
OpenImageIO 0.1
Programmer Documentation

(in progress)

Editor: Larry Gritz

Date: 8 March, 2009

ii

I kinda like “Oy-e-oh” with a bit of a groaning Yiddish accent, as in
“OIIO, did you really write yet another file I/O library?”

Dan Wexler

OpenImageIO Programmer’s Documentation

Contents

1 Introduction 1
1.1 Overview . 1
1.2 Simplifying Assumptions . 2

I The ImageIO Library 5

2 Image I/O API 7
2.1 Data Type Descriptions: TypeDesc . 7
2.2 Image Specification: ImageSpec . 9

3 ImageOutput: Writing Images 15
3.1 Image Output Made Simple . 15
3.2 Advanced Image Output . 16
3.3 ImageOutput Class Reference . 31

4 Image I/O: Reading Images 35
4.1 Image Input Made Simple . 35
4.2 Advanced Image Input . 36
4.3 ImageInput Class Reference . 45

5 Writing ImageIO Plugins 49
5.1 Plugin Introduction . 49
5.2 Image Readers . 49
5.3 Image Writers . 56
5.4 Building ImageIO Plugins . 65

6 Bundled ImageIO Plugins 67
6.1 TIFF . 67
6.2 JPEG . 67
6.3 OpenEXR . 67
6.4 HDR/RGBE . 67
6.5 PNG . 67

7 Image Buffer 69

iii

iv CONTENTS

8 Cached Images 71
8.1 Image Cache Introduction and Theory of Operation 71
8.2 ImageCache API . 73

9 Texture Access: TextureSystem 79
9.1 Texture System Introduction and Theory of Operation 79
9.2 Helper Classes . 79
9.3 TextureSystem API . 83

II Image Utilities 97

10 The iv Image Viewer 99

11 Getting Image information With iinfo 101
11.1 Using iinfo . 101
11.2 iinfo command-line options . 102

12 Converting Image Formats With iconvert 105
12.1 Overview . 105
12.2 iconvert Recipes . 105
12.3 iconvert command-line options . 107

13 Searching Image Metadata With igrep 111
13.1 Using igrep . 111
13.2 igrep command-line options . 111

14 Comparing Images With idiff 113
14.1 Overview . 113
14.2 Using idiff . 113
14.3 idiff Reference . 115

15 Creating MIP-mapped texture files with maketx 117

III Appendices 119

A Building OpenImageIO 121

B Metadata conventions 123
B.1 Description of the image . 123
B.2 Display hints . 124
B.3 Disk file format info/hints . 124
B.4 Photographs or scanned images . 125
B.5 Texture Information . 126
B.6 Exif metadata . 127
B.7 GPS Exif metadata . 132

OpenImageIO Programmer’s Documentation

CONTENTS v

B.8 IPTC metadata . 135
B.9 Extension conventions . 136

C Glossary 137

Index 139

OpenImageIO Programmer’s Documentation

vi CONTENTS

OpenImageIO Programmer’s Documentation

1 Introduction

Welcome to OpenImageIO!

1.1 Overview

OpenImageIO provides simple but powerful ImageInput and ImageOutput APIs that abstract
the reading and writing of 2D image file formats. They don’t support every possible way of
encoding images in memory, but for a reasonable and common set of desired functionality, they
provide an exceptionally easy way for an application using the APIs support a wide — and
extensible — selection of image formats without knowing the details of any of these formats.

Concrete instances of these APIs, each of which implements the ability to read and/or write
a different image file format, are stored as plugins (i.e., dynamic libraries, DLL’s, or DSO’s)
that are loaded at runtime. The OpenImageIO distribution contains such plugins for several
popular formats. Any user may create conforming plugins that implement reading and writing
capabilities for other image formats, and any application that uses OpenImageIO would be able
to use those plugins.

The library also implements the helper class ImageBuf, which is a handy way to store and
manipulate images in memory. ImageBuf itself uses ImageInput and ImageOutput for its file
I/O, and therefore is also agnostic as to image file formats.

The ImageCache class transparently manages a cache so that it can access truly vast amounts
of image data (thousands of image files totaling tens of GB) very efficiently using only a tiny
amount (tens of megabytes at most) of runtime memory. Additionally, a TextureSystem class
provides filtered MIP-map texture lookups, atop the nice caching behavior of ImageCache.

Finally, the OpenImageIO distribution contains several utility programs that operate on im-
ages, each of which is built atop ImageInput and ImageOutput, and therefore may read or
write any image file type for which an appropriate plugin is found at runtime. Paramount
among these utilities is iv, a really fantastic and powerful image viewing application. Addi-
tionally, there are programs for converting images among different formats, comparing image
data between two images, and examining image metadata.

All of this is released as “open source” software using the very permissive BSD license. So
you should feel free to use any or all of OpenImageIO in your own software, whether it is private
or public, open source or proprietary, free or commercial. You may also modify it on your own.
You are also encouraged to contribute to the continued development of OpenImageIO and to
share any improvements that you make on your own, though you are by no means required to
do so.

1

2 CHAPTER 1. INTRODUCTION

1.2 Simplifying Assumptions

OpenImageIO is not the only image library in the world. Certainly there are many fine libraries
that implement a single image format (including the excellent libtiff, jpeg-6b, and OpenEXR
that OpenImageIO itself relies on). Many libraries attempt to present a uniform API for reading
and writing multiple image file formats. Most of these support a fixed set of image formats,
though a few of these also attempt to provide an extensible set by using the plugin approach.

But in our experience, these libraries are all flawed in one or more ways: (1) They either
support only a few formats, or many formats but with the majority of them somehow incomplete
or incorrect. (2) Their APIs are not sufficiently expressive as to handle all the image features
we need (such as tiled images, which is critical for our texture library). (3) Their APIs are too
complete, trying to handle every possible permutation of image format features, and as a result
are horribly complicated.

The third sin is the most severe, and is almost always the main problem at the end of the day.
Even among the many open source image libraries that rely on extensible plugins, we have not
found one that is both sufficiently flexible and has APIs anywhere near as simple to understand
and use as those of OpenImageIO.

Good design is usually a matter of deciding what not to do, and OpenImageIO is no ex-
ception. We achieve power and elegance only by making simplifying assumptions. Among
them:

• OpenImageIO only deals with ordinary 2D images, and to a limited extent 3D volumes,
and image files that contain multiple (but finite) independent images within them. Open-
ImageIO does not deal with motion picture files. At least, not currently.

• Pixel data are 8- 16- or 32-bit int (signed or unsigned), 16- 32- or 64-bit float. NOTHING
ELSE. No < 8 bit images, or pixels boundaries that aren’t byte boundaries. Files with
< 8 bits will appear to the client as 8-bit unsigned grayscale images.

• Only fully elaborated, non-compressed data are accepted and returned by the API. Com-
pression or special encodings are handled entirely within an OpenImageIO plugin.

• Color space is grayscale or RGB. Non-spectral data, such as XYZ, CMYK, or YUV, are
converted to RGB upon reading.

• All color channels have the same data format. Upon read, an ImageInput ought to con-
vert all channels to the one with the highest precision in the file.

• All image channels in a subimage are sampled at the same resolution. For file formats
that allow some channels to be subsampled, they will be automatically up-sampled to the
highest resolution channel in the subimage.

• Color information is always in the order R, G, B, and the alpha channel, if any, always
follows RGB, and z channel (if any) always follows alpha. So if a file actually stores
ABGR, the plugin is expected to rearrange it as RGBA.

It’s important to remember that these restrictions apply to data passed through the APIs, not
to the files themselves. It’s perfectly fine to have an OpenImageIO plugin that supports YUV

OpenImageIO Programmer’s Documentation

1.2. SIMPLIFYING ASSUMPTIONS 3

data, or 4 bits per channel, or any other exotic feature. You could even write a movie-reading
ImageInput (despite OpenImageIO’s claims of not supporting movies) and make it look to
the client like it’s just a series of images within the file. It’s just that all the nonconforming
details are handled entirely within the OpenImageIO plugin and are not exposed through the
main OpenImageIO APIs.

Historical Origins

OpenImageIO is the evolution of concepts and tools I’ve been working on for two decades.
In the 1980’s, every program I wrote that output images would have a simple, custom format

and viewer. I soon graduated to using a standard image file format (TIFF) with my own library
implementation. Then I switched to Sam Leffler’s stable and complete libtiff.

In the mid-to-late-1990’s, I worked at Pixar as one of the main implementors of PhotoRe-
alistic RenderMan, which had display drivers that consisted of an API for opening files and
outputting pixels, and a set of DSO/DLL plugins that each implement image output for each of
a dozen or so different file format. The plugins all responded to the same API, so the renderer
itself did not need to know how to the details of the image file formats, and users could (in
theory, but rarely in practice) extend the set of output image formats the renderer could use by
writing their own plugins.

This was the seed of a good idea, but PRMan’s display driver plugin API was abstruse and
hard to use. So when I started Exluna in 2000, Matt Pharr, Craig Kolb, and I designed a new
API for image output for our own renderer, Entropy. This API, called “ExDisplay,” was C++,
and much simpler, clearer, and easier to use than PRMan’s display drivers.

NVIDIA’s Gelato (circa 2002), whose early work was done by myself, Dan Wexler, Jonathan
Rice, and Eric Enderton, had an API called “ImageIO.” ImageIO was much more powerful and
descriptive than ExDisplay, and had an API for reading as well as writing images. Gelato was
not only “format agnostic” for its image output, but also for its image input (textures, image
viewer, and other image utilities). We released the API specification and headers (though not
the library implementation) using the BSD open source license, firmly repudiating any notion
that the API should be specific to NVIDIA or Gelato.

For Gelato 3.0 (circa 2007), we refined ImageIO again (by this time, Philip Nemec was
also a major influence, in addition to Dan, Eric, and myself1). This revision was not a major
overhaul but more of a fine tuning. Our ideas were clearly approaching stability. But, alas, the
Gelato project was canceled before Gelato 3.0 was released, and despite our prodding, NVIDIA
executives would not open source the full ImageIO code and related tools.

After I left NVIDIA, I was determined to recreate this work once again – and ONLY once
more – and release it as open source from the start. Thus, OpenImageIO was born. I started with
the existing Gelato ImageIO specification and headers (which were BSD licensed all along),
and made some more refinements since I had to rewrite the entire implementation from scratch
anyway. I think the additional changes are all improvements. This is the software you have in
your hands today.

1Gelato as a whole had many other contributors; those I’ve named here are the ones I recall contributing to the
design or implementation of the ImageIO APIs

OpenImageIO Programmer’s Documentation

4 CHAPTER 1. INTRODUCTION

Acknowledgments

OpenImageIO Programmer’s Documentation

Part I

The ImageIO Library

5

2 Image I/O API

2.1 Data Type Descriptions: TypeDesc

There are two kinds of data that are important to OpenImageIO:

• Internal data is in the memory of the computer, used by an application program.

• Native file data is what is stored in an image file itself (i.e., on the “other side” of the
abstraction layer that OpenImageIO provides).

Both internal and file data is stored in a particular data format that describes the numerical
encoding of the values. OpenImageIO understands several types of data encodings, and there
is a special type, TypeDesc, that allows their enumeration. A TypeDesc describes a base data
format type, aggregation into simple vector and matrix types, and an array length (if it’s an
array).

TypeDesc supports the following base data format types, given by the enumerated type
BASETYPE:

UINT8 8-bit integer values ranging from 0..255, corresponding to the C/C++
unsigned char.

