(U) # 0,1, then the current instruction is either of the form V « V' — 1
or IF V' # 0 GOTO L. In either case, if P is not a divisor of §, i.e., if the
current value of V is 0, the computation need do nothing to S. If P|S and
I(U) = 2, then the computation executes a GOTO M (for Minus), so that
1 can be subtracted from the exponent to which P divides S. To continue,

K<« min [I((Z)) +2=1U)]
i<Lt(Z)

GOTO C

If (U)>2 and P|S, the current instruction is of the form IF V # 0
GOTO L where V' has a nonzero value and L is the label whose position
in our list is (U) — 2. Accordingly the next instruction should be the first
with this label. That is, K should get as its value the least i for which
I(Z);) = I(U) — 2. If there is no instruction with the appropriate label, K
gets the value 0, which will lead to termination the next time through the
main loop. In either case the GOTO C causes a “jump” to the beginning
of the loop for the next instruction (if any) to be processed. Continuing,

[M] S < |S/P]
GOTO N

[A] S<S-P

[N] K<K+1
GOTO C

1 is subtracted or added to the value of the variable mentioned in the
current instruction by dividing or multiplying S by P, respectively. The

3. Universality 73

Z<X,,, +1

n
S« n(pZi)X'
i=1

K« 1
[C] IFK=Lt(Z)+1Vv K=0GOTO F
U‘—r((Z)K)
P < p)y
IF I(U) = 0 GOTO N
IF I(U) = 1 GOTO 4
IF ~(P|S)GOTO N
IF I(U) = 2GOTO M
K« min [I(Z)) + 2 =1U)]

i<LuZ)
GOTO C
M] S« |S/P|
GOTO N
[A] Se<S§-P
[N] KeK+1
GOTO C
Figure 3.1. Program %,, which computes Y = ®"(X,,..., X,, X, |).

instruction counter is increased by 1 and the computation returns to
process the next instruction. To conclude the program,

On termination, the value of Y for the program being simulated is stored
as the exponent on p,(= 2) in S. We have now completed our description
of %, and we put the pieces together in Fig. 3.1.

For each n > 0, the sequence

O (x,,...,x,,0), " (x,,...,x,,1),...

s Ay

enumerates all partially computable functions of n variables. When we
want to emphasize this aspect of the situation we write

O(xy 5.0, x,) = PM(xy, .0, x,,).
It is often convenient to omit the superscript when n = 1, writing

D,(x) = ®(x,y) = ®D(x, y).

74 Chapter 4 A Universal Program

A simple modification of the programs %, would enable us to prove that
the predicates

STP™(x,,...,x,,y,t) < Program number y halts after ¢ or fewer
steps on inputs x,,..., X,
< There is a computation of program y of
length <t + 1, beginning with inputs
Xiseees X,

are computable. We simply need to add a counter to determine when we
have simulated ¢ steps. However, we can prove a stronger result.

Theorem 3.2 (Step-Counter Theorem). For each n > 0, the predicate
STP"Xx,,..., x,, y,t) is primitive recursive.

Proof. The idea is to provide numeric versions of the notions of snapshot
and successor snapshot and to show that the necessary functions are
primitive recursive. We use the same representation of program states that
we used in defining the universal programs, and if z represents state o,
then (i, z) represents the snapshot (i, o).

We begin with some functions for extracting the components of the ith
instruction of program number y:

LABEL(, y) = I((y + 1),)
VARG, y) =r(r((y + 1)) + 1
INSTR(, y) = I(r((y + 1))
LABEL'(i,y) =I(r((y + 1)))) - 2

Next we define some predicates that indicate, for program y and the
snapshot represented by x, which kind of action is to be performed next.

SKIP(x, y) « [INSTR(/(x),y) = 0 & I(x) < Lt(y + 1)]
V[INSTRU(x),) = 2 & ~(Pyaraee.p | 7(0)]
INCR(x, y) « INSTR(I/(x),y) =1
DECR(x, y) < INSTR(/(x), y) = 2 & pyarqx), | 7(x)

BRANCH(x, y) < INSTR(/(x), y) > 2 & pyarqcx), | 7(x)
& (3i), ,,+1,LABEL(, y) = LABEL'(/(x), y)

3. Universality 75

Now we can define SUCC(x, y), which, for program number y, gives the
representative of the successor to the snapshot represented by x.

A(x) + 1,r(x)) if SKIP(x, y)
X)) + 1,7(%) Pyarycey,) if INCR(x, y)
_ <l(x) + l,lr(x)/vaR(l(,),)J) if DECR(x,y)
SUCCx,) = (minisu(yﬂ)[LABEL(i,y)y= LABEL' (I(x),)], r(x))
if BRANCH(x, y)
(Lt(y + 1) + 1,r(x)) otherwise.

We also need
INIT®(x,,...,x,) =<1, [T(p,)™,
i=1

which gives the representation of the initial snapshot for inputs x,,..., x,,
and

TERM(x, y) < I(x) > Lt(y + 1),

which tests whether x represents a terminal snapshot for program y.

Putting these together we can define a primitive recursive function that
gives the numbers of the successive snapshots produced by a given pro-
gram.

SNAP™(xy,...,x,,y,0) = INIT"(x,,..., x,)
SNAP™(x, ,...,x,,y,i + 1) = SUCC(SNAP™(x,,...,x,,y,i),y)
Thus,
STP™(x, ..., x,,y,1) « TERM(SNAP"(x, ..., x,,¥,1),¥),

and it is clear that STP'X(x,,..., x,, y, t) is primitive recursive. []
By using the technique of the above proof, we can obtain the following
important result.

Theorem 3.3 (Normal Form Theorem). Let f(x,,...,x,) be a partially
computable function. Then there is a primitive recursive predicate
R(x,,...,x,,y) such that

flxy,...,x,) =l(minR(x1,...,x,,,z)).
z

76 Chapter 4 A Universal Program

Proof. Let y, be the number of a program that computes f(x,,..., x,).
We shall prove the following equation, which clearly implies the desired
result:

f(x,,...,x,,)=l(minR(x1,...,x,,,z)) (3.1

where R(x,,...,x,, z) is the predicate
STP" (X, ,..., X, ¥0,7(2))
& (r(SNAP™(x,,...,x,,¥,,r(2))h
=1(z).

First consider the case when the righthand side of this equation is
defined. Then, in particular, there exists a number z such that

STP"(xy,...,x,,¥,,7(2))
and (r(SNAP"(x,,...,x,, ¥y, r(z)))h
= [(z2).

For any such z, the computation by the program with number y, has
reached a terminal snapshot in r(z) or fewer steps and /(z) is the value
held in the output variable Y, ie., I(z) = f(x,,..., x,).
If, on the other hand, the right side is undefined, it must be the case that
STP™Xx,,..., x,, yy,1) is false for all values of ¢, ie., f(x,,...,x,)1T.
|

The normal form theorem leads to another characterization of the class
of partially computable functions.

Theorem 3.4. A function is partially computable if and only if it can be
obtained from the initial functions by a finite number of applications of
composition, recursion, and minimalization.

Proof. That every function which can be so obtained is partially com-
putable is an immediate consequence of Theorems 1.1, 2.1, 2.2, 3.1, and 7.2
in Chapter 3. Note that a partially computable predicate is necessarily
computable, so Theorem 7.2 covers all applications of minimalization to a
predicate obtained as described in the theorem.

Conversely, we can use the normal form theorem to write any given
partially computable function in the form

l(myinR(x1 ,...,x,,,y)),

where R is a primitive recursive predicate and so is obtained from the
initial functions by a finite number of applications of composition and

3. Universality 77

recursion. Finally, our given function is obtained from R by one use of
minimalization and then by composition with the primitive recursive func-

tion /. u
When min R(x,,...,x,,y) is a total function [that is, when for each
Xq,-..-, X, there is at least one y for which R(x,,..., x,, y) is true], we say

that we are applying the operation of proper minimalization to R. Now, if

l(myinR(x1 ,...,x,,,y))

is total, then miny R(x,,...,x,,y) must be total. Hence we have

Theorem 3.5. A function is computable if and only if it can be obtained
from the initial functions by a finite number of applications of composi-
tion, recursion, and proper minimalization.

Exercises

1. Show that for each u, there are infinitely many different numbers v
such that for all x, ®,(x) = d,(x).

2. (a) Let

1 if ®(x,x)]
1 otherwise.

H(x) =

Show that H\(x) is partially computable.
(b) Let A4 ={ay,...,a,} be a finite set such that ®(a;,q,)7 for
1 <i<n,and let

1 if d(x,x)|
H,(x) =50 ifxed
1 otherwise.

Show that H,(x) is partially computable.

(¢) Give an infinite set B such that ®(b, b) 1 for all b € B and such
that

1 ifd(x,x)|
H3(X) =40 lf xX€EB
1 otherwise

is partially computable.

78 Chapter 4 A Universal Program

(d) Give an infinite set C such that ®(c,c)1 for all ¢ € C and such
that

1 if &(x,x)]
H((x)=(0 ifxeC
1 otherwise

is not partially computable.
3. Give a program % such that H,(x,, x,), defined

H,(x,,x,) < program £ eventually halts on inputs x, , x,

is not computable.

4. Let f(x,,...,x,) be computed by program £, and suppose that for
some primitive recursive function g(x,,..., x,),

STP™(x,,...,x,,#(P),g(x;,..., x,))

is true for all x,,..., x,. Show that f(x,,..., x,) is primitive recursive.

5.* Give a primitive recursive function counter(x) such that if ®, is a
computable predicate, then

@ (counter(n)) « ~HALT(counter(n), counter(n)).

That is, counter(n) is a counterexample to the possibility that @,
computes HALT(x, x). [Compare this exercise with Exercise 2.5.]

6.* Give an upper bound on the length of the shortest % program that
computes the function ®,(x).

4. Recursively Enumerable Sets

The close relation between predicates and sets, as described in Chapter 1,
lets us use the language of sets in talking about solvable and unsolvable
problems. For example, the predicate HALT(x, y) is the characteristic
function of the set {(x, y) € N? [HALT(x, y)}. To say that a set B, where
B C N™, belongs to some class of functions means that the characteristic

function P(x,,...,x,) of B belongs to the class in question. Thus, in
particular, to say that the set B is computable or recursive is just to say
that P(x,,...,x,) is a computable function. Likewise, B is a primitive

recursive set if P(x,,...,x,) is a primitive recursive predicate.

4. Recursively Enumerable Sets 79
We have, for example,

Theorem 4.1. Let the sets B, C belong to some PRC class &. Then so do

the sets BU C,B N C, B.

Proof. This is an immediate consequence of Theorem 5.1, Chapter 3.
|

As long as the Godel numbering functions [x;,...,x,] and (x); are
availaole, we can restrict our attention to subsets of N. We have, for
example,

Theorem 4.2. Let ¥ be a PRC class, and let B be a subset of N,
m > 1. Then B belongs to # if and only if

B' ={[x,,...,x,]€N|(x,...,x,) € B}

belongs to #.

Proof. If Pg(x,,...,x,,) is the characteristic function of B, then
Pp(x) « Pp((x)),...,(x),,) & Lt(x) =m

is the characteristic function of B’, and Pp. clearly belongs to & if Py
belongs to €. On the other hand, if Pg.(x) is the characteristic function of
B’, then

Py(x,,....,x,) @ Pg([x,,...,x,])

is the characteristic function of B, and Py clearly belongs to & if Pg.
belongs to %" [|

It immediately follows, for example, that {{x, y] € N |HALT(x, y)} is
not a computable set.

Definition. The set B C N is called recursively enumerable if there is a
partially computable function g(x) such that

B={xeN|glx)|}. 4.1)

The term recursively enumerable is usually abbreviated r.e. A set is
recursively enumerable just when it is the domain of a partially com-
putable function. If & is a program that computes the function g in (4.1),
then B is simply the set of all inputs to & for which % eventually halts. If
we think of & as providing an algorithm for testing for membership in B,
we see that for numbers that do belong to B, the algorithm will provide a

80 Chapter 4 A Universal Program

“yes” answer; but for numbers that do not, the algorithm will never
terminate. If we invoke Church’s thesis, r.e. sets B may be thought of
intuitively as sets for which there exist algorithms related to B as in the
previous sentence, but without stipulating that the algorithms be expressed
by programs of the language .. Such algorithms, sometimes called semi-
decision procedures, provide a kind of “approximation” to solving the
problem of testing membership in B.
We have

Theorem 4.3. If B is a recursive set, then B is r.e.

Proof. Consider the program &:

[A] IF ~(X € B) GOTO 4

Since B is recursive, the predicate x € B is computable and % can be
expanded to a program of .%. Let & compute the function A(x). Then,
clearly,

B={xe N|h(x)]}.]

If B and B are both r.e., we have a pair of algorithms that will terminate
in case a given input is or is not in B, respectively. We can think of
combining these two algorithms to obtain a single algorithm that will
always terminate and that will tell us whether a given input belongs to B.
This combined algorithm might work by “running” the two separate
algorithms for longer and longer times until one of them terminates. This
method of combining algorithms is called dovetailing, and the step-counter
theorem enables us to use it in a rigorous manner.

Theorem 4.4. The set B is recursive if and only if B and B are both r.e.

Proof. If B is recursive, then by Theorem 4.1 so is B, and hence by
Theorem 4.3, they are both r.e.
Conversely, if B and B are both r.e., we may write

B={xeNl|gx)|},
B={xeN|h(x)|},

where g and & are both partially computable. Let g be computed by
program % and h be computed by program &, and let p = #(),
q = #(&). Then the program that follows computes B. (That is, the
program computes the characteristic function of B.)

4. Recursively Enumerable Sets 81

[A4] IF STPM(X, p,T) GOTO C

IF STPY(X, q,T) GOTO E
T<T+1
GOTO A4
[C] Y1 []

Theorem 4.5. If B and C are r.e. sets so are BU C and B N C.
Proof. Let
B={xeNl|gx)l},
C={xeNlh(x)},

where g and & are both partially computable. Let f(x) be the function
computed by the program

Y « g(X)
Y « h(X)
Then f(x) is defined if and only if g(x) and h(x) are both defined. Hence
BNC={xeN|f(x)l},

so that B N C is also r.e.

To obtain the result for B U C we must use dovetailing again. Let g and
h be computed by programs & and &, respectively, and let #(2) = p,
#(@) = q. Let k(x) be the function computed by the program

[A4] IF STPM(X, p,T) GOTO E

IF STP(X, q,T) GOTO E
T<T+1
GOTO 4’

Then k(x) is defined just in case either g(x) or h(x) is defined. That is,
BuC={xeN|k(x)|}. [|

Definition. We write
W,={xeN|d(x,n)l}.

Then we have

Theorem 4.6 (Enumeration Theorem). A set B is r.e. if and only if there
is an n for which B = W,.

82 Chapter 4 A Universal Program

Proof. This is an immediate consequence of the definition of ®(x, n).
|

The theorem gets its name from the fact that the sequence

Wy, Wi, W,,...
is an enumeration of all r.e. sets.
We define
K={neNlneW}.
Now,

neW, e ®(n,n)| « HALT(n,n).

Thus, K is the set of all numbers n such that program number n
eventually halts on input n. We have

Theorem 4.7. K is r.e. but not recursive.

Proof. Since K = {n € N|®(n,n)|} and (by the universality

theorem—Theorem 3.1), ®(n, n) is certainly partially computable, K is

clearly r.e. If K were also r.e., by the enumeration theorem we would have
K=W,

1

for some i. Then
ieKeieWeick,
which is a contradiction. [|

Actually the proof of Theorem 2.1 already shows not only that
HALT(x, z) is not computable, but also that HALT(x, x) is not com-
putable, i.e., that K is not a recursive set. (This was Exercise 2.1.)

We conclude this section with some alternative ways of characterizing
r.e. sets.

Theorem 4.8. Let B be an r.e. set. Then there is a primitive recursive
predicate R(x,t) such that B = {x € N [(31)R(x, 1)}.

Proof. Let B =W,. Then B = {x € N |(31)STP")(x, n,)}, and STP? is
primitive recursive by Theorem 3.2. [|

Theorem 4.9. Let S be a nonempty r.e. set. Then there is a primitive
recursive function f(u) such that S = {f(n)|n € N} = {f(0), f(1),
f(2),...}. That is, S is the range of f.

4. Recursively Enumerable Sets 83

Proof. By Theorem 4.8
S = {x|(3DR(x, 1)},

where R is a primitive recursive predicate. Let x, be some fixed member
of § (for example, the smallest). Let

Iw) if RUuw),r(u))
flw) = {xo otherwise.

Then by Theorem 5.4 in Chapter 3, f is primitive recursive. Each value
f(u) is in S, since x, is automatically in S, while if R(I(u), r(u)) is true,
then certainly (3¢)R(I(u), t) is true, which implies that f(u) = I(u) € S.
Conversely, if x € S, then R(x,t,) is true for some ¢,. Then

flx,tp)) = 1Kx,t)) = x,
so that x = f(u) for u = {x, 1,). [

Theorem 4.10. Let f(x) be a partially computable function and let
S ={f(x)| f(x)!}. (That is, S is the range of f.) Then S is r.e.

Proof. Let

(x) = 0 if xes
g\x) = T otherwise.

Since
S={xlgx)!},

it suffices to show that g(x) is partially computable. Let % be a program
that computes f and let #(%) = p. Then the following program computes
g(x):

[4] IF ~STP"(Z,p,T) GOTO B
V< f(Z)
IFV=XGOTOE

[B]l Z<Z+1
IFZ <T GOTO 4
T<T+1
Z<0
GOTO 4

Note that in this program the macro expansion of V « f(Z) will be
entered only when the step-counter test has already guaranteed that f is
defined.]

84 Chapter 4 A Universal Program

Combining Theorems 4.9 and 4.10, we have

Theorem 4.11. Suppose that S # J. Then the following statements are
all equivalent:

1. Sisre,;

2. S is the range of a primitive recursive function;
3. § is the range of a recursive function;

4. S is the range of a partial recursive function.

Proof. By Theorem 4.9, (1) implies (2). Obviously, (2) implies (3), and (3)
implies (4). By Theorem 4.10, (4) implies (1). Hence all four statements are
equivalent. m

Theorem 4.11 provides the motivation for the term recursively enumer-
able. In fact, such a set (if it is nonempty) is enumerated by a recursive
function.

Exercises
1. Let B be a subset of N™, m > 1. We say that B is re. if B =
{(x4,...,x,) € N" | g(x,,...,x,)]} for some partially computable
function g(x,,..., x,,). Let

B' ={[x,...,x,] € N|(xy,...,x,) € B}.

Show that B’ is r.e. if and only if B is r.e.
Let K, ={{(x,y)|x € Wy}. Show that K|, is r.e.

3. Let f be an n-ary partial function. The graph of f, denoted gr(f), is
the set {[x,,...,x,, fOxp, ..., x) fOx; ..., x) L)

(a) Let & be a PRC class. Prove that if f belongs to € then gr(f)
belongs to &.

(b) Prove that if gr (f) is recursive then f is partially computable.

(c) Prove that the recursiveness of gr(f) does not necessarily imply
that f is computable.

4. Let B ={f(n)|n € N}, where f is a strictly increasing computable
function [i.e., f(n + 1) > f(n) for all n]. Prove that B is recursive.

5. Show that every infinite r.e. set has an infinite recursive subset. -

Prove that an infinite set A4 is r.e. if and only if 4 = {f(n)|n € N}
for some one-one computable function f(x).

5. The Parameter Theorem 85

7. Let A, B be sets. Prove or disprove:
(a) If AUB isr.e., then 4 and B are both r.e.
(b) If A CBand B isr.e., then 4 is r.e.

8. Show that there is no computable function f(x) such that f(x) =
®(x, x) + 1 whenever ®(x, x)|.

9. (a) Let g(x), h(x) be partially computable functions. Show there is
a partially computable function f(x) such that f(x)| for pre-
cisely those values of x for which either g(x)| or A(x)| (or
both) and such that when f(x)|, either f(x) = g(x) or f(x) =
h(x).

(b) Can f be found fulfilling all the requirements of (a) but such
that in addition f(x) = g(x) whenever g(x)| ? Proof?
10. (a) Let A4 ={y|(31)P(s, y)}, where P is a computable predicate.
Show that A4 is r.e.
(b) Let B={yl|@3¢)---3¢,)0(,,...,t,,y)}, where Q is a com-
putable predicate. Show that B is r.e.

11. Give a computable predicate R(x, y) such that {y |(V¢)R(¢, y)} is not
re.

5. The Parameter Theorem

The parameter theorem (which has also been called the iteration theorem
and the s—m-n theorem) is an important technical result that relates the
various functions ®"(x,, x,,..., x,, y) for different values of n.

Theorem 5.1 (Parameter Theorem). For each n, m > 0, there is a primi-
tive recursive function S} (u;,u,,...,u,,y) such that

DX e Xy s Uy yeeer s ¥) =P (X, SE Uy, Y)).
.1

Suppose that values for variables u,,...,u, are fixed and we have in
mind some particular value of y. Then the left side of (5.1) is a partially
computable function of the m arguments x,,...,x, . Letting g be the
number of a program that computes this function of m variables, we have

DM xy o Xy Uy ety Y) = DXy, X, q).

86 Chapter 4 A Universal Program

The parameter theorem tells us that not only does there exist such a
number g, but that it can be obtained from u,,...,u,,y in a computable
(in fact, primitive recursive) way.

Proof. The proof is by mathematical induction on n.
For n = 1, we need to show that there is a primitive recursive function
S, (u, y) such that

O D(xy o, x, U, y) = O (x, ., x,, SL(u, y)).

Here S)(u,y) must be the number of a program which, given m inputs
Xi,...,X,,, computes the same value as program number y does when
given the m + 1 inputs x,,...,x,,,u. Let & be the program such that
#(2) =y. Then S!(u,y) can be taken to be the number of a program
which first gives the variable X,,, , the value u and then proceeds to carry
out £#. X, ,, will be given the value u by the program

X

m+1 < m+1+1

X

m+1 < m+1+1

The number of the unlabeled instruction

X

m+l < Xmyi +1
is
0,{1,2m + 1)) = 16m + 10.

So we may take

n| -
]._.[p:?:;’) -1,

16m+10 Lt(y+1)
) j=1

Sy(u,y) = [(l—[pi

i=1

a primitive recursive function. Here the numbers of the instructions of %
which appear as exponents in the prime power factorization of y + 1 have
been shifted to the primes p, . 1, Pyi2s-- s PusLicy+ 1y
To complete the proof, suppose the result known for n = k. Then we
have
DR D (e X Uy s Uy Ug 15 V)

s Amo
= q)(m+k)(x1,...,xm,u],...,uk,S,],,+k(uk+1,y))

= O (xy X, Seluy, o, Sh (g, YD),

5. The Parameter Theorem 87

using first the result for n = 1 and then the induction hypothesis. But now,
if we define

S:r+1(ul yeees Up s Uy ,}’) = Sr,;(ul 7""uk7Sr1n+k(uk+1 ,}’))»
we have the desired result. |

We next give a sample application of the parameter theorem. It is
desired to find a computable function g(u,v) such that

@,(D,(x)) = D,) (x).
We have by the meaning of the notation that
P, (P,(x)) = P(D(x,v),u)
is a partially computable function of x, u, v. Hence, we have
O, (P.(x)) = PO(x,u,v, zy)
for some number z,. By the parameter theorem,

O(x,u,v,2,) = ®(x, ST (u,v,2))) = Pg2, .,)(X).

Exercises

1. Given a partially computable function f(x,y), find a primitive recur-
sive function g(u,v) such that

D, (X)) =f(®,(x), D.(x)).

2. Show that there is a primitive recursive function g(u,v,w) such that

OO(u,v,w,2) = By, ., (2).

3. Let us call a partially computable function g(x) extendable if there is a
computable function f(x) such that f(x) = g(x) for all x for which
g(x)|. Show that there is no algorithm for determining of a given z
whether or not ®,(x) is extendable. [Hint: Exercise 8 of Section 4
shows that ®(x, x) + 1 is not extendable. Find an extendable function
k(x) such that the function

O(x,x)+1 if d(,1)]

h(x,t) = .
k(x) otherwise

is partially computable.]

88 Chapter 4 A Universal Program

4.* A programming system is an enumeration S = {¢{" |i € N, n > 0} of
the partially computable functions. That is, for each partially com-
putable function f(x,,...,x,) there is an i such that f is ¢{".

(a) A programming system S is universal if for each n > 0, the
function ¥, defined
VO (X, e, x,,0) = ¢ (xy,..0,x,),

is partially computable. That is, S is universal if a version of the
universality theorem holds for S. Obviously,

(®™M]ie N,n>0)

is a universal programming system. Prove that a programming
system S is universal if and only if for each n > 0 there is a
computable function f, such that ¢{" = &) for all i.

(b) A universal programming system S is acceptable if for each

n,m > 0 there is a computable function s,(u,,...,u,,y) such
that
WD (X Xy s Uy es Uy s Y)
=W(xy e, X, SE(Uy Uy, Y)).

That is, S is acceptable if a version of the parameter theorem
holds for S. Again, {®{” |i € N, n > 0} is obviously an acceptable
programming system. Prove that § is acceptable if and only if for
each n > 0 there is a computable function g, such that ®{” =

(n) i
e for all i.

6. Diagonalization and Reducibility

So far we have seen very few examples of nonrecursive sets. We now
discuss two general techniques for proving that given sets are not recursive
or even that they are not r.e. The first method, diagonalization, turns on
the demonstration of two assertions of the following sort:

1. A certain set A can be enumerated in a suitable fashion.
2. It is possible, with the help of the enumeration, to define an object b
that is different from every object in the enumeration, i.e., b & A.

We sometimes say that b is defined by diagonalizing over A. In some
diagonalization arguments the goal is simply to find some b & 4. We will
give an example of such an argument later in the chapter. The arguments
we will consider in this section have an additional twist: the definition of b
is such that b must belong to A, contradicting the assertion that we began

6. Diagonalization and Reducibility 89

with an enumeration of all of the elements in 4. The end of the
argument, then, is to draw some conclusion from this contradiction.

For example, the proof given for Theorem 2.1 is a diagonalization
argument that the predicate HALT(x, y), or equivalently, the set

{(x,y) € N?|HALT(x, y)},

is not computable. The set 4 in this case is the class of unary partially
computable functions, and assertion 1 follows from the fact that &
programs can be coded as numbers. For each n, let &, be the program
with number n. Then all unary partially computable functions occur
among ¢, ¢5),.... We began by assuming that HALT(x, y) is com-
putable, and we wrote a program & that computes 5. The heart of the
proof consisted of showing that ¢ does not appear among ¢%, 45, .

In particular, we wrote % so that for every x, ¢y5(x)| if and only it

d/g‘alx’(x)T, ie.,
HALT(x, #(2)) « ~HALT(x, x),

so ¢S differs from each function ¢, ¢s$”,... on at least one input
value. That is, n is a counterexample to the pos51b111ty that ¢S is ¢,
since ¢$(n)| if and only if ¢$’(n)1. Now we have the unary partlally
computable function <" that is not among Ui, ¢S, ..., so assertion 2 is
satisfied, giving us a contradiction. In the proof of Theorem 2.1 the
contradiction was expressed a bit differently: Because S is partially
computable, it must appear among ¥, ¢S, ..., and, in particular, it
must be z//‘” since Py gz is P by deﬁnmon but we have the counterex-
ample . (')(#(?))J, if and only if (//“) (#(?))T ie.,

HALT(#(2), #(2)) = ~HALT(#(2), #(2)).

Since we know assertion 1 to be true, and since assertion 2 depended on
the assumption that HALT(x, y) is computable, HALT(x, y) cannot be
computable.

To present the situation more graphically, we can represent the values
of each function ¢, ¢5,... by the infinite array

$5)(0) ¥ (1) P$(2)

$$2(0) P (1) t//“)(Z)

$$(0) Y1) PHQ)

90 Chapter 4 A Universal Program

Each row represents one function. It is along the diagonal of this array
that we have arranged to find the counterexamples, which explains the
origin of the term diagonalization.

We can use a similar argument to give an example of a non-r.e. set. Let
TOT be the set of all numbers p such that p is the number of a program
that computes a total function f(x) of one variable. That is,

TOT = {z e N|(Vx)P(x,2)|]}.
Since

d(x,2)| ®=xeW,

TOT is simply the set of numbers z such that W, is the set of all
nonnegative integers.
We have

Theorem 6.1. TOT is not r.e.

Proof. Suppose that TOT were r.e. Since TOT # J, by Theorem 4.9
there is a computable function g(x) such that TOT = {g(0), g(1), g(2),...}.
Let

h(x) = ®(x,g(x)) + 1.

Since each value g(x) is the number of a program that computes a total
function, ®(u, g(x))| for all x, u and hence, in particular, A(x) | for all x.
Thus 4 is itself a computable function. Let 4 be computed by program 2,
and let p = #(2). Then p € TOT, so that p = g(i) for some i. Then

h(i) = ®(i,g(i)) + 1 by definition of 4
=®d@U,p)+1 since p = g(i)
=h@)+1 since & is computed by 2,
which is a contradiction. |

Note that in the proof of Theorem 6.1, the set A is TOT itself, and this
time assertion 1 was taken as an assumption, while assertion 2 is shown to
be true. Theorem 6.1 helps to explain why we base the study of com-
putability on partial functions rather than total functions. By Church’s
thesis, Theorem 6.1 implies that there is no algorithm to determine if an .
program computes a total function.

Once some set such as K has been shown to be nonrecursive, we can
use that set to give other examples of nonrecursive sets by way of the
reducibility method.

6. Diagonalization and Reducibility 91

Definition. Let A4, B be sets. 4 is many—one reducible to B, written
A <, B, if there is a computable function f such that

A={xeN|f(x) eB).

That is, x € A4 if and only if f(x) € B. (The word many—one simply refers
to the fact that we do not require f to be one—one.)

If A <, B, then in a sense testing membership in A4 is “no harder
than” testing membership in B. In particular, to test x € 4, we can
compute f(x) and then test f(x) € B.

Theorem 6.2. Suppose A <., B.

1. If B is recursive, then A is recursive.
2. If Bisr.e., then A isr.e.

Proof. Let A ={x € N| f(x) € B}, where f is computable, and let Py(x)
be the characteristic function of B. Then

A ={xe N|P;(f(x)},

and if B is recursive then Pgz(f(x)), the characteristic function of A, is
computable.

Now suppose that B is r.e. Then B = {x € N | g(x) |} for some partially
computable function g, and 4 = {x € N | g(f(x))|}. But g(f(x)) is par-
tially computable, so A4 is r.e.]

We generally use Theorem 6.2 in the form: If A is not recursive (r.e.),
then B is not recursive (respectively, not r.e.). For example, let

Ko={xeNI®,, ()L} ={C,y) [®,(x) 1)

K, is clearly r.e. However, we can show by reducing K to K|, that is, by
showing that K < K, that K, is not recursive: x € K if and only if
(x,x) € K,, and the function f(x) = (x, x) is computable. In fact, it is
easy to show that every r.e. set is many—one reducible to K;: if A4 is r.e.,
then

A={xeN|gx)|) for some partially computable g
={xeN|D(x,zy) !} for some z,

={x e NI{x, z,) € K,}.

92 Chapter 4 A Universal Program

Definition. A set A4 is m-complete if

1. A isr.e., and
2. for every r.e. set B, B <, A.

So K, is m-complete. We can also show that K is m-complete. First we
show that K, <., K. This argument is somewhat more involved because
K, seems, at first glance, to contain more information than K. K,
represents the halting behavior of all partially computable functions on all
inputs, while K represents only the halting behavior of partially com-
putable functions on a single argument. We wish to take a pair {n, ¢) and
transform it to a number f({n, g)) of a single program such that

®,(n)l ifandonlyif @, \(fKn, g,

i.e., such that {(n,q) € K, if and only if f({n,q)) € K. The parameter
theorem turns out to be very useful here. Let & be the program

Y « ®O((X,), r(X,))
and let p = #(2). Then y,(x,, x,) = ®V((x,), r(x,)), and
Uolxy, %) = ®D(xy, x,, p) = PD(x, S1(x,, p))
by the parameter theorem, so for any pair {n, g),
OV(n,q) = Yy, {1, q)) = By gy (X1)- (6.1)

Now, (6.1) holds for all values of x,, so, in particular,

O, q) = B 9. (51K, g, P,

and therefore

®"(n,q)| if and only if <D§ll.z<n,q>,p)(S,‘(<n, Q,pN!,
ie.,
(n,q) €K, ifandonlyif S!({n,q),p)€K.
With p held constant S;(x, p) is a computable unary function, so K, <,, K.
To complete the argument that K is m-complete we need
Theorem 6.3. If 4 <, Band B <, C,then 4 < C.

Proof. Let A={xe N|f(x) € B} and B ={x € N|g(x) € C}. Then
A ={x € N|g(f(x)) € C}, and g(f(x)) is computable. [

6. Diagonalization and Reducibility 93
As an immediate consequence we have

Corollary 6.4. If A4 is m-complete, B is r.e., and 4 <, B, then B is

m-complete.

Proof. If Cisre.thenC <, 4,and A <, B by assumption,so C <, B.
|

Thus, K is m-complete. Informally, testing membership in an m-com-
plete set is “at least as difficult as” testing membership in any r.e. set. So
an m-complete set is a good choice for showing by a reducibility argument
that a given set is not computable. We expand on this subject in Chapter 8.

Actually, we have shown both K < K, and K, <, K, so in a sense,
testing membership in K and testing membership in K, are “equally
difficult” problems.

Definition. A4 =, B means that 4 <, B and B <, A.

In general, for sets 4 and B, if A =, B then testing membership in A4
has the “same difficulty as” testing membership in B.
To summarize, we have proved

Theorem 6.5.

1. K and K, are m-complete.
2. K=, K,.

We can also use reducibility arguments to show that certain sets are not
r.e. Let

EMPTY = {x € N |W, = O)}.

Theorem 6.6. EMPTY is not r.e.

Proof. We will show that K <, EMPTY. K is not r.e., so by Theorem
6.2, EMPTY is not r.e. Let & be the program

Y « ®(X,, X,),
and let p = #(2). 2 ignores its first argument, so for a given z,
A(x,z)| forall x ifandonlyif ®(z,z)|.
By the parameter theorem

;2)(x1 > xz) = (D(z)(xl » X2, P) = (D(l)(x] s S11(x2 s P))»

94

Chapter 4 A Universal Program

so, for any z,

ze€ K ifandonlyif ®(z,z)1
if and only if ¥ (x,z)1 forall x
if and only if ®M(x, S!(z, p))1 forall x
if and only if W, ,) =<
if and only if S!(z, p) € EMPTY.

f(z) = S}(z, p) is computable, so K <, EMPTY. [|
Exercises

1. Show that the proof of Theorem 4.7 is a diagonalization argument.

2. Prove by diagonalization that there is no enumeration f, f;, f,,...
of all total unary (not necessarily computable) functions on N.

3. Let A={xeN|®(x)] and &, (x) > x}.

(a) Show that A4 is r.e.
(b) Show by diagonalization that A4 is not recursive.

4. Show how the diagonalization argument in the proof of Theorem 6.1
fails for the set of all numbers p such that p is the number of a
program that computes a partial function, i.e., the set N.

5. Let A, B be sets of numbers. Prove
(@ A<, A
(b) A<, Bifandonlyif 4 <, B.

6. Prove that no m-complete set is recursive.

7. Let A, B be m-complete. Show that 4 = B.

8. Prove that K £. K, ie, K is not many—one reducible to K.

9. For every number n, let A, = {x|n € W,}.

(a) Show that A, is r.e. but not recursive, for all i.
(b) Show that 4, =, A; for all i, j.

10. Define the predicate P(x) < ®,(x) = 1. Show that P(x) is not
computable.

11. Define the predicate

Q(x) < the variable Y assumes the value 1 sometime dur-
ing the computation of ,(x), where #() = x.

7. Rice’s Theorem 95

Show that Q(x) is not computable. [Hint: Use the parameter theorem
and a version of the universal program %, .]

12. Let INF = {x € N | W, is infinite}. Show that INF = TOTAL.

X

13. Let FIN = {x € N | W, is finite}. Show that K <, FIN.
14.* Let

MONOTONE = {y € N | ®,(x) is total and

®,(x) < ®,(x + 1) forall x}.

(a) Show by diagonalization that MONOTONE is not r.e.
(b) Show that MONOTONE = TOTAL.

7. Rice’s Theorem

Using the reducibility method we can prove a theorem that gives us, at a
single stroke, a wealth of interesting unsolvable problems concerning
programs.

Let ' be some collection of partially computable functions of one
variable. We may associate with I' the set (usually called an index set)

R-={teN|d, eTI}.

R is a recursive set just in case the predicate g(¢), defined g(¢) « @, € T,
is computable. Consider the examples:

1. T is the set of computable functions;

2. T is the set of primitive recursive functions;

3. I is the set of partially computable functions that are defined for all
but a finite number of values of x.

These examples make it plain that it would be interesting to be able to
show that R is computable for various collections I'. Invoking Church’s
thesis, we can say that R, is a recursive set just in case there is an
algorithm that accepts programs & as input and returns the value TRUE
or FALSE depending on whether or not the function ¢ does or does not
belong to I'. In fact, those who work with computer programs would be
very pleased to possess algorithms that accept a program as input and
which return as output some useful property of the partial function
computed by that program. Alas, such algorithms are not to be found! This
dismal conclusion follows from Rice’s theorem.

96 Chapter 4 A Universal Program

Theorem 7.1 (Rice’s Theorem). Let I' be a collection of partially com-
putable functions of one variable. Let there be partially computable
functions f(x), g(x) such that f(x) belongs to I' but g(x) does not. Then
R is not recursive.

Proof. Let h(x) be the function such that A(x)? for all x. We assume
first that A(x) does not belong to I'. Let g be the number of

Z « ®(X,, X,)
Y < flX))
Then, for any i, $](i, q) is the number of
X, < i
Z < d(X,,X,)
Y « f(X))
Now
i€ K implies ®(i,i)]
implies ®g; ,(x) = f(x) forall x
implies ®g; €T
implies S](i,q) € R,
and
i &€ K implies ®(i,i)1
implies ®g; ,(x)1 forall x

sitg) = h
implies ®g1; 4 €T
implies S,(i,q) € Ry,

implies ®

so K <., Ry. By Theorem 6.2, R is not recursive.

If h(x) does belong to T', then the same argument with T’ and f(x)
replaced by T and g(x) shows that Rr is not recursive. But Ry = R, so,
by Theorem 4.1, R is not recursive in this case either.]

Corollary 7.2. There are no algorithms for testing a given program % of
the language .% to determine whether ¢5(x) belongs to any of the classes
described in Examples 1-3.

Proof. In each case we only need find the required functions f(x), g(x)
to show that R is not recursive. The corollary then follows by Church’s

8. The Recursion Theorem 97

thesis. For 1, 2, or 3 we can take, for example, f(x) = u}(x) and g(x) =
1 — x [so that g(x) is defined only for x = 0, 1]. [|

Exercises

1.

Show that Rice’s theorem is false if the requirement for functions
f(x), g(x) is omitted.

Show there is no algorithm to determine of a given program £ in the
language . whether ¢,,(x) = x? for all x.

Show that there is no algorithm to determine of a pair of numbers u, v
whether &,(x) = ®,(x) for all x.

Show that the set 4 = {x | ®, is defined for at least one input} is r.e.
but not recursive.

Use Rice’s theorem to show that the following sets are not recursive.
[See Section 6 for the definitions of the sets.]

(a) TOT;

(b) EMPTY,

(¢) INF;

(@ FIN;

(e) MONOTONE;

® {yenN| <I>y‘” is a predicate}.

Let I" be a collection of partially computable functions of m variables,
m > 1,and let R{™ = {r € N | ®™ € T'}. State and prove a version of
Rice’s theorem for collections of partially computable functions of m
variables, m > 1.

Define the predicate

PROPER(n) < min, [®?(x, z) = 3] is an application of proper
minimalization to the predicate ®®(x, z) = 3.
Show that PROPER(x) is not computable.

Let I" be a set of partially computable functions of one variable. Show
that R is r.e. if and only if it is m-complete.

*8. The Recursion Theorem

In the proof that HALT(x, y) is not computable, we gave (assuming
HALT(x, y) to be computable) a program £ such that

HALT(#(2), #(2)) « ~HALT(#(2), #(2)).

98 Chapter 4 A Universal Program

We get a contradiction when we consider the behavior of the program &%
on input #(%). The phenomenon of a program acting on its own descrip-
tion is sometimes called self-reference, and it is the source of many
fundamental results in computability theory. Indeed, the whole point of
diagonalization in the proof of Theorem 2.1 is to get a contradictory
self-reference. We turn now to a theorem which packages, so to speak, a
general technique for obtaining self-referential behavior. It is one of the
most important applications of the parameter theorem.

Theorem 8.1 (Recursion Theorem). Let g(z,x,,...,x,) be a partially
computable function of m + 1 variables. Then there is a number e such
that

O xy s x,) =gle, x50, X,).

Discussion. Let e = #(2), so that y(x,,...,x,,) = ®Nx,..., x,).
The equality in the theorem says that the m-ary function ¢5"(x,,...,x,,)
is equal to g(z,x,,...,x,,) when the first argument of g is held constant
at e. That is, & is a program that, in effect, gets access to its own number,
e, and computes the m-ary function g(e,x,,...,x,). Note that since
X;,...,X,, can be arbitrary values, e generally does not appear among the
inputs to " (x,,...,x,,), so &P must somehow compute e. One might
suppose that 2 might contain e copies of an instruction such as Z «
Z + 1, that is, an expansion of the macro Z « e, but if & has at least e
instructions, then certainly #(£) > e. The solution is to write 2 so that it
computes e without having e “built in” to the program. In particular, we
build into & a “partial description” of £, and then have % compute e
from the partial description. Let & be the program
Z < Sy Xpi1s X))

m

Y<g(Z,X,,....,X,)

We prefix #(&) copies of the instruction X,,,, < X,,,, + 1 to get the
program %:

Xm+1 (_Xm+l +1

Xm+l < Ami +1
Z < S (Xpirs X))
Y<g(Z,X,,...,X,)

8. The Recursion Theorem 99

After the first #(&) instructions are executed, X, ., holds the value
#(2), and S)(#(@), #(&)), as defined in the proof of the parameter
theorem, computes the number of the program consisting of #(&) copies
of X, < X,, ., + 1 followed by program &. But that program is %. So

m+1 m
Z<SNX, .1,X,) gives Z the value #(#),and Y « g(Z, X,,..., X,,)
causes % to output g(#(#), x,,...,x,,). We take e to be #(#) and we
have
S (xy .., x,) = U8 (xy, . x,) =gle,xp,..0,x,).

We now formalize this argument.

Proof. Consider the partially computable function
g8k (v,v), %, ,...,%,)

where S), is the function that occurs in the parameter theorem. Then we
have for some number z,,

g(SL(v,v), x,,...,x,) = D" V(x,,...,x,,0,2)
=®"(x,,...,x,,SL (v, z5)),

where we have used the parameter theorem. Setting v =2z, and e =
S)(zy, o), we have

gle,xy .., x,) =@ (xy,...,x,,e) = O (xy,...,x,). [

We can use the recursion theorem to give another self-referential proof
that HALT(x, y) is not computable. If HALT(x, y) were computable, then

_ [t ifHALT(y,x)
flx.y) {0 otherwise

would be partially computable, so by the recursion theorem there would be
a number e such that

t if HALT(y,e)
) = ,y) = .
() = fle.y) { 0 otherwise,
that is,
~HALT(y, e) « HALT(y,e).

So HALT(x, y) is not computable. The self-reference occurs when P,
computes e, tests HALT(y,e), and then does the opposite of what
HALT(y, e) says it does.

100 Chapter 4 A Universal Program

One of the many uses of the recursion theorem is to allow us to write
down definitions of functions that involve the program used to compute
the function as part of its definition. For a simple example we give

Corollary 8.2. There is a number e such that for all x
d,(x) =e.

Proof. We consider the computable function
g(z,x) =u(z,x) =z.
Applying the recursion theorem we obtain a number e such that

d,(x) =gle,x) =¢
and we are done. |

It is tempting to be a little metaphorical about this result. The program
with number e “consumes” its “environment” (i.e., the input x) and
outputs a “copy” of itself. That is, it is, in miniature, a self-reproducing
organism. This program has often been cited in considerations of the
comparison between living organisms and machines.

For another example, let

(x.1) = k ifr=0
0y = gt = 1,®.(r -~ 1)) otherwise,

where g(x, y) is computable. It is clear that f(x,¢) is partially computable,
so by the recursion theorem there is a number e such that

k ifr=0
Q,(1) = fe,t) = {g(t =~ 1,9,(r = 1)) otherwise.

An easy induction argument on ¢ shows that @, is a total, and therefore
computable, function. Now, ®, satisfies the equations

®,(0) =k
Q,(r + 1) =g, D,(1)),
that is, @, is obtained from g by primitive recursion of the form (2.1) in
Chapter 3, so the recursion theorem gives us another proof of Theorem 2.1
in Chapter 3. In fact, the recursion theorem can be used to justify

definitions based on much more general forms of recursion, which explains
how it came by its name.! We give one more example, in which we wish to

! For more on this subject, see Part 5.

8. The Recursion Theorem 101

know if there are partially computable functions f, g that satisfy the
equations

f) =1
f+1)=gQ+1 8.1)
g(0) =3
g2t +2) =f(1) + 2.
Let F(z,1t) be the partially computable function
1 if x =<0,0)
Flz.x) = d,({(1,2(r(x) = D) + 1 if(Ay)_,(x =40,y + 1))
2703 if x = (1,0

O,(€0,1(r(x) = 2)/2) +2 ifQy).,(x=(1,2y +2)).
By the recursion theorem there is a number e such that

®,(x) = F(e, x)

1 if x =<0,0)
d,((1,2(r(x) = D)) + 1 if (Ay)_ (x =<0,y + 1))
3 if x =(1,0)

®,(€0,1(r(x) = 2)/2) +2 ifFy)_, (x=(1,2y +2)).
Now, setting
f(x) =®,(0,x)) and g(x)=®,((1,x))
we have
f(0) = ®,(0,03) =1
ft+1) =0,(0,r + 1)) = 9,({1,2¢)) + 1 =g(21) + 1
g(0) = 9,({1,0)) =3
gt +2)=9,((1,2t + 2)) = ,(0,)) + 2 =f(1) + 2,

so f, g satisfy (8.1).
Another application of the recursion theorem is

Theorem 8.3 (Fixed Point Theorem). Let f(z) be a computable function.
Then there is a number e such that

D y(x) = @,(x)

for all x.

102 Chapter 4 A Universal Program

Proof. Let g(z,x) = ®;,,(x), a partially computable function. By the
recursion theorem, there is a number e such that

D, (x) =gle, x) = Py, (x). [|

Usually a number n is considered to be a fixed point of a function f(x)
if f(n) = n. Clearly there are computable functions that have no fixed
point in this sense, e.g., s(x). The fixed point theorem says that for every
computable function f(x), there is a number e of a program that computes
the same function as the program with number f(e).

For example, let P(x) be a computable predicate, let g(x) be a com-
putable function, and let while(n) = #(&,), where @, is the program

X, <n
Y X

[4] IF ~P(Y)GOTOE
Y« @y (g(Y))

It should be clear that while(x) is a computable, in fact primitive recursive,
function, so by the fixed point theorem there is a number e such that

<I)e(x) = <I)while(e)(x)'
It follows from the construction of while(e) that

if ~P(x)

x
D,(x) = Dypipeqer(x) = {(De(g(x)) otherwise.

Moreover,

g(x) if ~P(g(x))

D,(g(x)) = Pypie (o) (8(x)) = {d)e(g(g(x))) otherwise,

SO

x if ~P(x)
D,(x) = Dypije(er(X) = { 8(x) if P(x) &~P(g(x))
®,(g(g(x))) otherwise,

8. The Recursion Theorem 103
and continuing in this fashion we get

x if ~P(x)
g(x) if P(x) & ~P(g(x))

P00 = Punic (1) = o(a(x)) if P(x) & P(g(x)) & ~P(g(g(x)))

In other words, program e behaves like the pseudo-program
Y X
WHILE P(Y) DO
Y < g(Y)
END

We end this discussion of the recursion theorem by giving another proof
of Rice’s theorem. Let T', f(x), g(x) be as in the statement of Theorem
7.1.

Alternative Proof of Rice’s Theorem.? Suppose that R were computable.
Let

1 ifteR;
0 otherwise.

Pr(1) = {

That is, P- is the characteristic function of R.. Let

g(x) ifteR,
f(x) otherwise.

h(t,x) = {
Then, since (as in the proof of Theorem 5.4, Chapter 3)

h(t,x) = g(x) - P(1) + f(x) - a(Pr(2)),

h(t, x) is partially computable. Thus, by the recursion theorem, there is a
number e such that

g(x) if &, belongsto I'
f(x) otherwise.

d,(x) =h(e,x) = {

2 This elegant proof was called to our attention by John Case.

104 Chapter 4 A Universal Program

Does e belong to R? Recalling that f(x) belongs to I' but g(x) does not,
we have

e€ R, implies ®,(x)=g(x)
implies @, isnotin I'
implies e & Ry.
But likewise,
e& Ry implies ®,(x)=f(x)
implies ®,isin I’
implies e € R.
This contradiction proves the theorem.]

Exercises

1. Use the proof of Corollary 8.2 and the discussion preceding the proof
of the recursion theorem to write a program £ such that ,(x) =
#(2).

2. Let A={xeN|®P(x)] and ®(x) > x}. Use the recursion theo-
rem to show that A is not recursive.

3. Show that there is a number e such that W, = {e}.

Show that there is a program & such that ¢,(x)} if and only if
x = #(P).

5. (a) Show that there is a partially computable function f that satis-
fies the equations

f(x,0) =x+2
flx,1) =2-f(x,2x)
f(x,2¢t+2) =3-f(x,2¢)
f(x,2¢+3) =4-f(x,2t + 1).
What is f(2,5)?
(b) Prove that f is total.

(¢) Prove that f is unique. (That is, only one function satisfies the
given equations.)

6. Give two distinct partially computable functions f, g that satisfy the
equations

f() =2 g(0)=2
fQt+2)=3-f21) gQt+2)=3-g(2¢).
For the specific functions f, g that you give, what are f(1) and g(1)?

9. A Computable Function That Is Not Primitive Recursive 105

7.

10.

11.

12.

13.

14.*

*9.

Let f(x) =x + 1. Use the proof of the fixed point theorem and the
discussion preceding the proof of the recursion theorem to give a
program & such that @, ,(x) = @/, ,)(x). What unary function
does & compute?

Give a function f(y) such that, for all y, f(y) >y and ®(x) =
Dy (%)

Give a function f(y) such that, for all y, if ®(x) = & (x), then
® (x) is not total.

Show that the function while(x) defined following the fixed point
theorem is primitive recursive. [Hint: Use the parameter theorem.]

(a) Prove that the recursion theorem can be strengthened to read:
There are infinitely many numbers e such that

S(x, .. x,) =gle, xy,...,x,,).

(b) Prove that the fixed point theorem can be strengthened to read:
There are infinitely many numbers e such that

D, (x) = @,(x).
Prove the following version of the recursion theorem: There is a
primitive recursive function self(x) such that for all z
D,y (x) = PP (self(z2), x).
Prove the following version of the fixed point theorem: There is a
primitive recursive function fix(u) such that for all x, u,
<I)fix(u)(x) = (Dd>u(fix(u))(x)'
Let S be an acceptable programming system with universal functions

(™ Prove the following: For every partially computable function
g(z,x,,...,x,,) there is a number e such that

Y (xy,...,x,) =gle,x;,...,x,).

That is, a version of the recursion theorem holds for S. [See Exercise
5.4 for the definition of acceptable programming systems.]

A Computable Function That Is Not
Primitive Recursive

In Chapter 3 we showed that all primitive recursive functions are com-
putable, but we did not settle the question of whether all computable

106 Chapter 4 A Universal Program

functions are primitive recursive. We shall deal with this matter by
showing how to obtain a function A(x) that is computable but is not
primitive recursive. Our method will be to construct a computable function
¢(t, x) that enumerates all of the unary primitive recursive functions. That
is, it will be the case that

1. for each fixed value ¢ = ¢,, the function ¢(z,,x) will be primitive
recursive;

2. for each unary primitive recursive function f(x), there will be a
number ¢, such that f(x) = &(¢, x).

Once we have this function ¢ at our disposal, we can diagonalize,
obtaining the unary computable function ¢(x,x) + 1 which must be
different from all primitive recursive functions. (If it were primitive recur-
sive, we would have

d(x,x) +1=o(t,,x)

for some fixed ¢, and setting x = ¢, would lead to a contradiction.)

We will obtain our enumerating function by giving a new characteriza-
tion of the unary primitive recursive functions. However, we begin by
showing how to reduce the number of parameters needed in the operation
of primitive recursion which, as defined in Chapter 3 (Eq. (2.2)), proceeds
from the total n-ary function f and the total n + 2-ary function g to yield
the n + 1-ary function A such that

h(x,,...,x,,0) = f(x,,...,x,)
h(x,,...,x,,t+1) =g, h(x,,...,x,,1), X ,...,X,).

If n > 1 we can reduce the number of parameters needed from n to n — 1
by using the pairing functions. That is, let

fxyseox,) =FCxy e 0, 1(x,)y r(x,_),
§ou,x,,...,x,_) =gt u,xy,....x,_5,1(x,_)),r(x,_),
h(x,,....,x,_;,1) =h(x,,...,x,_,,0(x,_)),r(x,_)),0).
Then, we have
h(xy X, 1,00 =f(x,,..., %,)
RCxpyox, ot + D) =g(6 R, x, 0, X, x,).
Finally, we can retrieve the original function 4 from the equation

h(xy,...,x,,8) =h(xy,. ., x,_5,{x,_1,X,),1).

9. A Computable Function That Is Not Primitive Recursive 107

By iterating this process we can reduce the number of parameters to 1,
that is, to recursions of the form

h(x,0) = f(x)
h(x,t +1) =g(t,h(x,1),x)

9.1)

Recursions with no parameters, as in Eq. (2.1) in Chapter 3, can also
readily be put into the form (9.1). Namely, to deal with

y(0) =k
gt +1) = 0@, (1),
we set f(x) = k (which can be obtained by k compositions with s(x)
beginning with n(x)) and

g(x,, x,,x3) = e(u?(xl s Xy 5 X3), u%(xl s Xy, X3))

in the recursion (9.1). Then, () = h(x,) for all x. In particular, y(¢) =
h(u}(2), ul(0).
We can simplify recursions of the form (9.1) even further by using the
pairing functions to combine arguments. Namely, we set
h(x,0) = Ch(x,0),{x,1)).

Then, we have
h(x,0) = (f(x),{x,0))
h(x,t + 1) = (h(x,t + 1), {x,t + 1))
=(glt,h(x,0),x),{x,t + 1))
= §(h(x,1)),
where
gu) = (g(r(r(w)), I(u), I(r(u)), I(r(u)), r(r(u)) + 1)).

Once again, the original function A can be retrieved from /; we can use
the equation

h(x,1) = I(h(x,1)).

Now this reduction in the complexity of recursions was only possible
using the pairing functions. Nevertheless, we can use it to get a simplified
characterization of the class of primitive recursive functions by adding the
pairing functions to our initial functions. We may state the result as a
theorem.

108 Chapter 4 A Universal Program

Theorem 9.1. The primitive recursive functions are precisely the func-
tions obtainable from the initial functions

s(x),n(x),l(z),r(2),{x,y) and u}, 1<i<n

using the operations of composition and primitive recursion of the particu-
lar form

h(x,0) = f(x)
h(x,t + 1) = g(h(x,1)).

The promised characterization of the unary primitive recursive functions
is as follows.

Theorem 9.2. The unary primitive recursive functions are precisely those
obtained from the initial functions s(x) = x + 1, n(x) = 0, I(x), r(x) by
applying the following three operations on unary functions:

1. to go from f(x) and g(x) to f(g(x));
2. to go from f(x) and g(x) to { f(x), g(x));
3. to go from f(x) and g(x) to the function defined by the recursion

h(0) =0
t
f(E) if t + 1is odd,
h(t+1) = f+1
g(h(2)) if t + 1is even.

Proof. Let us write PR for the set of all functions obtained from the
initial functions listed in the theorem using operations 1 through 3. We
will show that PR is precisely the set of unary primitive recursive functions.

To see that all the functions in PR are primitive recursive, it is necessary
only to consider operation 3. That is, we need to show that if f and g are
primitive recursive, and /4 is obtained using operation 3, then A is also
primitive recursive. What is different about operation 3 is that A(z + 1) is
computed, not from 4(z) but rather from A(z/2) or h((¢ + 1)/2), depend-
ing on whether ¢ is even or odd. To deal with this we make use of Godel
numbering, setting

h(n) = [h(0),...,h(n — D]if n > 0.

9. A Computable Function That Is Not Primitive Recursive 109

We will show that # is primitive recursive and then conclude that the same
is true of h by using the equation®

h(n) = (h(n + 1)n+1.

Then (recalling that p, is the nth prime number) we have
h(n + 1) = h(n) - phn

h(n) - pfin/2p if n is odd,

h(n) - p8ar2) if n is even.

Here, we have used |n /2] because it gives the correct value whether n is
even or odd and because we know from Chapter 3 that it is primitive
recursive.

Next we will show that every unary primitive recursive function belongs
to PR. For this purpose we will call a function g(x,,...,x,) satisfactory if
it has the property that for any unary functions 4,(¢),..., h,(t) that belong
to PR, the function g(h,(¢),...,h,(¢)) also belongs to PR. Note that a
unary function g(¢) that is satisfactory must belong to PR because g(¢) =
g(ul(#)) and uj(r) = (l(¢),r(¢)) belongs to PR. Thus, we can obtain our
desired result by proving that all primitive recursive functions are satisfac-
tory.*

We shall use the characterization of the primitive recursive functions of
Theorem 9.1. Among the initial functions, we need consider only the
pairing function {x,, x,) and the projection functions u} where 1 <i < n.
If A,(¢) and h,(¢) are in PR, then using operation 2 in the definition of PR,
we see that {A,(2), h,(¢)) is also in PR. Hence, {x,, x,) is satisfactory. And
evidently, if A,(¢),...,h,(¢t) belong to PR, then u/(h(2),...,h, (1)), which
is simply equal to A4,(¢), certainly belongs to PR, so u! is satisfactory.

To deal with composition, let

h(xy,...,x) =f(g(xy,..0,x,), ..., 8:(x,...,x,))

where g,,...,8, and f are satisfactory. Let h(¢),...,h,(t) be given
functions that belong to PR. Then, setting

(1) =g(h(1),...,h,(1))

3 This is a general technique for dealing with recursive definitions for a given value in
terms of smaller values, so-called course-of-value recursions. See Exercise 8.5 in Chapter 3.

* This is an example of what was called an induction loading device in Chapter 1.

110 Chapter 4 A Universal Program

for 1 <i < k we see that each g; belongs to PR. Hence
h(h(8),.... h,(8)) = f(§,(1),..., §,(1)

belongs to PR, and so, 4 is satisfactory.
Finally, let

h(x,0) = f(x)
h(x,t +1) = g(h(x,t))

where f and g are satisfactory. Let ¢(0) =0 and let (¢t + 1) =
h(r(2), 1(¢)). Recalling that

(a,b) =2°2b + 1) — 1,

we consider two cases according to whether ¢ + 1 = 2°(2b + 1) is even or
odd. If £ + 1 is even, then a > 0 and

Y+ 1) =h(b,a)
=g(h(b,a — 1))
=gy Q7126 + 1))
=gyt + 1) /2)).
On the other hand, if ¢+ + 1 is odd, then a = 0 and
Yyt + 1) =h(b,0)

= f(b)
= f(t/2).
In other words,
$(0) =0
f(i) if £ + 11isodd,
pl+1) = r+1
g(zp(T)) if ¢ + 1is even.

Now f and g are satisfactory, and, being unary, they are therefore in PR.
Since ¢ is obtained from f and g using operation 3, ¢ also belongs to PR.
To retrieve h from ¢ we can use h(x, y) = ¢({x,y) + 1). So,

h(h(1), hy (1)) = Y (s(Kh(2), hy(2))))

9. A Computable Function That Is Not Primitive Recursive 111

from which we see that if £, and h, both belong to PR, then so does
h(h,(1), h,(1)). Hence h is satisfactory. [|

Now we are ready to define the function ¢(z, x), which we shall also
write as ¢,(x), that will enumerate the unary primitive recursive functions:

x+1 ift=20
0 iftr=1
I(x) ift=2
r(x) ifr=3

(x) = By (D) (X)) iftr=3n+1,n>0

l (Piny(X), byy(x)) ift=3n+2,n>0

0 ift=3n+3,n>0and x=0
Gy ((x = 1)/2) ift=3n+3,n>0and x is odd
i) (x/2) ift=3n+3,n>0and x is even

Here ¢(x), ¢,(x), ¢,(x), ¢5(x) are the four initial functions. For ¢ > 3, ¢
is represented as 3n +i where n >0 and i =1, 2 or 3; the three
operations of Theorem 9.2 are then dealt with for values of ¢ with the
corresponding value of i. The pairing functions are used to guarantee all
functions obtained for any value of ¢ are eventually used in applying each
of the operations. It should be clear from the definition that ¢(z, x) is a
total function and that it does enumerate all the unary primitive recursive
functions. Although it is pretty clear that the definition provides an
algorithm for computing the values of ¢ for any given inputs, for a
rigorous proof more is needed. Fortunately, the recursion theorem makes
it easy to provide such a proof. Namely, we set

g(z,t,x)

x+1 ift=20
0 ifr=1
I(x) ift=2
r(x) ift=3

_ | ®2U(n), 2P (r(n), x)) ift=3n+1,n>0
(PPU(n), x), P (r(n),x)) ift=3n+2,n>0
0 ift=3n+3,n>0and x=0
OA(I(n),x/2]) ift =3n+3,n > 0and x is odd
OA(r(n),®®(t,1x/21) if t=3n+3,n>0and x is even

112 Chapter 4 A Universal Program

Then, g(z,t, x) is partially computable, and by the recursion theorem,
there is a number e such that

gle,t,x) = (¢, x).

Then, since g(e, ¢, x) satisfies the definition of ¢(¢, x) and that definition
determines ¢ uniquely as a total function, we must have
¢(t,x) = gle,t,x),

so that ¢ is computable.
The discussion at the beginning of this section now applies and we have
our desired result.

Theorem 9.3. The function ¢(x, x) + 1 is a computable function that is
not primitive recursive.

Exercises

1. Show that ¢(¢, x) is not primitive recursive.

2. Give a direct proof that ¢(¢,x) is computable by showing how to
obtain an . program that computes ¢. [Hint: Use the pairing func-
tions to construct a stack for handling recursions.]

5

Calculations on Strings

1. Numerical Representation of Strings

So far we have been dealing exclusively with computations on numbers.
Now we want to extend our point of view to include computations on
strings of symbols on a given alphabet. In order to extend computability
theory to strings on an alphabet A4, we wish to associate numbers with
elements of 4* in a one—one manner. We now describe one convenient
way of doing this: Let A4 be some given alphabet. Since A is a set, there is
no order implied among the symbols. However, we will assume in this
chapter that the elements of A have been placed in some definite order. In
particular, when we write 4 = {s;,...,s,}, we think of the sequence
S15.-.>$, as corresponding to this given order. Now, let w =s;s; -
5;,8;,- Then we associate with w the integer

x=i,n*"+i _, -0Vt i n+i,. (1.1)
k k—1 1 0

With w = 0, we associate the number 0. (It is for this reason that we use
the same symbol for both.) For example, let A4 consist of the symbols
a, b, ¢ given in the order shown, and let w = baach. Then, the correspond-
ing integer is

x=2-3+1-334+1-324+3-3" +2 =1209.
113

114 Chapter 5 Calculations on Strings

In order to see that the representation (1.1) is unique, we show how to
retrieve the subscripts iy, i;,..., i, from x assuming that x # 0. We define
the primitive recursive functions:

. _[R(x,y) if ~(ylx)
R*(x,y) = { otherwise,

. [Lxsy] if ~(ylx)
0" (x,y) = {lx/yJ ~ 1 otherwise,

where the functions R(x, y) and |x/y| are as defined in Chapter 3, Sec-
tion 7. Then, as we shall easily show, for y # 0,

x R*(x,y)
v Q% (x,y) + — 0 <R*(x,y) <y.

This equation expresses ordinary division with quotient and remainder:

X R(x,y)
- = +)
; lx/y] y

as long as y is not a divisor of x. If y is a divisor of x we have

R*(x,)
% — Lyl = eyl = 1) + % 0 (x,y) + —2

Thus, what we are doing differs from ordinary division with remainders in
that “remainders” are permitted to take on values between 1 and y rather
than between 0 and y — 1.

Now, let us set

Ug=x, Uy, =0 u,,n). 1.2)
Thus, by (1.1)
ug =i, -n*+i,_ -on*f N+ +ion + i,
U, =i 'nk_1+i _ .nk—2+... +i,,
1 k k—1 1 (13)
uk = ik‘
Therefore,
i, =R"(u,,n), m=0,1,...,k. (14)

1. Numerical Representation of Strings 115

Hence, for any number x satisfying (1.1), the string w can be retrieved. It
is worth noting that this can be accomplished using primitive recursive
functions. If we write

g0,n,x) =x,
gm+1,n,x) =Q*(g(m,n,x),n),
then
glm,n,x) =u, (1.5)

as defined by (1.2), where, of course, g is primitive recursive. Moreover, if
we let h(m,n, x) = R*(g(m, n, x), n), then h is also primitive recursive,
and by (1.4)

i, =h(m,n,x), m=0,1,...,k. (1.6)

This method of representing strings by numbers is clearly related to the
usual base n notation for numbers. To explore the connection, it is
instructive to consider the alphabet

D ={1,2,3,4,5,6,7,8,9, X}
in the order shown. Then the number associated with the string 45 is
4-10 + 5 = 45.
On the other hand, the number associated with 2.X is
2-10 + 10 = 30.

(Perhaps we should read 2.X as “twenty-ten”!) Clearly a string on D that
does not include X is simply the usual decimal notation for the number it
represents. It is numbers whose decimal representation includes a 0 which
now require an X.

Thus, in the general case of an alphabet A consisting of s,,...,s,,
ordered as shown, we see that we are simply using a base n representation
in which the “digits” range from 1 to n instead of the usual 0 to n — 1. We
are proceeding in this manner simply to avoid the lack of uniqueness of
the usual base n representation:

79 = 079 = 0079 = 00079 = etc.

This lack of uniqueness is of course caused by the fact that leading zeros
do not change the number being represented.

116 Chapter 5 Calculations on Strings

It is interesting to observe that the rules of elementary arithmetic
(including the use of “carries”) work perfectly well with our representa-
tion. Here are a few examples:

17 17
+1X3 which corresponds to +203
21X 220
29 29
-1X which corresponds to =20
9 9

X5

X 2X
X4X which corresponds to 105
1X X X30
TTa% 3150

(Incidentally, this shows that the common belief that the modern rules of
calculation required the introduction of a digit for 0 is unjustified.) Note in
particular the following examples of adding 1:

X1 3X 3XX 713XX 49
+ 1 + 1 + 1 + 1 + 1
X2 41 411 7411 4x

Adding 1 to X gives a result of 1 with a carry of 1. If the string ends in
more than one X, the carry propagates. Subtracting 1 is similar, with a
propagating carry produced by a string ending in 1:

1X X1 711
-1 - 1 - 1
19 9X 6XX

Now we return to the general case. Given the alphabet A consisting of
$1,-.-,$, in the order shown, the string w = 5,5, - s; 5, is called the
base n notation for the number x defined by (1.1). (0 is the base n notation
for the null string 0 for every n.) Thus when n is fixed we can regard a
partial function of one or more variables on A4* as a function of the
corresponding numbers. (That is, the numbers are just those which the
given strings represent in base n notation.) It now makes perfect sense to
speak of an me-ary partial function on A* with values in A* as being

partially computable, or when it is total, as being computable. Similarly we

1. Numerical Representation of Strings 117

can say that an m-ary function on A* is primitive recursive. Note that for
any alphabet A4 = {s,,...,s,} with the symbols ordered as shown, s,
denotes 1 in base n. Thus an m-ary predicate on A* is simply a total
m-ary function on A4* all of whose values are either s, or 0. And it now
makes sense as well to speak of an m-ary predicate on A* as being
computable.

As was stated in Chapter 1, for a given alphabet A4, any subset of A* is
called a language on A. Once again, by associating with the elements of
A* the corresponding numbers, we can speak of a language on A as being
r.e., Or recursive, or primitive recursive.

It is important to observe that whereas the usual base n notation using a
0 digit works only for n > 2, the representation (1.1) is valid even for
n = 1. For an alphabet consisting of the single symbol 1, the string 11*! of
length x is the base 1 notation for the number £2g 1-(1)' = L}/ 1 = x.
That is, the base 1 (or unary) representation of the number x is simply a
string of ones of length x.

In thinking of numbers (that is, elements of N) as inputs to and outputs
from programs written in our language .%, no particular representation of
these numbers was specified or required. Numbers occur in the theory as
purely abstract entities, just as they do in ordinary mathematics. However,
when we wish to refer to particular numbers, we do so in the manner
familiar to all of us, by writing their decimal representations. These
representations are, of course, really strings on the alphabet that consists
of the decimal digits:

{0? 1,2, 3’ 4,5?6?7’8,9}'

But it is essential to avoid confusing such strings with the numbers they
represent. For this reason, for the remainder of this chapter we shall avoid
the use of decimal digits as symbols in our alphabets. Thus, a string of
decimal digits will always be meant to refer to a number.

Now, let A be some fixed alphabet containing exactly n symbols, say
A =1{s,,$,,...,5,). For each m > 1, we define CONCAT!"™ as follows:

CONCAT (1) = u,
1.7

CONCATY *Puy .oy Uy) =200, 1,

where

z = CONCAT™(u, ..., u,,).

Thus, for given strings u,,...,u,, € A*, CONCAT"(u,,...,u,,) is simply
the string obtained by placing the strings u,,...,u,, one after the other,

118 Chapter 5 Calculations on Strings

or, as is usually said, by concatenating them. We will usually omit the
superscript, so that, for example we may write

CONCAT, (5,5, ,5,5,5;) = §,5,5,5,5,.
Likewise,
CONCAT,(5,5,, 55;5,) = $,5;5,5,5.

However, the string s,s; represents the number 5 in base 2 and the
number 13 in base 6. Also, the string s,s,s, represents the number 8 in
base 2 and the number 44 in base 6. Finally, the string s,s,5,5;5,
represents 48 in base 2 and 2852 in base 6. If we wish to think of
CONCAT as defining functions on N (as will be necessary, for example, in
showing that the functions (1.7) are primitive recursive), then the example
we have been considering becomes

CONCAT,(5,8) = 48 and CONCAT,(13,44) = 2852.
The same example in base 10 gives
CONCAT,,(21,112) = 21112.

Bearing this discussion in mind, we now proceed to give a list of primitive
recursive functions (on A* or N, depending on one’s point of view) that we
will need later.

1. f(u) = |ul. This “length” function is most naturally understood as
being defined on A* and taking values in N. For each x, the number
Y, n’ has the base n representation s{**'); hence this number is
the smallest number whose base n representation contains x + 1
symbols. Thus,

X
lul = min| Y n/ > u
xX<u j=0

2. g(u,v) = CONCAT,(u,v). The primitive recursiveness of this func-
tion follows from the equation

CONCAT, (u,v) = u-n" + v.

3. CONCAT{"u;,...,u,,), as defined in (1.7), is primitive recursive
for each m, n > 1. This follows at once from the previous example
using composition.

4. RTEND,(w) = h(0, n,w), where 4 is as in (1.6). As a function of A*,
RTEND, gives the rightmost symbol of a given word, as is clear from
(1.3) and (1.6).