INT8 8-bit integer values ranging from -128..127, corresponding to the C/C++ char.
UINT16 16-bit integer values ranging from 0..65535, corresponding to the C/C++

unsigned short.
INT16 16-bit integer values ranging from -32768..32767, corresponding to the C/C++

short.
UINT 32-bit integer values, corresponding to the C/C++ unsigned int.
INT signed 32-bit integer values, corresponding to the C/C++ int.
FLOAT 32-bit IEEE floating point values, corresponding to the C/C++ float.
DOUBLE 64-bit IEEE floating point values, corresponding to the C/C++ double.
HALF 16-bit floating point values in the format supported by OpenEXR and OpenGL.

A TypeDesc can be constructed using just this information, either as a single scalar value, or an
array of scalar values:

TypeDesc (BASETYPE btype)
TypeDesc (BASETYPE btype, int arraylength)

Construct a type description of a single scalar value of the given base type, or an array
of such scalars if an array length is supplied. For example, TypeDesc(UINT8) describes

7

8 CHAPTER 2. IMAGE I/O API

an unsigned 8-bit integer, and TypeDesc(FLOAT,7) describes an array of 7 32-bit float
values. Note also that a non-array TypeDesc may be implicitly constructed from just the
BASETYPE, so it’s okay to pass a BASETYPE to any function parameter that takes a full
TypeDesc.

In addition, TypeDesc supports certain aggregate types, described by the enumerated type
AGGREGATE:

SCALAR a single scalar value (such as a raw int or float in C). This is the default.
VEC2 two values representing a 2D vector.
VEC3 three values representing a 3D vector.
VEC4 four values representing a 4D vector.
MATRIX44 sixteen values representing a 4×4 matrix.

And optionally, several vector transformation semantics, described by the enumerated type
VECSEMANTICS:

NOXFORM indicates that the item is not a spatial quantity that undergoes any par-
ticular transformation.

COLOR indicates that the item is a “color,” not a spatial quantity (and of course
therefore does not undergo a transformation).

POINT indicates that the item represents a spatial position and should be trans-
formed by a 4×4 matrix as if it had a 4th component of 1.

VECTOR indicates that the item represents a spatial direction and should be
transformed by a 4×4 matrix as if it had a 4th component of 0.

NORMAL indicates that the item represents a surface normal and should be trans-
formed like a vector, but using the inverse-transpose of a 4×4 matrix.

These can be combined to fully describe a complex type:

TypeDesc (BASETYPE btype, AGGREGATE agg, VECSEMANTICS xform=NOXFORM)
TypeDesc (BASETYPE btype, AGGREGATE agg, int arraylen)
TypeDesc (BASETYPE btype, AGGREGATE agg, VECSEMANTICS xform, int arraylen)

Construct a type description of an aggregate (or array of aggregates), with optional vector
transformation semantics. For example, TypeDesc(HALF,COLOR) describes an aggregate
of 3 16-bit floats comprising a color, and TypeDesc(FLOAT,VEC3,POINT) describes an
aggregate of 3 32-bit floats comprising a 3D position.

Note that aggregates and arrays are different. A TypeDesc(FLOAT,3) is an array of three
floats, a TypeDesc(FLOAT,COLOR) is a single 3-channel color comprised of floats, and
TypeDesc(FLOAT,3,COLOR) is an array of 3 color values, each of which is comprised of
3 floats.

Of these, the only ones commonly used to store pixel values in image files are scalars of
UINT8, UINT16, FLOAT, and HALF (the last only used by OpenEXR, to the best of our knowl-
edge).

OpenImageIO Programmer’s Documentation

2.2. IMAGE SPECIFICATION: IMAGESPEC 9

Note that the TypeDesc (which is also used for applications other than images) can describe
many types not used by OpenImageIO. Please ignore this extra complexity; only the above
simple types are understood by OpenImageIO as pixel storage data types, though a few others,
including STRING and MATRIX44 aggregates, are occasionally used for metadata for certain
image file formats (see Sections 3.2.5, 4.2.4, and the documentation of individual ImageIO
plugins for details).

2.2 Image Specification: ImageSpec

An ImageSpec is a structure that describes the complete format specification of a single image.
It contains:

• The image resolution (number of pixels).

• The origin, if its upper left corner is not located beginning at pixel (0,0).

• The full size and offset of an abstract “full” or “display” image, useful for describing
cropping or overscan.

• Whether the image is organized into tiles, and if so, the tile size.

• The native data format of the pixel values (e.g., float, 8-bit integer, etc.).

• The number of color channels in the image (e.g., 3 for RGB images), names of the chan-
nels, and whether any particular channels represent alpha and depth.

• Any presumed gamma correction or hints about color space of the pixel values.

• Quantization parameters describing how floating point values should be converted to in-
tegers (in cases where users pass real values but integer values are stored in the file). This
is used only when writing images, not when reading them.

• A user-extensible (and format-extensible) list of any other arbitrarily-named and -typed
data that may help describe the image or its disk representation.

2.2.1 ImageSpec Data Members

The ImageSpec contains data fields for the values that are required to describe nearly any image,
and an extensible list of arbitrary attributes that can hold metadata that may be user-defined or
specific to individual file formats. Here are the hard-coded data fields:

int width, height, depth
int x, y, z

width, height, depth are the size of the data of this image, i.e., the number of pixels
in each dimension. A depth greater than 1 indicates a 3D “volumetric” image.

x, y, z indicate the origin of the pixel data of the image. These default to (0,0,0), but
setting them differently may indicate that this image is offset from the usual origin.

OpenImageIO Programmer’s Documentation

10 CHAPTER 2. IMAGE I/O API

Therefore the pixel data are defined over pixel coordinates [x ... x+width-1] horizontally,
[y ... y+height-1] vertically, and [z ... z+depth-1] in depth.

int full width, full height, full depth
int full x, full y, full z

These fields define a “full” or “display” image window over the region [full x ...
full x+full width-1] horizontally, [full y ... full y+full height-1] verti-
cally, and [full z ... full z+full depth-1] in depth.

Having the full display window different from the pixel data window can be helpful in
cases where you want to indicate that your image is a crop window of a larger image (if
the pixel data window is a subset of the full display window), or that the pixels include
overscan (if the pixel data is a superset of the full display window), or may simply indicate
how different non-overlapping images piece together.

int tile width, tile height, tile depth

If nonzero, indicates that the image is stored on disk organized into rectangular tiles of
the given dimension. The default of (0,0,0) indicates that the image is stored in scanline
order, rather than as tiles.

TypeDesc format

Indicates the native format of the pixel data values themselves, as a TypeDesc (see 2.1).
Typical values would be TypeDesc::UINT8 for 8-bit unsigned values, TypeDesc::FLOAT
for 32-bit floating-point values, etc.

NOTE: Currently, the implementation of OpenImageIO requires all channels to have the
same data format.

int nchannels

The number of channels (color values) present in each pixel of the image. For example,
an RGB image has 3 channels.

std::vector<std::string> channelnames

The names of each channel, in order. Typically this will be "R", "G","B", "A" (alpha),
"Z" (depth), or other arbitrary names.

int alpha channel

The index of the channel that represents alpha (pixel coverage and/or transparency). It
defaults to -1 if no alpha channel is present, or if it is not known which channel represents
alpha.

OpenImageIO Programmer’s Documentation

2.2. IMAGE SPECIFICATION: IMAGESPEC 11

int z channel

The index of the channel that respresents z or depth (from the camera). It defaults to -1 if
no depth channel is present, or if it is not know which channel represents depth.

LinearitySpec linearity

Describes the mapping of pixel values to real-world units. LinearitySpec is an enumer-
ated type that may take on the following values:

• Linear (the default) indicates that pixel values map linearly.

• GammaCorrected indicates that the color pixel values have already been gamma
corrected, using the exponent given by the gamma field. (It is still assumed that
non-color values, such as alpha and depth, are linear.)

• sRGB indicates that color values are encoded using the sRGB mapping. (It is still
assumed that non-color values are linear.)

float gamma

The gamma exponent, if the pixel values in the image have already been gamma cor-
rected (indicated by linearity having a value of GammaCorrected). The default of 1.0
indicates that no gamma correction has been applied.

int quant black, quant white, quant min, quant max;
float quant dither

Describes the quantization, or mapping between real (floating-point) values and the stored
integer values. Please refer to Section 3.2.6 for a more complete explanation of each of
these parameters.

ParamValueList extra attribs

A list of arbitrarily-named and arbitrarily-typed additional attributes of the image, for
any metadata not described by the hard-coded fields described above. This list may be
manipulated with the attribute() and find attribute() methods.

2.2.2 ImageSpec member functions

ImageSpec contains the following methods that manipulate format specs or compute useful
information about images given their format spec:

ImageSpec (int xres, int yres, int nchans, TypeDesc fmt = UINT8)

Constructs an ImageSpec with the given x and y resolution, number of channels, and
pixel data format.

All other fields are set to the obvious defaults – the image is an ordinary 2D image (not a
volume), the image is not offset or a crop of a bigger image, the image is scanline-oriented

OpenImageIO Programmer’s Documentation

12 CHAPTER 2. IMAGE I/O API

(not tiled), channel names are “R”, “G”, “B,” and “A” (up to and including 4 channels,
beyond that they are named “channel n”), the fourth channel (if it exists) is assumed to be
alpha, values are assumed to be linear, and quantization (if fmt describes an integer type)
is done in such a way that the maximum positive integer range maps to (0.0, 1.0).

void set format (TypeDesc fmt)

Sets the format as described, and also sets all quantization parameters to the default for
that data type (as explained in Section 3.2.6).

void default channel names ()

Sets the channelnames to reasonable defaults for the number of channels. Specifically,
channel names are set to “R”, “G”, “B,” and “A” (up to and including 4 channels, beyond
that they are named “channeln”.

static TypeDesc
format from quantize (int quant black, int quant white,

int quant min, int quant max)

Utility function that, given quantization parameters, returns a data type that may be used
without unacceptable loss of significant bits.

size t channel bytes ()

Returns the number of bytes comprising each channel of each pixel (i.e., the size of a
single value of the type described by the format field).

size t pixel bytes ()

Returns the number of bytes comprising each pixel (i.e. the number of channels multi-
plied by the channel size).

size t scanline bytes ()

Returns the number of bytes comprising each scanline (i.e. width pixels).

size t tile bytes ()

Returns the number of bytes comprising an image tile (if it’s a tiled image).

size t image bytes ()

Returns the number of bytes comprising an image of these dimensions.

OpenImageIO Programmer’s Documentation

2.2. IMAGE SPECIFICATION: IMAGESPEC 13

void attribute (const std::string &name, TypeDesc type,
const void *value)

Add a metadata attribute to extra attribs, with the given name and data type. The
value pointer specifies the address of the data to be copied.

void attribute (const std::string &name, unsigned int value)
void attribute (const std::string &name, int value)
void attribute (const std::string &name, float value)
void attribute (const std::string &name, const char *value)
void attribute (const std::string &name, const std::string &value)

Shortcuts for passing attributes comprised of a single integer, floating-point value, or
string.

ParamValue * find attribute (const std::string &name,
TypeDesc searchtype=UNKNOWN,
bool casesensitive=false)

Searches extra attribs for an attribute matching name, returning a pointer to the at-
tribute record, or NULL if there was no match. If searchtype is TypeDesc::UNKNOWN,
the search will be made regardless of the data type, whereas other values of searchtype
will reject a matching name if the data type does not also match. The name compar-
ison will be exact if casesensitive is true, otherwise in a case-insensitive manner if
caseinsensitive is false.

std::string metadata val (const ImageIOParamaeter &p, bool human=true)

For a given parameter (in this ImageSpec’s extra attribs field), format the value
nicely as a string. If human is true, use especially human-readable explanations (units, or
decoding of values) for certain known metadata.