1. Numerical Representation of Strings 119

5. LTEND,(w) = h(lw| = 1, n,w). LTEND, gives the leftmost symbol
of a given nonempty word.

6. RTRUNC,(w) = g(1, n,w). RTRUNC, gives the result of removing
the rightmost symbol from a given nonempty word, as is clear from
(1.3) and (1.5). When we can omit reference to the base n, we often write
w~ for RTRUNC,(w). Note that 0~ = 0.

7. LTRUNC,(w) = w ~(LTEND,(w) - n'"1). In the notation of (1.3),
for a given nonempty word w, LTRUNC,(w) =w — i, - n¥, i,
LTRUNC,(w) is the result of removing the leftmost symbol from w.

We will now use the list of primitive recursive functions that we have
]ust given to prove the computability of a pair of functions that can be used
in changing base. Thus, let 1 <n <. Let 4 € A, where A is an alphabet
of n symbols and A is an alphabet of / symbols. Thus a string that belongs
to A* also belongs to A*. For any x € N, let w be the word in A* that
represents x in base n. Then, we write UPCHANGE, ,(x) for the number
which w represents in base /. For example, referring to our previous
example, we have UPCHANGE, 4(5) = 13, UPCHANGE, ((8) = 44, UP-
CHANGE, ((48) = 2852. Also UPCHANGE, ,,(5) = 21 and UP-
CHANGE; ,(13) = 21.

Next, for x € N, let w be the string in A* which represents x in base I,
and let w' be obtained from w by crossing out all of the symbols that
belong to 4 — A. Then, w' € A*, and we write DOWNCHANGE, ,(x)
for the number which w' represents in base n. For example, the string
s,8¢s; represents the number 109 in base 6. To obtain
DOWNCHANGE, ((109) we cross out the s, obtaining the string s,s;,
which represents 5 in base 2; thus DOWNCHANGE, 4(10) = 5.

Although UPCHANGE, ; and DOWNCHANGE, , are actually primi-
tive recursive functions, we will content ourselves with proving that they
are computable:

Theorem 1.1. Let 0 <n </ Then the functions UPCHANGE, ; and
DOWNCHANGE, , are computable.

Proof. We begin with UPCHANGE, ;. We write a program which ex-
tracts the successive symbols of the word that the given number represents
in base n and uses them in computing the number that the given word
represents in base [:

[4] IFX=0GOTOE
Z « LTEND,(X)
X « LTRUNC,(X)

Ye«I-Y+2Z
GOTO A4

120 Chapter 5 Calculations on Strings

DOWNCHANGE,, ; is handled 51m11arly Our program will extract the
successive symbols of the word that the given number represents in base /.
However, these symbols will only be used if they belong to the smaller
alphabet, i.e., if as numbers they are < n:

[4] IFX=0GOTOE
Z « LTEND,(X)
X « LTRUNC,(X)

IF Z > n GOTO A
Yen-Y+2Z
GOTO 4 |

Exercises

1. (a) Write the numbers 40 and 12 in base 3 notation using the “digits”
{1,2,3}.
(b) Work out the multiplication 40 - 12 = 480 in base 3.

(¢) Compute CONCAT,(12,15) for n =3, 5, and 10. Why is no
calculation required in the last case?

(d) Compute the following: UPCHANGE;, ,(15), UP-
CHANGE, ,(15), UPCHANGE, ,(15), DOWNCHANGE; ,(15),
DOWNCHANGE, -(15), DOWNCHANGE, ,,(20).

2. Compute each of the following for n = 3.

(a) CONCAT®(17,32).

(b) CONCAT(17,32,11).

(¢c) RTEND,(23).

(d) LTEND,(29).

(e) RTRUNC,(19).

(f) LTRUNC,(18).

3. Do the previous exercise for n = 4.
Show that the function f whose value is the string formed of the

symbols occurring in the odd-numbered places in the input [ie.,
fla,ayay -+ a,) = a,a; ---]is computable.

5. Let A ={s,,...,s,}, and let P(x) be the predicate on N which is true
just when the string in A4* that represents x has an even number of
symbols. Show that P(x) is primitive recursive.

2. A Programming Language for String Computations 121

6. If u # 0, let #(u, v) be the number of occurrences of u as a part of v
le.g., #(bab, ababab) = 2]. Also, let #(0,v) = 0. Prove that #(u,v) is
primitive recursive.

7. Show that UPCHANGE, ;, and DOWNCHANGE, ;, are primitive
recursive.

8. Show that when |u| is calculated with respect to base n notation,
lul < |log, u] + 1 for all u € N.

2. A Programming Language for String Computations

From the point of view of string computations, the language . seems
quite artificial. For example, the instruction

Ve<V+1

which is so basic for integers, seems entirely unnatural as a basic instruc-
tion for string calculations. Thus, for the alphabet {a, b, c}, applying this
instruction to bacc produces bbaa because a carry is propagated. (This will
perhaps seem more evident if, momentarily ignoring our promise to avoid
the decimal digits as symbols in our alphabets, we use the alphabet {1, 2, 3}
and write

2133 + 1 = 2211))

We are now going to introduce, for each n > 0, a programming lan-
guage .%,, which is specifically designed for string calculations on an
alphabet of n symbols. The languages .#, will be supplied with the same
input, output, and local variables as ., except that we now think of them
as having values in the set A4*, where A is an n symbol alphabet. Variables
not otherwise initialized are to be initialized to 0. We use the same
symbols as labels in .#, as in . and the same conventions regarding their
use. The instruction types are shown in Table 2.1.

The formal rules of syntax in ., are entirely analogous to those for .,
and we omit them. Similarly, we use macro expansions quite freely. An
m-ary partial function on A4* which is computed by a program in ., is
said to be partially computable in .#,. If the function is total and partially
computable in ., it is called computable in .7,.

Although the instructions of %, refer to strings, we can just as well
think of them as referring to the numbers that the corresponding strings
represent in base n. For example, the numerical effect of the instruction

X < s5;X

122 Chapter 5 Calculations on Strings

Table 2.1
Instruction Interpretation
VeoV Place the symbol o to the left of the string which is
for each symbol o in the alphabet A the value of V.

Ve Delete the final symbol of the string which is the
value of V. If the value of V is 0, leave it
unchanged.

If V ENDS o GOTO L If the value of V' ends in the symbol o, execute next

for each symbol o in the alphabet 4 the first instruction labeled L; otherwise proceed
and each label L to the next instruction.

in the n symbol alphabet {s,,...,s,} ordered as shown is to replace the
numerical value x by i-n!* + x. Just as the instructions of . are natural
as basic numerical operations, but complex as string operations, so the
instructions of .#, are natural as basic string operations, but complex as
numerical operations.

We now give some macros for use in &, with the corresponding
expansions.

1. The macro IF V' # 0 GOTO L has the expansion

IF V ENDS 5, GOTO L
IF V ENDS 5, GOTO L

IF V ENDS 5, GOTO L

2. The macro V « 0 has the expansion
[A4] VeV
IF V # 0GOTO 4
3. The macro GOTO L has the expansion

Z <0
Z «s,Z
IF Z ENDS s, GOTO L

4. The macro V' « V' has the expansion shown in Fig. 2.1.

The macro expansion of V' « V in %, is quite similar to that in ..

2. A Programming Language for String Computations 123

Z<0
V' <0

[4] IF V ENDS s, GOTO B,
IF V ENDS s, GOTO B,

IF vV ENDS s, GOTO B,
GOTO C
[B;] VeV
V' e sV’
Z < s, Z
GOTO 4
[C] IF Z ENDS s, GOTO D,
IF Z ENDS s, GOTO D,

=12,...,n

IF Z ENDS s, GOTO D,
GOTO E

(D] Zez"
V"‘S,‘V i=12,...,n
GOTO C

Figure 2.1. Macro expansion of V' « V' in .%,.
The block of instructions

IF V ENDS s, GOTO B,
IF V ENDS s, GOTO B,

IF vV ENDS s, GOTO B,
is usually written simply
IF V ENDS 5; GOTO B; (1<i<n)

Such a block of instructions is referred to as a filter for obvious reasons.
Note that at the point in the computation when the first “GOTO C” is
executed, V' and Z will both have the original value of V, whereas V' will
have the value 0. On exiting, Z has the value 0, while V' retains the
original value of V' and V' has been restored to its original value.

If f(x,,...,x,,) is any function that is partially computable in .%,, we
permit the use in ., of macros of the form

V< f,,...,V,)

The corresponding expansions are carried out in a manner entirely analo-
gous to that discussed in Chapter 2, Section 5.

We conclude this section with two examples of functions that are
computable in %, for every n. The general results in the next section will

124 Chapter 5 Cailculations on Strings

[Y« s Y f——EnD]|

x=0
x endss; X — X~
BEGIN TEST X — Y5 Y
i
Carry x ends s,
propagates
- x=0
X - X ——— TEST X |———END |
Y- o5y
x ends s,
X = X~
Y*SIY

Figure 2.2. Flow chart for computing x + 1in %, .

make it clear that these two examples are the only bit of programming in
&, that we shall need to carry out explicitly.

We want to show that the function x + 1 is computable in .%#,. We let
our alphabet consist of the symbols s,,s,,...,s, ordered as shown. The
desired program is exhibited in Fig. 2.3; a flow chart that shows how the
program works is shown in Fig. 2.2.

Our final example is a program that computes x — 1 base n. A flow
chart is given in Fig. 2.4 and the actual program in ., is exhibited in Fig.
2.5. The reader should check both of these programs with some examples.

[B] IF X ENDSs; GOTO 4, (I1<i<n)
Y «sY
GOTO E

[4,] X« X
Yesi o /Yil<i<n

GOTO C
(4] XX
Y «<sY
GOTO B
[C] IF X ENDSs; GOTOD;, (1 <i<n)
GOTO E

[D;] XX
YesY Y<i<n

GOTO C

Figure 2.3. Program that computes x + 1in %, .

2. A Programming Language for String Computations

END
B Carry is
x=0 absorbed
x endss, X « X~
i>1 Y s, 4Y
BEGIN TEST X
x ends s,
vl [x-07 —o
Corry LY Y {x=07] ~ EnD |
propagated
———TesTx |
x=0
x endss,
END
X = X~
Y «s;Y

Figure 2.4. Flow chart for computing x =~ 1in .%,.

[B]

(4]

1

[4,]

[C,]
[C]

(D]

t

IF X ENDS s5; GOTO 4;
GOTO E

XX
Yes,_Y)l<is<n
GOTO C

XX

IF X # 0 GOTO C,
GOTO E

Ye«s,Y

GOTO B

IF X ENDS s; GOTO D,
GOTO E
XX
Y «s5Y
GOTO C

(1<i<n)

(1<i<n)

l<i<n

Figure 2.5. Program that computes x — 1in .%,.

Exercises

125

1. Let A ={s,,s,}. Write out the complete expansion of the macro

X<Yin%.

126

10.

11.

3.

Chapter 5 Calculations on Strings

Write a program in .%, to compute the function f defined in Exercise
1.4.

Show that f(u,v) = u is computable in .7, (uv is the concatenation
of u and v, defined in Chapter 1.)

Let A ={s,...,s,}, and let P(x) be the predicate on A* which is
true just when x has an even number of symbols. Show that P(x) is
computable in ..

Write a program in .%, to compute #(u, v) as defined in Exercise 1.6.

Give an expansion in %, for the macro V' « Vo, which means: Place
the symbol o to the right of the string that is the value of V.

Show that f(x) = x® is computable in .%,. (x® is defined in Chapter
1, Section 3.)

Let A ={s,,...,s,}, and let g(u) = w for all strings u in A*, where
w is the base n notation for the number of symbols in u. Show that g
is computable in .#,.

Let A = {s,,s,}, and let & be the ., program
Y<X+1

Write out the computation of & for input x = s,s5,.
Let A = {s,s,, 53}, and let & be the ., program
YeX-1
Write out the computation of £ for input x = s,s,.
(a) Show that Theorem 1.1 in Chapter 3 holds if we substitute

“computable in .%,” for “computable.”

(b) Show that Theorems 2.1 and 2.2 in Chapter 3 hold if we
substitute “computable in .%,” for “computable.”

(¢) Show that if f(x,,...,x,) is primitive recursive, then it is
computable in .%,.

The Languages .~ and .#,

We now want to compare the functions that can be computed in the
various languages we have been considering, namely, % and the different
%, . For the purpose of making this comparison, we take the point of view
that, in all of the languages, computations are ‘“really” dealing with
numbers, and that strings on an n letter alphabet are simply data objects
being used to represent numbers (using base n of course).

3. The Languages . and .%, 127

We shall see that in fact all of these languages are equivalent. That is, a
function f is partially computable if and only if it is partially computable
in each ., and therefore, also, f is partially computable in any one ., if
and only if it is partially computable in all of them.

To begin with we have

Theorem 3.1. A function is partially computable if and only if it is
partially computable in % .

Proof. 1t is easy to see that the languages % and .#, are really the same.
That is, the numerical effect of the instructions

Ves,V and VeV
in % is the same as that of the corresponding instructions in %

VeV +1 and VeVbV-—-1.

Furthermore, the condition “V ENDS s,” in ., is equivalent to the
condition V' # 0 in .%. (Since s, is the only symbol, ending in s, is
equivalent to being different from the null string.) |

This theorem shows that results we obtain about the languages ., can
always be specialized to give results about .% by setting n = 1.
Next we shall prove

Theorem 3.2. If a function is partially computable, then it is also partially
computable in %%, for each n.

Proof. Let the function f be computed by a program £ in the language
. We translate 2 into a program in ., by replacing each instruction of
& by a macro in ., as follows.

We replace each instruction V' « V' + 1 by the macro V « V + 1, each
instruction V' < V' — 1 by the macro V' < V' = 1, and each instruction IF
V' # 0 GOTO L by the macro IF V' # 0 GOTO L. Here we are using the
fact, proved at the end of the preceding section, that x + 1 and x — 1 are
both computable in base n, and hence can each be used to define a macro
in %,

It is then obvious that the new program computes in ., the same
function f that & computes in .%.]

This is the first of many proofs by the method of simulation: a program
in one language is “simulated” step by step by a corresponding program in
a different language.

We could now prove directly that if a function is partially computable in
&, for any particular n, then it is in fact partially computable in our
original sense. But it will be easier to delay doing so since the result will be
an automatic consequence of our work on Post—Turing programs.

128 Chapter 5 Calculations on Strings

Exercises

1. Give a primitive recursive function b,(n,x) such that any partial
function computed by an % program with x instructions is computed
by some ., program with no more than b,(n, x) instructions.

2. Give a primitive recursive function b$"(n, x,,..., x,,,) such that any
partial function f(x,,..., x,,) computed by an . program in y steps
on inputs x,,...,x, is computed by some ., program in no more
than bY"X(n, x,,...,x,,,y) steps. [Hint: Note that after y steps no
variable holds a value larger than max{x,,..., x,,} + y.]

3. Let n be some fixed number > 0, and let #(%) be a numbering

scheme for %, programs defined exactly like the numbering scheme
for & programs given in Chapter 4, except that #(I) = {(a,{b,c)),

where
0 if the statementin [is V < V™
i if the statement in [is V « s,V
#(L')n+i
if the statement in [is IF IV ENDS s; GOTO L'.
(a) Define

HALT,(x, y) < .%, program y eventually halts on input x.

Show that the predicate HALT,(x, y) is not computable in .&,.

(b) Define the universal function ®{™ for m-ary functions partially
computable in ., as follows:

DXy sy Xy, ¥) = Y (xy,...,X,,), Where #(P) =y.

(Of course, y4™ is the m-ary partial function computed by the
&, program) Show that for each m > 0, the function
®{™(x,,...,x,,y) is partially computable in .7,.

(c)* State and prove a version of the parameter theorem for .%,.

(d)* State and prove a version of the recursion theorem for ..

(e)* Show that ., is an acceptable programming system. [See Exer-
cise 5.4 in Chapter 4 for the definition of acceptable programming
systems.]

4.* Give an upper bound on the length of the shortest .%, program which
computes the function ® (x) defined in Chapter 4. [See Exercise 3.6 in
Chapter 4.]

4. Post- Turing Programs 129

4. Post-Turing Programs

In this section, we will study yet another programming language for string
manipulation, the Post-Turing language . Unlike .¥,, the language 9 has
no variables. All of the information being processed is placed on one linear
tape. We can conveniently think of the tape as ruled into squares each of
which can carry a single symbol (see Fig. 4.1). The tape is thought of as
infinite in both directions. Each step of a computation is sensitive to just
one symbol on the tape, the symbol on the square being “‘scanned.” We
can think of the tape passing through a device (like a tape recorder), or we
can think of the computer as a tapehead that moves along the tape and is
at each moment on one definite square (or we might say “tile”). With this
simple scheme, there are not many steps we can imagine. The symbol
being scanned can be altered. (That is, a new symbol can be “printed” in
its place.) Or which instruction of a program is to be executed next can
depend on which symbol is currently being scanned. Or, finally, the head
can move one square to the left or right of the square presently scanned.
We are led to the language shown in Table 4.1.

Although the formulation of .7~ we have presented is closer in spirit to
that originally given by Emil Post, it was Turing’s analysis of the computa-
tion process that has made this formulation seem so appropriate. This
language has played a fundamental role in theoretical computer science.

Turing’s analysis was obtained by abstracting from the process carried
out by a human being engaged in calculating according to a mechanical
deterministic algorithm. Turing reasoned that there was no loss of general-
ity in assuming that the person used a linear paper (like the paper tape in
an old-fashioned adding machine or a printing calculator) instead of
two-dimensional sheets of paper. Such a calculator is then engaged in
observing symbols and writing symbols. Again without loss of generality,
we can assume that only one symbol at a time is observed, since any finite
group of symbols can be regarded as a single “megasymbol.” Finally, we
can assume that when the calculator shifts attention it is to an immediately
adjacent symbol. For, to look, say, three symbols to the left is equivalent to
moving one symbol to the left three successive times. And now we have
arrived at precisely the Post-Turing language.

In order to speak of a function being computed by a Post—Turing
program, we will need to deal with input and output. Let us suppose that

Figure 4.1

130 Chapter 5 Calculations on Strings

Table 4.1
Instruction Interpretation
PRINT & Replace the symbol on the square being scanned by o.

IF o GOTO L GOTO the first instruction labeled L if the symbol currently scanned is o
otherwise, continue to the next instruction.

RIGHT Scan the square immediately to the right of the square presently scanned.

LEFT Scan the square immediately to the left of the square presently scanned.

we are dealing with string functions on the alphabet 4 = {s,,s,,...,s,}.
We will use an additional symbol, written s,, which we call the blank and
use as a punctuation mark. Often we write B for the blank instead of s,. All
of our computations will be arranged so that all but a finite number of
squares on the tape are blank, i.e., contain the symbol B. We show the
contents of a tape by exhibiting a finite section containing all of the
nonblank squares. We indicate the square currently being scanned by an
arrow pointing up, just below the scanned square.
For example we can write

s, 8§, B s, s

T

to indicate that the tape consists of s;s,Bs,s; with blank squares to the
left and right, and that the square currently scanned contains the s,
furthest to the right. We speak of a tape configuration as consisting of the
tape contents together with a specification of one square as being currently
scanned.

Now, to compute a partial function f(x,,..., x,,) of m variables on A*,
we need to place the m strings x,,..., x,, on the tape initially. We do this
using the initial tape configuration:

B x Bx, ... Bx
T

That is, the inputs are separated by single blanks, and the symbol initially
scanned is the blank immediately to the left of x,. Here are a few
examples:

m?*

1. n =1, so the alphabet is {s;}. We want to compute a function
f(xy, x,) and the initial values are x, = s;s5,, x, = s,. Then the tape
configuration initially will be

B s, s; B s,.
T

4. Post-Turing Programs 131

Of course, there are infinitely many blank squares to the left and
right of the finite section we have shown:

BBBBs s,Bs, BBB
T

2. n=2,x, =55,, X, = 5,5, X3 =5,5,. Then the tape configuration
is initially
B s, s, Bs,s; Bs,s,.

T

3.n=2, x;,=0, x, =5,5, X3 =5,. Then the tape configuration is
initially
B B s, s; Bs,.
T

4. n =2, x, =s.5,, X, =5,5,, X3 =0. Then the tape configuration is
initially
B s, s, Bs, s, B.
T

Note that there is no way to distinguish this initial tape configuration from
that for which there are only two inputs x; = s;s, and x, = s,s,. In other
words, with this method of placing inputs on the tape, the number of
arguments must be provided externally. It cannot be read from the tape.
A simple example of a Post—Turing program is given in Fig. 4.2.
Beginning with input x, this program outputs s,s,x. More explicitly,
beginning with a tape configuration

B x
T

this program halts with the tape configuration

B s, s; x.

T

Figure 4.2

PRINT s,
LEFT
PRINT s,
LEFT

132 Chapter 5 Calculations on Strings

[A] RIGHT
IF s, GOTO A
IF s, GOTO 4
IF s, GOTO A
PRINT s,
RIGHT
PRINT s,

[C] LEFT
IF s, GOTO C
IF 5, GOTO C
IF 5, GOTO C

Figure 4.3

Next, for a slightly more complicated example, we consider Fig. 4.3.
Here we are assuming that the alphabet is {s,, s,, 5;}. Let x be a string on
this alphabet. Beginning with a tape configuration

B x
1

this program halts with the tape configuration

B x s, s,.

7

The computation proceeds by first moving right until the blank to the right
of x is located. The symbol s, is then printed twice and then the
computation proceeds by moving left until the blank to the left of x is
again located.

Figure 4.4 exhibits another example, this time with the alphabet {s,, s,}.
The effect of this program is to “erase” all of the occurrences of s, in the
input string, that is to replace each s, by B. For the purpose of reading
output values off the tape, these additional Bs are ignored. Thus, if f(x) is
the function which this last program computes, we have, for example,

f(sy8,8,) =5y,
f(sys581) =518,
f(0) = 0.

Of course, the initial tape configuration

B s, s, s

1

4. Post-Turing Programs

(C]

(4]

[A4]

[B]

(]

(D]

RIGHT
IF B GOTO E
IF s, GOTO 4
IF s, GOTO C
PRINT B

IF B GOTO C

Figure 4.4

RIGHT

IF B GOTO E
PRINT M
RIGHT

IF s, GOTO B
RIGHT

IF s, GOTO C
PRINT s,
LEFT

IF s, GOTO D
IF B GOTO D
PRINT s,

IF s, GOTO A

Figure 4.5

leads to the final tape configuration

but the blanks are ignored in reading the output.

B s Bs B

0

133

For our final example we are computing a string function on the
alphabet {s,}. However, the program uses three symbols, B, s,, and M.
The symbol M is a marker to keep track of a symbol being copied. The

program is given in Fig. 4.5. Beginning with the tape configuration
B u

T

where u is a string in which only the symbol s, occurs, this program will
terminate with the tape configuration

B u B u.

T

134 Chapter 5 Calculations on Strings

(Thus we can say that this program computes the function 2x using unary
notation.) The computation proceeds by replacing each successive s,
(going from left to right) by the marker M and then copying the s, on the
right.

We conclude this section with some definitions. Let f(x,,..., x,,) be an
m-ary partial function on the alphabet {s,,..., s,}. Then the program £ in
the Post—Turing language 7 is said to compute f if when started in the
tape configuration

Bx B ... Bx
T

it eventually halts if and only if f(x,,..., x,,) is defined and if, on halting,
the string f(x,,...,x,) can be read off the tape by ignoring all symbols
other than s,,...,s,. (That is, any “markers” left on the tape as well as
blanks are to be ignored.) Note that we are thus permitting % to contain
instructions that mention symbols other than s,,...,s,.

The program £ will be said to compute f strictly if two additional
conditions are met:

m

1. no instruction in & mentions any symbol other than s, s,...,s,;
2. whenever & halts, the tape configuration is of the form
.BBBByBB ...,
T

where the string y contains no blanks.

Thus when 2 computes f strictly, the output is available in a consecu-
tive block of squares on the tape.

Exercises

1. Write out the computation performed by the Post—Turing program in
Fig. 4.4 on input string s,5,5,s;. Do the same for input s,s5,5;5;.

2. Write out the computation performed by the Post-Turing program in
Fig. 45 on input string s,5,Bs;s;s,. Do the same for input
5,8,Bs{Bs;s; .

3. For each of the following functions, construct a Post—Turing program
that computes the function strictly.

@ f(u,v) = w.

(b) the predicate P(x) given in Exercise 2.4.
(c) the function f(x) = x® (see Exercise 2.7).
(d) the function #(u,v) given in Exercise 1.6.

5. Simulation of ., in 9 135

4. For each of the following functions, construct a Post—Turing program
using only the symbols s, s; that computes the function in base 1
strictly.

@ flx,y)=x+y.

b f(x)=2x.

© flx,y)=x-+y.

@ flx,y)=2x+y~-1

5. Construct a Post-Turing program using only the symbols s,, s,, s,
that computes the function s(x) = x + 1 in base 2 strictly.

5. Simulation of ., in 7

In this section we will prove

Theorem 5.1. If f(x,,..., x,,) is partially computable in .%,, then there is
a Post—Turing program that computes f strictly.

Let & be a program in .%, which computes f. We assume that in

addition to the input variables X,,..., X,, and the output variable Y, &
uses the local variables Z,,..., Z,. Thus, altogether & uses m + k + 1
variables:

Xiveor Xps Zy 5o s 2y Y.
We set [= m + k + 1 and write these variables, in the same order, as
Vi,..., V.

We shall construct a Post-Turing program & that simulates & step by
step. Since all of the information available to & will be on the tape, we
must allocate space on the tape to contain the values of the variables
Vi,...,V;. Our scheme is simply that at the beginning of each simulated
step, the tape configuration will be as follows:

Bx Bx,B..Bx,Bz B .. Bz By,
T
where x,,%,,...,X,,,2;,...,2;,y are the current values computed for
the variables X, X,,...,X,,,Z;,.-.,Z;,Y. This scheme is especially
convenient in that the initial tape configuration
B x Bx, B ... Bx,
1

is already in the correct form, since the remaining variables are initialized
to be 0. So we must show how to program the effect of each instruction

136 Chapter 5 Calculations on Strings

type of %, in the language 7. Various macros in .7 will be useful in doing
this, and we now present them.

The macro
GOTO L
has the expansion
IF s, GOTO L
IF s, GOTO L
IFs, GOTO L
The macro
RIGHT TO NEXT BLANK

has the expansion

[A4] RIGHT
IF B GOTO E
GOTO 4

Similarly the macro
LEFT TO NEXT BLANK
has the expansion

[A] LEFT

IF B GOTO E

GOTO A4
The macro

MOVE BLOCK RIGHT
has the expansion

[C] LEFT
IF s, GOTO 4,
IF s, GOTO 4,

IF s, GOTO 4,
[4,] RIGHT

[4,] RIGHT
PRINT B
LEFT

5. Simulation of ., in 5 137

The effect of the macro MOVE BLOCK RIGHT beginning with a tape
configuration

B

T

in which the string in the rectangular box contains no blanks, is to
terminate wiih the tape configuration

B B
T

Finally we will use the macro

ERASE A BLOCK

whose expansion is

[A] RIGHT
IF B GOTO E
PRINT B
GOTO 4
This program causes the head to move to the right, with everything erased
between the square at which it begins and the first blank to its right.
We adopt the convention that a number > 0 in square brackets after

the name of a macro indicates that the macro is to be repeated that
number of times. For example,

RIGHT TO NEXT BLANK [3]
is short for

RIGHT TO NEXT BLANK
RIGHT TO NEXT BLANK
RIGHT TO NEXT BLANK

We are now ready to show how to simulate the three instruction types in
the language .%, by Post-Turing programs. We begin with

Vi< sV
In order to place the symbol s; to the left of the jth variable on the tape,
the values of the variables V},...,V, must all be moved over one square to
the right to make room. After the s; has been inserted, we must remember

138 Chapter 5 Calculations on Strings

to go back to the blank at the left of the value of I/} in order to be ready
for the next simulated instruction. The program is

RIGHT TO NEXT BLANK [/]
MOVE BLOCK RIGHT [/ —j + 1]
RIGHT

PRINT s,

LEFT TO NEXT BLANK [f]

Next we must show how to simulate
ViV

The complication is that if the value of V; is the null word, we want it left
unchanged. So we move to the blank immediately to the right of the value
of V;. By moving one square to the left we can detect whether the value of
V; is null (if it is, there are two consecutive blanks). Here is the program:

RIGHT TO NEXT BLANK []
LEFT
IF B GOTO C
MOVE BLOCK RIGHT [j]
RIGHT
GOTO E

[C] LEFT TO NEXT BLANK [— 1]

The final instruction type in ., is

IF V; ENDS s5; GOTO L
and the corresponding Post—Turing program is

RIGHT TO NEXT BLANK []
LEFT
IF s; GOTO C
GOTO D

[C] LEFT TO NEXT BLANK []
GOTO L

[D] RIGHT
LEFT TO NEXT BLANK []

This completes the simulation of the three instruction types of .%.
Thus, given our program £ in the language .#,, we can compile a

5. Simulation of ., in 9 139

corresponding program of . When this corresponding program termi-
nates, the tape configuration will be

.BBBxyB .. Bx,Bz B .. Bz, ByBBB ...,
T

where the values between blanks are those of the variables of & on its
termination. However, we wish only y to remain as output. Hence to
obtain our program & in the language 9 we put at the end of the
compiled Post—Turing program the following:

ERASE A BLOCK [/ - 1]

After this last has been executed, all but the last block will have been
erased and the tape configuration will be

.BBBByBBB
T

Thus, the output is in precisely the form required for us to be able to
assert that our Post—Turing program computes f strictly.

Exercises

1. (a) Use the construction in the proof of Theorem 5.1 to give a
Post—-Turing program that computes the function f(x) computed
by the ., program

[A] IF X ENDS s, GOTO B
XX
IF X # 0 GOTO A4
GOTO E

[B] Y «s5,Y
XX
GOTO A4

(b) Do the same as (a) for f(x,, x,).

2. Answer question 1(a) with the instruction [B]Y « s,Y replaced by [B]
Y<Y+ 1.

3. Give a primitive recursive function b,(n, x, z) such that any partial
function computed by an %, program that has x instructions and that
uses only variables among X,,...,X,,Z,,...,Z,,Y is computed
strictly by a Post—Turing program with no more than b(n, x,/ + k + 1)
instructions.

140 Chapter 5 Calculations on Strings

4. Give a primitive recursive function bY"X(n, x,,...,x,,, ¥, z) such that
any partial function computed by an %, program in y steps on input
Xy,...,X,, using only variables among X,,...,X,,Z,,...,Z,,Y, is
computed strictly by some Post—Turing program in no more than
by (n,x,,...,x,,y,l + k + 1) steps. [Hint: Note that after y steps
no variable holds a value larger than max{x,,..., x,} + y.]

5.* Give an upper bound on the length of the shortest Post—Turing
program that computes ® (x). [See Exercise 3.4.]

6. Simulation of 7 in &~

In this section we will prove

Theorem 6.1. If there is a Post—Turing program that computes the partial
function f(x,,...,x,,), then f is partially computable.

What this theorem asserts is that if the m-ary partial function f on A*
is computed by a program of 7, then there is a program of . that
computes f (regarded as an m-ary partial function on the base n numeri-
cal values of the strings). Before giving the proof we observe some of the
consequences of this theorem. As shown in Fig. 6.1, the theorem completes
a “circle” of implications. Thus all of the conditions in the figure are
equivalent. To summarize:

Theorem 6.2. Let f be an m-ary partial function on A*, where A is an
alphabet of n symbols. Then the following conditions are all equivalent:

1. f is partially computable;
2. f is partially computable in .%;

f is partially
computable

f1s computed f is partially
by a Post-Turing g:omputable
program ins,

f is computed
strictly by a
Post-Turing
program

Figure 6.1

6. Simulation of 7 in .~ 141

3. f is computed strictly by a Post—Turing program;
4. f is computed by a Post—Turing program.

The equivalence of so many different notions of computability consti-
tutes important evidence for the correctness of our identification of
intuitive computability with these notions, i.e., for the correctness of
Church’s thesis.

Shifting our point of view to that of an m-ary partial function on N, we
have

Corollary 6.3. For any n,/ > 1, an m-ary partial function f on N is
partially computable in ., if and only if it is also partially computable in
.

Proof. Each of these conditions is equivalent to the function f being
partially computable. [|

By considering the language %, we have

Corollary 6.4. Every partially computable function is computed strictly by
some Post—Turing program that uses only the symbols s, s; .

Now we return to the proof of Theorem 6.1. Let & be a Post—Turing
program that computes f. We want to construct a program & in the
language .% that computes f. & will consist of three sections:

BEGINNING
MIDDLE
END

The MIDDLE section will simulate & in a step-by-step ‘“interpretive”
manner. The task of BEGINNING is to arrange the input to & in the
appropriate format for MIDDLE, and the task of END is to extract the
output.

Let us suppose that f is an m-ary partial function on A*, where
A ={s,,...,s,}. The Post—Turing program £ will also use the blank B
and perhaps additional symbols (we are not assuming that the computation
is strict!) s,,4,...,5,. We write the symbols that & uses in the order

S1secerSnsSuiire--sS,, B.

The program & will simulate & by using the numbers that strings on this
alphabet represent in base r + 1 as “codes” for the corresponding strings.
Note that as we have arranged the symbols, the blank B represents the
number r + 1. For this reason we will write the blank as s, , | instead of s, .
The tape configuration at a given stage in the computation by & will be

142 Chapter 5 Calculations on Strings

kept track of by & using three numbers stored in the variables L, H, and
R. The value of H will be the numerical value of the symbol currently
being scanned by the head. The value of L will be a number which
represents in base r + 1 a string of symbols w such that the tape contents
to the left of the head consists of infinitely many blanks followed by w. The
value of R represents in a similar manner the string of symbols to the right
of the head. For example, consider the tape configuration

.BBBBs,s Bs;s; s, BBB....
T

Here r = 3, so we will use the base 4. Then we would have
H = 3.
We might have
L=2-4+1-4+4=40,
R=1-4+2=6.

An alternative representation could show some of the blanks on the left or
right explicitly. For example, recalling that B represents r + 1 = 4,

L=4-4+2-42+1-4+4 =29,
R=1-4+2-4+4-4+4=116.

Now it is easy to simulate the instruction types of 7 by programs of ..
An instruction PRINT s; is simulated by

H«i
An instruction IF s; GOTO L is simulated by
IFH=iGOTO L

An instruction RIGHT is simulated by

L < CONCAT,, (L, H)
H < LTEND,, (R)

R « LTRUNC,, (R)
IFR +# 0 GOTO E
Rer+1

6. Simulation of 7 in .% 143

Similarly an instruction LEFT is simulated by

R < CONCAT, (H,R)
H < RTEND,, (L)

L <« RTRUNGC,, (L)
IFL # 0 GOTO E
L<r+1

Now the section MIDDLE of @& can be assembled simply by replacing
each instruction of & by its simulation.

In writing BEGINNING and END we must deal with the fact that f is
an me-ary function on {s,,...,s,}*. Thus the initial values of X,..., X,,
for @ will be numbers that represent the input strings in base n. Theorem
1.1 will enable us to change base as required. The section BEGINNING
has the task of calculating the initial values of L, H, R, that is, the values

corresponding to the tape configuration

Bx Bx,B ... Bx
T

m?

where the numbers x,,..., x,, are represented in base n notation. Thus
the section BEGINNING of & can simply be taken to be

L <r+1
H «<r+1
Z, < UPCHANGE, ,, (X))
Z, <« UPCHANGE, ,, (X;)

Z,, < UPCHANGE, ,, (X,,)
R < CONCAT,, (Z,,r+1,Z,,r+1,...,r+1,2,)
Finally, the section END of & can be taken simply to be
Z <« CONCAT, (L,H,R)
Y « DOWNCHANGE, ,,,(Z)

We have now completed the description of the program & that simu-
lates 2, and our proof is complete.]

Exercises

1. Use the construction in the proof of Theorem 6.1 to give an &
program that computes the same unary function as the Post—Turing

144 Chapter 5 Calculations on Strings

2. For any Post—-Turing program 2, let #() be #(&), where & is the
& program obtained for & in the proof of Theorem 6.1, and let
HALT,(x, y) be defined

HALT,(x, y) <y is the number of a Post—Turing program

that eventually halts on input x.

Show that HALT,(x, y) is not a computable predicate.

3.* Show that the Post—Turing programs, under an appropriate ordering
Py, Py,..., are an acceptable programming system. [See Exercise 5.4
in Chapter 4 for the definition of acceptable programming systems.]

6

Turing Machines

1. Internal States

Now we turn to a variant of the Post—Turing language that is closer to
Turing’s original formulation. Instead of thinking of a list of instructions,
we imagine a device capable of various internal states. The device is, at any
particular instant, scanning a square on a linear tape just like the one used
by Post—Turing programs. The combination of the current internal state
with the symbol on the square currently scanned is then supposed to
determine the next “action” of the device. As suggested by Turing’s
analysis of the computation process (see Chapter 5, Section 4), we can take
the next action to be either “printing” a symbol on the scanned square or
moving one square to the right or left. Finally, the device must be
permitted to enter a new state.

We use the symbols ¢,,4,,q5,... to represent states and we write
S0, S158,,... to represent symbols that can appear on the tape, where as
usual s, = B is the “blank.” By a quadruple we mean an expression of one
of the following forms consisting of four symbols:

Lg s sc q
2.9, s5; R q,
3.9 5; L gq.

145

146 Chapter 6 Turing Machines

We intend a quadruple of type 1 to signify that in state g; scanning symbol
s;, the device will print s, and go into state g,. Similarly, a quadruple of
type 2 signifies that in state g; scanning s; the device will move one square
to the right and then go into state g,. Finally, a quadruple of type 3 is like
one of type 2 except that the motion is to the left.

We now define a Turing machine to be a finite set of quadruples, no two
of which begin with the same pair g;s;. Actually, any finite set of quadru-
ples is called a nondeterministic Turing machine. But for the present we will
deal only with deterministic Turing machines, which satisfy the additional
“consistency” condition forbidding two quadruples of a given machine to
begin with the same pair g;s;, thereby guaranteeing that at any stage a
Turing machine is capable of only one action. Nondeterministic Turing
machines are discussed in Section 5.

The alphabet of a given Turing machine .# consists of all of the symbols
s; which occur in quadruples of .# except s, .

We stipulate that a Turing machine always begins in state g, . Moreover,
a Turing machine will halt if it is in state g; scanning s; and there is no
quadruple of the machine which begins q;s;. With these understandings, and
using the same conventions concerning input and output that were em-
ployed in connection with Post—Turing programs, it should be clear what it
means to say that some given Turing machine .# computes a partial
function f on A* for a given alphabet A.

Just as for Post—Turing programs, we may speak of a Turing machine .#
that computes a function strictly, namely: assuming that .# computes f
where f is a partial function on A*, we say that .# computes f strictly if

1. the alphabet of .# is a subset of A;
2. whenever .# halts, the final configuration has the form

By

T
qi

where y contains no blanks.

Writing s, = B, s; = 1 consider the Turing machine with alphabet {1}:

9. B R gq,
9 1 R gq
9, B 1 gq;
9 1 R ¢
93 B 1 gq,.

1. Internal States 147

Table 1.1
State
Symbol q, q; q3
B R q, 1 g5 1 q,
1 R q, R q;

We can check the computation:

B111, B111,...,B111B, B1111, B1111B, B11111
) T))) T
q1 q, q, q; q; a1

The computation halts because there is no quadruple beginning q,1.
Clearly, this Turing machine computes (but not strictly) the function
f(x) = x + 2, where we are using unary (base 1) notation. The steps of the
computation, which explicitly exhibit the state of the machine, the string of
symbols on the tape, as well as the individual square on the tape being
scanned, are called configurations.

It is sometimes helpful to exhibit a Turing machine by giving a state
versus symbol table. Thus, for example the preceding Turing machine
could be represented as shown in Table 1.1.

Another useful representation is by a state transition diagram. The
Turing machine being discussed thus could be represented by the diagram
shown in Fig. 1.1.

We now prove

Theorem 1.1. Any partial function that can be computed by a Post—
Turing program can be computed by a Turing machine using the same
alphabet.

Figure 1.1

148 Chapter 6 Turing Machines

Proof. Let & be a given Post—Turing program consisting of the instruc-
tions I,,..., I, and let sy,s,,...,5, be a list that includes all of the
symbols mentioned in £. We shall construct a Turing machine .# that
simulates 2.

The idea is that .# will be in state g; precisely when £ is about to
execute instruction /;. Thus, if /; is “PRINT s,,” then we place in .# all of
the quadruples

9 Sj Sk Giv1> j=0,1,...,n

If I; is “RIGHT,” then we place in .# all of the quadruples
q: S; Rqi., j=0,1,...,n

If I; is “LEFT,” then we place in .# all of the quadruples
q; S L giv» j=0,1,...,n

Finally, if I; is “IF s, GOTO L,” let m be the least number such that 1, is
labeled L if there is an instruction of & labeled L; otherwise let
m = K + 1. We place in .# the quadruple

qi Sk Sk 4m
as well as all of the quadruples:
qi Sj S Giv1s j=0,1,...,n; j#*k.

It is clear that the actions of .# correspond precisely to the instructions
of &, so we are done. [|

Using Corollary 6.4 from Chapter 5 and the proof of Theorem 1.1, we
have

Theorem 1.2. Let f be an m-ary partially computable function on A4* for
a given alphabet A. Then there is a Turing machine .# that computes f
strictly.

It is particularly interesting to apply this theorem to the case 4 = {1}.
Thus, if f(x,,..., x,,) is any partially computable function on N, there is a
Turing machme that computes f using only the symbols B and 1. The
initial configuration corresponding to inputs x,,..., x,, is

B 1x1 B ... B 1lxl
)
q:

1. Internal States 149

and the final configuration when f(x,,..., x,,)| will be
B 1/Gis-os *m)]
T
dk+1

Next we shall consider a variant notion of Turing machines: machines
that consist of quintuples instead of quadruples. There are two kinds of
quintuples:

9 s S R q,
9 S s L gq.

The first quintuple signifies that when the machine is in state g; scanning
s; it will print s, and then move one square to the right and go into state
q,;. And naturally, the second quintuple is the same, except that the motion
is to the left. A finite set of quintuples no two of which begin with the
same pair g;s; is called a quintuple Turing machine. We can easily prove

Theorem 1.3. Any partial function that can be computed by a Turing
machine can be computed by a quintuple Turing machine using the same
alphabet.

Proof. Let .# be a Turing machine with states q,,..., gy and alphabet
{s;,...,s,}. We construct a quintuple Turing machine A to simulate ..
The states of .# will be q,,...,9x, Gxs1>-++> G2k-

For each quadruple of .# of the form g; s; Rq, we place the correspond-
ing quintuple g; s;s; Rq; in .#. Similarly, for each quadruple g;s; L g, in
#, we place the quintuple g;s;s;Lq, in .#. And, for each quadruple
q; S; Sk q in .#, we place in A the quintuple g; S; Sk Rqgyy- Finally we
place in .# all quintuples of the form

9k+i S; S; L g i=1,...,K; j=0,1,...,n.

Quadruples requiring motion are simulated easily by quintuples. But a
quadruple requiring a “print” necessitates using a quintuple which causes
a motion after the “print” has taken place. The final list of quintuples
undoes the effect of this unwanted motion. The extra states gx,,..., ¢,k
serve to “remember” that we have gone a square too far to the right. |

Finally, we will complete another circle by proving
Theorem 1.4. Any partial function that can be computed by a quintuple

Turing machine can be computed by a Post—-Turing program using the
same alphabet.

150 Chapter 6 Turing Machines

Combining Theorems 1.1, 1.3, and 1.4, we will have

Corollary 1.5. For a given partial function f, the following are equivalent:

1. f can be computed by a Post—Turing program;
2. f can be computed by a Turing machine;
3. f can be computed by a quintuple Turing machine.

Proof of Theorem 1.4. Let .# be a given quintuple Turing machine with
states ¢, ..., qx and alphabet {s,,..., s,}. We associate with each state g;
a label A; and with each pair g;s; a label B;;. Each label 4; is to be
placed next to the first instruction in the filter:

[4,) IF s, GOTO B,
IF s, GOTO B,

IF s, GOTO B,

If .# contains the quintuple g; s; s, Rgq,, then we introduce the block of
instructions

[B,] PRINT s,
RIGHT
GOTO 4,

Similarly, if .# contains the quintuple g; s; s, L q;, then we introduce the
block of instructions:

[B,] PRINT s,
LEFT
GOTO 4,

Finally, if there is no quintuple in .# beginning g;s;, we introduce the
block

[B;] GOTO E

Then we can easily construct a Post—Turing program that simulates .#
simply by putting all of these blocks and filters one under the other. The
order is irrelevant except for one restriction: The filter labeled A4; must
begin the program. The entire program is listed in Figure 1.2. [|

1. Internal States

[4,]

[4,]

[Ak]

[B"m]

[B

i2)2

Exercises

1.

Let T be the Turing machine consisting of the quadruples

IF s, GOTO B,

IF s, GOTO B,
IF 5, GOTO B,,

IF s, GOTO B,,
IF 5, GOTO By,

IF 5, GOTO By,
PRINT s,
RIGHT

GOTO 4,
PRINT s,

Figure 1.2

9
9
q;3
94
44

B R g
I R gq;
B R g,
1 B g¢q
B R gq,.

151

For each integer x, let g(x) be the number of occurrences of 1 on the
tape when and if T halts when started with the read—write head one
square to the left of the initial 1, with input 1!*). What is the function

g(x)?

Write out the quadruples constituting a Turing machine that com-

putes the function

f(x) = {

in base 1. Exhibit the state transition diagram for your machine.

1

0

if x is a perfect square
otherwise

Give precise definitions of configuration, computation, and Turing
machine # computes the function f. (Compare Chapter 2, Section 3.)

152 Chapter 6 Turing Machines

4. For each of the following functions, construct a Turing machine that
computes the function strictly.

@ f(u,v) = uv.
(b) P(x) < x has an even number of symbols.
(¢) f(x) given in Exercise 1.4 in Chapter 5.
(@) f(x) =x®R. [xR is defined in Chapter 1, Section 3.]
(e) #(u,v) given in Exercise 1.6 in Chapter 5.

5. Construct Turing machines for Exercise 4.4 in Chapter 5.
Construct a Turing machine for Exercise 4.5 in Chapter 5.

7. Using the construction in the proof of Theorem 1.1, transform the
Post—Turing program in Figure 4.4 of Chapter 5 into an equivalent
Turing machine.

8. Using the construction in the proof of Theorem 1.3, transform the
Turing machine in Table 1.1 into an equivalent quintuple Turing
machine.

9. Construct a quintuple Turing machine that computes f(x,y) =x ~y
in base 1 strictly.

10.* Show that any partially computable function can be computed by a
quintuple Turing machine with two states. [Hint: A quintuple Turing
machine .# with n states and m symbols (including s,) can be
simulated by a quintuple Turing machine .#' with two states and
4mn + m symbols. The 4mn new symbols represent the current state
and currently scanned symbol of .#, as well as additional bookkeep-
ing information. Transferring this stored information to an adjacent
square can be done by a “loop” that moves the tape head back and
forth.]

2. A Universal Turing Machine

Let us now recall the partially computable function ®(x, z) from Chapter
4. For fixed z, ®(x, z) is the unary partial function computed by the
program whose number is z. Let .# be a Turing machine (in either
quadruple or quintuple form) that computes this function with alphabet
{1}. For reasons that we will explain, it is appropriate to call this machine
A universal.

Let g(x) be any partially computable function of one variable and let z,
be the number of some program in the language .% that computes g. Then

3. The Languages Accepted by Turing Machines 153
if we begin with a configuration

B x B z,
T
9

(where x and z, are written as blocks of ones, i.e., in unary notation), and
let .# proceed to compute, .# will compute ®(x, z,), i.e., g(x). Thus, .#
can be used to compute any partially computable function of one variable.

provides a suggestive model of an all-purpose computer, in which
data and programs are stored together in a single “memory.” We can think
of z, as a coded version of the program for computing g and x as the
input to that program. Turing’s construction of a universal computer in
1936 provided reason to believe that, at least in principle, an all-purpose
computer would be possible, and was thus an anticipation of the modern
digital computer.

Exercises
1.* (a) Define a numbering #(.#) of Turing machines like the number-
ing #(2) of & programs given in Chapter 4.
(b) Prove a version of the parameter theorem for Turing machines.
(¢) Prove a version of the recursion theorem for Turing machines.

(d) Show that there is a Turing machine .# that prints #(.#) when
started with any input tape.

(e) Show that Turing machines are an acceptable programming sys-
tem. [Acceptable programming systems are defined in Exercise
5.4 in Chapter 4.]

2.* Give an upper bound on the size of the smallest universal Turing
machine. [See Exercise 5.5 in Chapter 5.]

3. The Languages Accepted by Turing Machines

Given a Turing machine .# with alphabet 4 = {s,,...,s,}, a word u € 4*
is said to be accepted by # if when .# begins with the configuration

So U
T
q1

154 Chapter 6 Turing Machines

it will eventually halt. The set of all words u € A* that .# accepts is called
the language accepted by .#. An important problem in the theory of
computation involves characterizing the languages accepted by various
kinds of computing devices. It is easy for us to solve this problem for
Turing machines.

Theorem 3.1. A language is accepted by some Turing machine if and only
if the language is r.e.

Proof. Let L be the language accepted by a Turing machine .# with
alphabet A. Let g(x) be the unary function on A* that .# computes.
Then g is a partially computable function (by Corollary 1.5 and by
Theorem 6.2 in Chapter 5). Now,

L={xeA*|g(x)}). (3.1)

Hence L is r.e.

Conversely, let L be r.e. Then there is a partially computable function
g(x) such that (3.1) holds. Using Theorem 1.2, let .# be a Turing machine
with alphabet {s,,..., s,} that computes g(x) strictly. Then .# accepts L.

|

Naturally Theorem 3.1 is also true for quintuple Turing machines.
Let us consider the special case 4 = {1}. Then we have

Theorem 3.2. A set U of numbers is r.e. if and only if there is a Turing
machine .# with alphabet {1} that accepts 11*1 if and only if x € U.

Proof. This follows immediately from Theorem 3.1 and the fact that the
base 1 representation of the number x is the string 11*. [|

This is an appropriate place to consider some annoying ambiguities in
our notation of r.e. language. Thus, for example, consider the language

Ly={a"|n >0},

on the alphabet {a, b}. According to our definitions, to say that L, is an
r.e. language is to say that the set of numbers which the strings in L,
represent in base 2 is an r.e. set of numbers. But, this set of numbers is not
determined until an order is specified for the letters of the alphabet. If we take
a, b in the order shown, then the set of numbers which represent strings in
L, is clearly

0,={2"-1ln> 0},

3. The Languages Accepted by Turing Machines 155

while if we take the letters in the order b, a, the set of numbers which
represents strings in L, is

0,={2xlxeQ}={2"""-2|n>0}.

Now, although there is no difficulty whatever in showing that Q, and Q,
are both r.e. sets, it is nevertheless a thoroughly unsatisfactory state of
affairs to be forced to be concerned with such matters in asserting that L,
is an r.e. language. Here Theorem 3.1 comes to our rescue. The notion of a
given string being accepted by a Turing machine does not involve imposing
any order on the symbols of the alphabet. Hence, Theorem 3.1 implies
immediately that whether a particular language on a given alphabet is r.e.
is independent of how the symbols of the alphabet are ordered. The same is
clearly true of a language L on a given alphabet A4 being recursive since
this is equivalent to L and A4* — L both being r.e.

Another ambiguity arises from the fact that a particular language may
be considered with respect to more than one alphabet. Thus, let 4 be an
n-letter alphabet and let A4 be an m-letter alphabet containing A, so that
m > n. Then a language L on the alphabet A is simply some subset of
A*, so that L is also a language on the larger alphabet 4. Thus, depending
on whether we are thinking of L as a language on A or as a language on
A, we will have to read the strings in L as being the notation for integers
in base n or in base m, respectwely Hence, we are led to the unpleasant
possibility that whether L is r.e. might actually depend on which alphabet
we are considering. As an example, we may take A = {a} and A4 = {a, b},
and consider the language L, above, where

Ly C A* C A*.

We have already seen that our original definition of L,’s being r.e. as a
language on the alphabet 4 amounts to requiring that the set of numbers
Q, or Q, (depending on the order of the symbols a, b) be r.e. However, if
we take our alphabet to be A, then the relevant set of numbers is

Q;={neN|n>0}.

We remove all such ambiguities by proving

Theorem 3.3. Let 4 C A where A and A are alphabets and let L ¢ 4*.
Then L is an r.e. language on the alphabet A if and only if L is an r.e.
language on A.

Proof. Let L ber.e.on A and let .# be a Turing machine with alphabet
A that accepts L. Without loss of generality, we can assume that .# begins

156 Chapter 6 Turing Machines

by moving right until it finds a blank and then returns to its original
position. Let .# be obtained from .# by adjoining to it the quadruples
gssq for each symbol s € A — A, and each state g of .#. Thus .# will
enter an “infinite loop” if it ever encounters a symbol in A — A. Since A
has alphabet A and accepts the language L, we conclude from Theorem
3.1 that L is an r.e. language on A.

Conversely, let L be r.e. as a language on A, and let .# be a Turing
machine with alphabet A that accepts L. Let g(x) be the function on A4*
that .# computes. (The symbols belonging to A — A thus serve as
“markers.”) Since L C A*, we have

={xeAd*|g(x)]}).

Since g(x) is partially computable, it follows that L is an r.e. language on
A.]

Corollary 3.4. Let A, A, L be as in Theorem 3.3. Then L is a recursive
language on A if and only if L is a recursive language on A.

Proof. First let L be a recursive language on 4. Then L and 4* — L are
r.e. languages on A and therefore on A. Moreover, since

A* — L = (A* — A*) U (4* — L),

and since A* — A* is r.e., as the reader can easily show (see Exercise 6), it
follows from Theorem 4.5 in Chapter 4 that 4* — L is r.e. Hence, L is a
recursive language on A.

Conversely, if L is a recursive language on A, then L and A* — L are
r.e. languages on A and therefore L is an r.e. language on A. Moreover,
since

A* —L = (A4* - L) n A%,

and since A* is obviously r.e. (as a language on A and therefore on A), it
follows from Theorem 4.5 in Chapter 4 that A* — L is an r.e. language on
A and hence on A. Thus, L is a recursive language on A.]

Exercises

1. Write out the quadruples constituting a Turing machine that accepts
the language consisting of all words on the alphabet {a, b} of the form
allbal’l,

Give a Turing machine that accepts {11B1V!B1V*1| i, j € N}.

3. Give a Turing machine that accepts {w € {a, b}* |w = wR}.

4. The Halting Problem for Turing Machines 157

4. Show that there is a Turing machine that accepts the language
{1MB1V | @ (x) | }.

5. Show that there is no Turing machine that accepts the language
{1V @ (x)| for all x € N}.

6. Complete the proof of Corollary 3.4 by showing that A* — A*isanre.
language.

4. The Halting Problem for Turing Machines

We can use the results of the previous section to obtain a sharpened form
of the unsolvability of the halting problem.

By the halting problem for a fixed given Turing machine .# we mean
the problem of finding an algorithm to determine whether .# will eventually
halt starting with a given configuration. We have

Theorem 4.1. There is a Turing machine .# with alphabet {1} that has an
unsolvable halting problem.

Proof. Take for the set U in Theorem 3.2, some r.e. set that is not
recursive (e.g., the set K from Chapter 4). Let # be the corresponding
Turing machine. Thus % accepts a string of ones if and only if its length
belongs to U. Hence, x € U if and only if Z eventually halts when started
with the configuration

B 1%
)
q:

Thus, if there were an algorithm for solving the halting problem for .%; it
could be used to test a given number x for membership in U. Since U is
not recursive, such an algorithm is impossible. |

This is really a stronger result than was obtained in Chapter 4. What we
can prove about Turing machines just using Theorem 2.1 in Chapter 4 is
that there is no algorithm that can be used, given a Turing machine and an
initial configuration, to determine whether the Turing machine will ever
halt. Our present result gives a fixed Turing machine whose halting
problem is unsolvable. Actually, this result could also have been easily
obtained from the earlier one by using a universal Turing machine.

Next, we show how the unsolvability of the halting problem can be used
to obtain another unsolvable problem concerning Turing machines. We
begin with a Turing machine % with alphabet {1} that has an unsolvable

158 Chapter 6 Turing Machines

halting problem. Let the states of Z be q,,...,q,. We will construct a
Turing machine % by adjoining to the quadruples of Z the following
quadruples:

9; B B g,
for i = 1,2,..., k for which no quadruple of .Z begins g;B, and

11 g,

for i = 1,2,..., k when no quadruple of Z begins g;1. Thus, # eventually
halts beginning with a given configuration if and only if % eventually is in
state g, ;. We conclude

Theorem 4.2. There is a Turing machine % with alphabet {1} and a state
q,, such that there is no algorithm that can determine whether 7 will ever
arrive at state g,, when it begins at a given configuration.

Exercises

1. Prove that there is a Turing machine .# such that there is no
algorithm that can determine of a given configuration whether .# will
eventually halt with a completely blank tape when started with the
given tape configuration.

2. Prove that there is a Turing machine .# with alphabet {s,, s,} such
that there is no algorithm that can determine whether .# starting with
a given configuration will ever print the symbol s,.

3. Let #,,.#,,... be a list of all Turing machines, and let f; be the
unary partial function computed by .#;, i = 0,1,... . Suppose g(x) is a
total function such that for all x > 0 and all 0 <i < x, if f(x)| then
fi(x) < g(x). Show that g(x) is not computable.

4. Jill and Jack have been working as programmers for a year. They are
discussing their work. We listen in:

Jack: We are working on a wonderful program, AUTOCHECK.
AUTOCHECK will accept Pascal programs as inputs and will return
the values OK or LOOPS depending on whether the given program
is or is not free of infinite loops.

JiLL: Big deal! We have a mad mathematician in our firm who has
developed an algorithm so complicated that no program can be
written to execute it no matter how much space and time is allowed.

Comment on and criticize Jack and Jill’s statements.

5. Nondeterministic Turing Machines 159
5. Nondeterministic Turing Machines

As already mentioned, a nondeterministic Turing machine is simply an
arbitrary finite set of quadruples. Thus, what we have been calling a Turing
machine is simply a special kind of nondeterministic Turing machine.
For emphasis, we will sometimes refer to ordinary Turing machines as
deterministic.

A configuration

Sj

T
q;

is called terminal with respect to a given nondeterministic Turing machine
(and the machine is said to halt) if it contains no quadruple beginning
q; s;- (This, of course, is exactly the same as for deterministic Turing
machines.) We use the symbol - (borrowed from logic) placed between a
pair of configurations to indicate that the transition from the configuration
on the left to the one on the right is permitted by one of the quadruples of
the machine under consideration.

As an example, consider the nondeterministic Turing machine given by
the quadruples

9. B R gq,
9, 1 R gq
9 B B g,
9 1 R gq,
9 B B gq;
9, B R gq,
9, B B gs

Then we have

B1111+B1111+wB1111+B1111-B1111
T T)) T
q, 9 q3 q> q;

+B1111BB+B1111B.
1)
b q,

160 Chapter 6 Turing Machines

So far the computation has been entirely determined; however, at this
point the nondeterminism plays a role. We have

B1111B+B1111 B,
T T
q4 qs

at which the machine halts. But we also have

B1111B+B1111BB+~B1111BBB}W+ -
T T T
s q4 q4

Let 4 ={s;,...,s,} be a given alphabet and let u € A*. Then the
nondeterministic Turing machine .# is said to accept u if there exists a
sequence of configurations y,, v,,..., ¥, such that vy, is the configuration

Sy U
T
q:

v,, is terminal with respect to .#, and y, - v, -~ y3; + -+ F %,,. In this
case, the sequence vy;,7v,,..., %, is called an accepting computation by .#
for u. If A is the alphabet of .#, then the language accepted by # is the set
of all u € A* that are accepted by .Z.

Of course, for deterministic Turing machines, this definition gives noth-
ing new. However, it is important to keep in mind the distinctive feature of
acceptance by nondeterministic Turing machines. It is perfectly possible to
have an infinite sequence

DAL PR i £ N
of configurations, where vy, is

Sy U
T
q

even though u is accepted by .#Z. It is only necessary that there be some
sequence of transitions leading to a terminal configuration. One some-
times expresses this by saying, “The machine is always permitted to guess
the correct next step.”

Thus in the example given above, taking the alphabet 4 = {1}, we have
that .# accepts 1111. In fact the language accepted by .# is {1%"}. (See
Exercise 3.)

5. Nondeterministic Turing Machines 161

Since a Turing machine is also a nondeterministic Turing machine,
Theorem 3.1 can be weakened to give

Theorem 5.1. For every r.e. language L, there is a nondeterministic
Turing machine .# that accepts L.

The converse is also true: the language accepted by a nondeterministic
Turing machine must be r.e. By Church’s thesis, it is clear that this should
be true. It is only necessary to “run” a nondeterministic Turing machine
.# on a given input u, following all alternatives at each step, and giving the
value (say) 0, if termination is reached along any branch. This defines a
function that is intuitively partially computable and whose domain is the
language accepted by .#. However, a detailed proof along these lines
would be rather messy.

Fortunately the converse of Theorem 5.1 will be an easy consequence of
the methods we will develop in the next chapter.

Exercises

1. Explain why nondeterministic Turing machines are unsuitable for
defining functions.

2. Let L be the set of all words on the alphabet {a, b} that contain at
least two consecutive occurrences of b. Construct a nondeterministic
Turing machine that never moves left and accepts L.

3. Show that the nondeterministic Turing machine .# used as an exam-
ple in this section accepts the set {1271},

4. Let
L, = {w € {a, b}* | w has an even number of a’s},

L, = {w € {a, b}*|w has an odd number of b’s}.

(a) Give deterministic Turing machines .#,,.#, that accept L, L,,
respectively, and combine them to get a nondeterministic Turing
machine that accepts L, U L,.

(b) Give a deterministic Turing machine that accepts L, U L,.
Give a nondeterministic Turing machine that accepts {11"!| n is prime}.

6. If we replace “the first instruction labeled L” by “some instruction
labeled L” in the interpretation of Post—Turing instructions of the
form IF o GOTO L, then we get nondeterministic Post—Turing pro-
grams. Show that a language is accepted by a nondeterministic Post—

162 Chapter 6 Turing Machines

Turing program if and only if it is accepted by a nondeterministic
Turing machine (where acceptance of a language by a Post—Turing
program is defined just like acceptance by a Turing machine).

6. Variations on the Turing Machine Theme

So far we have three somewhat different formulations of Turing’s concep-
tion of computation: the Post—Turing programming language, Turing
machines as made up of quadruples, and quintuple Turing machines. The
proof that these formulations are equivalent was quite simple. This is true
in part because all three involved a single tapehead on a single two-way
infinite tape. But it is easy to imagine other arrangements. In fact, Turing’s
original formulation was in terms of a tape that was infinite in only one
direction, that is, with a first or leftmost square (see Fig. 6.1). We can also
think of permitting several tapes, each of which can be one-way or two-way
infinite and each with its own tapehead. There might even be several
tapeheads per tape. As one would expect, programs can be shorter when
several tapes are available. But, if we believe Church’s thesis, we certainly
would expect all of these formulations to be equivalent. In this section we
will indicate briefly how this equivalence can be demonstrated.

Let us begin by considering one-way infinite tapes. To make matters
definite, we assume that we are representing a Turing machine as a set of
quadruples. It is necessary to make a decision about the effect of a
quadruple g; s; L g, in case the tapehead is already at the left end of the
tape. There are various possibilities, and it really does not matter very
much which we adopt. For definiteness we assume that an instruction to
move left will be interpreted as a halt in case the tapehead is already at
the leftmost square. Now it is pretty obvious that anything that a Turing
machine could do on a one-way infinite tape could also be done on a
two-way infinite tape, and we leave details to the reader.

How can we see that any partially computable function can be computed
by a Turing machine on a one-way infinite tape? One way is by simply
examining the proof of Theorem 5.1 in Chapter 5, which shows how a

Figure 6.1. Two-way infinite versus one-way infinite tape.

6. Variations on the Turing Machine Theme 163

Figure 6.2

computation in any of the languages .%, can be simulated by a program in
the Post-Turing language 7. In fact, the program & in the language 9
which is constructed to simulate a given program £ in the language .%,
has the particular property that when & is executed, the tapehead never
moves to the left of the square initially scanned. Hence, the program &
would work exactly as well on a one-way infinite tape whose leftmost
square is initially scanned. And, it is an easy matter, as in the proof of
Theorem 1.1, to convert & into a Turing machine.

Although this is an entirely convincing argument, we would like to
mention another approach which is interesting in its own right, namely, we
directly face the question, how can the information contained in a two-way
infinite tape be handled by a Turing machine with one tapehead on a
one-way infinite tape? The intuitive idea is to think of a two-way infinite
tape as being “hinged” so it can be folded as in Fig. 6.2. Thus our two-way
infinite tape can be represented by a one-way infinite tape with two
“tracks,” an “upper” and a “lower.” Moreover, by adding enough symbols
to the alphabet, we can code each pair consisting of an upper and a lower
symbol by a single symbol.

Thus, let us begin with a Turing machine .# with alphabet A4 =
{s{,...,s,} and states q,,...,qk. Let .# compute a unary' partial func-
tion g on A}, where A, € A. Thus the input configuration when .# is
computing g(x) for x € A} will be

B x
T
q1

! The restriction to unary functions is, of course, not essential.

164 Chapter 6 Turing Machines

We will construct a Turing machine .# that computes g on a one-way
infinite tape. The initial configuration for .# will be

B x
T
q1

where # is a special symbol that will occupy the leftmost square on the
tape for most of the computation. The alphabet of .# will be
AU# U (b0 <i,j<n},

where we think of the symbol b} as indicating that s; is on the upper track
and s; is on the lower track. The states of .# are q,,q,,45,4,, g5, and

{t?;,cii‘i = 1,2,...,K}

as well as certain additional states. _

We can think of the quadruples constituting .# as made up of three
sections: BEGINNING, MIDDLE, and END. BEGINNING serves to copy
the input on the upper track putting blanks on the corresponding lower
track of each square. BEGINNING consists of the quadruples

9. B R gq,

q9, s; R ¢q, i=12,...,n,
: B L g

q s; by g3 i=0,1,2,...,n,
qg; by L g5 i=0,1,2,...,n,
9 # R gq,.

Thus, starting with the configuration

B s, 5, 855
T
q:

BEGINNING will halt in the configuration
b) bl b b} B.
T
9,
Note that b] is different from s, = B. MIDDLE will consist of quadruples
corresponding to those of .# as well as additional quadruples as indicated

6. Variations on the Turing Machine Theme

Table 6.1

165

Quadruple of .#

Quadruple of .Z

@ q s; s, q
® g s; R g
© q s; L q
d

(e)

g
qi
g;
qi
g;
g
g;
g;
g;
gi

by,
by’
R
L

L
R

q
q
q,
q
q
4
g;
g;
q;
g;

m=0,1,...
m=01,...
m=0,1,...
m=0,1,...
m=0,1,...
m=0,1,...

i=

i=

i=

l'_

1,2,...
L2,...
1,2,...
L,2,...

in Table 6.1. The states g;, §; correspond to actions on the upper track and
lower track, respectively. Note in (b) and (c) that on the lower track left
and right are reversed. The quadruples in (d) replace single blanks B by
double blanks b) as needed. The quadruples (e) arrange for switchover
from the upper to the lower track. It should be clear that MIDDLE

simulates .Z.

END has the task of translating the output into a word on the original
alphabet A. This task is complicated by the fact that the output is split
between the two tracks. To begin with, END contains the following

quadruples:

q; br{z br{z 4,4
g: b" bjm 94

a b L q,
9, # B gs.

whenever .# contains no quadruple
beginning q:5; form =0,1,...,n;0<i,j <n,

For each initial configuration for which .# halts, the effect of BEGIN-
NING, MIDDLE, and this part of END is to ultimately produce a

configuration of the form

B b bj;

4qs

The remaining task of END is to convert the tape contents into

Sie Sien

166 Chapter 6 Turing Machines

[D] RIGHT TO NEXT BLANK
MOVE BLOCK RIGHT
RIGHT
[C] RIGHT
IF bji GOTO A; 0<i,j<n)
IF B GOTO F
GOTO C
[47] PRINTs;, (0<i<nO<j<n)
GOTO B,
[49] PRINT# (0 <j<n)
GOTO B;
[Bj] LEFT TO NEXT BLANK O<j<n)
PRINT s
GOTO D
[B,] LEFT TO NEXT BLANK
PRINT #
GOTO D
[F] LEFT
IFs; GOTOF (0<j<n)
IF # GOTO G
IF B GOTO E
[G] PRINT B
GOTO F
Figure 6.3

Instead of giving quadruples for accomplishing this, we exhibit a program
in the Post—Turing language 7, so that we can make use of some of the
macros available in that language. Of course, this program can easily be
translated into a set of quadruples using the method of proof of Theorem
1.1. Because our macros for 9 were designed for use with “blocks” of
symbols containing no blanks, we will use # instead of s, = B in carrying
out our translation. One final pass will be needed to replace each # by B.
The program is given in Fig. 6.3.

Each b} is processed going from left to right. b} is replaced by s; (or by
if i =0) and s; (or # if j=0) is printed on the left. The “MOVE
BLOCK RIGHT” macro is used to make room on the tape for printing the
successive symbols from the “lower” track. As an example let us apply the
program of Fig. 6.3 to the configuration

B b2 b b}.
1

6. Variations on the Turing Machine Theme 167

B b} b b D

1

B B b} b b, B c
T

B B b} b) b B A3

1
B B s, b b B B,
1

B s, s, b b B D
T

B B s, s, b} bl B A

)

B s, s s, # bl B D
T

B # s s s, # s B D
T

B B # s s s, # s B F

1

B B B s s s, B s B E

)
Figure 6.4

In Fig. 6.4 we show various stages in the computation; in each case the
tape configuration is followed by the label on the next instruction to be
executed.

The technique of thinking of the tape of a Turing machine as decom-
posed into a number of parallel tracks has numerous uses. (It will appear
again in Chapter 11.) For the moment we note that it can be used to
simulate the behavior of a multitape Turing machine by an ordinary
Turing machine. For, in the first place a second track can be used to show
the position of a tapehead on a one-tape machine as in the example shown
in Fig. 6.5; the 1 under the s, shows the position of the head. In an entirely
similar manner the contents of k tapes and the position of the tapehead
on each can be represented as a single tape with 2k tracks. Using this
representation, it is easy to see how to simulate any computation by a
k-tape Turing machine using only one tape. The same result can also be
obtained indirectly using the method of proof of Theorem 6.1 in Chapter 5
to show that any function computed by a k-tape Turing machine is
partially computable.

168 Chapter 6 Turing Machines

B|s |s3y|B|s | B

1
B|s |s3s|B|s |B
B|B|1l |B|B|B
Figure 6.5

Exercises
1. Give a formal description of a Turing machine that uses three tapes:

one with a “read only” head for input, one with a “write only” head
for output, and one for “working.” Give an appropriate definition of
computability by such machines and prove the equivalence with com-
putability by ordinary Turing machines.

Do the same for a Turing machine with input tape, output tape, and k
working tapes for any k > 1.

Let the Post—-Turing language be augmented by the instructions UP,
DOWN so that it can deal with computations on a two-dimensional
“tape” infinite in all four directions. Supply an appropriate definition
of what it means to compute a function by a program in this language,
and prove that any function computed by such a program is partially
computable.

Adapt the construction in this section so that it works for binary
functions.

7

Processes and Grammars

1. Semi-Thue Processes

In this chapter we will see how the methods of computability theory can be
used to deal with combinatorial problems involving substitution of one
substring for another in a string.