OpenImageIO Programmer’s Documentation

14 CHAPTER 2. IMAGE I/O API

OpenImageIO Programmer’s Documentation

3 ImageOutput: Writing Images

3.1 Image Output Made Simple

Here is the simplest sequence required to write the pixels of a 2D image to a file:

#include "imageio.h"
using namespace OpenImageIO;
...

const char *filename = "foo.jpg";
const int xres = 640, yres = 480;
const int channels = 3; // RGB
unsigned char pixels[xres*yres*channels];

ImageOutput *out = ImageOutput::create (filename);
ImageSpec spec (xres, yres, channels, TypeDesc::UINT8);
out->open (filename, spec);
out->write_image (TypeDesc::UINT8, pixels);
out->close ();
delete out;

This little bit of code does a surprising amount of useful work:

• Search for an ImageIO plugin that is capable of writing the file ("foo.jpg"), deducing
the format from the file extension. When it finds such a plugin, it creates a subclass
instance of ImageOutput that writes the right kind of file format.

ImageOutput *out = ImageOutput::create (filename);

• Open the file, write the correct headers, and in all other important ways prepare a file
with the given dimensions (640× 480), number of color channels (3), and data format
(unsigned 8-bit integer).

ImageSpec spec (xres, yres, channels, TypeDesc::UINT8);
out->open (filename, spec);

• Write the entire image, hiding all details of the encoding of image data in the file, whether
the file is scanline- or tile-based, or what is the native format of data in the file (in this

15

16 CHAPTER 3. IMAGEOUTPUT: WRITING IMAGES

case, our in-memory data is unsigned 8-bit and we’ve requested the same format for disk
storage, but if they had been different, write image() would do all the conversions for
us).

out->write_image (TypeDesc::UINT8, &pixels);

• Close the file, destroy and free the ImageOutput we had created, and perform all other
cleanup and release of any resources needed by the plugin.

out->close ();
delete out;

3.2 Advanced Image Output

Let’s walk through many of the most common things you might want to do, but that are more
complex than the simple example above.

3.2.1 Writing individual scanlines, tiles, and rectangles

The simple example of Section 3.1 wrote an entire image with one call. But sometimes you are
generating output a little at a time and do not wish to retain the entire image in memory until it
is time to write the file. OpenImageIO allows you to write images one scanline at a time, one
tile at a time, or by individual rectangles.

Writing individual scanlines

Individual scanlines may be written using the write scanline() API call:

...
unsigned char scanline[xres*channels];
out->open (filename, spec);
int z = 0; // Always zero for 2D images
for (int y = 0; y < yres; ++y) {

... generate data in scanline[0..xres*channels-1] ...
out->write_scanline (y, z, TypeDesc::UINT8, scanline);

}
out->close ();
...

The first two arguments to write scanline() specify which scanline is being written by
its vertical (y) scanline number (beginning with 0) and, for volume images, its slice (z) number
(the slice number should be 0 for 2D non-volume images). This is followed by a TypeDesc
describing the data you are supplying, and a pointer to the pixel data itself. Additional optional
arguments describe the data stride, which can be ignored for contiguous data (use of strides is
explained in Section 3.2.3).

OpenImageIO Programmer’s Documentation

3.2. ADVANCED IMAGE OUTPUT 17

All ImageOutput implementations will accept scanlines in strict order (starting with scan-
line 0, then 1, up to yres-1, without skipping any). See Section 3.2.7 for details on out-of-order
or repeated scanlines.

The full description of the write scanline() function may be found in Section 3.3.

Writing individual tiles

Not all image formats (and therefore not all ImageOutput implementations) support tiled im-
ages. If the format does not support tiles, then write tile() will fail. An application using
OpenImageIO should gracefully handle the case that tiled output is not available for the chosen
format.

Once you create() an ImageOutput, you can ask if it is capable of writing a tiled image
by using the supports("tiles") query:

...
ImageOutput *out = ImageOutput::create (filename);
if (! out->supports ("tiles")) {

// Tiles are not supported
}

Assuming that the ImageOutput supports tiled images, you need to specifically request a
tiled image when you open() the file. This is done by setting the tile size in the ImageSpec
passed to open(). If the tile dimensions are not set, they will default to zero, which indicates
that scanline output should be used rather than tiled output.

int tilesize = 64;
ImageSpec spec (xres, yres, channels, TypeDesc::UINT8);
spec.tile_width = tilesize;
spec.tile_height = tilesize;
out->open (filename, spec);
...

In this example, we have used square tiles (the same number of pixels horizontally and
vertically), but this is not a requirement of OpenImageIO. However, it is possible that some
image formats may only support square tiles, or only certain tile sizes (such as restricting tile
sizes to powers of two). Such restrictions should be documented by each individual plugin.

unsigned char tile[tilesize*tilesize*channels];
int z = 0; // Always zero for 2D images
for (int y = 0; y < yres; y += tilesize) {

for (int x = 0; x < xres; x += tilesize) {
... generate data in tile[] ..
out->write_tile (x, y, z, TypeDesc::UINT8, tile);

}
}
out->close ();
...

OpenImageIO Programmer’s Documentation

18 CHAPTER 3. IMAGEOUTPUT: WRITING IMAGES

The first three arguments to write tile() specify which tile is being written by the pixel
coordinates of any pixel contained in the tile: x (column), y (scanline), and z (slice, which
should always be 0 for 2D non-volume images). This is followed by a TypeDesc describing
the data you are supplying, and a pointer to the tile’s pixel data itself, which should be ordered
by increasing slice, increasing scanline within each slice, and increasing column within each
scanline. Additional optional arguments describe the data stride, which can be ignored for
contiguous data (use of strides is explained in Section 3.2.3).

All ImageOutput implementations that support tiles will accept tiles in strict order of in-
creasing y rows, and within each row, increasing x column, without missing any tiles. See
Section 3.2.7 for details on out-of-order or repeated tiles.

The full description of the write tile() function may be found in Section 3.3.

Writing arbitrary rectangles

Some ImageOutput implementations — such as those implementing an interactive image dis-
play, but probably not any that are outputting directly to a file — may allow you to send arbitrary
rectangular pixel regions. Once you create() an ImageOutput, you can ask if it is capable of
accepting arbitrary rectangles by using the supports("rectangles") query:

...
ImageOutput *out = ImageOutput::create (filename);
if (! out->supports ("rectangles")) {

// Rectangles are not supported
}

If rectangular regions are supported, they may be sent using the write rectangle() API
call:

unsigned int rect[...];
... generate data in rect[] ..
out->write_rectangle (xmin, xmax, ymin, ymax, zmin, zmax, TypeDesc::UINT8, rect);
...

The first six arguments to write rectangle() specify the region of pixels that is being
transmitted by supplying the minimum and maximum pixel indices in x (column), y (scanline),
and z (slice, always 0 for 2D non-volume images). The total number of pixels being transmitted
is therefore:

(xmax-xmin+1) * (ymax-ymin+1) * (zmax-zmin+1)

This is followed by a TypeDesc describing the data you are supplying, and a pointer to the
rectangle’s pixel data itself, which should be ordered by increasing slice, increasing scanline
within each slice, and increasing column within each scanline. Additional optional arguments
describe the data stride, which can be ignored for contiguous data (use of strides is explained in
Section 3.2.3).

OpenImageIO Programmer’s Documentation

3.2. ADVANCED IMAGE OUTPUT 19

3.2.2 Converting formats

The code examples of the previous sections all assumed that your internal pixel data is stored
as unsigned 8-bit integers (i.e., 0-255 range). But OpenImageIO is significantly more flexible.

You may request that the output image be stored in any of several formats. This is done
by setting the format field of the ImageSpec prior to calling open. You can do this upon
construction of the ImageSpec, as in the following example that requests a spec that stores data
as 16-bit unsigned integers:

ImageSpec spec (xres, yres, channels, TypeDesc::UINT16);

Or, for an ImageSpec that has already been constructed, you may reset its format using the
set format() method (which also resets the various quantization fields of the spec to the
defaults for the data format you have specified).

ImageSpec spec (...);
spec.set_format (TypeDesc::UINT16);

Note that resetting the format must be done before passing the spec to open(), or it will
have no effect on the file.

Individual file formats, and therefore ImageOutput implementations, may only support
a subset of the formats understood by the OpenImageIO library. Each ImageOutput plugin
implementation should document which data formats it supports. An individual ImageOutput
implementation may choose to simply fail to open(), though the recommended behavior is
for open() to succeed but in fact choose a data format supported by the file format that best
preserves the precision and range of the originally-requested data format.

It is not required that the pixel data passed to write image(), write scanline(), write tile(),
or write rectangle() actually be in the same data format as that requested as the native for-
mat of the file. You can fully mix and match data you pass to the various write routines and
OpenImageIO will automatically convert from the internal format to the native file format. For
example, the following code will open a TIFF file that stores pixel data as 16-bit unsigned in-
tegers (values ranging from 0 to 65535), compute internal pixel values as floating-point values,
with write image() performing the conversion automatically:

ImageOutput *out = ImageOutput::create ("myfile.tif");
ImageSpec spec (xres, yres, channels, TypeDesc::UINT16);
out->open (filename, spec);
...
float pixels [xres*yres*channels];
...
out->write_image (TypeDesc::FLOAT, pixels);

Note that write scanline(), write tile(), and write rectangle have a parameter that
works in a corresponding manner.

Please refer to Section 3.2.6 for more information on how values are translated among the
supported data formats by default, and how to change the formulas by specifying quantization
in the ImageSpec.

OpenImageIO Programmer’s Documentation

20 CHAPTER 3. IMAGEOUTPUT: WRITING IMAGES

3.2.3 Data Strides

In the preceeding examples, we have assumed that the block of data being passed to the write
functions are contiguous, that is:

• each pixel in memory consists of a number of data values equal to the declared number
of channels that are being written to the file;

• successive column pixels within a row directly follow each other in memory, with the first
channel of pixel x immediately following last channel of pixel x−1 of the same row;

• for whole images, tiles or rectangles, the data for each row immediately follows the pre-
vious one in memory (the first pixel of row y immediately follows the last column of row
y−1);

• for 3D volumetric images, the first pixel of slice z immediately follows the last pixel of
of slice z−1.

Please note that this implies that data passed to write tile() be contiguous in the shape
of a single tile (not just an offset into a whole image worth of pixels), and that data passed to
write rectangle() be contiguous in the dimensions of the rectangle.

The write scanline() function takes an optional xstride argument, and the write image(),
write tile(), and write rectangle functions take optional xstride, ystride, and zstride
values that describe the distance, in bytes, between successive pixel columns, rows, and slices,
respectively, of the data you are passing. For any of these values that are not supplied, or are
given as the special constant AutoStride, contiguity will be assumed.

By passing different stride values, you can achieve some surprisingly flexible functionality.
A few representative examples follow:

• Flip an image vertically upon writing, by using negative y stride:

unsigned char pixels[xres*yres*channels];
int scanlinesize = xres * channels * sizeof(pixels[0]);
...
out->write_image (TypeDesc::UINT8,

(char *)pixels + (yres-1)*scanlinesize, // offset to last
AutoStride, // default x stride
-scanlinesize, // special y stride
AutoStride); // default z stride

• Write a tile that is embedded within a whole image of pixel data, rather than having a
one-tile-only memory layout:

unsigned char pixels[xres*yres*channels];
int pixelsize = channels * sizeof(pixels[0]);
int scanlinesize = xres * pixelsize;
...
out->write_tile (x, y, 0, TypeDesc::UINT8,

OpenImageIO Programmer’s Documentation

3.2. ADVANCED IMAGE OUTPUT 21

(char *)pixels + y*scanlinesize + x*pixelsize,
pixelsize,
scanlinesize);

• Write only a subset of channels to disk. In this example, our internal data layout consists
of 4 channels, but we write just channel 3 to disk as a one-channel image:

// In-memory representation is 4 channel
const int xres = 640, yres = 480;
const int channels = 4; // RGBA
const int channelsize = sizeof(unsigned char);
unsigned char pixels[xres*yres*channels];

// File representation is 1 channel
ImageOutput *out = ImageOutput::create (filename);
ImageSpec spec (xres, yres, 1, TypeDesc::UINT8);
out->open (filename, spec);

// Use strides to write out a one-channel "slice" of the image
out->write_image (TypeDesc::UINT8,

(char *)pixels + 3*channelsize, // offset to chan 3
channels*channelsize, // 4 channel x stride
AutoStride, // default y stride
AutoStride); // default z stride

...

Please consult Section 3.3 for detailed descriptions of the stride parameters to each write
function.

3.2.4 Writing a crop window or overscan region

The ImageSpec fields width, height, and depth describe the dimensions of the actual pixel
data.

At times, it may be useful to also describe an abstract full or display image window, whose
position and size may not correspond exactly to the data pixels. For example, a pixel data
window that is a subset of the full display window might indicate a crop window; a pixel data
window that is a superset of the full display window might indicate overscan regions (pixels
defined outside the eventual viewport).

The ImageSpec fields full width, full height, and full depth describe the dimen-
sions of the full display window, and full x, full y, full z describe its origin (upper left
corner). The fields x, y, z describe the origin (upper left corner) of the pixel data.

These fields collectively describe an abstract full display image ranging from [full x ...
full x+full width-1] horizontally, [full y ... full y+full height-1] vertically, and
[full z ... full z+full depth-1] in depth (if it is a 3D volume), and actual pixel data over
the pixel coordinate range [x ... x+width-1] horizontally, [y ... y+height-1] vertically, and [z
... z+depth-1] in depth (if it is a volume).

OpenImageIO Programmer’s Documentation

22 CHAPTER 3. IMAGEOUTPUT: WRITING IMAGES

Not all image file formats have a way to describe display windows. An ImageOutput
implementation that cannot express display windows will always write out the width× height
pixel data, may upon writing lose information about offsets or crop windows.

Here is a code example that opens an image file that will contain a 32× 32 pixel crop
window within an abstract 640× 480 full size image. Notice that the pixel indices (column,
scanline, slice) passed to the write functions are the coordinates relative to the full image, not
relative to the crop widow, but the data pointer passed to the write functions should point to the
beginning of the actual pixel data being passed (not the the hypothetical start of the full data, if
it was all present).

int fullwidth = 640, fulllength = 480; // Full display image size
int cropwidth = 16, croplength = 16; // Crop window size
int xorigin = 32, yorigin = 128; // Crop window position
unsigned char pixels [cropwidth * croplength * channels]; // Crop size!
...
ImageOutput *out = ImageOutput::create (filename);
ImageSpec spec (cropwidth, croplength, channels, TypeDesc::UINT8);
spec.full_x = 0;
spec.full_y = 0;
spec.full_width = fullwidth;
spec.full_length = fulllength;
spec.x = xorigin;
spec.y = yorigin;
out->open (filename, spec);
...
int z = 0; // Always zero for 2D images
for (int y = yorigin; y < yorigin+croplength; ++y) {

out->write_scanline (y, z, TypeDesc::UINT8, (y-yorigin)*cropwidth*channels);
}
out->close ();

3.2.5 Writing metadata

The ImageSpec passed to open() can specify all the common required properties that describe
an image: data format, dimensions, number of channels, tiling. However, there may be a variety
of additional metadata1 that should be carried along with the image or saved in the file.

The remainder of this section explains how to store additional metadata in the ImageSpec.
It is up to the ImageOutput to store these in the file, if indeed the file format is able to accept the
data. Individual ImageOutput implementations should document which metadata they respect.

Channel names

In addition to specifying the number of color channels, it is also possible to name those channels.
Only a few ImageOutput implementations have a way of saving this in the file, but some do,
so you may as well do it if you have information about what the channels represent.

1Metadata refers to data about data, in this case, data about the image that goes beyond the pixel values and
description thereof.

OpenImageIO Programmer’s Documentation

3.2. ADVANCED IMAGE OUTPUT 23

By convention, channel names for red, green, blue, and alpha (or a main image) should be
named "R", "G", "B", and "A", respectively. Beyond this guideline, however, you can use any
names you want.

The ImageSpec has a vector of strings called channelnames. Upon construction, it starts
out with reasonable default values. If you use it at all, you should make sure that it contains the
same number of strings as the number of color channels in your image. Here is an example:

int channels = 4;
ImageSpec spec (width, length, channels, TypeDesc::UINT8);
spec.channelnames.clear ();
spec.channelnames.push_back ("R");
spec.channelnames.push_back ("G");
spec.channelnames.push_back ("B");
spec.channelnames.push_back ("A");

Here is another example in which custom channel names are used to label the channels in an
8-channel image containing beauty pass RGB, per-channel opacity, and texture s, t coordinates
for each pixel.

int channels = 8;
ImageSpec spec (width, length, channels, TypeDesc::UINT8);
spec.channelnames.clear ();
spec.channelnames.push_back ("R");
spec.channelnames.push_back ("G");
spec.channelnames.push_back ("B");
spec.channelnames.push_back ("opacityR");
spec.channelnames.push_back ("opacityG");
spec.channelnames.push_back ("opacityB");
spec.channelnames.push_back ("texture_s");
spec.channelnames.push_back ("texture_t");

The main advantage to naming color channels is that if you are saving to a file format that
supports channel names, then any application that uses OpenImageIO to read the image back
has the option to retain those names and use them for helpful purposes. For example, the iv
image viewer will display the channel names when viewing individual channels or displaying
numeric pixel values in “pixel view” mode.

Specially-designated channels

The ImageSpec contains two fields, alpha channel and z channel, which can be used to
designate which channel indices are used for alpha and z depth, if any. Upon construction, these
are both set to -1, indicating that it is not known which channels are alpha or depth. Here is an
example of setting up a 5-channel output that represents RGBAZ:

int channels = 5;
ImageSpec spec (width, length, channels, format);
spec.channelnames.push_back ("R");
spec.channelnames.push_back ("G");
spec.channelnames.push_back ("B");

OpenImageIO Programmer’s Documentation

24 CHAPTER 3. IMAGEOUTPUT: WRITING IMAGES

spec.channelnames.push_back ("A");
spec.channelnames.push_back ("Z");
spec.alpha_channel = 3;
spec.z_channel = 4;

There are two advantages to designating the alpha and depth channels in this manner:

• Some file formats may require that these channels be stored in a particular order, with
a particular precision, or the ImageOutput may in some other way need to know about
these special channels.

• Certain operations that make sense for colors should not apply to alpha or z. For example,
if your call to write reduces precision (e.g., converts from float to integer pixels) it will
typically add random dither to eliminate banding artifacts in the quantization. But for a
variety of reasons, you want to add dither only to color channels and not to alpha. So
setting alpha channel will cause write to not dither that channel.

Linearity hints

We certainly hope that you are using only modern file formats that support high precision and
extended range pixels (such as OpenEXR) and keeping all your images in a linear color space.
But you may have to work with file formats that dictate the use of nonlinear color values. This
is prevalent in formats that store pixels only as 8-bit values, since 256 values are not enough to
linearly represent colors without banding artifacts in the dim values.

Since this can (and probably will) happen, the ImageSpec has fields that allow you to ex-
plain what color space your image pixels are in. Each individual ImageOutput should document
how it uses this (or not).

The ImageSpec field linearity can take on any of the following values:

ImageSpec::UnknownLinearity the default, indicates that you have made no claim about
the color space of your pixel data.

ImageSpec::Linear indicates that the pixel values you are passing repesent linear values.

ImageSpec::GammaCorrected indicates that the color pixel values (but not alpha or z) that
you are passing have already been gamma corrected (raised to the power 1/γ), and that
the gamma exponent may be found in the gamma field of the ImageSpec.

ImageSpec::sRGB indicates that the color pixel values that you are passing are already in
sRGB color space.

Here is a simple example of setting up the ImageSpec when you know that the pixel values you
are writing are linear:

ImageSpec spec (width, length, channels, format);
spec.linearity = ImageSpec::Linear;
...

OpenImageIO Programmer’s Documentation

3.2. ADVANCED IMAGE OUTPUT 25

If a particular ImageOutput implementation is required (by the rules of the file format it
writes) to have pixels in a particular color space, then it will convert the color values of your
image to the right color space if it is not already in that space. For example, JPEG images must
be in sRGB space, so if you declare your pixels to be Linear, the JPEG ImageOutput will
convert to sRGB.

If you leave the linearity set to the default of UnknownLinearity, the values will not be
transformed, since the plugin can’t be sure that it’s not in the correct space to begin with.

The linearity only describes color channels. An ImageOutput plugin will assume that alpha
or depth (z) channels (designated by the alpha channel and z channel fields, respectively)
always represent linear values and should never be transformed.

Arbitrary metadata

For all other metadata that you wish to save in the file, you can attach the data to the ImageSpec
using the attribute() methods. These come in polymorphic varieties that allow you to attach
an attribute name and a value consisting of a single int, unsigned int, float, char*, or
std::string, as shown in the following examples:

ImageIOFormatString spec (...);
...

unsigned int u = 1;
spec.attribute ("Orientation", u);

float x = 72.0;
spec.attribute ("dotsize", f);

std::string s = "Fabulous image writer 1.0";
spec.attribute ("Software", s);

These are convenience routines for metadata that consist of a single value of one of these
common types. For other data types, or more complex arrangements, you can use the more
general form of attribute(), which takes arguments giving the name, type (as a TypeDesc),
number of values (1 for a single value, > 1 for an array), and then a pointer to the data values.
For example,

ImageIOFormatString spec (...);

// Attach a 4x4 matrix to describe the camera coordinates
float mymatrix[16] = { ... };
spec.attribute ("worldtocamera", TypeDesc(FLOAT,MATRIX), 1, &mymatrix);

// Attach an array of two floats giving the CIE neutral color
float neutral[2] = { ... };
spec.attribute ("adoptedNeutral", TypeDesc::FLOAT, 2, &neutral);

In general, most image file formats (and therefore most ImageOutput implementations) are
aware of only a small number of name/value pairs that they predefine and will recognize. Some

OpenImageIO Programmer’s Documentation

26 CHAPTER 3. IMAGEOUTPUT: WRITING IMAGES

file formats (OpenEXR, notably) do accept arbitrary user data and save it in the image file. If an
ImageOutput does not recognize your metadata and does not support arbitrary metadata, that
metadatum will be silently ignored and will not be saved with the file.

Each individual ImageOutput implementation should document the names, types, and
meanings of all metadata attributes that they understand.

3.2.6 Controlling quantization

It is possible that your internal data format (that in which you compute pixel values that you
pass to the write functions) is of greater precision or range than the native data format of the
output file. This can occur either because you specified a lower-precision data format in the
ImageSpec that you passed to open(), or else that the image file format dictates a particular
data format that does not match your internal format. For example, you may compute float
pixels and pass those to write image(), but if you are writing a JPEG/JFIF file, the values
must be stored in the file as 8-bit unsigned integers.

The conversion from floating-point formats to integer formats (or from higher to lower inte-
ger, which is done by first converting to float) is controlled by five fields within the ImageSpec:
quant black, quant white, quant min, quant max, and quant dither. Float 0.0 maps
to the integer value given by quant black, and float 1.0 maps to the integer value given by
quant white. Then, for color channels only (not alpha or depth), a random amount is added
in the range (-quant dither..quant dither), in order to reduce banding artifacts. The re-
sult is then clamped to lie within the range of quant min and quant max, inclusive. Finally,
this result is truncated its integer value for final output. Here is the code that implements this
transformation (T is the final output integer type):

float value = quant_black * (1 - input) + quant_white * input;
if (it’s a color channel)

value += quant_dither * (2 * random() - 1);
T output = (T) clamp ((int)(value + 0.5), quant_min, quant_max);

The values of the quantization parameters are set in one of three ways: (1) upon construction
of the ImageSpec, they are set to the default quantization values for the given data format; (2)
upon call to ImageSpec::set format(), the quantization values are set to the defaults for
the given data format; (3) or, after being first set up in this manner, you may manually change
the quantization parameters in the ImageSpec, if you want something other than the default
quantization.