Definition. Given a pair of words g, § on some alphabet, the expression
§8

is called a semi-Thue production or simply a production. The term rewrite
rule is also used.

Thue is from Axel Thue, a Norwegian mathematician, and is pro-
nounced too-ay.
If P is the semi-Thue production g — g, then we write

u=v
to mean that there are (possibly null) words r, s such that
u=rgs and v =rgs.

(In other words, v is obtained from u by a replacement of g by g.)
169

170 Chapter 7 Processes and Grammars

Definition. A semi-Thue process is a finite set of semi-Thue productions.
If II is a semi-Thue process, we write
u=v
n
to mean that
u=v
P

for some production P which belongs to II. Finally, we write

u=v
11
if there is a sequence
= = = e = =
U=u =u = = U, = .

The sequence u,,u,,...,u, is then called a derivation of v from u. In
particular (taking n = 1)

usu.

When no ambiguity results we often omit the explicit reference to II,
writing simply 4 = v and u = v.
Here is a simple example: We let II = {ab — aa, ba — bb}. Then we
have
aba = abb = aab = aaa.

Thus,
aba = aaa,

and the sequence of words aba, abb, aab, aaa is a derivation of aaa from
aba.

Exercises

1. Let IT be the semi-Thue process with the production ba — ab.
(a) Give two different derivations of aaabbb from abbaba.
(b) Give the set of all words in {a, b}* from which aabb can be

derived.

(¢) Give the set of all words which can be derived from bbaa.

2. Let Il be the semi-Thue process with productions ba — ab and
ab — ba. Show that for all words u,v € {a, b}*, u ﬁ v if and only if
v U

2. Simulation of Nondeterministic Turing Machines 17

3. Give a semi-Thue process IT such that 11 = 17 if and only if |x — yl
is even.

4. Let A =(1,2,b},b),b%,b3,c,,c,,d,,d,}). Give a semi-Thue process
IT such that b}]' b}: = w € {1,2}*, for all words b;)' -+ bi", where
iy ==~ i,,j, -+ J, are binary representations of numbers and i; --- i, +
ji *** j, = w. [Hint: The symbols c,, ¢, are used to remember the need

to carry 1, and d,, d, are used to remember the need to carry 2.]

2. Simulation of Nondeterministic Turing Machines by
Semi-Thue Processes

Let us begin with a nondeterministic Turing machine .# with alphabet
{sy,..., sg}, and states q,,q,,...,q,. We shall show how to simulate .#
by a semi-Thue process %(.#) on the alphabet

sO’sl""’sK’qO’ql7q2""’qn’qn+1’h‘

Each stage in a computation by .# is specified completely by the current
configuration. We shall code each such stage by a word on the alphabet of
3(.#). For example, the configuration

S; 8§71 83 82 S 51 2
)
’n

will be represented by the single word
hs,$,155G45,508,5,h. (2.1

Note that 4 is used as a beginning and end marker, and the symbol g,
indicates the state of .# and is placed immediately to the left of the
scanned square. A word like (2.1) will be called a Post word. Of course, the
same configuration can be represented by infinitely many Post words
because any number of additional blanks may be shown on the left or
right. For example,

hs50515153q45,50515,80h

is a Post word representing the same configuration that (2.1) does.

In general, a word huq;vh, where 0 <i < n + 1, is called a Post word if
u and v are words on the subalphabet {s,, s;,..., s¢}. We shall show how
to associate suitable semi-Thue productions with each quadruple of .#;
the productions simulate the effect of that quadruple on Post words.

172 Chapter 7 Processes and Grammars

1. For each quadruple of .# of the form g;s; s, q; we place in %(#)
the production

q;S; = 45k -

2. For each quadruple of .# of the form g; s; Rq, we place in Z(.#) the
productions

q:SiSk = S; 95k » k=0,1,...,K,
q;sih = s;q;50h.
3. For each quadruple of .# of the form g; 5; L g, we place in %(.#) the
productions
SkqiS; = QiSkS;s k=0,1,...,K,
hq;s; = hq;s,s; .
To see how these productions simulate the behavior of .#, suppose .# is
in configuration

S, S, Sy ;3.
T
q4

This configuration is represented by the Post word
hs,q,5,5053h.

Now suppose .# contains the quadruple
94 Sy 53 4s-

Then 3(.#) contains the production
4451 7 4553,

so that

hs,q,85,505h = hs,qs535083h.
294515053) 245535053

The Post word on the right then corresponds to the configuration immedi-
ately following application of the above quadruple. Now suppose that .#
contains the quadruple

q:; s R q;.

2. Simulation of Nondeterministic Turing Machines 173

(Of course, if .# is a deterministic Turing machine, it cannot contain both
of these quadruples.) Then 2(.#) contains the production

445150 > 519350
so that

hs,q,8,505:h = hs,$,G,5,5:h.
294515053 sot) 251435053

Finally if .# contains the quadruple
g, 81 L q,
then 3(.#) contains the production
$29451 7 425,85,

so that

hs,q,8,505:h = hq,5,5,5,8;:h.
2‘141032(/4)‘122103

The productions involving 4 are to take care of cases where motion to
the right or left would go past the part of the tape included in the Post
word, so that an additional blank must be added. For example, if the
configuration is

S 83 8

T
44

and .# contains the quadruple
q:; s1 R g5,
then 3(#) contains the production
gs51h = 51q;350h
and we have

hs;$3q,5,h 2(=2)hs2s3s,q3s0h,

so that the needed blank on the right has been inserted. The reader will
readily verify that blanks on the left are similarly supplied when needed.
We now complete the specification of Z(.#):

4. Whenever g;s;(i =1,...,n; j=0,1,...,K) are not the first two
symbols of a quadruple of .#, we place in 3(.#) the production

qiS; 2 dn+15;

Thus, g, serves as a “halt” state.

174 Chapter 7 Processes and Grammars

5. Finally, we place in 3(.#) the productions
9ni18Si 29541 i=0,1,...,K,
Gni1h = qoh
$iq0 — 4o > i=0,1,..., K.
We have

Theorem 2.1. Let .# be a deterministic Turing machine, and let w be a
Post word on the alphabet of 2(.#). Then

1. there is at most one word z such that wo =)z, and
2. if there is a word z satisfying (1), then z is a Post word.

Proof. We have w = hugq,vh.
If 1 <i <n,then

. if v = 0 no production of %(.#) applies to w;

a
b. if v begins with the symbol s; and there is a (necessarily unique)

quadruple of .# which begins g;s;, then there is a uniquely applica-
ble production of %(.#) and the result of applying it will be a Post
word,

c. if v begins with the symbol s; and there is no quadruple of .# which
begins g; s;, then the one applicable production of 2(.#) is

qiSj 7 qn+15j>
which yields another Post word when applied to w.
If i=n+ 1, then
a. if v = 0, the only applicable production of 2(.#) is
Gn+1h = qoh,

which yields a Post word;
b. if v begins with the symbol s;, the only applicable production of
2() is

9n+15; 2 Gns1>
which again yields a Post word.
Finally, if i = 0, then

a. if u = 0, no production of Z(.#) can be applied;
b. if u ends with s;, the only applicable production of 2(.#) is
$i90 — 490>

which yields a Post word. []

2. Simulation of Nondeterministic Turing Machines 175
Our next result makes precise the sense in which %(.#) simulates .#.

Theorem 2.2. Let .# be a nondeterministic Turing machine. Then, for
each string u on the alphabet of .#, .# accepts u if and only if

hq, s uh 2(=j>‘¢)hq0h.

Proof. Let the alphabet of .# be s,,..., s¢. First let us suppose that .#
accepts u. Then, if .# begins in the configuration

Sy U
T
q:

it will eventually reach a state g; scanning a symbol s, where no quadruple
of .# begins g; s,. Then we will have (for appropriate words v, w on the
alphabet of .#)

hq, s uh 2(—%{Z)th,.skwh za)huq,ﬁ 1S wh
s a0k 2(7)hq0h.
Next suppose that .# does not accept u. Then, beginning with configu-
ration

Sou
T
9

A will never halt. Let
w, = hq,squh,

and suppose that

W, = W, = W, = e =
Usca) 2y s Hy s "

Then each w;, 1 <j < m, must contain a symbol g; with 1 <i < n. Hence
there can be no derivation of a Post word containing g, from w,, and so,
in particular, there is no derivation of hqyh from w,. [|

Definition. The inverse of the production g — g is the production g — g.

For example, the inverse of the production ab — aa is the production
aa — ab.

176 Chapter 7 Processes and Grammars

Let us write Q(.#) for the semi-Thue process which consists of the
inverses of all the productions of %(.#). Then an immediate consequence
of Theorem 2.2 is

Theorem 2.3. Let .# be a nondeterministic Turing machine. Then for
each string u in the alphabet of .#, .# accepts u if and only if

hqohnt})hqlsouh.

Exercises
1. (a) Give (), where .# is the Turing machine in Table 1.1 of
Chapter 6.

(b) Give a derivation that shows that hq,s,111h sy)hqoh.

(¢) Describe {u| hqohﬂ (=})hq1s0uh}.
2. Give a semi-Thue process II such that, for all words u,v € {1,2}*,
hq,sousgoh 7 w € {1,2}*, where u + v = w in binary notation.

3. Show that for any partially computable function f(x), there is a
semi-Thue process II such that for all x € N, 1*] = 101 if and only if

y = f(x).

3. Unsolvable Word Problems

Definition. The word problem for a semi-Thue process II is the problem
of determining for any given pair u,v of words on the alphabet of Il
whether u = v.

We shall prove

Theorem 3.1. There is a Turing machine .# such that the word problem
is unsolvable for both the semi-Thue processes %(.#) and Q(.#).

Proof. By Theorem 3.1 in Chapter 6, there is a Turing machine .# (in
fact, deterministic) that accepts a nonrecursive language. Suppose first that
the word problem for 3(.#) were solvable. Then there would be an

algorithm for testing given words v, w to determine whether vy (=})w. By

Theorem 2.2, we could use this algorithm to determine whether .# will
accept a given word u by testing whether

hq,s,uh 2(7)hq0h.

3. Unsolvable Word Problems 177

We would thus have an algorithm for testing a given word u to see
whether .# will accept it. But such an algorithm cannot exist since the
language accepted by .# is not a recursive set.

Finally, an algorithm that solved the word problem for Q(.#) would also
solve the word problem for 3(.#), since

w ifandonly if w]

v_= = .
S(A) A)
Definition. A semi-Thue process is called a Thue process if the inverse of

each production in the process is also in the process.

The fact that Thue processes are in fact “two-way” processes is a
curious coincidence.

We write g « g to combine the production g — g and its inverse
g§—8

For each Turing machine .#Z, we write

O(x) =3(2) L Q(A),
so that @(.#) is a Thue process. We have

Theorem 3.2 (Post’s Lemma). Let .# be a deterministic Turing machine.
Let u be a word on the alphabet of .# such that

hq,s,uh @(%{)hqoh.
Then

hq,s,uh 2(=/>¢)hq0h.

Proof. Let the sequence
hq,squh = w,,w,,...,w, = hqyh

be a derivation in ®(.#). Since w, is a Post word, and each production of
O(.#) transforms Post words into Post words, we can conclude that the
entire derivation consists of Post words. We need to show how to eliminate
use of productions belonging to Q(.#) from this derivation. So let us
assume that the last time in the derivation that a production of Q(.#) was
used was in getting from w; to w;,,. That is, we assume

Wit w w, = hqyh.

* *
w, = . = W, =
o) i+l sy T2 s

178 Chapter 7 Processes and Grammars

Now, Q(.#) consists of inverses of productions of X(.#); hence we must
have

Wir1 z(f})wi-

Moreover, we must have i + 1 </ because no production of 3(.#) can be
applied to w, = hqyh. Now, w,, , is a Post word and

W; = W; w; = W; .
l+12(/) i l+12(/) i+2

By Theorem 2.1, we conclude that w;,, = w;. Thus the transition from w,
to w;,, and then back to w;,, = w; is clearly an unnecessary detour. That
is, the sequence

WisWoseo s Wi Wiis,ee, W

from which w;_,,w;,, have been omitted is a derivation in @(.#).

We have shown that any derivation that uses a production belonging to
Q(#) can be shortened. Continuing this procedure, we eventually obtain a
derivation using only productions of 3(.#). [|

Theorem 3.3 (Post-Markov). If the deterministic Turing machine .#
accepts a nonrecursive set, then the word problem for the Thue process
O(.#) is unsolvable.

Proof. Let u be a word on the alphabet of .#. Then we have, using
Theorems 2.2 and 3.2,

M accepts u
if and only if

hq,sqouh 2(7)hq0h

if and only if
hq,squh e(=j>l)hq0h.

Hence, an algorithm for solving the word problem for @(.#) could be used
to determine whether or not .# will accept u, which is impossible. []

Now we consider semi-Thue processes on an alphabet of two symbols.
Theorem 3.4. There is a semi-Thue process on the alphabet {a, b} whose

word problem is unsolvable. Moreover, for each production g — A of this
semi-Thue process, g, h # 0.

3. Unsolvable Word Problems 179

Proof. Let us begin with a semi-Thue process Il on the alphabet 4 =
{a,,...,a,} and with productions

g8 & i=12,...,m,

whose word problem is unsolvable. We also assume that for each i =
1,2,...,m, g; # 0 and g; # 0. This is legitimate because this condition is
satisfied by the productions of 3(.#).

We write

a;=bdb, j=1,2,...,n,

where there is a string of a’s of length j between the two b’s. Finally, for
any word w # 0 in A*,

we write

In addition we let 0’ = 0. Then, we consider the semi-Thue process II' on
the alphabet {a, b} whose productions are

g — &> i=1,2,...,m.
We have

Lemmal. If u 20, then u’ o v'.

Pl ! ! [~

Proof. We have u =rg;s, v =rg;s. Hence u’ =r'gis’, v’ =r'g;s’, so
that u’ 20"]

Lemma 2. If u’ =W, then for some v € 4* we have w = v’ and u = 0.

Proof. We have u' = pgiq, w = pgiq. Now, since g; # 0, g; begins and
ends with the letter b. Hence each of p and ¢q either begins and ends with
b oris 0, so that p=r', g =s'. Then, u =rg;s. Let v =rg;s. Then
w=v"and u 3 v. |

Lemma 3. u > v if and only if u’ = v'.
Proof. Wu=u, 5 u,5 - 5 u, =0, then by Lemma 1

! !

— ! ! cos A
u'=up U =u, =0

180 Chapter 7 Processes and Grammars

Conversely, if

! !

u=w =w,= - =2w =0,

then by Lemma 2, for each w; there is a string u; € A* such that w;, = /.
Thus,

' ! e o
u=upuw pu, =0

By Lemma 2 once again,
U=Uy Uy " 22U, =0,

so that u = v. u

Proof of Theorem 3.4 Concluded. By Lemma 3, if the word problem for IT’
were solvable, the word problem for Il would also be solvable. Hence, the
word problem for I1' is unsolvable. []

In the preceding proof it is clear that if the semi-Thue process I1 with
which we begin is actually a Thue process, then I1’ will be a Thue process
on {a, b}. We conclude

Theorem 3.5. There is a Thue process on the alphabet {a, b} whose word
problem is unsolvable. Moreover, for each production g — h of this Thue
process, g, h # 0.

Exercises

1. Let II be the semi-Thue process with productions cde — ce, d — cde.
Use the construction in the proof of Theorem 3.4 to get a semi-Thue
process II" with productions on {a, b} such that u > v if and only if
u’' ? v’ for all words u,v € {c, d, e}*.

2. A semi-Thue system is defined to be a pair (u,, IT), where II is a
semi-Thue process and u, is a given word on the alphabet of II. A
word w is called a theorem of (u,, IT) if uy 7> w. Show that there is a
semi-Thue system for which no algorithm exists to determine whether
a given string is a theorem of the system.

3. Let II be a semi-Thue process containing only one production. Show
that II has a solvable word problem.

4.* Give an upper bound on the size of the smallest semi-Thue process
with an undecidable word problem. [See Exercise 2.2 in Chapter 6.]

4. Post’s Correspondence Problem 181
4. Post’s Correspondence Problem

The Post correspondence problem first appeared in a paper by Emil Post
in 1946. It was only much later that this problem was seen to have
important applications in the theory of formal languages.

Our treatment of the Post correspondence problem is a simplification of
a proof due to Floyd, itself much simpler than Post’s original work.

The correspondence problem may conveniently be thought of as a
solitaire game played with special sets of dominoes. Each domino has a
word (on some given alphabet) appearing on each half. A typical domino is
shown in Fig. 4.1. A Post correspondence system is simply a finite set of
dominoes of this kind. Figure 4.2 gives a simple example of a Post
correspondence system using three dominoes and the alphabet {a, b}. Each
move in the solitaire game defined by a particular Post correspondence
system consists of simply placing one of the dominoes of the system to the
right of the dominoes laid down on previous moves. The key fact is that
the dominoes are not used up by being played, so that each one can be used
any number of times. The way to “win” the game is to reach a situation
where the very same word appears on the top halves as on the bottom
halves of the dominoes when we read across from left to right. Figure 4.3
shows how to win the game defined by the dominoes of Fig. 4.2. (Note that
one of the dominoes is used twice.) The word aabbbb which appears across
both the top halves and bottom halves is called a solution of the given Post
correspondence system. Thus a Post correspondence system possesses a
solution if and only if it is possible to win the game defined by that system.

bhaab

babaa

Figure 4.1

7] hb a

aa b bhb

Figure 4.2

a a hb bb

aa bb b b

Figure 4.3

182 Chapter 7 Processes and Grammars

We shall prove

Theorem 4.1. There is no algorithm that can test a given Post correspon-
dence system to determine whether it has a solution.

Proof. Using Theorem 3.4, we begin with a semi-Thue process IT on the
alphabet {a, b} whose word problem is unsolvable. We modify IT in the
following trivial way: we add to the productions of II the two productions

a—a, b - b.
Naturally this addition has no effect on whether
U

for given words u,v. However, it does guarantee that whenever u ﬁ v,
there is a derivation

U=u 22Uy " Uy =0,

where m is an odd number. This is because with the added productions we
have
u; T u;

for each i, so that any step in a derivation (e.g., the first) can be repeated if
necessary to change the length of the derivation from an even to an odd
number.

Let u and v be any given words on the alphabet {a,b}. We shall
construct a Post correspondence system P, , (which depends on II as well
as on the words u and v) such that P, , has a solution if and only if u = v.
Once we have obtained this P, , we are through. For, if there were an
algorithm for testing given Post correspondence systems for possessing a
solution, this algorithm could be applied in particular to P, , and therefore
to determine whether u = v; since II has an unsolvable word problem,
this is impossible.

We proceed to show how to construct P, ,. Let the productions of IT
(including the two we have just added) be g, = h;, i = 1,2,...,n. The
alphabet of P, , consists of the eight symbols

ababl[]* %
For any word w on {a, b}, we write w for the word on {a, b} obtained by
placing “~ ” on top of each symbol of w. P, , is then to consist of the

2n + 4 dominoes shown in Fig. 4.4. Note that because II contains the
productions @ — a and b — b, P, , contains the four dominoes

a a h b

a b b

=1

4. Post’s Correspondence Problem 183

[ux * *] h; h;

*,
*
*.
~
—
«
=

C

Figure 4.4

Therefore, it is clear that in our play it is legitimate to use dominoes of the
form

=
=

where p is any word on {a, b}, since any such dominoes can be assembled
by lining up single dominoes selected appropriately from the previous four.
We proceed to show that P, , has a solution if and only if u 2 v.
First suppose that u = v. Let

u=ulﬁu2ﬁ>...ﬁum=v,
where m is an odd number. Thus, for each i, 1 <i < m, we can write
U;=pi8;4:, Ui, =pih;q;,

where the transition from u; to u;, is via the j;th production of II. Then
we claim that the word

[ul*ﬁ21u3* *ﬁm_lium] 4.1

is a solution of P, ,. To see this, let us begin to play by laying down the

dominoes:
[aex ﬂ h i q,
[n 9i q1 *

At this stage, the word on top is

*e

[u1 * 0, *
while the word on the bottom is

[u, .

184 Chapter 7 Processes and Grammars

We can continue to play as follows:

[P ’;,\ 4 2 h;, 42

=

q,

=

>

<
<

[P 9j, 4

Now the word on top is
[uy >y Fuy*
and the word on the bottom is
[u1 * 0, %

Recalling that m is an odd number we see that we can win by continuing
as follows:

Lo I P . Um 1]

[A1 P 1 d,. . Gu #]

for, at this point the word both on top and on bottom is (4.1).
Conversely suppose that P, , has a solution w. Examining Fig. 4.4, we
see that the only possible way to win involves playing

[aex]
and

[%]

first and last, respectively. This is because none of the other dominoes in
P, . have tops and bottoms which begin (or end) with the same symbol.
Thus, w must begin with [and end with]. Let us write w = [z]y, where z
contains no]. (Of course it is quite possible that y = 0.) Since the only
domino containing] contains it on the far right on top and on bottom, we
see that [z] itself is already a solution to P, ,. We work with this solution.
So far we know that the game looks like this:

[]

l *r]

so that the solution [z] looks like this:

[u* e & U].

4. Post's Correspondence Problem 185

Continuing from the left we see that the play must go

h;, I;: I

i

[uex h

n

L 9., i, Yiy

where g; g; ==+ g, =u. (This is necessary in order for the bottom to
“catch up” with the u* which is already on top.) Writing u = u; and
u, =h;h; - h; we see that u; = u, and that the solution has the form

[u,*uz*w*v].

Now we see how the play must continue:

[us ki, h,, b, h, h;, h,
[9., Yi, Yi, g/, gn ,‘i,,
where of course u, =g;g; - g;,- Again, writing uy =h;h; -+ h; we

have that u, ﬁ u, and that the solution has the form
[u, X, Uy ke iv].
Continuing, it is clear that the solution can be written

[ul*”z*us* *um—l*um]’

where
_ * * * * * —
U=U QU TUT " DUy T Uy =,
so that u ﬁ v.]
Exercises

1. Let II be the semi-Thue process with productions aba — a, b — aba,
and let u = bb, v = aaaaaa. Describe the Post correspondence system
P, . and give a solution to P, ..

2. Find a solution to the Post correspondence problem defined by the
dominoes

b ba habbh

bbb a ba

186 Chapter 7 Processes and Grammars

3. Find an algorithm for Post correspondence problems whose alphabet
consists of just one symbol.

5. Grammars

A phrase-structure grammar or simply a grammar is just a semi-Thue
process in which the letters of the alphabet are separated into two disjoint
sets called the variables and the terminals, with one of the variables singled
out as the start symbol. 1t is customary (but, of course, not necessary) to
use lower case letters for terminals, capital letters for variables, and in
particular the letter S for the start symbol.

Let I' be a grammar with start symbol § and let 77, T be the sets of
variables and terminals of I', respectively. Then we define

L) ={ueT*S=u),

and call L(T") the language generated by T'. Our purpose in this section is to
characterize languages which can be generated by grammars.
We first prove

Theorem 5.1. Let U be a language accepted by a nondeterministic Turing
machine. Then there is a grammar I' such that U = L(T').

Proof. Let U C T* and let .# be a nondeterministic Turing machine that
accepts U. We will construct I' by modifying the semi-Thue process Q(.#)
from Section 2. Let .# have the states q,,...,q,. Then we recall that the
alphabet of Q(.#) [which is the same as that of ()] consists of
$0-90>91592>--+1qn>qn+1,h in addition to the letters of the alphabet of
. We let the terminals of ' be just the letters of T, and the variables of I’
be the symbols from the alphabet of 0(.#) not in T, together with the two
additional symbols § and gq. § is to be the start symbol of I'. The
productions of I' are then the productions of Q(.#) together with the
productions

S — hqyh
hq,sy = q
gs — sq foreach seT

qh - 0.

5. Grammars 187

Now, let .# accept u € T*. Then, using Theorem 2.3, we have
S = hqoh 2 hq,sguh = quh = ugh = u,

so that u € L(I).
Conversely, let u € L(T). Then u € T* and S = u. Examining the list
of productions of I', we see that we must in fact have

S = hqoh = vghz = vz=u.
Proceeding further, we see that the symbol g could only be introduced
using the production
hq,s0 = q.
Hence, our derivation must have the form

S = hq,h ? xhqysoyhz = xqyhz = xyqhz = xyz = u,

where of course xy = v. Thus, there is a derivation of xhq,s,yhz from
hqh in T'. Moreover, this must actually be a derivation in Q(.#) since the
added productions are clearly inapplicable. Moreover, the productions of
Q(#) always lead from Post words to Post words. Hence, xhq,s,yhz must
be a Post word. That is, x =z = 0 and u = xyz = y. We conclude that

hgyh ﬂ(=/>'(/)hq1s0uh.

Thus by Theorem 2.3, .# accepts u. |

Now, let us begin with a grammar I' and see what we can say about
L(T"). Thus, let the alphabet of T' be

{s1,.00,8,, Vi, 0, Vi),

where T = {s,...,s,} is the set of terminals, V,,...,V, are the variables,
and S =V, is the start symbol. Let us order the alphabet of I' as shown.
Thus strings on this alphabet are notations for integers in the base n + k.
We have

Lemma 1. The predicate u = v is primitive recursive.

Proof. Let the productions I' be g, —» h;, i = 1,2,...,1. We write, for
i=12...,1

PROD,(u,v) = (3r,s)_,[u = CONCAT(r, g;,s) & v = CONCAT(r, h;, s)].

188 Chapter 7 Processes and Grammars

Since, by Chapter 5, Section 1, CONCAT is primitive recursive, each of the
predicates PROD; is primitive recursive. But

u=ve PROD,(u,v) V PROD,(u,v) V -+ V PROD,(u,v),

and the result follows.]
We write DERIV(u, y) to mean that for some m, y = [u,,...,u,,,1],
where the sequence u,,...,u,, is a derivation of u from § in I'. (The “1”

has been added to avoid complications in case u,, = u = 0.) Then, since
the value of S in base n + k is n + 1 [because S = V| is the (n + Dth
symbol in our alphabet], we have

DERIV(4,y) & @m)_ ,(m +1=Lt(y) & (y) =n + 1
&Y =u & (Y =1
& () en{i =0V [, 2 01]})-
Using Lemma 1, we have proved

Lemma 2. DERIV(y, y) is primitive recursive.

Also, by definition of DERIV(u, y), we have for every word u on the
alphabet of I’

S = u < (3y)DERIV(u, y). (5.1

Finally, (5.1) shows that

S =r> u < minDERIV(u, y)|.
y

Hence, by Lemma 2 and Theorem 7.2 in Chapter 3, we see that {u| S ? u}
is r.e. But

L(T) = T* 0 {ul § = u} (5.2)

(where T is the alphabet of terminals of I'), so that L(T') is the intersec-
tion of two r.e. sets and hence is r.e. Combining this result with Theorem
5.1 in Chapter 6 and Theorem 5.1 in this chapter, we have

Theorem 5.2. A language U is r.e. if and only if there is a grammar I’
such that U = L(T).

5. Grammars 189

We now are able to obtain easily the promised converse to Theorem 5.1
in Chapter 6. In fact putting Theorem 3.1 in Chapter 6 and Theorems 5.1
and 5.2 in this chapter all together, we have

Theorem 5.3. Let L be a given language. Then the following conditions
are all equivalent:

1. Lisre,;

2. L is accepted by a deterministic Turing machine;

3. L is accepted by a nondeterministic Turing machine;
4. there is a grammar I' such that L = L(T).

Theorem 5.3 involves some of the main concerns of theoretical com-
puter science: on the one hand, the relation between grammars, the
languages they generate, and the devices that accept them; on the other
hand, the relation, for various devices, between determinism and nondeter-
minism.

We will conclude this section by obtaining a result that will be needed in
Chapter 11, but can easily be proved at this point.

Definition. A grammar I is called context-sensitive if for each production
g — h of T we have |g| < |Al.

Lemma 3. If I' is context-sensitive, then
uls < u)
is recursive.

Proof. It will suffice to obtain a recursive bound for y in formula (5.1).
Since

I=lul <luyl < - <lu,l=lul

for any derivation u,,...,u,, of u from § in the context-sensitive gram-
mar I', we must have

Uy Uyyeooyly, <g(u),

where g(u) is the smallest number which represents a string of length
lul + 1 in base n + k. Now, since g(u) is simply the value in base n + k of
a string consisting of |u| + 1 repetitions of 1, we have

ful

gw) = ¥ (n+ k),

i=0

190 Chapter 7 Processes and Grammars

which is primitive recursive because |u| is primitive recursive. Next, note
that we may assume that the derivation

S=u=u,= - =u,=u

contains no repetitions. This is because given a sequence of steps

ZEU P U= DU =2,
we could simply eliminate the steps u;, ,,...,u;,,;. Hence the length m of
the derivation is bounded by the total number of distinct strings of length

< |ul on our alphabet of n + k symbols. But this number is just g(u).
Hence,

m
[ul»"',um»ll = npiui.pm+] Sh(u)’
i=1

where we have written A(u) for the primitive recursive function defined by

g(u)
h(u) = ﬂpf‘">-pg<u)+1-
i

Finally, we have
S =;l> u < (3y) <nw) DERIV(4, y),

which gives the result.]

Theorem 5.4. If T is a context-sensitive grammar, then L(T) is recursive.

Proof. We will use Lemma 3 and Eq. (5.2). Since T* is a recursive set, the
result follows at once.]

Exercises

1. For each of the following languages L, give a grammar I' such that
L = L(I).
(@) L ={a"b"l|n e N}
) L ={a"bl™|n < m)
© L ={wwR|wel{a b}

2. Use the construction in the proof of Theorem 5.1 to give a grammar I’
such that L(I') = {1™1B1"1B1™ 7| m, n > 0}.

3. Write down the proof of Theorem 5.2.

6. Some Unsolvable Problems Concerning Grammars 191

4. (a) Let I' have the variables S, B,C, the terminals a, b,c and the
productions

S — aSBC, S — aBC,
CB - BC, bB — bb,
aB — ab, bC — bc,

cC — cc.

Prove that for each n # 0, al"pl"lcl"l € L(T).
(b)* Prove that L(I") = {a!™bl"1c"1| n # 0}.

6. Some Unsolvable Problems Concerning Grammars

How much information can we hope to obtain about L(I') by a computa-
tion that uses the grammar I' as input? Not much at all, as we shall see.

Let .# be a Turing machine and let u be some given word on the
alphabet of .#. We shall construct a grammar I, as follows:

The variables of I, are the entire alphabet of Z(.#) together with S
(the start symbol) and V. There is just one terminal, namely, a. The
productions of I, are all of the productions of %(.#) together with

S — hq,sguh
hgoh — V

V —aV

V—a.

Then it follows at once from Theorems 2.1 and 2.2 that S = V if and only
if .# accepts u. Thus we have

Lemma. If .# accepts u, then L(T,) = {a!l|i # 0}. If .# does not accept
u, then L(T) = &.

Now we can select .# so that the language it accepts is not recursive.
Then there is no algorithm for determining for given u whether .# accepts
u. But the lemma obviously implies the equivalences

M accepts u < L(TI') # &
< L(T,) is infinite

< ae€L(T).

192 Chapter 7 Processes and Grammars
We have obtained
Theorem 6.1. There is no algorithm to determine of a given grammar I

whether

1. L(T) =,
2. L(I') is infinite, or
3. v, € L(T) for a fixed word v,.

We can also prove

Theorem 6.2. There is no algorithm for determining of a given pair I', A
of grammars whether

1. L(A) c L(I),
2. L(A) = L(I).

Proof. Let A be the grammar with the single variable S, the single
terminal a, and the productions

S —>aS

S —a.
Then L(A) = {a!"!]i # 0}. Thus we have by the previous lemma
M accepts u < L(A) = L(T,)) « L(A) c L(T).

The result follows at once. [|

Exercise

1. Show that there is no algorithm to determine of a given grammar I'
whether

(a) L(I') contains at least one word with exactly three symbols;
(b) v, is the shortest word in L(I") for some given word v,;
(¢) L(I') = A* for some given alphabet A.

*7. Normal Processes

Given a pair of words g and g we write

8 >z

7. Normal Processes 193

to indicate a kind of transformation on strings called a normal production.
If P is the normal production gz — zg we write

u=v
if for some string z we have
u =gz, v =2zg.

That is, v can be obtained from u by crossing off g from the left of u and
adjoining g to the right. A normal process is simply a finite set of normal
productions. If v is a normal process, we write

u=v
to mean that

u?v

for some production P in v. Finally, we write
u=v

to mean that there is a sequence (called a derivation)
U=u =u,= - =u, =0.
The word problem for v is the problem of determining of two given words
u,v whether u = v.
Let Il be a semi-Thue process on the alphabet {a, b} with an unsolvable
word problem. We shall show how to simulate II by a normal process v on
the alphabet {a, b, 4, b}. As earlier, if u € {a, b}*, we write & for the word

on {a, b} obtained by placing ~ above each letter in u. Let the produc-
tions of II be

gi_)hi, i=1,2,...,n.
Then the productions of » will be

giz_)Zil' i=1,2,...,n

]
az — za
bz — zb
az — za
bz — zb.

A word on {a, b, G, b} is called proper if it can be written in one of the
forms ud or Gv, where u, v are words on {a, b}. We say that two words are

194 Chapter 7 Processes and Grammars

associates if there is a derivation of one from the other using only the last
four productions of v. A word on {a, b} of length n has 2n associates, all of
which are proper. For example, the associates of baab are as follows:

baab = aabb = abba = bbaa = baab = aabb = abba = bbaa = baab.

Generally for u,v € {a, b}*, the proper words ui and v are associates of
each other and also of the word vu. In fact, vu is the unique word on {a, b}
which is an associate of us. Thus, a word is proper just in case it is an
associate of a word on {a, b}.

Lemma 1. If u = v, then u 5> v.

Proof. We have u = pg;q, v = ph;q for some i. Then

u > g9p < aph; < phiq. u
Lemma 2. If u = v, then u < v.

Proof. Immediate from Lemma 1. []

Lemma 3. Let u be proper and let u = v. Then there are words r,s on
{a, b} that are associates of u, v, respectively, such that r T} s.

Proof. 1If v is an associate of u, then u and v are both associates of some
word r on {a, b}, and the result follows because r Tf r.

If v is not an associate of u, the production used to obtain v from u
must be one of the g;z — zh;. Since u is proper, we have u = g,qp, where

D, q are words on {a, b}. Then v = gph;. Thus, setting

r=pgq, s=phgq,

the result follows because r 2 S [|

Lemma 4. Let u be proper and let u = v. Then there are words r,s on
{a, b} that are associates of u, v, respectively, such that r ﬁ s.

Proof. By induction on the length of the derivation in v of v from u. The

result is obvious if the derivation has length 1. Suppose the result is known

for derivations of length m, and let
U=u U, " =2U

v PUn =

m
By the induction hypothesis, there are words r,z on {a,b} that are
associates of u, u,, , respectively, such that r T;’ z. By Lemma 3, u,, , , is an
associate of a word s on {a, b} such that z ="> s. Thus, r = s.]

7. Normal Processes 195

Lemma 5. Let u,v be words on {a, b}. Then u = v if and only if u ﬁ v.

Proof. By Lemma 2 we know that u > v implies u 5> v. Conversely, if
u v, by Lemma 4, r s, where r,s are words on {a, b} that are
associates of u, v, respectively. But since u,v are already words on {a, b},
wehaver=u,s=v,sothatuﬁ>v. []

Since II was chosen to have an unsolvable word problem, it is now clear
that » has an unsolvable word problem. For, by Lemma 5, if we had an
algorithm for deciding whether u = v, we could use it to decide whether
uLo.

We have proved

Theorem 7.1. There is a normal process on a four-letter alphabet with an
unsolvable word problem.

Exercise

1. Show that there is a normal process with an unsolvable word problem
whose alphabet contains only two letters.

8

Classifying Unsolvable Problems

1. Using Oracles

Once one gets used to the fact that there are explicit problems, such as the
halting problem, that have no algorithmic solution, one is led to consider
questions such as the following.