Default quantization for each integer type is as follows:

OpenImageIO Programmer’s Documentation

3.2. ADVANCED IMAGE OUTPUT 27

Data Format black white min max dither
UINT8 0 255 0 255 0.5
INT8 0 127 -128 127 0.5
UINT16 0 65535 0 65535 0.5
INT16 0 32767 -32768 32767 0.5
UINT 0 4294967295 0 4294967295 0.5
INT 0 2147483647 -2147483648 2147483647 0.5
FLOAT
HALF 0 1 N/A N/A 0
DOUBLE

Note that the default is to use the entire positive range of each integer type to represent the
floating-point (0..1) range. Floating-point types do not attempt to remap values, do not add
dither, and do not clamp (except to their full floating-point range).

The default will almost always be what you want. But just as an example, here’s how you
would specify a quantization for a 16-bit file in which 1.0 maps to 16383 (14 bits of positive
range) rather than filling the full 16 bit:

ImageSpec spec (width, length, channels, TypeDesc::UINT16);
spec.quant_black = 0;
spec.quant_white = 16383;
spec.quant_min = 0;
spec.quant_max = 16383;
spec.quant_dither = 0.5;

3.2.7 Random access and repeated transmission of pixels

All ImageOutput implementations that support scanlines and tiles in strict order of increasing
z slice, increasing y scanlines/rows within each slice, and increasing x column within each row.
It is generally not safe to skip scanlines or tiles, or transmit them out of order, unless the plugin
specifically advertises that it supports random access or rewrites, which may be queried using:

ImageOutput *out = ImageOutput::create (filename);
if (out->supports ("random_access"))

...

Similarly, you should assume the plugin will not correctly handle repeated transmissions of a
scanline or tile that has already been sent, unless it advertises that it supports rewrites, which
may be queried using:

if (out->supports ("rewrite"))
...

3.2.8 Multi-image files and MIP-maps

Some image file formats support multiple discrete images to be stored in one file. Given a
created ImageOutput, you can query whether multiple images may be stored in the file:

OpenImageIO Programmer’s Documentation

28 CHAPTER 3. IMAGEOUTPUT: WRITING IMAGES

ImageOutput *out = ImageOutput::create (filename);
if (out->supports ("multiimage"))

...

If you are working with an ImageOutput that supports multiple images, it is easy to write
these images. All you have to do is, after writing all the pixels of one image but before calling
close(), call open() again for the next image and passing true as the optional third append
argument. (See Section 3.3 for the full technical description of the arguments to open().) The
close() routine is called just once, after all subimages are completed.

Below is pseudocode for writing a MIP-map (a multi-resolution image used for texture
mapping) that shows how to use multi-image:

const char *filename = "foo.tif";
const int xres = 512, yres = 512;
const int channels = 3; // RGB
unsigned char *pixels = new unsigned char [xres*yres*channels];

// Create the ImageOutput
ImageOutput *out = ImageOutput::create (filename);

// Be sure we can support multi-res
if (! out->supports ("multiimage")) {

std::cerr << "Cannot write a MIP-map\n";
delete out;
return;

}

// Set up spec for the highest resolution
ImageSpec spec (xres, yres, channels, TypeDesc::UINT8);

// Write images, halving every time, until we’re down to
// 1 pixel in either dimension
while (spec.width >= 1 && spec.height >= 1) {

out->open (filename, spec, true /* append mode */);
out->write_image (TypeDesc::UINT8, pixels);
// Assume halve() resamples the image to half resolution
halve (pixels, spec.width, spec.height);
// Don’t forget to change spec for the next iteration
spec.width /= 2;
spec.height /= 2;

}
out->close ();
delete out;

In this example, we have used write image(), but of course write scanline(), write tile(),
and write rectangle() work as you would expect, on the current subimage.

3.2.9 Copying an entire image

Suppose you want to copy an image, perhaps with alterations to the metadata but not to the
pixels. You could open an ImageInput and perform a read image(), and open another

OpenImageIO Programmer’s Documentation

3.2. ADVANCED IMAGE OUTPUT 29

ImageOutput and call write image() to output the pixels from the input image. However,
for compressed images, this may be inefficient due to the unnecessary decompression and sub-
sequent re-compression. In addition, if the compression is lossy, the output image may not
contain pixel values identical to the original input.

A special copy image method of ImageOutput is available that attempts to copy an image
from an open ImageInput (of the same format) to the output as efficiently as possible with
without altering pixel values, if at all possible.

Not all format plugins will provide an implementation of copy image (in fact, most will
not), but the default implemenatation simply copies pixels one scanline or tile at a time (with
decompression/recompression) so it’s still safe to call. Furthermore, even a provided copy -
image is expected to fall back on the default implementation if the input and output are not able
to do an efficient copy. Nevertheless, this method is recommended for copying images so that
maximal advantage will be taken in cases where savings can be had.

The following is an example use of copy image to transfer pixels without alteration while
modifying the image description metadata:

// Open the input file
const char *input = "input.jpg";
ImageInput *in = ImageInput::create (input);
ImageSpec in_spec;
in->open (input, in_spec);

// Make an output spec, identical to the input except for metadata
ImageSpec out_spec = in_spec;
out_spec.attribute ("ImageDescription", "My Title");

// Create the output file and copy the image
const char *output = "output.jpg";
ImageOutput *out = ImageOutput::create (output);
out->open (output, out_spec);
out->copy_image (in);

// Clean up
out->close ();
delete out;
in->close ();
delete in;

3.2.10 Custom search paths for plugins

When you call ImageOutput::create(), the OpenImageIO library will try to find a plugin
that is able to write the format implied by your filename. These plugins are alternately known
as DLL’s on Windows (with the .dll extension), DSO’s on Linux (with the .so extension), and
dynamic libraries on Mac OS X (with the .dylib extension).

OpenImageIO will look for matching plugins according to search paths, which are strings
giving a list of directories to search, with each directory separated by a colon (‘:’). Within a
search path, any substrings of the form ${FOO} will be replaced by the value of environment
variable FOO. For example, the searchpath "${HOME}/plugins:/shared/plugins" will first

OpenImageIO Programmer’s Documentation

30 CHAPTER 3. IMAGEOUTPUT: WRITING IMAGES

check the directory "/home/tom/plugins" (assuming the user’s home directory is /home/tom),
and if not found there, will then check the directory "/shared/plugins".

The first search path it will check is that stored in the environment variable IMAGEIO -
LIBRARY PATH. It will check each directory in turn, in the order that they are listed in the
variable. If no adequate plugin is found in any of the directories listed in this environment
variable, then it will check the custom searchpath passed as the optional second argument to
ImageOutput::create(), searching in the order that the directories are listed. Here is an
example:

char *mysearch = "/usr/myapp/lib:${HOME}/plugins";
ImageOutput *out = ImageOutput::create (filename, mysearch);
...

3.2.11 Error checking

Nearly every ImageOutput API function returns a bool indicating whether the operation suc-
ceeded (true) or failed (false). In the case of a failure, the ImageOutput will have saved
an error message describing in more detail what went wrong, and the latest error message is
accessible using the ImageOutput method error message(), which returns the message as a
std::string.

The exception to this rule is ImageOutput::create, which returns NULL if it could not
create an appropriate ImageOutput. And in this case, since no ImageOutput exists for which
you can call its error message() function, there exists a global error message() function
(in the OpenImageIO namespace) that retrieves the latest error message resulting from a call to
create.

Here is another version of the simple image writing code from Section 3.1, but this time it
is fully elaborated with error checking and reporting:

#include "imageio.h"
using namespace OpenImageIO;
...

const char *filename = "foo.jpg";
const int xres = 640, yres = 480;
const int channels = 3; // RGB
unsigned char pixels[xres*yres*channels];

ImageOutput *out = ImageOutput::create (filename);
if (! out) {

std::cerr << "Could not create an ImageOutput for "
<< filename << ", error = "
<< OpenImageIO::error_message() << "\n";

return;
}
ImageSpec spec (xres, yres, channels, TypeDesc::UINT8);

if (! out->open (filename, spec)) {
std::cerr << "Could not open " << filename

OpenImageIO Programmer’s Documentation

3.3. IMAGEOUTPUT CLASS REFERENCE 31

<< ", error = " << out->error_message() << "\n";
delete out;
return;

}

if (! out->write_image (TypeDesc::UINT8, pixels)) {
std::cerr << "Could not write pixels to " << filename

<< ", error = " << out->error_message() << "\n";
delete out;
return;

}

if (! out->close ()) {
std::cerr << "Error closing " << filename

<< ", error = " << out->error_message() << "\n";
delete out;
return;

}

delete out;

3.3 ImageOutput Class Reference

static ImageOutput * create (const std::string &filename,
const std::string &plugin searchpath="")

Create an ImageOutput that can be used to write an image file. The type of image
file (and hence, the particular subclass of ImageOutput returned, and the plugin that
contains its methods) is inferred from the extension of the file name. The plugin -
searchpath parameter is a colon-separated list of directories to search for OpenImageIO
plugin DSO/DLL’s.

const char * format name ()

Returns the canonical name of the format that this ImageOutput instance is capable of
writing.

bool supports (const std::string &feature)

Given the name of a feature, tells if this ImageOutput instance supports that feature. The
following features are recognized by this query:

"tiles" Is this plugin able to write tiled images?

"rectangles" Can this plugin accept arbitrary rectangular pixel regions (via write -
rectangle())? False indicates that pixels must be transmitted via write scanline()
(if scanline-oriented) or write tile() (if tile-oriented, and only if supports("tiles")
returns true).

OpenImageIO Programmer’s Documentation

32 CHAPTER 3. IMAGEOUTPUT: WRITING IMAGES

"random access" May tiles or scanlines be written in any order? False indicates that
they must be in successive order.

"multiimage" Does this format support multiple images within a single file?

"volumes" Does this format support “3D” pixel arrays (a.k.a. volume images)?

"rewrite" Does this plugin allow the same scanline or tile to be sent more than once?
Generally this is true for plugins that implement some sort of interactive display,
rather than a saved image file.

"empty" Does this plugin support passing a NULL data pointer to the various write
routines to indicate that the entire data block is composed of pixels with value zero.
Plugins that support this achieve a speedup when passing blank scanlines or tiles
(since no actual data needs to be transmitted or converted).

This list of queries may be extended in future releases. Since this can be done simply by
recognizing new query strings, and does not require any new API entry points, addition
of support for new queries does not break “link compatibility” with previously-compiled
plugins.

bool open (const std::string &name, const ImageSpec &newspec, bool append=false)

Open the file with given name, with resolution, and other format data as given in newspec.
This function returns true for success, false for failure. Note that it is legal to call
open() multiple times on the same file without a call to close(), if it supports multi-
image and the append flag is true – this is interpreted as appending images (such as for
MIP-maps).

const ImageSpec & spec ()

Returns the spec internally associated with this currently open ImageOutput.

bool close ()

Closes the currently open file associated with this ImageOutput and frees any memory
or resources associated with it.

bool write scanline (int y, int z, TypeDesc format, const void *data,
stride t xstride=AutoStride)

Write a full scanline that includes pixels (∗,y,z). For 2D non-volume images, z is ignored.
The xstride value gives the distance between successive pixels (in bytes). Strides set to
the special value AutoStride imply contiguous data, i.e.,

xstride = spec.nchannels*format.size()
This method automatically converts the data from the specified format to the actual out-
put format of the file. Return true for success, false for failure. It is a failure to call
write scanline() with an out-of-order scanline if this format driver does not support
random access.