Suppose we were given a “black box” or, as one says, an oracle, which
somehow can tell us whether a given Turing machine with given input
eventually halts. (Of course, by Church’s thesis, the behavior of such an
“oracle” cannot be characterized by an algorithm.) Then it is natural to
consider a kind of program that is allowed to ask questions of our oracle
and to use the answers in its further computation. Which noncomputable
functions will now become computable?

In this chapter we will see how to give a precise answer to such
questions. To begin with, we shall have to modify the programming
language & introduced in Chapter 2, to permit the use of ‘“oracles.”
Specifically, we change the definition of “‘statement” (in Chapter 2, Section
3) to allow statements of the form V' < O(V) instead of V « V. The
modified version of . thus contains four kinds of statement: increment,
decrement, conditional branch, and this new kind of statement which we
call an oracle statement. The definitions of instruction, program, state,
snapshot, and terminal snapshot remain exactly as in Chapter 2.

197

198 Chapter 8 Classifying Unsolvable Problems

We now let G be some partial function on N with values in N, and we
shall think of G as an oracle. Let % be a program of length »n and let
(i, o) be a nonterminal snapshot of &, i.e., i < n. We define the snapshot
(j,7) to be the G-successor of (i,co) exactly as in the definition of
successor in Chapter 2, Section 3, except that Case 3 is now replaced by

Case 3. The ith instruction of P is V <« O(V) and o contains the equation
V=m.1If Gm)|], then j =i+ 1 and 7 is obtained from o by
replacing the equation V' =m by V = G(m). If G(m)1?, then
(i, o) has no successor.

Thus, when G(m) |, execution of this oracle statement has the intuitive
effect of answering the computer’s question “G(m) = ?”. When G(m)1,
an “out-of-bounds” condition is recognized, and the computer halts with-
out reaching a terminal snapshot. Of course, when G is total, every
nonterminal snapshot has a successor.

A G-computation is defined just like computation except that the word
successor is replaced by G-successor. A number m that is replaced by
G(m) in the course of a G-computation (under Case 3) is called an oracle
query of the G-computation. We define y35°2(r ,r,,...,r,) exactly as we
defined ¢3"Xr,,r,,...,r,,) in Chapter 2, Section 4, except that the word
computation is replaced by G-computation.

Now, let G be a total function. Then, the partial function
i (xy,..., x,,) is said to be G-computed by . A partial function f is
said to be partially G-computable or G-partial recursive if there is a
program that G-computes it. A partially G-computable function that is
total is called G-computable or G-recursive. Note that we have not defined
partially G-computable unless G is a total function.

We have a few almost obvious theorems.

Theorem 1.1. If f is partially computable, then f is partially G-computa-
ble for all total functions G.

Proof. Clearly, we can assume that f is computed by a program
containing no statements of the form! I « V. Now this program £ is also

! Unlabeled statements ¥V « V can just be deleted, and
[L] VeV
can be replaced by
[L] VeV+1
VeV-—1.

1. Using Oracles 199

a program in the new revised sense; moreover, a computation of 2 is the
same thing as a G-computation of 2 since & contains no oracle state-
ments. Hence ¢} = ¢35 for all G. [

We write / for the identity function I(x) = x. (Thus, I = u}.)

Theorem 1.2. f is partially computable if and only if f is partially
I-computable.

Proof. 1If f is partially computable, then by Theorem 1.1 it is certainly
partially I-computable. Conversely, let % I-compute f. Let 2’ be ob-
tained from & by replacing each oracle statement V' < O(V) by V « V.
Then, &' is a program in the original sense and %' computes f. |

Theorem 1.3. Let G be a total function. Then G is G-computable.

Proof. The following program? clearly G-computes G:

X <« O(X)
Y X []

Theorem 1.4. The class of G-computable functions is a PRC class.
Proof. Exactly like the proof of Theorem 3.1 in Chapter 3.]

This last proof illustrates a situation, which turns out to be quite typical,
in which the proof of an earlier theorem can be used virtually intact to
prove a theorem relative to an “oracle” G. One speaks of a relativized
theorem and of relativizing a proof. It is a matter of taste how much detail
to provide in such a case.

Theorem 1.5. Let F be partially G-computable and let G be H-computa-
ble. Then F is partially H-computable.

Proof. Let & be a program which G-computes F. Let %’ be obtained
from 2 by replacing each oracle statement V' < O(V) by a macro
expansion obtained from some program which H-computes G. Then
clearly, ' H-computes F. [|

Theorem 1.6. Let G be any computable function. Then a function F is
partially computable if and only if it is partially G-computable.

2 Of course, we can freely use macro expansions, as explained in Chapter 2.

200 Chapter 8 Classifying Unsolvable Problems

Proof. Theorem 1.1 gives the result in one direction. For the converse, let
F be partially G-computable. By Theorem 1.2, G is I-computable. Hence,
by Theorem 1.5, F is partially I-computable and so, by Theorem 1.2 again,
F is partially computable. |

It is useful to be able to work with “oracles” that are functions of more
than one variable. We introduce this notion by using a familiar coding
device from Chapter 3, Section 8.

Definition. Let f be a total n-ary function on N, n > 1. Then we say
that g is (partially) f-computable to mean that g is (partially) G-computa-
ble, where

G(x) = f((x)y,...,(x),). 1.1

Theorem 1.7. Let f be a total n-ary function on N. Then f is f~computa-
ble.

Proof. Let G be defined by (1.1). Then
flx,,....,x,) = G([x,,...,x,D.
Hence the following program G-computes f:
Z<[X,,....X,]

Z < 0(2)
Y~ 2Z []

Since predicates are also total functions we can speak of a function
being (partially) P-computable, where P is a predicate. Also, we speak of a
function being (partially) 4-computable when A4 C N; as usual, we simply
identify 4 with the predicate that is its characteristic function.

Exercises

1. Provide a suitable definition of computability by a Post-Turing pro-
gram relative to an oracle and prove an appropriate equivalence
theorem.

2. For a given total function G from N to N, define the class Rec(G) to
be the class of functions obtained from G and the initial functions of
Chapter 3 using composition, recursion, and minimalization. Prove
that every function in Rec(G) is partially G-computable.

2. Relativization of Universality 201
2. Relativization of Universality

We now proceed to relativize the development in Chapter 4. As in Chapter
4, Section 1, we define an instruction number #(I) = {(a,{b,c)) for all
instructions /. The only difference is that b = 0 now indicates an oracle
staiement instead of one of the form V' «< V. For & a program, we now
define #() as before. As indicated in Chapter 4, in order to avoid
ambiguity we must not permit a program ending in the instruction whose
number is 0. This instruction is now the unlabeled statement Y « O(Y).
Hence, for complete rigor, if we wish to end a program with Y < O(Y), we
will have to provide the statement with a spurious label.

We define ®Y(x,,...,x,,y) to be ¢S %(x,,..., x,) where & is the
unique program such that #(2) = y. We also write ®;(x, y) for ®J(x, y).
We have

Theorem 2.1 (Relativized Universality Theorem). Let G be total. Then
the function ®¢X(x,,..., x,,y) is partially G-computable.

Proof. The proof of this theorem is essentially contained in the program
of Fig. 2.1. The daggers (1) indicate the changes from the unrelativized
universal program in Fig. 3.1 in Chapter 4. As in that case, what we have is
essentially an interpretative program. The new element is of course the
interpretation of oracle statements. This occurs in the following program
segment which, not surprisingly, itself contains an oracle statement:

(0] W (S)r(U)+l
B<W
B < O(B)
S < |S/P¥|-PB

The program segment works as follows. First, W and B are both set to the
current value of the variable in the oracle statement being interpreted.
Then an oracle statement gives B a new value which is G of the old value.
Finally, this new value is stored as an exponent on the appropriate prime
in the number S. The remainder of the program works exactly as in the
unrelativized case.]

Let G be any partial function on N with values in N. Then we define
the relativized step-counter predicate by

STP{"(x,,...,x,,y,t) < there is a G-computation of program number
y of length <t + 1 beginning with inputs
XpyeeesX,.

202

[l

(o]

(M]

(4]
[N]

[F]

Figure 2.1. Program that G-computes ®¢(X,,..., X, , X,).

Chapter 8 Classifying Unsolvable Problems

ZeX,t1
n

S« I (p)%
i=1

K1

IFK=Lt(Z)+ 1V K=0GOTO F

U« r((Z))
P < p,y+1
IF I(U) = 0 GOTO O
IF I(U) = 1 GOTO 4
IF ~(P|S)GOTO N
IF I(U) = 2GOTO M

K« min [I((Z))+2=1U)]

i<L(Z)
GOTO C
W (S)r(U)+1
B«W
B « O(B)
S < |S/P¥|-P5
GOTO N
S « |S/P]
GOTO N
S<S-P
K<K+1
GOTO C
Y < (8),

As in the unrelativized case, we have

Theorem 2.2 (Relativized Step-Counter Theorem).
G, the predicates STPY"(x,,..., x,, y,) are G-computable.

(€9)

(€3]
(&9
(€9)
(&9
(€3]

For any total function

In Chapter 4 we proved that the unrelativized predicates STP are
primitive recursive, but we do not need such a sharp result here. Instead,
we modify the program in Fig. 2.1 by adding a variable Q that functions as
a step counter. Then each time through the main loop, Q is increased by 1,
so that the program will “know” when a given number of steps has been

2. Relativization of Universality 203

Z<X,,, +1
n

S « Al'Il(pz,‘)X'
i=

K<1
[C] 0=0+1 ™)
IFQ>X,,, +1GOTO E @)
IFK=Lt(Z)+1V K=0GOTO F
U« r((Z))
P < p s
IF I(U) = 0 GOTO O @
IF I(U) = 1 GOTO 4
IF ~(P|S5)GOTON
IFI(U) = 2GOTO M
K« min [I(Z))+2=1U)]

i<Lu(Z)
GOTO C
[O] W < (8),w)+1 ®
B—W (€3]
B « O(B) &)
S < |s/pP¥|- P8 (€3]
GOTO N (€3]
(M] S < |S/P]
GOTO N
[A] Se<S-pP
[N] K« K+1
GOTO C
[F] Ye1 *)

Figure 2.2. Program that G-computes STPE(X | ,..., X, , X1 1s Xns2)-

exceeded. The program is given in Fig. 2.2. The asterisks (*) indicate
changes from the relativized universal program and the daggers (}), as
before, indicate the changes made in relativizing.

We shall now consider certain partial functions with finite domains, and
use numbers as codes for them. For every u € N we define

(r(u))iv1 fori <I(u)

0 for i > I(u). 21

{u}(i) = {

204 Chapter 8 Classifying Unsolvable Problems

Thus, if (u) = 0, then {u} = O, the nowhere defined function. Also, if
u=<k,layg,a,,....,a,_\D,

then {u}(x) = a, for x = 0,1,...,k — 1 and {u}(x)? for x > k.

Theorem 2.3. The predicate
P(x,,...,x,,y,t,u) = STPP(x,,...,x,,y,1)

is computable.

Proof. We will transform the program in Fig. 2.2 into one that computes
P(xy,...,%,,X,.1,X,4+2,%,.3). We need only replace the single oracle
statement B < O(B) by instructions that operate on x,, ; to obtain the
required information about {x,,;}. This involves first testing for
{x,.3}(b)|, where b is the value of the variable B. If {x,, ;}(b) 1, compu-
tation should halt with output 0, because there is no computation in this
case. Otherwise B should be given the value {x,, ;}(b). Thus, by (2.1), it
suffices to replace the oracle statement B < O(B) in the program in Fig.
2.2 by the following pair of instructions:

IF I(X,,,) < B GOTO E
B < (r(X,,)., L]

Now, let G be a total function. Then, we define
u<aG

to mean that {u}(i) = G(i) for 0 < i < /(u). [Of course, by (2.1), {u}(i) 1 for
i > I(u).] For a number u such that u < G, values of G can be retrieved
by using the equations

GG) = (r(w);,,, i=0,1,.../(u) - 1.

We can use the predicate STP{(x,,..., x,, y,) to obtain an important
result that isolates the noncomputability of the relativized step-counter
predicate in a way that will prove helpful. The simple observation on which
this result capitalizes is that any G-computation can contain only finitely
many oracle queries.

Theorem 2.4 (Finiteness Theorem). Let G be a total function. Then, we
have

STPY(x,,...,%,,y,1) « (Quw)|[u < G &STRY(x,,...,x,,y,1)].

2. Relativization of Universality 205

Proof. First suppose that STPY(x,,..., x,, y,t) is true for some given
values of x,,...,x,,y,t, and let & be the program with #() =y. Let
$1,8,,...,5, be a G-computation of & where s, is the initial snapshot
corresponding to the input values x,, x,,..., x, and where k < ¢ + 1. Let
M be the largest value of an oracle query of this G-computation, and let
u=<{M+ 1,[G0),GQ),...,G(M)]). Thus, u < G and {u}(m) = G(m)

for all m < M. Hence, s,,s,,...,5, is likewise a {u}-computation of 2.
Since k <t + 1, STP{(x,,..., x,, y,1) is true.
Conversely, let us be given u < G such that STR()(x,,...,x,,y,t) is

true, and let #(%) =y, Let s,,s,,...,5, be a {u}-computation of »
where s, is the initial snapshot corresponding to the input values
Xy, X5,...,%, and where k <t + 1. For each m that is an oracle query of
this {u}-computation, we must have {u}(m) |, since otherwise one of the
snapshots in this {u}-computation would be nonterminal and yet not have a
successor. Since u < G, we must have {u}(m) = G(m) for all such m.
Hence s,,s,,...,s, is likewise a G-computation of 2. Since k <t + 1,
STPYXx,,..., x,,y,t) is true.]

To conclude this section we turn to the parameter theorem (Theorem
5.1 in Chapter 4).

Theorem 2.5 (Relativized and Strengthened Parameter Theorem). For
each n,m > 0, there is a primitive recursive function S;(u,...,u,,y)
such that for every total function G:

DU (X ey X s Uy sy ety ¥) = DIy ooy Xy, SEUy sty , ¥)).
2.2)

Moreover, the functions S}, have the property:

Spuy,...u,,y) =8Si(a,,...,u,,y) implies wu, =u,,...,u, =1u,.

Proof. The functions S}, are defined exactly as in the proof of Theorem
5.1 in Chapter 4. We briefly give the proof again in a slightly different way.
Thus, let #(2) =y; then the function S!(u,y) is defined to be the
number of the program £ obtained from £ by preceding it by the
statement

Xm+] (_Xm+l +1

repeated u times. Since 2 on inputs x,,...,x, will do exactly what &
would have done on inputs x,,...,x, ,u we have

LDy ey Xy thy y) = PEI(xy .y X, Sh(U, ¥)),

206 Chapter 8 Classifying Unsolvable Problems

the desired result for n = 1. To complete the proof, we define S, for
n > 1 by the recursion

Sr’:1+1(u17"'7uk»uk+17y) =Sr/:z(ul7""uk’Sr1n+k(uk+1’y))'
It is now easy to prove by induction on n that if #(£) =y, then
Si(uy,...,u,,y) = #(P), where & is obtained from £ by preceding it

by the following program consisting of u, + --- +u; statements.

Xm+l(_ m+1+1

: U,

Xps1 <Xy +1

Xm+n < Xm+n +1

. u,

Xm+n « Xm+n + 1
Hence, & on inputs x,,...,x, will do exactly what £ would have done
on inputs x;,...,X,,,U,...,u,. Thus, we obtain (2.2).

Finally, let
Sty ... u,,y) =S8"(d,,...,q,,y) = #(P),

and let y = #(2). Then, 2 consists of a list of increment statements
followed by &, and for 1 < i < n, u; and u; are both simply the number of
times the statement

X,

m

i e Xt

m+i
occurs in & preceding 2. Thus, u; = u,.

]

Exercises

1. (a) Show that the functions S}, do not have the property:

SE(Uyyenyty,y) =Sp(ly,....4,,5)

implies u, =, ,...,u, =u,,y =Y.

(b) Can the definition of S, be modified so the parameter theorem
continues to hold, but so the condition of (a) holds as well? How?

2. Prove the converse of Exercise 1.2.

3. Reducibility 207
3. Reducibility

If A and B are sets such that A is B-recursive, we also say that A4 is
Turing-reducible to B and we write A <, B. We have

Theorem3.1. A4 <, A.If A<, Band B <,C, then 4 <, C.

Proof. The first statement follows at once from Theorem 1.3 and the
second from Theorem 1.5.]

Any relation on the subsets of N for which Theorem 3.1 is true is called
a reducibility. Many reducibilities have been studied. For example, we
introduced many-one reducibility in Chapter 4. We can also define a
restricted form of many-one reducibility.

Definition. We write A <, B and say that A is one—one reducible to B if
there is a one—one recursive function f (i.e., f(x) = f(y) implies x = y)
such that

A={xeN|f(x) € B}.

Theorem 3.2. A <, B implies 4 <, B implies 4 <, B.

Proof. The first implication is immediate. For the second implication, let
A ={x € N| f(x) € B}, where f is recursive. Then the following program
B-computes A:

X « f(X)
X <« 0(X)
Y X []

Theorem 3.3. <, and <, are both reducibilities.

—m

Proof. Clearly A = {x € N|I(x) € A}, where I is the identity function.
Hence A <, A and therefore 4 <, A.
Let A <, Band B <, C, and let

A={xeN|f(x) € B}, B={xeN|glx) e C},
where f, g are recursive. Then
A={xeN|g(f(x) ecC},

so that 4 < C. If, moreover, f and g are one—one and h(x) = g(f(x)),
then 4 is also one—one, because

h(x) = h(y) implies g(f(x)) =g(f(y))

implies f(x) = f(y)
implies x =y.]

208 Chapter 8 Classifying Unsolvable Problems

Thus, we have three examples, <,, <., and <,, of reducibilities.

Polynomial-time reducibility, <, , which we will study in Chapter 15, is
another example. (In fact, historically, polynomial-time reducibility was
suggested by many-one reducibility.) There are a number of simple
properties that all reducibilities share. To work some of these out, let us
write <, to represent an arbitrary reducibility. By replacing Q by 1,m,t
(or even p) we specialize to the particular reducibilities we have been
studying. We write 4 £ ,B to indicate that it is not the case that
A <, B

Definition. A =, B means that 4 <, B and B <o 4.

Theorem 3.4. For any reducibility <,:
A = 4,
A=, B implies B=, A4,
A=, B and B=,C implies A4 =, C.
Proof. Immediate from the definition. |
Definition. Let W be a collection of subsets of N and let <, be a

reducibility. W is called Q-closed if it has the property
A€Wand B<, A implies BeEW.

Also, a set A € W is called Q-complete for W if for every B € W we have
B <, A
_Q .

NP-completeness, which will be studied in Chapter 15, is, in the present
terminology, polynomial-time completeness for NP. Completeness of a set
A is often proved by showing that a set already known to be complete can
be reduced to A.

Theorem 3.5. Let A be Q-complete for W, let B € W, and let 4 <, B.
Then B is Q-complete for W.
Proof. Let C € W.Then C <, A.Hence C <, B. |

If W is a collection of subsets of N, we write

co-W={ACN|AecW).

Theorem 3.6. Let co-W be Q-closed, let 4 be Q-complete for W, and let
A € co-W. Then we have W = co-W.

3. Reducibility 209

Proof. Let B € W. Then, since A4 is Q-complete for W, B <, A. Since
A € co-W and co-W is Q-closed, B € co-W. This proves that W C co-W.

_ Next let B € co-W. Then B € W. By what has already been shown,
B € co-W. Hence B € W. This proves that co-W C W. |

As we shall see, Theorem 3.6 is quite useful. Our applications will be to
the case of one—one and many—one reducibility. For this purpose, it is
useful to note

Theorem 3.7. If A <, B, then A <, B. Likewise if 4 <, B, then

A<, B.

Proof. 1f A ={x € N|f(x) € B}, then clearly 4 = {x € N|f(x) € B}.
|

Corollary 3.8. If W is m-closed or 1-closed, then so is co-W.

Proof. Let B € co-W, A <, B. By the theorem, A <_ B.Since BEW
and W is m-closed, 4 € W. Hence 4 € co-W. Similarly for <;.]

For a concrete example, we may take W to be the collection of r.e.
subsets of N. (For notation, the reader should review Chapter 4, Section
4.) We have

Theorem 3.9. K is 1-complete for the class of r.e. sets.

Proof. Let A be any r.e. set. We must show that 4 <, K. Since A4 isr.e.,
we have

A= {XEN‘f(x)l},

where f is a partially computable function. Let g(¢, x) = f(x) for all ¢, x.
Thus, g is also partially computable. Using the (unrelativized) universality
and parameter theorems, we have for a suitable number e:

g(t,x) = @31, x,e) = Bz, S{(x,).
Hence,
A={xeN|f(x)|)
= (xe N1g(S!(x,e),0)1)
= {x e N|®(S(x,e),S](x,e)) L)
={x e N|Si(x,e) €K}.

Thus, A <, K. But, by the strengthened version of the parameter theo-
rem (Theorem 2.5), S}(x, e) is actually one—one. Hence, 4 <, K. [|

210 Chapter 8 Classifying Unsolvable Problems

The class of r.e. sets is easily seen to be m-closed. Thus, let f be partial-
ly computable, let A ={x € N|f(x)]}, and let B ={x € N | g(x) € A},
where g is computable. Then

B={xeN|f(g(x)!},

so that B is r.e. Applying Theorems 3.2, 3.6, and 3.9 and Corollary 3.8, we
obtain the not very interesting conclusion:

If Kis r.e., then the complement of every r.e. set is .e.

Since we know that K is in fact not r.e., this does us no good. However,
Corollary 3.8 and Theorem 3.6 together with the fact that there is an r.e.
set (e.g., K) whose complement is not r.e. permits us to conclude

Theorem 3.10. If 4 is m-complete for the class of r.e. sets, then A is not
r.e., so that A is not recursive.

We conclude this section with a simple but important construction. For
A, B € N we write

A®B={2x|xe€ A} U {2x + 1| x € B}.

Intuitively, A ® B contains the information in both 4 and B and nothing
else. This suggests the truth of the following simple result.

Theorem 3.11. A< A®B, B<, A®B. If A <,C and B <,C, then
A®B<C.
Proof. The following program (A4 @ B)-computes A:

X<2X
X <« 0(X)
YeX
If the first instruction is replaced by X « 2X + 1, the program (4 & B)-
computes B.
Finally, let C,, Cy be the characteristic functions of 4 and B, respec-
tively. Assuming that 4 and B are both C-computable, there must be

programs that C-compute the functions C, and Cj, respectively. Hence,
W€ may use macros

Y« C/(X) and Y « Cux(X)

4. Sets r.e. Relative to an Oracle 211

in programs that have C available as oracle. Thus, the following program
C-computes A & B:

IF2| X GOTO D
X< |(X+1/2]
Y « Ch(X)
GOTO E

[D] X < [X/2]
Y « C (X)

Exercises

1. Let U={xe€ N|l(x) € W,,,}. Show that U is 1-complete for the
class of r.e. sets.

2. Let K <, A and let
C={reKld(x)gAe A4}

Prove that 4 <, C,C <, A, but C £ A.
3. Prove that Theorem 3.11 holds with <, replaced by <,, .
Let FIN = {x € N | W, is finite}. Prove that K <, FIN.
5. Prove that if B, B + &, then for every recursive set A, 4 <, B.

4. Sets r.e. Relative to an Oracle

If G is a total function (of one or more arguments) we say that a set
B C N is G-recursively enumerable (abbreviated G-r.e.) if there is a par-
tially G-computable function g such that

B={xeNl|gx)|}.

By Theorem 1.6, r.e. sets are then simply sets that are G-r.e. for some
computable function G.

It is easy to relativize the proofs in Chapter 4, Section 4, using, in
particular, the relativized step-counter theorem. We give some of the
results and leave the details to the reader.

Theorem 4.1. If B is a G-recursive set, then B is G-r.e.

212 Chapter 8 Classifying Unsolvable Problems

Theorem 4.2. The set B is G-recursive if and only if B and B are both
G-re.

Theorem 4.3. If B and C are G-r.e. sets, so are BU C and BN C.

Next, we obtain

Theorem 4.4. The set A4 is G-r.e. if and only if there is a G-computable
predicate Q (x,¢) such that

A={xe N|@)Q0(x,1)}. 4.1

Proof. First let A be G-r.e. Then, there is a partially G-computable
function A such that

A={xeN|h(x)!}.
Writing A(x) = ®;(x, z,), we have
A = {x € N|(31)STP{'(x, z,,1)},

which gives the result in one direction.

Conversely, let (4.1) hold, where Q is a G-computable predicate. Let
h(x) be the partial function which is G-computed by the following pro-
gram:

[B] Z < QX,Y)
YeY+1
IF Z = 0 GOTO B

Then clearly,

A={xeN|h(x)|},
so that 4 is G-r.e. [|

Corollary 4.5. The set A4 is G-r.e. if and only if there is a G-recursive set
B such that

A={xeN|@3y)x,y) € B)}.

Proof. If B is G-recursive, then the predicate {x, y) € B is G-computa-
ble (by Theorem 1.4) and hence, by the theorem, A4 is G-r.e.

Conversely, if A is G-r.e., we have a G-computable predicate QO such
that (4.1) holds. Letting B = {z € N | Q(I(z), r(2))}, B is (again by Theo-
rem 1.4) G-recursive and

A={xeN|3y)Kx,y) € B)}. u

4. Sets r.e. Relative to an Oracle 213

For any unary function G, we write
WS ={xeNI®;(x,n)l}.

(Thus W, = W) For the remainder of this section, G will be a unary total
function. We have at once

Theorem 4.6 (Relativized Enumeration Theorem). A set B is G-r.e. if
and only if there is an n for which B = W.°.

We define
G' ={neN|neWws).
(Thus, K = I'.) G' is called the jump of G. We have

Theorem 4.7. G’ is G-r.e. but not G-recursive.

This is just the relativization of Theorem 4.7, in Chapter 4, and the
proof of that theorem relativizes easily. However, we include the details
because of the importance of the result.

Proof of Theorem 4.7. Since
G' ={neN|¥g(n,n)l},

the relativized universality theorem shows that G’ is G-r.e. If G’ were also
G-r.e., we would have G’ = W,° for some i € N. Then

ieG oieWleicd,
a contradiction. u

Our next result is essentially a relativization of Theorem 3.9.

Theorem 4.8. The following assertions are all equivalent:

a. A<,G
b. A<, G
c. Ais Gre.

Proof. 1t is obvious that assertion a implies b. To see that b implies c, let
h be a recursive function such that

x€A ifandonlyif h(x) € G'.
Then
x €A ifandonlyif ®g(h(x),h(x))|,
so that A4 is G-r.e.

214 Chapter 8 Classifying Unsolvable Problems

Finally, to see that c implies a, let A4 be G-r.e., so that we can write
A={xeN|f(x)l},

where f is partially G-computable. Let g(¢, x) = f(x) for all ¢, x. By the
relativized universality and parameter theorems, we have, for some num-
ber e,

g(t,x) = ®P(t, x,e) = B(z,S](x,e)).

Hence,
A={xeN|f(x)]}
= {xeNIg(Si(x,e),x) !}
= {x e N|®s(S](x,e),S(x,e)) |}
={xe N|S/(x,e) € G'}.
Since, by Theorem 2.5, S|(x, e) is one—one, we have 4 <,G'. [|

Theorem 4.9. If F and G are total unary functions and F is G-recursive,
then F' <,G'.

Proof. By Theorem 4.7, F' is F-r.e. That is, we can write
F'={xeN|[f(x)l},

where f is partially F-computable. By Theorem 1.5, f is also partially
G-computable. Hence F' is G-r.e. By Theorem 4.8, F' <,G'. [|

By iterating the jump operation, we can obtain a hierarchy of problems
each of which is “more unsolvable” than the preceding one.
We write G for the jump iterated n times. That is, we define
G® =G,
G(n+1) — (G(n))l'
We have

Theorem 4.10. """ is &"-r.e. but not &™-recursive.
Proof. Immediate from Theorem 4.7.]

It should be noted that, by Theorem 4.9, K =, ', since I and J are
both recursive and K = I'. Later we shall see that much more can be said
along these lines.

5. The Arithmetic Hierarchy 215

Exercise

1. Show that there are sets A, B, C such that A is B-r.e.and B is C-r.e.,
but A is not C-r.e.

5. The Arithmetic Hierarchy

The arithmetic hierarchy, which we will study in this section, is one of the
principle tools used in classifying unsolvable problems.

Definition. 2 is the class of recursive sets. For each n € N, %, , is the
class of sets which are A-r.e. for some set A4 that belongs to 3, . For all n,
II,=co-2,,A,=2,NII,.

Note that 3, is the class of r.e. sets and that 3, = II, = A, = A, is the
class of recursive sets.

Theorem 5.1. 2, c2 ,,,II,cII ,,.

Proof. For any set A €3, , Ais A-re. and hence 4 € %, . The rest
follows by taking complements. [|
Theorem 5.2. O €3 .

Proof. By induction. For n = 0 the result is obvious. The inductive step
follows at once from Theorem 4.10. |
Theorem 53. A €3, if and only if 4 is @"-re.

Proof. If A is @"-re., it follows at once from Theorem 5.2 that
Ae 2n+ 1

We prove the converse by induction. If 4 € 3, then A4 is r.e., so, of
course, A is J-r.e. Assume the result known for n = k andlet 4 € %, ,.
Then A is B-r.e. for some B € 3, ,. By the induction hypothesis, B is
@*)-re. By Theorem 4.8, A <, B’ and B <,@%**". By Theorem 4.9,
B’ <,@%*? Hence A <,@**?, and by Theorem 4.8 again, A is &**"-
re. [|

Corollary 5.4. For n > 1 the following are all equivalent:
A < @(");

A<, D™;
Ae€z,.

216 Chapter 8 Classifying Unsolvable Problems

Proof. This follows at once from Theorems 4.8 and 5.3. [|

Corollary 5.5. For n > 1, 3" is 1-complete for 3.
Proof. Immediate from Theorem 5.2 and Corollary 5.4.]

Corollary 5.6. For n>1, 3, and II, are both m-closed and hence
1-closed.

Proof. Let A €3, B <,, A.Then using Corollary 5.4 twice, B <, @,
and hence B € 3. This proves that %, is m-closed. The result for II, is
now immediate from Corollary 3.8. |

Theorem 5.7. A € A,,, if and only if 4 <, @™,
Proof. Immediate from Theorems 4.2 and 5.3. |

In particular, since K =, (actually K =, '), A, consists of all sets
that are K-recursive, that is, sets for which there are algorithms that can
decide membership by making use of an oracle for the halting problem.

Theorem 58. % UII, cA, .

Proof. For n =0, the inclusion becomes an equality, so we assume
n>11If A4 €3, then by Corollary 5.4, A 31@‘”), so by Theorem 5.7,
A€A,,,.f AT, then 4 <,F™. But clearly A <, A4 (for example,
by Theorem 1.4). Hence A4 <, @ and by Theorem 5.7, 4 € A, ;. []

Theorem 5.9. Forn>1,0™ e —A,.
Proof. By Theorem 4.10, & is not @~ "-recursive. [|

Theorem 5.10 (Kleene’s Hierarchy Theorem). We have for n > 1

1.A,c3,,A, clIl;

2. an2n+l’HnCHn+l;

3.3, Ull, cA,,,.
Proof.

1. By definition A, € 3, , A, c II,. By Theorem 5.9, 3"V €3, — A,
and so @™ e I, — A, . Thus the inclusions are proper.

2. By Theorem 5.1 we need show only that the inclusions are proper.
But@"*Ve3 . .fF""Pe3 byTheorem58,3" N eA,,,,

contradicting Theorem 5.9. Likewise @ * e II,,, — II,.

6. Post’s Theorem 217

3. By Theorem 5.8, we need show only that the inclusion is proper. Let
A, =" & @™. We shall show that 4, € A,,, — (2, UII,). By

Theorem 3.11 (with C = @™), we have A, <, @. Hence 4, €
A, .. Also,

g ={xeN2xeA,)l,

W ={xeN|2x+1€4,).

Hence @ <, A4,, @™ <, A,. Suppose that 4, € 3,. Then, by

Corollary 5.6, gme 2., so that " e A, , contradicting Theorem

5.9. Likewise if 4, € I, then & € I, and hence @™ € A, .
|

Since we have now seen that for all n > 1, 3, # co-2,, and since we
know that for n > 1, X, and II, are each m-closed, we may apply
Theorem 3.6 to obtain the following extremely useful result.

Theorem 5.11. If A is m-complete for 2, , then 4 & II, . Likewise, if 4
is m-complete for I, , then 4 € 2.

6. Post’s Theorem

In order to make use of the arithmetic hierarchy, we will employ an
alternative characterization of the classes 3,, II, involving strings of
quantifiers. This alternative formulation is most naturally expressed in
terms of predicates rather than sets. Hence we will use the following
terminology.

We first associate with each predicate P(x,,..., x,) the set

A={xeNI[Px),...,(x))}.

Then we say that P is 3, or that P is a 3, predicate to mean that
A €3, . Likewise, we say that P is II, or A, if A€1Il, or A €A,
respectively. Notice that we continue to regard 2, and II, as consisting of
subsets of N, and we will not speak of a predicate as being a member of
3,orIl,.

Our terminology involves a slight anomaly for unary predicates. We have
just defined P(x) to be X, (or II,) if the set 4 ={x € N|P((x),)}
belongs to 3, (or II,), whereas it would be more natural to speak of P(x)
as being =, (or II,) depending on whether B = {x € N | P(x)} belongs to
3, (or I1,). Fortunately, there is really no conflict, for we have

218 Chapter 8 Classifying Unsolvable Problems

Theorem 6.1. Let B = {x € N| P(x)}. Then P(x) is 2, if and only if
B € %, . Likewise for IT,, A, .

Proof. For n = 0, the result is obvious, so assume that n > 1. P(x)is =,
(or I, or A)) if and only if the set 4 = {x € N | P((x),)} belongs to =,
(or IT,, or A,). Now,

={x e N|(x), € B},
and
={x e N|[2* € 4}.
Thus A =, B. By Corollary 5.6, this gives the result. [|

Theorem 6.2. Let P(x,,...,x,) be a %, predicate and let
QU ,....t,) @ P(fi(t,,....), ... f(ty,....8)),

where f,..., f, are computable functions. Then Q is also 3, . Likewise
for II,,.

Proof. Let
={xeN|PUx),....,(x))},
B={teN|QU),,...,(O))}.

We shall prove that B <., A. It will thus follow that if 4 € 3, (or II,),
then B € %, (or II,), giving the desired result.
We have

teB e 0W(),...,))
o P(fi(0),....,(0)),..., [((B)),...., (1))

= [[UD),....,(O)),.... ((D),....,(O)] € A4,
sothat B <, A. []

Theorem 6.3. A predicate P is %, (or II,) if and only if ~P is II, (or
2.

Proof. A ={xe N|P(x),,...,(x),)} implies

={xeN| ~PUx),...,(x))}. []

Theorem 6.4. Let P(x,,...,x.),0(x,,...,x,) be %, (or II,). Then the
predicates P & Q and P V Q are likewise 3, (or IT1,).

6. Post’s Theorem 219

Proof. For n = 0, the result is obvious. Assume that n > 1 and let
A={xeNIPUx),....,(x))},
B={xe N|Q(x),,...,(x))},
C={xeNIPUx),...,(x)) & O((x),,...,(x),)},
D={xeN|PUx),....,(x),) VOUx),...,(x))}.

Thus, C=ANBand D=AUB.If Pand Q are 3,, then 4,B€ 3.
Thus, by Theorem 5.3, 4 and B are both @~ "-r.e. By Theorem 4.3, C
and D are likewise @ "-ree., and so P & Q and P Vv Q are 2,

If P and Q are II,, then 4, B € I, so that A, B € 3, . By Theorems
43and 53, ANB=(AUB) €3, and AUB=(ANB) €3, Hence
D,Cell,,sothatboth PV Qand P & Q are II,,. |

Theorem 6.5. Let Q(x,,...,x,,y)be3,, n > 1, and let
P(x;,...,x;) (3y)0(x,,...,x,,y).

Then P is also %,,.

Proof. Let
A={xeN|QUx),,...,(x);,(x). D},
B={xeN|P(x),...,(x))}.

We are given that 4 € 3, i.e., that 4 is @ "-re., and we must show
that B is likewise @ "-re.
By Theorem 4.4, we may write

A ={x e N|@1)R(x,1)},
where R is @~ D-recursive. Hence,
Q(Xl,...,xs,y) < [xl,---»xs»y] €A

< (ADR([x,,...,x,,y],0).
Thus,

x€B e P((x),,...,(x).)
< AY)0Ux),,...,(x),y)
< 3Y)3DHR((x),,...,(x),,y],0)

< (A2)R([(x),,...,(x),,1(2)], r(2)).
By Theorems 1.4 and 4.4, B is @~ V-ree. [

220 Chapter 8 Classifying Unsolvable Problems

Theorem 6.6. Let Q(x,,...,x,,y)be Il,, n > 1, and let
P(xy,...,x) & (Vy)O(x,,...,x,,y).
Then P is also II,,.

Proof. ~P(x,,...,x;) < (3y) ~Q(x,,...,x,,y). The result follows
from Theorems 6.3 and 6.5. []

The main result of this section is

Theorem 6.7 (Post’s Theorem). A predicate P(x,,...,x,)is %,,, if and
only if there is a II, predicate Q(x,,..., x,, y) such that

P(x;,...,x,) (3y)0(x,,...,x,,y). (6.1)

Proof. 1f (6.1) holds, with Q a II, predicate, it is easy to see that P must
be ,,;. By Theorem 5.8, Q is certainly itself 2, ,, and therefore, by
Theorem 6.5, P is 3, .

The converse is somewhat more difficult. Let us temporarily introduce
the following terminology: we will say that a predicate P(x,,...,x,) is
37+ 1 if it can be expressed in the form (6.1), where Q is II,. Then Post’s
theorem just says that the 3, ., and the 3"*' predicates are the same. We
have already seen that all 3"*! predicates are 3, ;.

Lemma 1. If a predicate is 3, then it is 3"*".

x.)

ey Ay

Proof. For n = 0, the result is obvious. Let n > 1, and let P(x,..
be 3, . Let

A={xeN|PUx),...,(x))}.
Then A is @ V-r.e., so by Theorem 4.4,
A ={x e N|3)R(x,1)},

where R is @~ V-recursive. Thus

P(x;,...,x,) © (ADOR([x,,...,x,]1,1).
It remains to show that R([x,,..., x],#) is II,. But in fact, by Theorem
1.4, R(x,,...,x,]t)is "~ !_recursive, so that it is actually A, and hence
certainly II,.]
Lemma 2. If a predicate is II,, then it is 37",
Proof. 1If P(x,,...,x,)is II,, we need only set

O(x,,...,x,,y) & P(x,,...,x,),

6. Post’'s Theorem 221

so that, of course,

P(xy,...,x;) (3y)0(x,,...,x,,y).

Since
{xeNIQUx),,....,(x),,(x),, D} ={x e NIP((x),,...,(x))},
the predicate Q is also II,, which gives the result. |

Lemma 3. If P(x,,...,x,,z)is 3" and
O(xyy...,x) « (3D)P(xy,...,x,,2),
then Q is 3"+ 1.
Proof.” We may write
P(xy,...,x,,z) & (3Y)R(x,...,x,,2,y),
where R is II,,. Then
O(x,,...,x) < (32)3FY)R(x,,...,x,,2,y)
« (AOR(xy,...,x,,1(8), r(1)),
which is 3"*! by Theorem 6.2. [
Lemmad4. If P and Q are 3"*!, thensoare P & Q and P Vv Q.
Proof. Let us write
P(x,,...,x) © (Ay)R(x,,...,x,,y),
O(xy,...,x) « (32)S(x,,...,x,,2),
where R and S are II,. Then
P(x;,...,x) & Q(x,,...,x,)=3y)3)[R(x;,...,x,,¥)
&S(xy,...,x,,2)]
and
P(x;,...,x) V Q(x,,...,x) & 3y)32)[R(x,,...,x,,y)
VS(xy,...,x,,2)].
The result follows from Theorem 6.4 and Lemmas 2 and 3. |
LemmaS. If P(x,,...,x,,t)is 3"*! and
Oxysesx,y) & (VO P(xy,...,x, 1),
then Q is 3"* 1.

222 Chapter 8 Classifying Unsolvable Problems

Proof. Let
P(xy,...,x,,t) & (32)R(x,,...,x,,t,2),
where R is II,. Thus,
Qxy,...,x.,y) = (V) ,(32)R(x,,..., x,,t,2)
= QW) R(xy,...,x 1, (U,),

where we are using the Gédel number u = [z, z,,..., z,] to encode the
sequence of values of z corresponding to ¢t = 0,1,...,y. Thus,

Qxy,...,x.,y) @ QW[>y vV R(x,,...,x.,t,(u),,)]
o (Fuw)S(x;,...,x,,y,u),

where S is II,,. For n = 0, we have used Theorem 6.3 from Chapter 3; and
for n > 0, we have used the fact that the predicate ¢ > y is recursive (and
hence certainly IT,), and Theorems 6.2, 6.4, and 6.6. [|

We now recall from Section 2 that u < G means that
{u}(i) = G(i) for 0 <i<I(u).
Lemma 6. Let R(x) be 3. Then the predicate u < R is 3",
Proof. We have
u<Re (Vi) [(rw);,; = 1& RV [(r(u);,, = 0&~ R(D]}
e l(w) =0V @3z2)(z+1=1u)&N)_[(r(u),,, =1& R>)]
VIG@W),, =0&~ R(HI).

Thus, using Lemmas 1-5 and the fact that the predicate ~ R(:) is II,,, we
have the result. u

Proof of Theorem 6.7 (Post’s Theorem) Concluded. Let P(x,,..., x,) be any
2., .1 predicate. Let

A={xeN|P({(x),...,(x))}.

Then A € 3., ,, which means that A4 is B-r.e. for some set B € 2. Let
R(x) be the characteristic function of B, so that by Theorem 6.1, R is 3., .
Since A is B-r.e., we are able to write

A={xeN|f(x)|},

6. Post’s Theorem 223

where f is partially B-computable. Let f be B-computed by a program
with number y,. Then, using Theorem 2.4 (the finiteness theorem), we
have

x €A < (A)STPM(x, y,, 1)
= (3D@uw){u < R & STPY(x, y,,1)}.

Thus,
P(x,...,x,) < (EIt)(EIu){u <R &STP(‘,)))([xl ,...,xs],yo,t)}.
Therefore by Theorem 2.3 and Lemmas 3,4, and 6, P is 3"+ " |

Now that we know that being 3,,, and 3"*! are the same, we may
rewrite Lemma 5 as

Corollary 6.8. If P(x,,...,x,,t)is 3, and
Ox,,...,x,,y) < (‘\7’t)syP(x1 yeees Xy 1),
then Q is also Z,,.

Also, we can easily obtain the following results.
Corollary 6.9. A predicate P(x,,...,x,)is II, ., if and only if there is a
3, predicate Q(x,,..., x,,y) such that
P(x;,...,x;) & (Vy)O(x,,...,x,,y).
Proof. Immediate from Post’s theorem and Theorem 6.3. |
Corollary 6.10. If P(x,,...,x.,¢t)is II,, and
Oxy,...,x.,y) = @A P(x,,...,x.,1),
then Q is also II,.
Proof. Immediate from Corollary 6.8 and Theorem 6.3. |

We are now in a position to survey the situation. We call a predicate
P(x,,...,x,) arithmetic if there is a recursive predicate R(x,,...,x,,
Yis--+,¥,) such that

P(xl ’- “7xs) And (QIYI)(QZ.Yz) (Qnyn)R(xl peees Xy Vs "Yn)»
(6.2)
where each of Q,,...,Q, is either the symbol 3 or the symbol V. We say

that the Q; are alternating if for 1 <i <n when Q; is 3, then Q; , is V
and vice versa. Then we have

224 Chapter 8 Classifying Unsolvable Problems

Theorem 6.11.

a. Every predicate that is 3, or II, for any » is arithmetic.

b. Every arithmetic predicate is 3, for some n (and also II, for some
n).

c. A predicate is %, (or II,) if and only if it can be represented in the
form (6.2) with @, = 3 (or Q, = V) and the Q; alternating.

Proof. Since %, and II, predicates are just recursive, they are arithmetic.
Proceeding by induction, if we know, for some particular n, that all 3, and
I1, predicates are arithmetic, then Theorem 6.7 and Corollary 6.9 show
that the same is true for 3,,, and I, ,, predicates. This proves a.

For b we proceed by induction on n, the number of quantifiers. For
n = 0, we have a % (and a II,) predicate. If the result is known for n = k,
then it follows for n = k + 1 using Theorems 6.5-6.7 and Corollary 6.9.

Finally, c is easily proved by mathematical induction using Theorem 6.7
and Corollary 6.9. [|

7. Classifying Some Unsolvable Problems

We will now see how to apply the arithmetic hierarchy. We begin with the
set

TOT ={ze N|(Vx)®(x,2) |},

which consists of all numbers of programs which compute total functions.
This set was discussed in Chapter 4, Section 6, where it was shown that
TOT is not r.e. Without relying on this previous discussion, we shall obtain
much sharper information about TOT.

We begin by observing that

TOT = {z € N|(Vx)(3)STPV(x, z, 1)},
so that TOT € II,. We shall prove

Theorem 7.1. TOT is 1-complete for II,. Therefore, TOT & %,.

Proof. The second assertion follows from the first by Theorem 5.11.
Since we know that TOT € II,, it remains to show that for any 4 € I1,,
we have 4 <, TOT. For 4 € II,, we can write

A={weN|NVx)3y)R(x,y,w)},
where R is recursive. Let

h(x,w) = minR(x, y,w),
y

7. Classifying Some Unsolvable Problems 225

so that £ is partially computable. Let & be computed by a program with
number e. Thus,

Jy)R(x,y,w) & h(x,w)| « ®P(x,w,e)| = D(x,SH(w,e)) |,
where we have used the parameter theorem. Hence,
weAde (Vx)3@y)R(x,y,w)
o (V)[®(x, S{(w,e)) L]
= Sl(w,e) € TOT.
Since, by Theorem 2.5, S!(w, e) is one—one, we can conclude that
A <, TOT. |
As a second simple example we consider
INF = {z € N | W, is infinite}.
We have
z€ INF & (Vx)3y)(y >x &y € W).
Now
y € W, & (30)STPN(y, z,1),

and hence the predicate y € W, is X,. Using Theorems 6.4 and 6.5,
@Ay)(y >x &y € W,) is also %, and finally INF € IT,. We shall show
that INF is also 1-complete for II,. By Theorem 3.5, it suffices to show
that TOT <, INF since we already know that TOT is 1-complete for II,.

To do this we shall obtain a recursive one—one function f(x) such that

W, =N implies W, =N
and 7.1
W, # N implies W;,, is finite.
Having done this we will be through since we will have
x € TOT « f(x) € INF,

and therefore,
TOT <, INF.

The intuitive idea behind the construction of f is that program number
f(x) will “accept” a given input z if and only if program number x

226 Chapter 8 Classifying Unsolvable Problems

“accepts” successively inputs 0,1, ..., z. We can write this intuitive idea in
the form of an equation as follows:

Wi, ={zeNIWVk)_,(k e W)}.

Now it is a routine matter to use the parameter theorem to obtain f. We
first note that, by Corollary 6.8, the predicate (Vk)_,(k € W,) is Z,.
Hence, as earlier, there is a number e such that

(V) _ (ke W) & ®P(z,x,e)]
o ®(z,8(x,e))|
oz e W

Si(x,e) "

Thus the desired function f(x) is simply S|(x,), which is one—one, as we
know from Theorem 2.5.

This completes the proof that INF is 1-complete for Il,. Hence also,
INF&3,.

The following notation will be useful.

Definition. Let A, B,C C N. Then we write A <, (B,C) to mean that
there is a recursive function f such that

x €A implies f(x)€B
and

x €A implies f(x) e C.
If f is one—one we write 4 <,(B,C).

Thus 4 <, B is simply the assertion: 4 <,(B, B).
It will be useful to note that by (7.1), we have actually proved

TOT <, (TOT, INF). (7.2)

Now, we have

Theorem 7.2. If 4 <,(B,C), BC D,and C N D = J, then 4 <, D.
Proof. We have a recursive one—one function f such that

x €A implies f(x) €B implies f(x) €D
and

x €A implies f(x)e C implies f(x) e D. [|

7. Classifying Some Unsolvable Problems 227

Our final example will classify a 2, set, and is considerably more
difficult than either of those considered so far.

Theorem 7.3. Let
COF = {x € N | W, is finite}.
Then COF is 1-complete for 2.

Lemma 1. COF € 3.
Proof.
COF ={xe N|@n)WVk)(k <nV ke W)}

Since the predicate in parentheses is %, the result follows from Theorem
6.11. [|

We introduce the notation
M. ={m € N|STP"(m, x,n)}.

Intuitively, W, is the set of numbers that program number x “accepts” in
< n steps. Clearly,

W= U (W)

nenN

We also define
W'={m<r|lme,W}.

n
We write L(n, x) to mean that
n+]I/Vxn =nWVn .

Clearly L(n, x) is a recursive predicate. We write
R(x,n) & (Vr)_ (re W) Vv [L(n,x) & (3k) _,(k &€, W)].

Since R(x, n) is 2, we can use the parameter theorem, as in the previous
example, to find a recursive one—one function g(x) such that
Wexy = {nl R(x, n)}.

Lemma 2. If x € TOT, then g(x) € TOT. If x & INF, then g(x) €
COF — TOT.

Proof. 1f x € TOT, then W, = N, so that (Vr)_ (r € W,) is true for all

n. Hence R(x, n) is true for all n, i.e., W,,, = N and g(x) € TOT.

228 Chapter 8 Classifying Unsolvable Problems

Now let x & INF, i.e., W, is finite. Therefore, there is a number n, such
that for all n > n,, we have

and
QL) (ke W,).
Thus, for n > n,,
ae W =W

i.e., L(n,x) is true. Thus, n > n, implies that R(x,n) is true, i.e., that

n € W,,,. We have shown that all sufficiently large integers belong to
W, - Hence g(x) € COF. It remains to show that g(x) & TOT.

Let s be the least number not in W,. We consider two cases.

Case 1. s & W,(,,. Then surely g(x) ¢ TOT.

Case 2. s € W,(,,. That is, R(x, s) is true. But (Vr) _ (r € W,) must be
false because s & W,. Hence L(s,x) must be true and (3k) _ (k & W)).

Now this number k is less than s, which is the least number not in W, .

Hence k € W,. Since k & W,,

@n),. ke W & ke, W] (7.3)

Now we claim that this number n & Weirys which will show that in this
case also g(x) & TOT. Thus, suppose that n € W,,, i.e., that R(x, n)
is true. Since s & W, and n > s, the condition (Vr) _,(r € W,) must
be false. Thus we would have to have L(n, x), i.e., ,, W, =,W.,". But
by (7.3), k <s <n, k €,, W, and k & W,. This is a contradiction.

Lemma 3. TOT <,(TOT, COF — TOT).

Proof. Let f be the recursive one—one function satisfying (7.1) and let g
be as above. Let h(x) = g(f(x)). Then using Lemma 2 and (7.1), we have

x € TOT implies f(x) € TOT implies h(x) € TOT,
x & TOT implies f(x) & INF implies h(x) € COF — TOT. m

Now let A € %;. We wish to show that 4 <, COF. By Post’s theorem,
we can write

x€ A< (3In)B(x,n),

where B is II,. Using the pairing functions, let

C= {t eEN I(Eln)s,(,)B(r(t),n)}.

7. Classifying Some Unsolvable Problems 229

Thus, C € I1,. Theorem 7.1, C <, TOT. Hence, using Lemma 3, C <,
(TOT, COF — TOT). Let 6 be a recursive one—one function such that

te C implies 6(t) € TOT,
t & C implies 0(t) € COF — TOT.

Consider the X, predicate r(z) € W) .y, Using the parameter theo-
rem as usual, we can write this in the form z Wiy where ¢ is a

one—one recursive function. Thus,
Wi = {(k,m) lm e Wo«k,x))}~ (7.5)

The theorem then follows at once from

(7.4)

Lemma 4. x € A if and only if ¢(x) € COF.

Proof. Let x € A. Then B(x, n) is true for some least value of n. Hence,
for all k > n, we have (k,x) € C. By (7.4), 0({k, x)) € TOT for all
k > n. Since n is the least value for which B(x, n) is true, B(x, k) is false
for k < n. Hence, for k < n, {k, x) & C. Thus, by (7.4), 6({k, x)) € COF
— TOT. To recapitulate,

k>n implies 0({k,x)) € TOT,
and (7.6)
k <n implies 6({k,x)) € COF — TOT.
Thus, by (7.5) we see that for k > n, (k,m) € W, for all m. For each
k <n, Wy, xy, contains all but a finite set of m. Thus, altogether, W,
can omit at most finitely many integers, i.e., (x) € COF.

Now, let x & A. Then, B(x, n) is false for all n. Therefore, {k,x) & C
for all k. By (7.4),

6({k,x)) € COF — TOT forall k<N,
and thus certainly,
0Kk, x)) € TOT forall k€ N.

That is, for every k € N, there exists m such that m & Wy, ,,), i.., by
(7.5), such that <k, m) & W,,,,. Thus, W,,, is infinite, and hence t//(x) &
COF. |

Exercises

1. Show that the following sets belong to ;.
(@) {x € N |there is a recursive function f such that ®, C f}.
® {x,y)IxeN&yeN & W, — W, is finite}.

230 Chapter 8 Classifying Unsolvable Problems

2. (a) Prove that for each m,n there is a predicate U(x,,...,x,,,¥)
which is 3, , such that for every 3, predicate P(x,,..., x,,) there
is a number y, with

P(x,,...,xm) had U(xl,---,xm»)’o)-

(b) State and prove a similar result for IT,.

3. Use the previous exercise to prove that for each n, II, — %, # &.

8. Rice’s Theorem Revisited

In Chapter 4, we gave a proof of Rice’s theorem (Theorem 7.1) using the
original parameter theorem. We get a somewhat stronger result using the
strengthened form of the parameter theorem.

Definition. Let I' be a set of partially computable functions of one
variable. As in Chapter 4, Section 7, we write

Ry ={teN|d eT}.

We call I nontrivial if I # & and there is at least one partially com-
putable function g(x) such that g & I'.

Theorem 8.1 (Strengthened Form of Rice’s Theorem). Let I' be a nontriv-
ial collection of partially computable functions of one variable. Then,
K <, Ry or K <, R, so that Ry is not recursive.

Thus not only is R nonrecursive, but the halting problem can be
“solved” using R as an oracle. Actually, the first proof of Rice’s theorem
already shows that either K <, R or K < R. We give essentially the
same proof here, using the strengthened form of the parameter theorem to
upgrade the result to one—one reducibility.

Proof. We recall (Chapter 1, Section 2) that J is a partially computable
function, namely, the nowhere defined function.

Case 1. & ¢ T'. Since T' is nontrivial, it contains at least one function,
say f. Since fe I'and @ ¢ I', f # J; f must be defined for at least
one value. Let

_[f(o) ifxeK
Q60 =10 ek
Since

xeKe d(x,x)|,

9. Recursive Permutations 231
it is clear that € is partially computable. Using the parameter
theorem in its strengthened form, we can write

Qx, 1) = &, (1),
where g is a one—one recursive function. Then we have
x €K implies &, =f implies g(x) € Ry;
x & K implies ®,,, = implies g(x) & R.
Thus, K <, R,..

Case 2. Je€T. Now let A be the class of all partially computable
functions not in I'. Thus, R = R, and & & A. By Case 1, K <, R,,

and hence by Theorem 3.7, K <, R;.]

Exercises

1. State and prove a relativized version of Rice’s theorem.

2. (a) Develop a code for partial functions from N to N with finite
domains, writing f, for the nth such function.

(b) Prove the Rice—Shapiro theorem: R is r.e. if and only if I' = &
or there is a recursive function #(x) such that

I ={g1@0)(g 2f,,)}-

9. Recursive Permutations
Definition. A one-one recursive function f whose domain and range are
both N is called a recursive permutation.

With each recursive permutation f we may associate its inverse f~!:

F () = min(z = f(x)).
Then, f~! is clearly likewise a recursive permutation.

Definition. Let A, B C N. Then A and B are said to be recursively
isomorphic, written A = B, if there is a recursive permutation f such that
x € A if and only if f(x) € B.

Since a recursive permutation provides what is essentially a mere change
of notation, recursively isomorphic sets may be thought of as containing
the same “information” presented in different notation.

232 Chapter 8 Classifying Unsolvable Problems

It is obvious that 4 = B implies 4 =, B. Remarkably, the converse
statement is also true.
Theorem 9.1 (Myhil). If 4 =, B, then 4 = B.

In our proof of this theorem we shall need to code sequences of ordered
pairs of numbers. We shall speak of the code of the sequence

(a],b])?-'-,(an»bn) (9.1)
of pairs of elements of N meaning the number
u= <n,[<a] 7b]>,°",<an,bn>]>-

Thus, the numbers a;, b, can be retrieved from the code u by using the
relations

a; = 1((r(u))i)

b; = r((r(u))i) i=12,..., 1.

Note that every natural number is the code of a unique finite (possibly
empty) sequence of ordered pairs.

We say that the finite sequence (9.1) associates A and B, where A, B C N,
if

Loag #a;forl <i<j<mn

2.b;#bforl <i<j<n

3. foreach i, 1 <i < n, eithera; €A and b, € Bora, ¢ A and b, & B.

We shall prove the
Lemma. Let 4 <, B. Then there is a computable function k(u,v) such

that if u codes the sequence (9.1) that associates 4 and B and a &
{a,,a,,...,a,}, then there is a b such that k(u, a) codes the sequence

(a,,by),...,(a,,b,),(a,b) 9.2)
that also associates A4 and B.
Proof. Let f be a recursive one—one function such that
x€A ifandonlyif f(x) € B. 9.3)

We provide an algorithm for computing b from u and a. k(u, a) can then
be set equal to the code of (9.2), i.e.

k(u,a) = (Iu) + 1,r(u) - p{a%).

9. Recursive Permutations 233

The numbers f(a,), f(a,),..., f(a,), f(a) are all distinct, because f is
one—-one. Hence, at least one of these n + 1 numbers does not belong to
the set {b,, b,, ..., b,}. Our algorithm for obtaining b begins by computing
fla). If f(a) & {b,,b,,...,b,}, we set b = f(a). Otherwise, f(a) = b; for
some i and we try f(a;), because

ac€A=fla)=b,eBea,ca,€A < f(a) €B.

If f(a) € 1{b,,b,,...,b,}, we set b = f(a,). Otherwise, if f(a;) = b;, we
continue the process, trying f(a;). By 1 and 2, none of the a; and b,
obtained in this way duplicate previous ones. Thus, by our earlier remark
the process must terminate in a value b. Using (9.3), we see that either
ac€Aandbe Bora¢&Aandb & B.]

Proof of Theorem 9.1. Since A <, B, by the Lemma there is a computable
function k(u,v) such that if u codes (9.1) that associates 4 and B and
a &{a,,a,,...,a,}, then for some b, k(u, a) codes the sequence (9.2) that
also associates 4 and B. But since B <; A4, we can also apply the Lemma
to obtain a computable function k(u,v) such that if u codes (9.1) that
associates 4 and B and b & {b,,b,,...,b,}, then for some a, k(u, b)
codes the sequence (9.2) that likewise associates 4 and B.

We let »(0) = 0, which codes the empty sequence. (Note that the empty
sequence does associate 4 and B.) We let

v(2x) if x is one of the left components
v2x +1) = of the sequence coded by v(2x)
k(v(2x),x) otherwise;
v(2x + 1) if x is one of the right components
v(2x +2) = of the sequence coded by v(2x + 1)

k(v(2x + 1),x) otherwise.

Thus, we have

1. v is a computable function.

2. For each x, v(x) codes a sequence that associates 4 and B.

3. The sequence coded by v(x + 1) is identical to, or is an extension of,
the sequence coded by v(x).

4. For each a € N, there is an x such that a pair (a, b) occurs in the
sequence coded by v(x). (In fact, we can take x = 2a + 1.)

5. For each b € N, there is an x such that a pair (a, b) occurs in the
sequence coded by v(x). (In fact, we can take x = 2b + 2.)

234 Chapter 8 Classifying Unsolvable Problems

We now define the function f by setting f(a) to be the number b such
that the pair (a, b) appears in the sequence coded by some v(x). b is
uniquely determined because all the v(x) code sequences that associate 4
and B. f is clearly computable. In fact,

f(@) = min @) 00 [(r(vQ2a + D), = Ca, b)),

By 5, the range of f is N; thus f is a recursive permutation and hence,
A =B. [|

Exercises
1. Prove that K = U, where U is defined in Exercise 3.1.
2. Prove that

A®A=A0A.

Part 2

Grammars and
Automaita

9

Regular Languages

1. Finite Automata

Computability theory, discussed in Part 1, is the theory of computation
obtained when limitations of space and time are deliberately ignored. In
automata theory, which we study in this chapter, computation is studied in
a context in which bounds on space and time are entirely relevant. The
point of view of computability theory is exemplified in the behavior of a
Turing machine (Chapter 6) in which a read—write head moves back and
forth on an infinite tape, with no preset limit on the number of steps
required to reach termination." At the opposite pole, one can imagine a
device which moves from left to right on a finite input tape, and it is just
such devices, the so-called finite automata, that we will now study. Since a
finite automaton will have only one opportunity to scan each square in its
motion from left to right, nothing is to be gained by permitting the device
to “print” new symbols on its tape.

Unlike modern computers, whose action is controlled in part by an
internally stored list of instructions called a program, the computing

" The present chapter does not depend on familiarity with the material in Chapters 2-8.
Any exercises that refer to earlier material are marked with an *.

237

238 Chapter 9 Regular Languages

Table 1.1
) a b
91 q2 44
q2 q2 q3
q3 94 q3
s ds q4

devices we will consider in this chapter have no such programs and no
internal memory for storing either programs or partial results. In addition,
since, as we just indicated, a finite automaton is permitted only a single
pass over the tape, there is no external memory available. Instead, there
are internal states that control the automaton’s behavior and also function
as memory in the sense of being able to retain some information about
what has been read from the input tape up to a given point.

Thus, a finite automaton can be thought of as a very limited computing
device which, after reading a string of symbols on the input tape, either
accepts the input or rejects it, depending upon the state the machine is in
when it has finished reading the tape.

The machine begins by reading the leftmost symbol on the tape, in a
specified state called the initial state (the automaton is in this state
whenever it is initially “turned on”). If at a given time, the machine is in a
state g; reading a given symbol s; on the input tape, the device moves one
square to the right on the tape and enters a state g,. The current state of
the automaton plus the symbol on the tape being read completely deter-
mine the automaton’s next state.

Definition. A finite automaton .# on the alphabet’> A4 = {s,,...,s,} with
states Q =1{q,,...,4,,} is given by a function & that maps each pair
(q,.,sj), 1<i<m,1<j<n,into a state q,, together with a set F C Q.
One of the states, usually g, is singled out and called the initial state. The
states belonging to the set F are called the final or accepting states, 6 is
called the transition function.

We can represent the function & using a state versus symbol table. An
example is given in Table 1.1, where the alphabet is {a, b}, F = {g,}, and ¢,

2 For an introduction to alphabets and strings, see Chapter 1, Section 3.

1. Finite Automata 239

is the initial state. It is easy to check that for the tapes

a a b b b

a b b b

the automaton will terminate in states g5, q,, q,, and g5, respectively. We
shall say that the automaton accepts the strings aabbb and abbb (because
qs € F), while it rejects the strings baba and aaba (because q, & F), i.e.,
that it accepts the first and fourth of the preceding tapes and rejects the
second and third.

To proceed more formally, let .# be a finite automaton with transition
function 6, initial state g,, and accepting states F. If g, is any state of .#
and u € A*, where A is the alphabet of .#, we shall write 6*(g;, u) for the
state which .# will enter if it begins in state g; at the left end of the string
u and moves across u until the entire string has been processed. A formal
definition by recursion is

8*(ql’0) = qi,
8*(q;, us) = 8(8%(g;, 1), 5;)-

Obviously, 6*(g;,s;) = 8(g;,s;). Then we say that .# accepts a word u
provided that 6*(q,,u) € F. .# rejects u means that §*(q,,u) € Q — F.
Finally, the language accepted by #, written L(.#), is the set of all u € A*
accepted by #:

L(#) = {u € 4*| 8*(q, ,u) € F}.

A language is called regular if there exists a finite automaton that accepts
it.

It is important to realize that the notion of regular language does not
depend on the particular alphabet. That is, if L € A* and A4 C B, then
there is an automaton on the alphabet A that accepts L if and only if
there is one on the alphabet B that accepts L. That is, an automaton with
alphabet B can be contracted to one on the alphabet 4 by simply
restricting the transition function 6 to A; clearly this will have no effect

240 Chapter 9 Regular Languages

on which elements of A* are accepted. Likewise, an automaton .# with
alphabet A can be expanded to one with alphabet B by introducing a new
“trap” state g and decreeing

8(q;,b) = q for all states g, of # andallbe B — A4,

8(gq,b) = g forall b € B.

Leaving the set of accepting states unchanged (so that g is not an
accepting state), we see that the expanded automaton accepts the same
language as .#Z.

Returning to the automaton given by Table 1.1 with F = {g,}, it is easy
to see that the language it accepts is

{a"™p!"™ | n,m > 0}. (1.1

Thus we have shown that (1.1) is a regular language.

We conclude this section by mentioning another way to represent the
transition function 6. We can draw a graph in which each state is
represented by a vertex. Then, the fact that 8(g;, s;) = g, is represented by
drawing an arrow from vertex g; to vertex g, and labeling it s;. The
diagram thus obtained is called the state transition diagram for the given
automaton. The state transition diagram for the transition function of
Table 1.1 is shown in Fig. 1.1. '

Exercises

1. In each of the following examples, an alphabet A4 and a language L
are indicated with L C A*. In each case show that L is regular by
constructing a finite automaton .# that accepts L.

Figure 1.1

1. Finite Automata 241

(a)
(b)

(©

(@

(e)

®

®
(h)
0]

2. (a)

(b)

A={1}; L ={11|k > 0}.

A = {a, b}; L consists of all words whose final four symbols form
the string bbab.

A ={a,b); L consists of all words whose final five symbols
include two a’s and three b’s.

A ={0,1}; L consists of all strings that, when considered as
binary numbers, have a value which is an integral multiple of 5.

I

is to be a binary addition checker in the sense that it accepts
strings of binary triples

’

a, a, a,
by (b b,
€1 C2 Cn

such that c,c, -** ¢, is the sum of a,a, :*- a, and b;b, - b,
when each is treated as a binary number.

A ={a, b,c}. A palindrome is a word such that w = wR, That is,
it reads the same backward and forward. L consists of all
palindromes of length less than or equal to 6.

A = {a, b}; L consists of all strings s;s, - s, such that s, _, = b.
(Note that L contains no strings of length less than 3.)

A ={a, b}; L consists of all words in which three a’s occur
consecutively.

A ={a, b}; L consists of all words in which three a’s do not
occur consecutively.

Suppose that the variable names in your favorite programming
language are words w on the alphabet {4,..., Z,0,...,9} such
that 1 < |w| < 8 and such that the first symbol of w belongs to
{A4,...,Z}). Give a finite automaton that accepts the language
consisting of these variable names.

Now, remove the restriction |w| < 8 and give a finite automaton
that accepts this extended language.

3. Describe the language accepted by each of the following finite au-
tomata. In each case the initial state is g, .

242

8.*

2.

Chapter 9 Regular Languages

(a)
6, la b ¢

91 192 493 4.
9 (42 494 945 F, = {qs).
43 (494 93 45
ds {94 4s4 44
ds (94 44 45

(b) 0,=96,,F,= {‘14}-

(©)
5, | a b ¢
91 1492 92 4 F; = {q,).
9 |43 492 9
9 ({91 493 92
Let A ={sy,...,s,}. How many finite automata are there on A with

exactly m states, m > (0?

Show that there is a regular language that is not accepted by any finite
automaton with just one accepting state.

For any regular language L, define rank(L) = the least number n
such that L is accepted by some finite automaton with n states. Prove
that for every n > 0 there is a regular language L with rank(L) = n.

Prove or disprove the following: If L,, L, are regular languages such
that L, € L,, then rank(L,) < rank(L,).

Let .# be a finite automaton on the alphabet 4 = {s,,...,s,} with
states Q ={q,,...,q,,), transition function &, initial state q,, and
accepting states F. Give a Turing machine .#’ that accepts L(.#).

Nondeterministic Finite Automata

Next we modify the definition of a finite automaton to permit transitions at
each stage to either zero, one, or more than one states. Formally, we
accomplish this by altering the definition of a finite automaton in the
previous section by making the values of the transition function & be sets
of states, i.e., sets of elements of Q (rather than members of Q). The devices

2. Nondeterministic Finite Automata 243

Table 2.1
) a b
q {91,492} {91,493}
q» {‘h} (%)
q3 %] {Q4}
q {q.} {q.}

so obtained are called nondeterministic finite automata (ndfa), and some-
times ordinary finite automata are then called deterministic finite automata
(dfa). An ndfa on a given alphabet A with set of states Q is specified by
giving such a transition function & [which maps each pair (g;, s;) into a
possibly empty subset of Q] and a fixed subset F of Q. For an ndfa, we
define

8*(q,~) 0) = {q,'}»

5*(q,~,usj) = U 8(q’sj)’
qe8*(q;,u)

Thus, in calculating 6*(q;, u), one accumulates all states that the automa-
ton can enter when it reaches the right end of u, beginning at the left end
of u in state g;. An ndfa .# with initial state g, accepts u € A* if
8*(q,,u) N F # J, i.e., if at least one of the states at which .# ultimately
arrives belongs to F. Finally, L(.#), the language accepted by .#, is the set
of all strings accepted by .Z.

An example is given in Table 2.1 and Figure 2.1. Here F = {q,}. It is not
difficult to see that this ndfa accepts a string on the alphabet {a, b} just in
case at least one of the symbols has two successive occurrences in the
string.

In state g, if the next character read is an a, then there are two
possibilities. It might be that this a is the first of the desired pair of a’s. In
that case we would want to remember that we had found one a and hence

Figure 2.1

244 Chapter 9 Regular Languages

enter state g, to record that fact. On the other hand, it might be that the
symbol following this a will be a b. Then this a is of no help in attaining
the desired goal and hence we would remain in ¢q,. Since we are not able
to look ahead in the string, we cannot at this point determine which role
the current a is playing and so the automaton “simultaneously” hypothe-
sizes both possibilities. If the next character read is b, then since there is
no transition from g, reading b, the choice has been resolved and the
automaton will be in state g, . If instead, the character following the first a
is another a, then since g, € 8(q,, a) and g, € 8(q,, a), and on any input
the automaton once in state g, remains in g,, the input string will be
accepted because g, is an accepting state. A similar analysis can be made
if a b is read when the automaton is in state g, .

Strictly speaking, a dfa is not just a special kind of ndfa, although it is
frequently thought of as such. This is because for a dfa, 5(g, s) is a state,
whereas for an ndfa it is a set of states. But it is natural to identify the dfa
with transition function &, with the closely related ndfa .# whose
transition function & is given by

8(q,s) = {8(q,s)},

and which has the same final states as .#. Obviously L(.#) = L(.#).
The main theorem on nondeterministic finite automata is

Theorem 2.1. A language is accepted by an ndfa if and only if it is
regular. Equivalently, a language is accepted by an ndfa if and only if it is
accepted by a dfa.

Proof. As we have just seen, a language accepted by a dfa is also
accepted by an ndfa. Conversely, let L = L(.#), where .# is an ndfa with
transition function 8, set of states Q = {q,,..., g,}, and set of final states
F. We will construct a dfa .# such that L(.#) = L(.#) = L. The idea of
the construction is that the individual states of .# will be sets of states
of 4.