OpenImageIO Programmer’s Documentation

3.3. IMAGEOUTPUT CLASS REFERENCE 33

bool write tile (int x, int y, int z, TypeDesc format, const void *data,
stride t xstride=AutoStride, stride t ystride=AutoStride,
stride t zstride=AutoStride)

Write the tile with (x,y,z) as the upper left corner. For 2D non-volume images, z is
ignored. The three stride values give the distance (in bytes) between successive pixels,
scanlines, and volumetric slices, respectively. Strides set to the special value AutoStride
imply contiguous data, i.e.,

xstride = spec.nchannels*format.size()
ystride = xstride*spec.tile width
zstride = ystride*spec.tile height

This method automatically converts the data from the specified format to the actual out-
put format of the file. Return true for success, false for failure. It is a failure to call
write tile() with an out-of-order tile if this format driver does not support random
access.

bool write rectangle (int xmin, int xmax, int ymin, int ymax, int zmin, int zmax,

TypeDesc format, const void *data,
stride t xstride=AutoStride, stride t ystride=AutoStride,
stride t zstride=AutoStride)

Write pixels whose x coords range over xmin...xmax (inclusive), y coords over ymin...ymax,
and z coords over zmin...zmax. The three stride values give the distance (in bytes) be-
tween successive pixels, scanlines, and volumetric slices, respectively. Strides set to the
special value AutoStride imply contiguous data, i.e.,

xstride = spec.nchannels*format.size()
ystride = xstride*(xmax-xmin+1)
zstride = ystride*(ymax-ymin+1)

This method automatically converts the data from the specified format to the actual out-
put format of the fil. Return true for success, false for failure. It is a failure to call
write rectangle for a format plugin that does not return true for supports("rectangles").

bool write image (TypeDesc format, const void *data,
stride t xstride=AutoStride, stride t ystride=AutoStride,
stride t zstride=AutoStride,
ProgressCallback progress callback=NULL,
void *progress callback data=NULL)

Write the entire image of spec.width × spec.height × spec.depth pixels, with the
given strides and in the desired format. Strides set to the special value AutoStride imply
contiguous data, i.e.,

xstride = spec.nchannels * format.size()
ystride = xstride * spec.width
zstride = ystride * spec.height

The function will internally either call write scanline() or write tile(), depend-
ing on whether the file is scanline- or tile-oriented.

OpenImageIO Programmer’s Documentation

34 CHAPTER 3. IMAGEOUTPUT: WRITING IMAGES

Because this may be an expensive operation, a progress callback may be passed. Period-
ically, it will be called as follows:

progress_callback (progress_callback_data, float done)

where done gives the portion of the image (between 0.0 and 1.0) that has been written
thus far.

bool copy image (ImageInput *in)

Read the current subimage of in, and write it as the next subimage of *this, in a way that
is efficient and does not alter pixel values, if at all possible. Both in and this must be
a properly-opened ImageInput and ImageOutput, respectively, and their current images
must match in size and number of channels. Return true if it works ok, false if for
some reason the operation wasn’t possible.

If a particular ImageOutput implementation does not supply a copy image method, it
will inherit the default implementation, which is to simply read scanlines or tiles from
in and write them to *this. However, some format implementations may have a special
technique for directly copying raw pixel data from the input to the output, when both input
and output are the same file type and the same data format. This can be more efficient than
in->read image followed by out->write image, and avoids any unintended pixel
alterations, especially for formats that use lossy compression.

int send to output (const char *format, ...)

General message passing between client and image output server. This is currently unde-
fined and is reserved for future use.

int send to client (const char *format, ...)

General message passing between client and image output server. This is currently unde-
fined and is reserved for future use.

std::string error message ()

Returns the current error string describing what went wrong if any of the public methods
returned false indicating an error. (Hopefully the implementation plugin called error()
with a helpful error message.)

OpenImageIO Programmer’s Documentation

4 Image I/O: Reading Images

4.1 Image Input Made Simple

Here is the simplest sequence required to open an image file, find out its resolution, and read the
pixels (converting them into 8-bit values in memory, even if that’s not the way they’re stored in
the file):

#include "imageio.h"
using namespace OpenImageIO;
...

const char *filename = "foo.jpg";
int xres, yres, channels;
unsigned char *pixels;

ImageInput *in = ImageInput::create (filename);
ImageSpec spec;
in->open (filename, spec);
xres = spec.width;
yres = spec.height;
channels = spec.nchannels;
pixels = new unsigned char [xres*yres*channels];
in->read_image (TypeDesc::UINT8, pixels);
in->close ();
delete in;

Here is a breakdown of what work this code is doing:

• Search for an ImageIO plugin that is capable of reading the file ("foo.jpg"), first by
trying to deduce the correct plugin from the file extension, but if that fails, by opening
every ImageIO plugin it can find until one will open the file without error. When it finds
the right plugin, it creates a subclass instance of ImageInput that reads the right kind of
file format.

ImageInput *in = ImageInput::create (filename);

• Open the file, read the header, and put all relevant metadata about the file in a specification
structure.

35

36 CHAPTER 4. IMAGE I/O: READING IMAGES

ImageSpec spec;
in->open (filename, spec);

• The specification contains vital information such as the dimensions of the image, number
of color channels, and data type of the pixel values. This is enough to allow us to allocate
enough space for the image.

xres = spec.width;
yres = spec.height;
channels = spec.nchannels;
pixels = new unsigned char [xres*yres*channels];

Note that in this example, we don’t care what data format is used for the pixel data in the
file — we allocate enough space for unsigned 8-bit integer pixel values, and will rely on
OpenImageIO’s ability to convert to our requested format from the native data format of
the file.

• Read the entire image, hiding all details of the encoding of image data in the file, whether
the file is scanline- or tile-based, or what is the native format of the data in the file (in this
case, we request that it be automatically converted to unsigned 8-bit integers).

in->read_image (TypeDesc::UINT8, pixels);

• Close the file, destroy and free the ImageInput we had created, and perform all other
cleanup and release of any resources used by the plugin.

in->close ();
delete in;

4.2 Advanced Image Input

Let’s walk through some of the most common things you might want to do, but that are more
complex than the simple example above.

4.2.1 Reading individual scanlines and tiles

The simple example of Section 4.1 read an entire image with one call. But sometimes you want
to read a large image a little at a time and do not wish to retain the entire image in memory as
you process it. OpenImageIO allows you to read images one scanline at a time or one tile at a
time.

OpenImageIO Programmer’s Documentation

4.2. ADVANCED IMAGE INPUT 37

Reading individual scanlines

Individual scanlines may be read using the read scanline() API call:

...
in->open (filename, spec);
unsigned char *scanline = new unsigned char [spec.width*spec.channels];
for (int y = 0; y < yres; ++y) {

in->read_scanline (y, 0, TypeDesc::UINT8, scanline);
... process data in scanline[0..width*channels-1] ...

}
delete [] scanline;
in->close ();
...

The first two arguments to read scanline() specify which scanline is being read by its
vertical (y) scanline number (beginning with 0) and, for volume images, its slice (z) number (the
slice number should be 0 for 2D non-volume images). This is followed by a TypeDesc describ-
ing the data type of the pixel buffer you are supplying, and a pointer to the pixel buffer itself.
Additional optional arguments describe the data stride, which can be ignored for contiguous
data (use of strides is explained in Section 4.2.3).

All ImageInput implementations will read scanlines in strict order (starting with scanline
0, then 1, up to yres-1, without skipping any). However, it’s probably uncommon for an
ImageInput to properly allow reading of out-of-order scanlines.

The full description of the read scanline() function may be found in Section 4.3.

Reading individual tiles

Once you open() an image file, you can find out if it is a tiled image (and the tile size) by exam-
ining the ImageSpec’s tile width, tile height, and tile depth fields. If they are zero,
it’s a scanline image and you should read pixels using read scanline(), not read tile().

...
in->open (filename, spec);
if (spec.tile_width == 0) {

... read by scanline ...
} else {

// Tiles
int tilesize = spec.tile_width * spec.tile_height;
unsigned char *tile = new unsigned char [tilesize * spec.channels];
for (int y = 0; y < yres; y += spec.tile_height) {

for (int x = 0; x < xres; x += spec.tile_width) {
in->read_tile (x, y, 0, TypeDesc::UINT8, tile);
... process the pixels in tile[] ..

}
}
delete [] tile;

}
in->close ();
...

OpenImageIO Programmer’s Documentation

38 CHAPTER 4. IMAGE I/O: READING IMAGES

The first three arguments to read tile() specify which tile is being read by the pixel
coordinates of any pixel contained in the tile: x (column), y (scanline), and z (slice, which
should always be 0 for 2D non-volume images). This is followed by a TypeDesc describing the
data format of the pixel buffer you are supplying, and a pointer to the pixel buffer. Pixel data
will be written to your buffer in order of increasing slice, increasing scanline within each slice,
and increasing column within each scanline. Additional optional arguments describe the data
stride, which can be ignored for contiguous data (use of strides is explained in Section 4.2.3).

All ImageInput implementations are required to support reading tiles in arbitrary order
(i.e., not in strict order of increasing y rows, and within each row, increasing x column, without
missing any tiles).

The full description of the read tile() function may be found in Section 4.3.

4.2.2 Converting formats

The code examples of the previous sections all assumed that your internal pixel data is stored
as unsigned 8-bit integers (i.e., 0-255 range). But OpenImageIO is significantly more flexible.

You may request that the pixels be stored in any of several formats. This is done merely
by passing the read function the data type of your pixel buffer, as one of the enumerated type
TypeDesc.

It is not required that the pixel data buffer passed to read image(), read scanline(),
or read tile() actually be in the same data format as the data in the file being read. Open-
ImageIO will automatically convert from native data type of the file to the internal data format
of your choice. For example, the following code will open a TIFF and read pixels into your
internal buffer represented as float values. This will work regardless of whether the TIFF file
itself is using 8-bit, 16-bit, or float values.

ImageInput *in = ImageInput::create ("myfile.tif");
ImageSpec spec;
in->open (filename, spec);
...
int numpixels = spec.width * spec.height;
float pixels = new float [numpixels * channels];
...
in->read_image (TypeDesc::FLOAT, pixels);

Note that read scanline() and read tile() have a parameter that works in a correspond-
ing manner.

You can, of course, find out the native type of the file simply by examining spec.format.
If you wish, you may then allocate a buffer big enough for an image of that type and request
the native type when reading, therefore eliminating any translation among types and seeing the
actual numerical values in the file.

4.2.3 Data Strides

In the preceeding examples, we have assumed that the buffer passed to the read functions (i.e.,
the place where you want your pixels to be stored) is contiguous, that is:

OpenImageIO Programmer’s Documentation

4.2. ADVANCED IMAGE INPUT 39

• each pixel in memory consists of a number of data values equal to the number of channels
in the file;

• successive column pixels within a row directly follow each other in memory, with the first
channel of pixel x immediately following last channel of pixel x−1 of the same row;

• for whole images or tiles, the data for each row immediately follows the previous one in
memory (the first pixel of row y immediately follows the last column of row y−1);

• for 3D volumetric images, the first pixel of slice z immediately follows the last pixel of
of slice z−1.

Please note that this implies that read tile() will write pixel data into your buffer so that
it is contiguous in the shape of a single tile, not just an offset into a whole image worth of pixels.