Thus, we proceed to specify the dfa .# on the same alphabet as .#. The
states of .# are just the 2™ sets of states (including @) of .#. We write
these as Q = {Q,,Q,,...,Q,n}, where in particular Q, = {q,} is to be the
initial state of .#. The set & of final states of .# is given by

F={0,10,NF + J}.

The transition function & of .# is then defined by

5(0;,9) = U 8(q,9).

q€Q;

2. Nondeterministic Finite Automata 245
Now, we have

Lemmal. Let RC Q Then
5(U Qi,s) = U 5(Q,‘,s).
Q;€R Q.€R
Proof. Let Uy c g Q; = Q. Then by definition,
5(0,s)= U 8(q,9
q€Q

U U 8@,

Q;€R g€ Q;

U 5(Q,~,S). u

Q;eR

Lemma 2. For any string u,

6*(Q;,u) = | 8*(q,u).
qeQ;
Proof. The proof is by induction on |ul. If |u| = 0, then u = 0 and

§*(0,,00=0,= U (g} = U 8%(q,0).
q€Q; q9€Q;

If lul =1 + 1 and the result is known for |u| = [, we write u = vs, where
|vl = 1, and observe that, using Lemma 1 and the induction hypothesis,

5*(Q,;,u) = 6*(Q;,vs)
= 5(5*(Q,~,v),s)

= 8(U 8*(q,u),s)

q€Q;

= U 8(8*(q,v),s)

q9€Q;

=UJ U 80,9

q€Q; re 5*(q,v)
= |J 8*(q,vs)

q€Q;

= |J 8*(q,u). [|
qeQ;

246 Chapter 9 Regular Languages

Lemma3. L(.#)=L(.#).
Proof. u € L(.#) if and only if §*(Q,,u) € &. But, by Lemma 2,

5*(Q,,u) = 6*({q,},u) = 6*(q,,w.

Hence,

ueL(#) ifandonlyif 6*(q,,u) €F
ifand only if 8*(q,,u) NF # J
ifandonlyif u € L(#). [|

Proof of Theorem 2.1 Concluded. Theorem 2.1 is an immediate conse-
quence of Lemma 3. []

Note that this proof is constructive. Not only have we shown that if a
language is accepted by some ndfa, it is also accepted by some dfa, but we
have also provided, within the proof, an algorithm for carrying out the
conversion. This is important because, although it is frequently easier to
design an ndfa than a dfa to accept a particular language, actual machines
that are built are deterministic.

Exercises

1. Describe the language accepted by each of the following ndfas. In each
case the initial state is q,.

(a)
6 a b c
q, | {9,,92,95} % %)
q, 1) {9} O Fi ={q.}.
qs %) %) %)
(b) 82 = 81, Fz = {‘11"12»‘13}'
(c)
5, | a b
q: {‘h} %)

F; ={q,}.
q> %) {quq:;} ’ 2

q; | {9,435} %}

3. Additional Examples 247

2, For each dfa .# in Exercise 1.3, transform .# into an ndfa .#’ which
accepts L(.#). Then transform .#’ into a dfa .#” by way of the
construction in the proof of Theorem 2.1.

3. Let .# be a dfa with a single accepting state. Consider the ndfa .#’
formed by reversing the roles of the initial and accepting states and
reversing the direction of the arrows of all transitions in the transition
diagram. Describe L(.#') in terms of L(.#).

4. Prove that, given any ndfa .#,, there exists an ndfa .#, with exactly
one accepting state such that

L(#) = L(#,) or L(4,) =L(a) - {0).

5. (a) The construction in the proof of Theorem 2.1 shows that any
regular language accepted by an ndfa with » states is accepted by
some dfa with 2" states. Show that there is a regular language
that is accepted by an ndfa with two states, not accepted by any
ndfa with fewer than two states, and accepted by a dfa with two
states.

(b) Show that there is a regular language that is accepted by an ndfa
with two states and not accepted by any dfa with fewer than four
states.

(c) Show that there is a regular language that is accepted by an ndfa
- with three states and not accepted by any dfa with fewer than
eight states.

3. Additional Examples

We first give two simple examples of finite automata and their associated
regular languages.

For our first example we consider a unary even parity checker. That is,
we want to design a finite automaton over the alphabet {1} such that the
machine terminates in an accepting state if and only if the input string
contains an even number of ones. Intuitively then, the machine must
contain two states which “remember” whether an even or an odd number
of ones have been encountered so far. When the automaton begins, no
ones, and hence an even number of ones, have been read; hence the initial
state g, will represent the even parity state, and gq,, the odd parity state.
Furthermore, since we want to accept 'words containing an even number of
ones, g, will be an accepting state.

248 Chapter 9 Regular Languages

Figure 3.1

Thus the finite automaton to perform the required task is as shown in
Fig. 3.1, and the language it accepts is

{aD™|n = 0).

We next consider a slightly more complicated example. Suppose we wish
to design a finite automaton that will function as a 25¢ candy vending
machine. The alphabet consists of the three symbols n, d, and g (repre-
senting nickel, dime, and quarter, respectively—no pennies, please!). If
more than 25¢ is deposited, no change is returned and no credit is given
for the overage. Intuitively, the states keep track of the amount of money
deposited so far. The automaton is exhibited in Fig. 3.2, with each state
labeled to indicate its role. The state labeled 0 is the initial state. Note that
the state labeled d is a “dead” state; i.e., once that state is entered it may
never be left. Whenever sufficient money has been inserted so that the
automaton has entered the 25¢ (accepting) state, any additional coins will
send the machine into this dead state, which may be thought of as a coin
return state. Presumably when in the accepting state, a button can be
pressed to select your candy and the machine is reset to 0.

Unlike the previous example, the language accepted by this finite
automaton is a finite set. It consists of the following combinations of
nickels, dimes, and quarters: {nnnnn, nnnnd, nnnnq, nnnd, nnnq, nndn,
nndd, nndq, nnq, ndnn, ndnd, ndnq, ndd, ndq, nq, dnnn, dnnd, dnnq, dnd,
dnq, ddn, ddd, ddq, dq, q}.

q
F = {25}

Figure 3.2

4. Closure Properties 249

Figure 3.3

Suppose we wish to design an automaton on the alphabet {a, b} that
accepts all and only strings which end in bab or aaba. A real-world analog
of this problem might arise in a demographic study in which people of
certain ethnic groups are to be identified by checking to see if their family
name ends in certain strings of letters.

It is easy to design the desired ndfa: see Fig. 3.3.

As our final example, we discuss a slightly more complicated version of
the first example considered in Section 1:

L = {a["l]b[ml] cee a[”k]b[mk] I n] ,ml ’.”,nk ’mk > O}.

An ndfa .# such that L(.#) = L is shown in Fig. 3.4.

These two examples of ndfas illustrate an important characteristic of
such machines: not only is it permissible to have many alternative transi-
tions for a given state—symbol pair, but frequently there are no transitions
for a given pair. In a sense, this means that whereas for a dfa one has to
describe what happens for any string whether or not that string is a word
in the language, for an ndfa one need only describe the behavior of the
automaton for words in the language.

a b

AP A

ORCROR

b
Figure 3.4

4. Closure Properties

We will be able to prove that the class of regular languages is closed under
a large number of operations. It will be helpful that, by the equivalence

250 Chapter 9 Regular Languages

theorems of the previous two sections, we can use deterministic or nonde-
terministic finite automata to suit our convenience.

Definition. A dfa is called nonrestarting if there is no pair g, s for which
8(q,5) = qi,

where ¢, is the initial state.

Theorem 4.1. There is an algorithm that will transform a given dfa .#
into a nonrestarting dfa .# such that L(.#) = L(.#).

Proof. Let Q =1{q;,4,,-..,q,} be the set of states of .#, g, the initial
state, F the set of accepting states, and & the transition function. We

construct .# with the set of states O = Q U {g,,,}, initial state g,, and
transition function & defined by

5(a.5) 8(q,s) if g€ Qand é(q,s) #q,
,»§) = .
1 Gns1 if g€ Qand 8(q,s) =gq,,

5(¢In+1 ,$) = 5(‘11 ,5).

Thus, there is no transition into state g, for . The set of accepting states
F of # is defined by

_ F if g¢F
~\Ful{q,,,) if q,€F.

To see that L(.#) = L(.#) as required, one need only observe that /l:
follows the same transitions as .# except that whenever .# reenters q,, .#
enters ¢, ;. [|

Theorem 4.2. If L and L are regular languages, then so is L U L.

Proof. Without loss of generality, by Theorem 4.1, let M, A be non-
restarting_dfas that accept L and L, respectively, with Q,q,,F, § and
Q, ql,F 5 the set of states, initial state, set of accepting states, and
transition function of .# and M, respectlvely We also assume that .# and
have no states in common, i.e., Q N Q = &. Furthermore, by the
discussion in Section 1, we can assume that the alphabets of L and L are
the same, say, A4. We define the ndfa A with states Q, initial state 4,, set
of accepting states F, and transition function & as follows:

Q=QUQU {¢.} — {q:,4}-

4. Closure Properties 251

(That is, .# contains a new initial state §, and all states of .# and .#
except their initial states.)

Fe FUFU{§)-1{q,,4,) if q €Forg €F
FUF otherwise.

The transition function of .# is defined as follows for s € A:

{6(q,s)} if g€ Q- {q}

{8(q,9} if g€Q—1{G}

5(qvl ,8) = {5(q1 ,$)} U {5(671,S)}

Thus, since Q N Q = & and .# and .# are vnonrestarting, once a first
transition has been selected, the automaton .# is locked into one of the
two automata .# and .#. Hence L(#) =L U L. [|

5(q,s) = {

Theorem 4.3. Let L C A* be a regular language. Then A* — L is
regular.

Proof. Let .# be a dfa that accepts L. Let .# have alphabet A, set of
states Q, and set of accepting states F. Let .# be exactly like .# except
that it accepts precisely when .# rejects. That is, the set of accepting states
of # is Q — F. Then .# clearly accepts A* — L. |

Theorem 4.4. If L, and L, are regular languages, then sois L; N L,.

Proof. Let L,,L, € A*. Then we have the De Morgan identity:
L,NL,=A4* — ((A* — L)) U (A4* — L,)).

Theorems 4.2 and 4.3 then give the result. |

Theorem 4.5. & and {0} are regular languages.

Proof. J is clearly the language accepted by any automaton whose set of
accepting states is empty. Next, the automaton with states ¢, q,, alphabet
{a}, accepting states F = {q,}, and transition function 8(q,,a) = 8(q,, a)
= g, clearly accepts {0}, as does any nonrestarting dfa on any alphabet
provided F = {q,}. [

Theorem 4.6. Let u € A*. Then {u} is a regular language.

Proof. For u = 0, we already know this from Theorem 4.5. Otherwise let
u =aa, - a,a,,,, where a,,a,,...,a;,a;,, € A. Let .# be the ndfa

252 Chapter 9 Regular Languages

with states ¢q,,q,,...,q,,,, initial state g,, accepting state gq,,,, and
transition function & given by

6(q1‘7a:‘)={q,‘+1}» i=1,...,01+1,
8(g;,a) = for a€A-{a;}.
Then L(.#) = {u}. -

Corollary 4.7. Every finite subset of A4* is regular.

Proof. We have already seen that & is regular. If L = {u,...,u,}, where
U,...,u, € A*, we note that

L=Au}U{u} U Uy,

and apply Theorems 4.2 and 4.6. []

Exercises

1. Let A ={a,b}, let L, C A* consist of all words with at least two
occurrences of a, and let L, C A* consist of all words with at least two
occurrences of b. For each of the following languages L, give an ndfa
that accepts L.

(@ L=L, UL,.
(b) L=A4*-1L,.
() L=4*-1L,.
@ L=L nNL,.
2. Use the constructions in the proofs of Theorem 4.6 and Corollary 4.7
to give an ndfa that accepts the language {ab, ac, ad}.
3. (a) Let L, L’ be regular languages. Prove that L — L’ is regular.
(b) Let L, L’ be languages such that L is regular, L U L’ is regular,
and L N L" = &. Prove that L’ is regular.
4. Let L,, L, be regular languages with rank(L,) = n, and rank(L,) =
n,. [See Exercise 1.6 for the definition of rank.]
(a) Use Theorems 4.1, 42, and 2.1 to give an upper bound on
rank(L, U L,).
(b) Use Theorems 4.1, 4.2, 4.3, 4.4, and 2.1 to give an upper bound on
rank(L, N L,).
5.% Let A,, A, be alphabets, and let f be a function from A% to subsets
of A%. f is a substitution on A, if f(0) = {0} and, for all nonnull words

5. Kleene’s Theorem 253

a, -+ a, € AY ,where a,,...,a, € Ay, f(a, - a,) = f(a;) -+ f(a,) =

{uy,...,u,lu; € fla), 1 <i <n}. For L c A%, f(L) = U, . fw).

(a) Let A, ={a,b}, A, ={c,d, e}, let f be the substitution on A,
such that f(a) = {cc,0} and f(b) = {w € A% |w ends in e}, and
let L = {a"™b!") | m,n > 0}. What is f(L)?

(b) Let A,, A, be alphabets, let f be a substitution on A, such that
f(a) € A% is a regular language for all a € A, and let L be a
regular language on A,. Prove that f(L) is a regular language on
A,.

(¢) Let A4,, A, be alphabets, and let g be a function from A} to
A% . g is a homomorphism on A, if g(0) = 0 and, for all nonnull
words a, -+ a, € A}, where a,,...,a,€A,, gla, -~ a,) =
g(a)) - gla,). For L c A%, g(L) ={g(w)|w € L}. Use (b) to
show that if g is a homomorphism on 4, and L C A} is regular,
then g(L) is regular.

5. Kleene’s Theorem

In this section we will see how the class of regular languages can be
characterized as the class of all languages obtained from finite languages
using a few operations.

Definition. Let L,, L, C A*. Then, we write

L -L,=L,L,={wlueL,andv € L,}.
Definition. Let L C A*. Then we write

L* ={uwu, - u,ln>0,uy,...,u, €L}

With respect to this last definition, note that

1. 0 € L* automatically because n = 0 is allowed;
2. for A* the present notation is consistent with what we have been
using.

Theorem 5.1. If L,L are regular languages, then L-L is a regular
language.

Proof. Let .# and A{ be dfas that accept L and L, respectively, with
0,q,,F,86 and Q, §,, F, 8 the set of states, initial state, set of acc~epting
states, and transition function, respectively. Assume that .# and .# have

254 Chapter 9 Regular Languages

no states in common, i.e., Q N Q (2. By our discussion in Section 1, we
can assume without loss of generality that the alphabets of L and L are
the same. Consider the ndfa .# formed by “gluing together” .# and .# in
the following way. The set Q of states of ./ i is QU Q, and the initial state
is q,. We will define the transition function 8 of .# in such a way that the
transitions of .# will contain all transitions of .# and .#. In addition
8(q, s) will contain 8(g,,s) for every g € F. Thus, any time a symbol of
the input string causes .# to enter an accepting state, .# can either
continue by treating the next symbol of the input as being from the word
of L or as the first symbol of the word of L. Formally we define & as
follows:

{6(q,s)} for geQ—F
é(q,s) = {{8(g,s)} U {5((71 ,s)} for geF
{8(q,)} for qe€Q.

Thus, .# begins by behaving exactly like .#. However, just when .# has
accepted a word and would make a transition from an acceptmg state, .4
may proceed as if it were / making a transition from g, .

Fmally, if 0 € L we set F FUF,and if 0 & L we set F = F. Clearly,
L-L = L(#),so that L - L is a regular language. [|

Theorem 5.2. If L is a regular language, then so is L*.

Proof. Let .# be a nonrestarting dfa that accepts L with alphabet A, set
of states Q, initial state g,, accepting states F, and transition function 6.
We construct the ndfa .# with the same states and initial state as .#Z,
and accepting state g,. The transition function & is defined as follows:

{6(q,s)} if 8(q,s)¢&F

8(q,s) = {8(q,9)) U{q} if 6(q,s)€F.

That is, whenever .# would enter an accepting state, & will enter either
the corresponding accepting state or the initial state. Clearly L* = L(#),
so that L* is a regular language.]

Theorem 5.3 (Kleene’s Theorem). A language is regular if and only if it
can be obtained from finite languages by applying the three operators
U, -, * a finite number of times.

The characterization of regular languages that Kleene’s theorem gives
resembles the definition of the primitive recursive functions and the
characterization of the partially computable functions of Theorem 3.5 in

5. Kleene’s Theorem 255

Chapter 4. In each case one begins with some initial objects and applies
certain operations a finite number of times.

Proof. Every finite language is regular by Corollary 4.7, and if L =
LuL,orL=L,-L,orL =L} where L, and L, are regular, then L
is regular by Theorems 4.2, 5.1, and 5.2, respectively. Therefore, by
induction on the number of applications of U, -, and *, any language
obtained from finite languages by applying these operators a finite number
of times is regular.

On the other hand, let L be a regular language, L = L(.#), where .# is
a dfa with states ¢q,..., q,. As usual, g, is the initial state, F is the set of
accepting states, & is the transition function, and 4 = {s,..., s;} is the
alphabet. We define the sets R¥ ., i,j > 0,k > 0, as follows:

iLj>
Rf; = {x € 4% 8*(q;,x) = g; and # passes through no state
q, with [> k as it moves across x}.

More formally, Rf; is the set of words x = s
can write

s; -+ s;8; such that we

i%0p Dl
8(q;,s,) = q;,,
8(q;,»s:,) = a;,
8(q;_,s,) = a;,,
8(qj,,si,,,) = 4>
where j,,j,,...,J, < k. Now, we observe that

R?,j = {a €A | 8((1;,‘1) = qj}’

since for a word of length 1, .# passes directly from state g; into state g;
while in processing any word of length > 1, .# will pass through some
intermediate state g,,/ > 1. Thus R j 1s a finite set. Furthermore, we have

R =R} U [Rf,kn’(R2+1,k+1)*‘Rf+1,j]~ 5.1

This rather imposing formula really states something quite simple: The set
Rf‘jl contains all the elements of R} ; and in addition contains strings x,
such that .# in scanning x passes through the state g,,, (but through
none with larger subscript) some finite number of times. Such a string can
be decomposed into a left end, which .# enters in state g; and leaves in

256 Chapter 9 Regular Languages

state ¢, ., (passing only through states with subscripts less than k + 1 in
the process), followed by some finite number of pieces each of which .#
enters and leaves in state g,,, (passing only through g, with / <k),
and a right end which .# enters in state g,,, and leaves in state g;
(again passing only through states with subscript < k in between). Now
we have

Lemma. Each R} ;j can be obtained from finite languages by a finite
number of applications of the operations U, -, *.

Proof. We prove by induction on k that for all i, j, the set R¥ ; has the
desired property. For k = 0 this is obvious, since R} ; is finite.
Assuming the result known for k, (5.1) yields the result for & + 1. [|

Proof of Kleene’s Theorem Concluded. We note that

L(#) = U R;',j;
qiEF
thus, the result follows at once from the lemma. [|

Kleene’s theorem makes it possible to give names to regular languages
in a particularly simple way. Let us begin with an alphabet A =
{s,,55,..., 5. Then we define the corresponding alphabet:

A=A{s,55,...,5,0,8,U,-,* ().

The class of regular expressions on the alphabet A is then defined to be the
subset of 4* determined by the following:

1. 4,0,s,,...,s, are regular expressions.

If @ and B are regular expressions, then so is (@ U 8).

If @ and B are regular expressions, then so is (a - B).

If « is a regular expression, then so is a*.

No expression is regular unless it can be generated using a finite
number of applications of 1-4.

M

Here are a few examples of regular expressions on the alphabet A =
{a, b, c}:

(a - (b* U c*))
0V (a-b)*)
(c* - b*).

5. Kleene’s Theorem 257

For each regular expression vy, we define a corresponding regular
language (y) by recursion according to the following “semantic” rules:*

(sp) = 1{s},
<0y = {0},
(D) =&,

{aU B)) =< a) U (B),
(o B)) =(a) {B),
(a*) = (a)*.
When (y) = L, we say that the regular expression vy represents L. Thus,
((a - (b* U c*))) = {ab!"|n = 0} U {ac!™|m = 0},
OV (a-b)*)) =<(a-b)* = {(ab)["lln > 0},
{(c* - b*)) = {c!™p" | m,n > 0}.
We have
Theorem 5.4. For every finite subset L of A*, there is a regular expres-

sion y on A such that (y) = L.

Proof. If L = &, then L =<{@). If L = {0}, then L = <0). If L = {x},
where x =s; s; - s;, then

L={(s; (s, - (s; o0 8) =).
This gives the result for languages L consisting of 0 or 1 element.

Assuming the result known for languages of k elements, let L have k + 1
elements. Then we can write

iy i3

L =1L,uU{x},

where x € A* and L, contains k elements. By the induction hypothesis,
there is a regular expression a such that {(a) = L,. By the one-element
case already considered, there is a regular expression 3 such that (B) =
{x}. Then we have

((auB))=Ca>u{B)y=L,U{x}=L. n

® For more on this subject see Part 5.

258 Chapter 9 Regular Languages

Theorem 5.5 (Kleene’s Theorem—Second Version). A language L C A*
is regular if and only if there is a regular expression y on A such that
(v =L.

Proof. For any regular expression v, the regular language vy is built up
from finite languages by applying U, -, * a finite number of times, so {y)
is regular by Kleene’s theorem.

On the other hand, let L be a regular language. If L is finite then, by
Theorem 5.4, there is a regular expression y such that (y) = L. Other-
wise, by Kleene’s theorem, L can be obtained from certain finite language
by a finite number of applications of the operations U, -, *. By beginning
with regular expressions representing these finite languages, we can build
up a regular expression representing L by simply indicating each use of
the operations U, -, * by writing U, -, *, respectively, and punctuating
with (and). [

Exercises

1. (a) For each language L described in Exercise 1.1, give a regular
expression a such that L = (a).

(b) For each dfa .# described in Exercise 1.3, give a regular expres-
sion a such that L(#) = {a).

(¢) For each ndfa .# described in Exercise 2.1, give a regular
expression a such that L(.#) = (a).

2. For regular expressions a, 3, let us write @ = to mean that
(a) = {B). For a, B,y given regular expressions, prove the follow-
ing identities.

(@ (aVa)=a.

® (a-B)ula-y)=(a-(BUY).
© ((Bra)uly-a)=WBUy)-a)
@ (a*-a*) =a*

e (a:a*)=(a*-a).

) a**=a*

@® (U (a-a*)=a*

() (a-B)-a)=(a-(B-a)¥).

(i) (aU,B)*E(a*°B*)*E(a*UB*)*.

3. Using the identities of Exercise 2 prove that

((abb)*(ba)*(b U aa)) = (abb)*((0 U (b(ab)*a))b U (ba)*(aa)).

5. Kleene’s Theorem 259

(Note that parentheses and the symbol “-” have been omitted to
facilitate reading.)

4. Let a, B be given regular expressions such that 0 & (a). Consider
the equation in the “unknown” regular expression ¢:

£=(BU (£).

Prove that this equation has the solution

&= (B a%)
and that the solution is unique in the sense that if ¢’ also satisfies the
equation, then &= ¢'.

5. Let L ={x €{a,b}*| x # 0 and bb is not a substring of x}.
(a) Show that L is regular by constructing a dfa .# such that
L =L(#).

(b) Find a regular expression y such that L = (y).
Let L =(((a-a) U (a-a-a))*). Find a dfa .# that accepts L.

Describe an algorithm that, given any regular expression «, produces
an ndfa .# that accepts {a).

8. Let L,, L, be regular languages with rank(L,) = n, and rank(L,) =
n,. [See Exercise 1.6 for the definition of rank.]
(a) Use Theorem 5.1 to give an upper bound on rank(L, - L,).
(b) Use Theorem 5.2 to give an upper bound on rank(L%).
9. Let A={s,...,s,}
(a) Give a function b, such that rank({a)) < b,(a) for all regular
expressions « on A.

(b) Define the size of a regular expression on A as follows.

size(D) =1
size(0) =1
size(s;) =1 i=1,...,n

size((a U B)) =size(a) + size(B) + 1
size((a - B)) =size(a) + size(B) + 1
size(a*) =size(a) + 1

Give a numeric function b, such that rank({a)) < b,(size(a))
for all regular expressions o on A.

(o)* Verify that b, is primitive recursive.

10.* Let 4 ={s;,...,s,}, let a, B be regular expressions on A, and let
P,, P; be primitive recursive predicates such that for all w € 4%,

260 Chapter 9 Regular Languages

P (w) =1 if and only if w € (a) and PB(w) =1 if and only if

we {B).

(a) Give a primitive recursive predicate P, such that
P, upw) =1if and only if w € {(a U B)).

(b) Give a primitive recursive predicate P,.z, such that P,.5\(w)
= 1if and only if w € ((a - B)).

(¢) Give a primitive recursive predicate P,. such that P,.(w) = 1 if
and only if w € (a*).

(d) Use parts (a), (b), and (c) to show that for all regular expressions
y on A, there is a primitive recursive predicate P, such that
P (w) = 1if and only if w € (y).

6. The Pumping Lemma and Its Applications

We will make use of the following basic combinatorial fact:

Pigeon-Hole Principle. 1f (n + 1) objects are distributed among n
sets, then at least one of the sets must contain at least two objects.

We will use this pigeon-hole principle to prove the following result.

Theorem 6.1 (Pumping Lemma). Let L = L(.#), where .# is a dfa with
n states. Let X € L, where |x| > n. Then we can write x = uow, where
v# 0and wllwe L forall i =0,1,2,3,....

Proof. Since x consists of at least n symbols, .# must go through at least
n state transitions as it scans x. Including the initial state, this requires at
least n + 1 (not necessarily distinct) states. But since there are only n
states in all, we conclude (here is the pigeon-hole principle!) that .# must
be in at least one state more than once. Let g be a state in which .# finds
itself at least twice. Then we can write x = uvw, where

8*(q],u) =q7
8*(q,v) =q,
8*(q,w) € F.

That is, .# arrives in state g for the first time after scanning the last

(right-hand) symbol of u and then again after scanning the last symbol of

v. Since this “loop” can be repeated any number of times, it is clear that
8*(q, ,uvl'w) = 8*(q, ,uvw) € F.

Hence uvllw € L.]

6. The Pumping Lemma and Its Applications 261

Theorem 6.2. Let .# be a dfa with n states. Then, if L(.#) # O, there is
a string x € L(.#) such that |x| < n.

Proof. Let x be a string in L(.#) of the shortest possible length. Suppose
|x| > n. By the pumping lemma, x = uvw, where v # 0 and uw € L(.#).
Since |uw| < |x|, this is a contradiction. Thus |x| < n. [|

This theorem furnishes an algorithm for testing a given dfa .# to see
whether the language it accepts is empty. We need only “run” .# on all
strings of length less than the number of states of .#. If none is accepted,
we will be able to conclude that L(.#) = &.

Next we turn to infinite regular languages. If L = L(.#) is infinite, then
L must surely contain words having length greater than the number of
states of .#. Hence from the pumping lemma, we can conclude

Theorem 6.3. If L is an infinite regular language, then there are words
u,v,w, such that v # 0 and wllw € L for i =0,1,2,3,....

This theorem is useful in showing that certain languages are not regular.
However, for infinite regular languages we can say even more.
Theorem 6.4. Let .# be a dfa with n states. Then L(.#) is infinite if and
only if L(.#) contains a string x such that n < |x| < 2n.

Proof. First let x € L(.#) with n < |x| < 2n. By the pumping lemma, we
can write x = uvw, where v # 0 and wv!''w € L(.#) for all i. But then
L(.#) is infinite.

Conversely, let L(.#) be infinite. Then L(.#) must contain strings of
length > 2n. Let x € L(.#), where x has the shortest possible length
> 2n. We write x = x,x,, where |x,| = n. Thus |x,| > n. Then using the
pigeon-hole principle as in the proof of the pumping lemma, we can write
X, = uvw, where

8*(‘11 ’ u) = q,
8*(q,v) =¢q with 1 <|v| <n,
8*(q,wx,) € F.
Thus uwx, € L(#). But
luwx,| > |x,| > n,

and |uwx,| < |x|, and since x was a shortest word of L(.#) with length at
least 2n, we have

n < luwx,| < 2n. [

262 Chapter 9 Regular Languages

This theorem furnishes an algorithm for testing a given dfa .# to
determine whether L(.#) is finite. We need only run .# on all strings x
such that n < |x| < 2n, where .# has n states. L(.#) is infinite just in
case .# accepts at least one of these strings.

For another example of an algorithm, let .#,,.#, be dfas on the
alphabet A and let us seek to determine whether L(.#,) C L(.#,). Using
the methods of proof of Theorems 4.2-4.4, we can obtain a dfa .# such
that

L(#) = L(#) N [4* — L)),

Then L(.#,) C L(.#,) if and only if L(.#) = . Since Theorem 6.2
enables us to test algorithmically whether L(.#) = J, we have an algo-
rithm by means of which we can determine whether L(.#,) C L(.#,).
Moreover, since L(.#,) = L(.#,) just when L(.#,) C L(.#,) and L(.#,) C
L(#,), we also have an algorithm for testing whether L(.#,) = L(.#,).

The pumping lemma also furnishes a technique for showing that given
languages are not regular. For example, let L = {a"1b!"'| n > 0}, and
suppose that L = L(.#), where .# is a dfa with m states. We get a
contradiction by showing that there is a word x € L, with |x| > m, such
that there is no way of writing x = uvw, with v # 0, so that {uvl'lw | i > 0}
c L. Let x = a""p!"), where 2/ > m, and let al'b!"! = yow. Then either
v=a"l or v=a"pl?) or v =0bl"), with [,,l, <I, and in each case
uvvw & L, contradicting the pumping lemma, so there can be no such dfa
#, and L is not regular.

This example and the exercises at the end of Section 7 show that finite
automata are incapable of doing more than a limited amount of counting.

Exercises

1. Given a word w and a dfa .#, a test to determine if w € L(.#) is a
membership test.
(a) Let .#,, #, be arbitrary dfas on alphabet 4 = {s,,...,s,}, where
#, has m, states and .#, has m, states. Give an upper bound
fGm,,m,) on the number of membership tests necessary to
determine if L(.#,) = L(4,).
(b)* Verify that f is primitive recursive.

2. (a) Describe an algorithm that, for any regular expressions « and S,
determines if (a) = { B).
(b) Give a function g(x,y) such that the algorithm in part (a)
requires at most g(size(a), size(B)) membership tests. [See Exer-
cise 5.9 for the definition of size(a).]

(c)* Verify that g is primitive recursive.

7. The Myhill - Nerode Theorem 263
7. The Myhill - Nerode Theorem

We conclude this chapter by giving another characterization of the regular
languages on an alphabet 4. We begin with a pair of definitions.

Definition. Let L C 4*, where A4 is an alphabet. For strings x, y € A%,
we write x =; y to mean that for every w € A* we have xw € L if and
only if yw € L.

It is obvious that =, has the following properties.
X =, X.
If x=, y,theny =, x.
Ifx=, yandy =, z,then x =, z.

(Relations having these three properties are known as equivalence rela-
tions.)
It is also obvious that

If x =, y,thenforallw € 4%, xw =, yw.

Definition. Let L C A*, where A is an alphabet. Let S € 4*. Then S is
called a spanning set for L if

1. S is finite, and
2. for every x € A*, there is a y € § such that x =, y.

Then we can prove
Theorem 7.1 (Myhill-Nerode). A language is regular if and only if it has
a spanning set.

Proof. First let L be regular. Then L = L(.#), where .# is a dfa with set
of states Q, initial state ¢,, and transition function 8. Let us call a state
q € Q reachable if there exists y € 4* such that

8*(q,,y) = q. (7.1)

For each reachable state g, we select one particular string y that satisfies
(7.1) and we write it as y,. Thus,

8*(q1,y,) =4
for every reachable state g. We set
S = {yq lqis reachable}.

S is clearly finite. To show that S is a spanning set for L, we let x € A*
and show how to find y € S such that x =, y. In fact, let 6*(q,, x) =g,

264 Chapter 9 Regular Languages

and set y =y,. Thus, y € § and 8*(q,, y) = q. Now for every w € A%,
8*(q,,xw) = 8*(q,w) = 8*(q,,yw).

Hence, 8*(q,, xw) € F if and only if §*(q,, yw) € F; i.e., xw € L if and
only if yw € L. Thus, x =, y.

Conversely, let L € A* and let S € A* be a spanning set for L. We
show how to construct a dfa .# such that L(.#) = L. We define the set of
states of .# to be Q = {q, | x € S}, where we have associated a state g,
with each element x € S. Since S is a spanning set for L, there is an
xy € § such that 0 =, x,; we take g, to be the initial state of .Z. We let
the final states of .# be

F={qy|yeL}.

Finally, for a € A4, we set 8(q,,a) = q,, where y € S and xa =, y. Then
we claim that for all w € A%,

6*(qx7w) = qy» Where xw EL y.

We prove this claim by induction on |w|. For |w|= 0, we have w = 0.
Moreover, 6*(q,,0) = g, and x0 =x =, x. Suppose our claim is known
for all words w such that |w| = k, and consider w € 4* with |w| =k + 1.
Then w = ua, where |u| = k and a € A. We have

8*(q,,w) = 8(8*(q,,u),a) = 8(q,,a) =q,,

where, using the induction hypothesis, xu =, y and, by definition of &,
ya =; z. Then xw = xua =, ya =, z, which proves the claim. Now, we
have

L(#) = {w € 4*| 6*(q,,,w) € F}.

Let 8*(q,,,w) = q,. Then by the way x, was defined and our claim,
W=, Xgw =, y.

Thus, w € L if and only if y € L, which in turn is true if and only if
g, € F,ie., if and only if w € L(.#). Hence L = L(.#). [|

Like the pumping lemma, the Myhill-Nerode theorem furnishes a
technique for showing that a given language is not regular. For example,
let L ={al"b!")|n > 0} again, and let n,,n, be distinct numbers > 0.
Then a"1pl"™) € L and al™!bl") & L, so al") #, al"?), and since =, is an
equivalence relation, there can be no word w such that a!”! =, w and
al" =, w. But if there were a spanning set S = {w,,...,w,,} for L, then
by the pigeon-hole principle, there would have to be at least two distinct

7. The Myhill - Nerode Theorem 265

words among {a, aa, ...,a™* "}, say al'l and 4V}, and some w, € S such
that a!! =, w, and @Vl =, w,, which is impossible. Therefore L has no
spanning set, and by the Myhill-Nerode theorem, L is not regular.

Exercises

1.

10.

(a) For each language L described in Exercise 1.1, give a spanning
set for L.

(b) For each dfa .# described in Exercise 1.3, give a spanning set
for L(.#).

(¢) For each ndfa .# described in Exercise 2.1, give a spanning set
for L(.#).

Prove that there is no dfa that accepts exactly the set of all words that
are palindromes over a given alphabet containing at least two sym-
bols. (For a definition of palindrome, see Exercise 1.1f.)

u is called an initial segment of a word w if there is a word v such
that w = uv. Let L be a regular language. Prove that the language
consisting of all initial segments of words of L is a regular language.

Let L be a regular language and L’ the language consisting of all
words w such that both w and w - w are words in L. Prove that L’ is
regular.

Prove the following statement, if it is true, or give a counterexample:
Every language that is a subset of a regular language is regular.

Prove that each of the following is not a regular language.

(a) The language on the alphabet {a, b} consisting of all strings in
which the number of occurrences of b is greater than the
number of occurrences of a.

(b) The language L over the alphabet {.,0,1,...,9}, consisting of all
strings that are initial segments of the infinite decimal expansion
of m. [L ={3,3.,,3.1,3.14,3.141,3.1415,.. . }.]

(¢) The language L over the alphabet {a, b} consisting of all strings
that are initial segments of the infinite string

babaabaaabaaaab. ..
Let L = {a'bV1|i # j}. Show that L is not regular.
Let L = {a"b"| n > 0}. Show that L is not regular.
Let L = {a"b!™|0 < n < m}. Show that L is not regular.
Let L = {a!?!| p is a prime number}. Show that L is not regular.

266

11.

12.

Chapter 9 Regular Languages