The read scanline() function takes an optional xstride argument, and the read image()
and read tile() functions take optional xstride, ystride, and zstride values that de-
scribe the distance, in bytes, between successive pixel columns, rows, and slices, respectively,
of your pixel buffer. For any of these values that are not supplied, or are given as the special
constant AutoStride, contiguity will be assumed.

By passing different stride values, you can achieve some surprisingly flexible functionality.
A few representative examples follow:

• Flip an image vertically upon reading, by using negative y stride:

unsigned char pixels[spec.width * spec.height * spec.nchannels];
int scanlinesize = spec.width * spec.nchannels * sizeof(pixels[0]);
...
in->read_image (TypeDesc::UINT8,

(char *)pixels + (yres-1)*scanlinesize, // offset to last
AutoStride, // default x stride
-scanlinesize, // special y stride
AutoStride); // default z stride

• Read a tile into its spot in a buffer whose layout matches a whole image of pixel data,
rather than having a one-tile-only memory layout:

unsigned char pixels[spec.width * spec.height * spec.nchannels];
int pixelsize = spec.nchannels * sizeof(pixels[0]);
int scanlinesize = xpec.width * pixelsize;
...
in->read_tile (x, y, 0, TypeDesc::UINT8,

(char *)pixels + y*scanlinesize + x*pixelsize,
pixelsize,
scanlinesize);

Please consult Section 4.3 for detailed descriptions of the stride parameters to each read
function.

OpenImageIO Programmer’s Documentation

40 CHAPTER 4. IMAGE I/O: READING IMAGES

4.2.4 Reading metadata

The ImageSpec that is filled in by ImageInput::open() specifies all the common properties
that describe an image: data format, dimensions, number of channels, tiling. However, there
may be a variety of additional metadata that are present in the image file and could be queried
by your application.

The remainder of this section explains how to query additional metadata in the ImageSpec.
It is up to the ImageInput to read these from the file, if indeed the file format is able to carry
additional data. Individual ImageInput implementations should document which metadata
they read.

Channel names

In addition to specifying the number of color channels, the ImageSpec also stores the names of
those channels in its channelnames field, which is a vector<std::string>. Its length should
always be equal to the number of channels (it’s the responsibility of the ImageInput to ensure
this).

Only a few file formats (and thus ImageInput implementations) have a way of specifying
custom channel names, so most of the time you will see that the channel names follow the
default convention of being named "R", "G", "B", and "A", for red, green, blue, and alpha,
respectively.

Here is example code that prints the names of the channels in an image:

ImageInput *in = ImageInput::create (filename);
ImageSpec spec;
in->open (filename, spec);
for (int i = 0; i < spec.nchannels; ++i)

std::cout << "Channel " << i << " is "
<< spec.channelnames[i] << "\n";

Specially-designated channels

The ImageSpec contains two fields, alpha channel and z channel, which designate which
channel numbers represent alpha and z depth, if any. If either is set to -1, it indicates that it is
not known which channel is used for that data.

If you are doing something special with alpha or depth, it is probably safer to respect the
alpha channel and z channel designations (if not set to -1) rather than merely assuming
that, for example, channel 3 is always the alpha channel.

Linearity hints

We certainly hope that you are using only modern file formats that support high precision and
extended range pixels (such as OpenEXR) and keeping all your images in a linear color space.
But you may have to work with file formats that dictate the use of nonlinear color values. This
is prevalent in formats that store pixels only as 8-bit values, since 256 values are not enough to
linearly represent colors without banding artifacts in the dim values.

OpenImageIO Programmer’s Documentation

4.2. ADVANCED IMAGE INPUT 41

The ImageSpec has a field that reveals what color space the image file is using. Each
individual ImageInput is responsible for setting this properly.

The ImageSpec field linearity can take on any of the following values:

ImageSpec::UnknownLinearity indicates indicates it’s unkown what color space the im-
age file is using.

ImageSpec::Linear indicates that the color pixel values are known to be linear.

ImageSpec::GammaCorrected indicates that the color pixel values (but not alpha or z) in
the file have already been gamma corrected (raised to the power 1/γ), and that the gamma
exponent may be found in the gamma field of the ImageSpec.

ImageSpec::sRGB indicates that the color pixel values in the file are in sRGB color space.

The ImageInput sets the ImageSpec::linearity field in a purely advisory capacity —
the read will not convert pixel values among color spaces. Many image file formats only sup-
port nonlinear color spaces (for example, JPEG/JFIF dictates use of sRGB). So your application
should intelligently deal with gamma-corrected and sRGB input.

The linearity only describes color channels. You should assume that alpha or depth (z) chan-
nels (designated by the alpha channel and z channel fields, respectively) always represent
linear values and should never be transformed by your application.

Arbitrary metadata

All other metadata found in the file will be stored in the ImageSpec’s extra attribs field,
which is a ParamValueList, which is itself essentially a vector of ParamValue instances. Each
ParamValue stores one meta-datum consisting of a name, type (specified by a TypeDesc),
number of values, and data pointer.

If you know the name of a specific piece of metadata you want to use, you can find it
using the ImageSpec::find attribute() method, which returns a pointer to the matching
ParamValue, or NULL if no match was found. An optional TypeDesc argument can narrow
the search to only parameters that match the specified type as well as the name. Below is an
example that looks for orientation information, expecting it to consist of a single integer:

ImageInput *in = ImageInput::create (filename);
ImageSpec spec;
in->open (filename, spec);
...
ParamValue *p = spec.find_attribute ("Orientation", TypeDesc::INT);
if (p) {

int orientation = * (int *) p->data();
} else {

std::cout << "No integer orientation in the file\n";
}

By convention, ImageInput plugins will save all integer metadata as 32-bit integers (TypeDesc::INT
or TypeDesc::UINT), even if the file format dictates that a particular item is stored in the file
as a 8- or 16-bit integer. This is just to keep client applications from having to deal with all

OpenImageIO Programmer’s Documentation

42 CHAPTER 4. IMAGE I/O: READING IMAGES

the types. Since there is relatively little metadata compared to pixel data, there’s no real mem-
ory waste of promoting all integer types to int32 metadata. Floating-point metadata and string
metadata may also exist, of course.

It is also possible to step through all the metadata, item by item. This can be accomplished
using the technique of the following example:

for (size_t i = 0; i < spec.extra_attribs.size(); ++i) {
const ParamValue &p (spec.extra_attribs[i]);
printf (" \%s: ", p.name.c_str());
if (p.type() == TypeDesc::STRING)

printf ("\"\%s\"", *(const char **)p.data());
else if (p.type() == TypeDesc::FLOAT)

printf ("\%g", *(const float *)p.data());
else if (p.type() == TypeDesc::INT)

printf ("\%d", *(const int *)p.data());
else if (p.type() == TypeDesc::UINT)

printf ("\%u", *(const unsigned int *)p.data());
else

printf ("<unknown data type>");
printf ("\n");

}

Each individual ImageInput implementation should document the names, types, and mean-
ings of all metadata attributes that they understand.

4.2.5 Multi-image files and MIP-maps

Some image file formats support multiple discrete images to be stored in one file. When you
open() an ImageOutput, it will by default point to the first (i.e., number 0) subimage in the
file. You can switch to viewing another subimage using the seek subimage() function:

ImageInput *in = ImageOutput::create (filename);
ImageSpec spec;
in->open (filename, spec);
...
int sub = 1;
if (in->seek_subimage (sub, spec)) {

...
} else {

... no such subimage ...
}

The seek subimage() function takes two arguments: the index of the subimage to switch
to (starting with 0), and a reference to an ImageSpec, into which will be stored the spec of
the new subimage. The seek subimage() function returns true upon success, and false
if no such subimage existed. It is legal to visit subimages out of order; the ImageInput is
responsible for making it work properly. It is also possible to find out which subimage is
currently being viewed, using the current subimage() function, which returns the index of
the current subimage.

OpenImageIO Programmer’s Documentation

4.2. ADVANCED IMAGE INPUT 43

Below is pseudocode for reading all the levels of a MIP-map (a multi-resolution image used
for texture mapping) that shows how to read multi-image files:

ImageInput *in = ImageInput::create (filename);
ImageSpec spec;
in->open (filename, spec);

int num_subimages = 0;
while (in->seek_subimage (num_subimages, spec)) {

// Note: spec has the format spec of the current subimage
int npixels = spec.width * spec.height;
int nchannels = spec.nchannels;
unsigned char *pixels = new unsigned char [npixels * nchannels];
in->read_image (TypeDesc::UINT8, pixels);

... do whatever you want with this level, in pixels ...

delete [] pixels;
++num_subimages;

}
// Note: we break out of the while loop when seek_subimage fails
// to find a next subimage.

in->close ();
delete in;

In this example, we have used read image(), but of course read scanline() and read tile()
work as you would expect, on the current subimage.

4.2.6 Custom search paths for plugins

Please see Section 3.2.10 for discussion about search paths for finding plugins that implement
ImageOutput.

In a similar fashion, calls to ImageOutput::create() will search for plugins in each di-
rectory listed in the environment variable IMAGEIO LIBRARY PATH, in the order that they are
listed. If no adequate plugin is found, then it will check the custom searchpath passed as the
optional second argument to ImageInput::create(). Here is an example:

char *mysearch = "/usr/myapp/lib:${HOME}/plugins";
ImageInput *in = ImageInput::create (filename, mysearch);
...

4.2.7 Error checking

Nearly every ImageInput API function returns a bool indicating whether the operation suc-
ceeded (true) or failed (false). In the case of a failure, the ImageInput will have saved
an error message describing in more detail what went wrong, and the latest error message is
accessible using the ImageInput method error message(), which returns the message as a
std::string.

OpenImageIO Programmer’s Documentation

44 CHAPTER 4. IMAGE I/O: READING IMAGES

The exception to this rule is ImageInput::create, which returns NULL if it could not create
an appropriate ImageInput. And in this case, since no ImageInput exists for which you can
call its error message() function, there exists a global error message() function (in the
OpenImageIO namespace) that retrieves the latest error message resulting from a call to create.

Here is another version of the simple image reading code from Section 4.1, but this time it
is fully elaborated with error checking and reporting:

#include "imageio.h"
using namespace OpenImageIO;
...

const char *filename = "foo.jpg";
int xres, yres, channels;
unsigned char *pixels;

ImageInput *in = ImageInput::create (filename);
if (! in) {

std::cerr << "Could not create an ImageInput for "
<< filename << ", error = "
<< OpenImageIO::error_message() << "\n";

return;
}

ImageSpec spec;
if (! in->open (filename, spec)) {

std::cerr << "Could not open " << filename
<< ", error = " << in->error_message() << "\n";

delete in;
return;

}
xres = spec.width;
yres = spec.height;
channels = spec.nchannels;
pixels = new unsigned char [xres*yres*channels];

if (! in->read_image (TypeDesc::UINT8, pixels)) {
std::cerr << "Could not read pixels from " << filename

<< ", error = " << in->error_message() << "\n";
delete in;
return;

}

if (! in->close ()) {
std::cerr << "Error closing " << filename

<< ", error = " << in->error_message() << "\n";
delete in;
return;

}
delete in;

OpenImageIO Programmer’s Documentation

4.3. IMAGEINPUT CLASS REFERENCE 45

4.3 ImageInput Class Reference

ImageInput * create (const std::string &filename,
const std::string &plugin searchpath="")

Create and return an ImageInput implementation that is able to read the given file.
The plugin searchpath parameter is a colon-separated list of directories to search
for OpenImageIO plugin DSO/DLL’s (not a searchpath for the image itself!). This will
actually just try every ImageIO plugin it can locate, until it finds one that’s able to open
the file without error. This just creates the ImageInput, it does not open the file.

const char * format name (void) const

Return the name of the format implemented by this class.

bool open (const std::string &name, ImageSpec &newspec)

Opens the file with given name. Various file attributes are put in newspec and a copy
is also saved internally to the ImageInput (retrievable via spec(). From examining
newspec or spec(), you can discern the resolution, if it’s tiled, number of channels,
native data format, and other metadata about the image. Return true if the file was found
and opened okay, otherwise false.

bool open (const std::string &name, ImageSpec &newspec,
const ImageSpec &config)

Opens the file with given name, similarly to open(name, newspec). However, in this
version, any non-default fields of config, including metadata, will be taken to be con-
figuration requests, preferences, or hints. The default implementation of open (name,
newspec, config)will simply ignore config and calls the usual open (name, newspec).
But a plugin may choose to implement this version of open and respond in some way to
the configuration requests. Supported configuration requests should be documented by
each plugin.

const ImageSpec & spec (void) const

Returns a reference to the image format specification of the current subimage. Note that
the contents of the spec are invalid before open() or after close().

bool close ()

Closes an open image.

int current subimage (void) const

Returns the index of the subimage that is currently being read. The first subimage (or the
only subimage, if there is just one) is number 0.

OpenImageIO Programmer’s Documentation

46 CHAPTER 4. IMAGE I/O: READING IMAGES

bool seek subimage (int index, ImageSpec &newspec)

Seek to the given subimage. The first subimage in the file has index 0. Return true
on success, false on failure (including that there is not a subimage with that index).
The new subimage’s vital statistics are put in newspec (and also saved internally in a
way that can be retrieved via spec()). The ImageInput is expected to give the appear-
ance of random access to subimages — in other words, if it can’t randomly seek to the
given subimage, it should transparently close, reopen, and sequentially read through prior
subimages.

bool read scanline (int y, int z, TypeDesc format, void *data,
stride t xstride=AutoStride)

Read the scanline that includes pixels (∗,y,z) into data, converting if necessary from the
native data format of the file into the format specified (z = 0 for non-volume images).
The xstride value gives the data spacing of adjacent pixels (in bytes). Strides set to the
special value AutoStride imply contiguous data, i.e.,

xstride = spec.nchannels*format.size()
The ImageInput is expected to give the appearance of random access — in other words,
if it can’t randomly seek to the given scanline, it should transparently close, reopen,
and sequentially read through prior scanlines. The base ImageInput class has a default
implementation that calls read native scanline() and then does appropriate format
conversion, so there’s no reason for each format plugin to override this method.

bool read scanline (int y, int z, float *data)

This simplified version of read scanline() reads to contiguous float pixels.

bool read tile (int x, int y, int z, TypeDesc format, void *data,
stride t xstride=AutoStride, stride t ystride=AutoStride,
stride t zstride=AutoStride)

Read the tile that includes pixels (∗,y,z) into data, converting if necessary from the na-
tive data format of the file into the format specified (z = 0 for non-volume images). The
stride values give the data spacing of adjacent pixels, scanlines, and volumetric slices,
respectively (measured in bytes). Strides set to the special value of AutoStride imply
contiguous data, i.e.,

xstride = spec.nchannels*format.size()
ystride = xstride*spec.tile width
zstride = ystride*spec.tile height

The ImageInput is expected to give the appearance of random access — in other words,
if it can’t randomly seek to the given tile, it should transparently close, reopen, and se-
quentially read through prior tiles. The base ImageInput class has a default implemen-
tation that calls read native tile and then does appropriate format conversion, so there’s
no reason for each format plugin to override this method.

OpenImageIO Programmer’s Documentation

4.3. IMAGEINPUT CLASS REFERENCE 47

bool read tile (int x, int y, int z, float *data)

Simple version of read tile that reads to contiguous float pixels.

bool read image (TypeDesc format, void *data,
stride t xstride=AutoStride, stride t ystride=AutoStride,
stride t zstride=AutoStride,
ProgressCallback progress callback=NULL,
void *progress callback data=NULL)

Read the entire image of spec.width × spec.height × spec.depth pixels into data
(which must already be sized large enough for the entire image) with the given strides
and in the desired format. Read tiles or scanlines automatically.

Strides set to the special value of AutoStride imply contiguous data, i.e.,
xstride = spec.nchannels * format.size()
ystride = xstride * spec.width
zstride = ystride * spec.height

The function will internally either call read scanline or read tile, depending on
whether the file is scanline- or tile-oriented.

Because this may be an expensive operation, a progres callback may be passed. Periodi-
cally, it will be called as follows:

progress_callback (progress_callback_data, float done)

where done gives the portion of the image (between 0.0 and 1.0) that has been read thus
far.

bool read image (float *data)

Simple version of read image() reads to contiguous float pixels.

bool read native scanline (int y, int z, void *data)

The read native scanline() function is just like read scanline(), except that it
keeps the data in the native format of the disk file and always reads into contiguous mem-
ory (no strides). It’s up to the user to have enough space allocated and know what to do
with the data. IT IS EXPECTED THAT EACH FORMAT PLUGIN WILL OVERRIDE
THIS METHOD.

bool read native tile (int x, int y, int z, void *data)

The read native tile() function is just like read tile(), except that it keeps the
data in the native format of the disk file and always read into contiguous memory (no
strides). It’s up to the user to have enough space allocated and know what to do with
the data. IT IS EXPECTED THAT EACH FORMAT PLUGIN WILL OVERRIDE THIS
METHOD IF IT SUPPORTS TILED IMAGES.

OpenImageIO Programmer’s Documentation

48 CHAPTER 4. IMAGE I/O: READING IMAGES

int send to input (const char *format, ...)

General message passing between client and image input server. This is currently unde-
fined and is reserved for future use.

int send to client (const char *format, ...)

General message passing between client and image input server. This is currently unde-
fined and is reserved for future use.

std::string error message () const

Returns the current error string describing what went wrong if any of the public methods
returned false indicating an error. (Hopefully the implementation plugin called error()
with a helpful error message.)

OpenImageIO Programmer’s Documentation

5 Writing ImageIO Plugins

5.1 Plugin Introduction

As explained in Chapters 4 and 3, the ImageIO library does not know how to read or write any
particular image formats, but rather relies on plugins located and loaded dynamically at run-
time. This set of plugins, and therefore the set of image file formats that OpenImageIO or its
clients can read and write, is extensible without needing to modify OpenImageIO itself.

This chapter explains how to write your own OpenImageIO plugins. We will first explain
separately how to write image file readers and writers, then tie up the loose ends of how to build
the plugins themselves.

5.2 Image Readers

A plugin that reads a particular image file format must implement a subclass of ImageInput
(described in Chapter 4). This is actually very straightforward and consists of the following
steps, which we will illustrate with a real-world example of writing a JPEG/JFIF plug-in.

1. Read the base class definition from imageio.h. It may also be helpful to just use the
OpenImageIO namespace, just to make your code a little less verbose.

#include "imageio.h"
using namespace OpenImageIO;

2. Declare three public items:

(a) An integer called name imageio version that identifies the version of the Im-
ageIO protocol implemented by the plugin, defined in imageio.h as the constant
IMAGEIO VERSION. This allows the library to be sure it is not loading a plugin that
was compiled against a different version of OpenImageIO.

(b) A function named name input imageio create that takes no arguments and
returns a new instance of your ImageInput subclass. (Note that name is the name
of your format, and must match the name of the plugin itself.)

(c) An array of char * called name input extensions that contains the list of file
extensions that are likely to indicate a file of the right format. The list is terminated
by a NULL pointer.

49

50 CHAPTER 5. WRITING IMAGEIO PLUGINS

All of these items must be inside an ‘extern "C"’ block in order to avoid name man-
gling by the C++ compiler. Depending on your compiler, you may need to use special
commands to dictate that the symbols will be exported in the DSO; we provide a special
DLLEXPORT macro for this purpose, defined in export.h.

Putting this all together, we get the following for our JPEG example:

extern "C" {
DLLEXPORT int jpeg_imageio_version = IMAGEIO_VERSION;
DLLEXPORT JpgInput *jpeg_input_imageio_create () {

return new JpgInput;
}
DLLEXPORT const char *jpeg_input_extensions[] = {

"jpg", "jpe", "jpeg", NULL
};

};

3. The definition and implementation of an ImageInput subclass for this file format. It must
publicly inherit ImageInput, and must overload the following methods which are “pure
virtual” in the ImageInput base class:

(a) format name() should return the name of the format, which ought to match the
name of the plugin and by convention is strictly lower-case and contains no whites-
pace.

(b) open() should open the file and return true, or should return false if unable to do
so (including if the file was found but turned out not to be in the format that your
plugin is trying to implement).

(c) close() should close the file, if open.

(d) read native scanline should read a single scanline from the file into the ad-
dress provided, uncompressing it but keeping it in its native data format without any
translation.

(e) The virtual destructor, which should close() if the file is still open, addition to
performing any other tear-down activities.

Additionally, your ImageInput subclass may optionally choose to overload any of the
following methods, which are defined in the ImageInput base class and only need to be
overloaded if the default behavior is not appropriate for your plugin:

(f) seek subimage(), only if your format supports reading multiple subimages within
a single file.

(g) read native tile(), only if your format supports reading tiled images.

Here is how the class definition looks for our JPEG example. Note that the JPEG/JFIF
file format does not support multiple subimages or tiled images.

OpenImageIO Programmer’s Documentation

5.2. IMAGE READERS 51

class JpgInput : public ImageInput {
public:

JpgInput () { init(); }
virtual ˜JpgInput () { close(); }
virtual const char * format_name (void) const { return "jpeg"; }
virtual bool open (const char *name, ImageSpec &spec);
virtual bool read_native_scanline (int y, int z, void *data);
virtual bool close ();

private:
FILE *m_fd;
bool m_first_scanline;
struct jpeg_decompress_struct m_cinfo;
struct jpeg_error_mgr m_jerr;

void init () { m_fd = NULL; }
};

Your subclass implementation of open(), close(), and read native scanline() are
the heart of an ImageInput implementation. (Also read native tile() and seek subimage(),
for those image formats that support them.)

The remainder of this section simply lists the full implementation of our JPEG reader, which
relies heavily on the open source jpeg-6b library to perform the actual JPEG decoding.

/*
Copyright 2008 Larry Gritz and the other authors and contributors.
All Rights Reserved.
Based on BSD-licensed software Copyright 2004 NVIDIA Corp.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

* Neither the name of the software’s owners nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE

OpenImageIO Programmer’s Documentation

52 CHAPTER 5. WRITING IMAGEIO PLUGINS

OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

(This is the Modified BSD License)
*/

#include <cassert>
#include <cstdio>

extern "C" {
#include "jpeglib.h"
}

#include "imageio.h"
using namespace OpenImageIO;
#include "fmath.h"
#include "jpeg_pvt.h"
using namespace Jpeg_imageio_pvt;

// See JPEG library documentation in /usr/share/doc/libjpeg-devel-6b

// N.B. The class definition for JpgInput is in jpeg_pvt.h.

// Export version number and create function symbols
extern "C" {

DLLEXPORT int jpeg_imageio_version = IMAGEIO_VERSION;
DLLEXPORT ImageInput *jpeg_input_imageio_create () {

return new JpgInput;
}
DLLEXPORT const char *jpeg_input_extensions[] = {

"jpg", "jpe", "jpeg", NULL
};

};

bool
JpgInput::open (const std::string &name, ImageSpec &newspec,

const ImageSpec &config)
{

const ImageIOParameter *p = config.find_attribute ("_jpeg:raw",
TypeDesc::TypeInt);

m_raw = p && *(int *)p->data();
return open (name, newspec);

}

bool

OpenImageIO Programmer’s Documentation

5.2. IMAGE READERS 53

JpgInput::open (const std::string &name, ImageSpec &newspec)
{

// Check that file exists and can be opened
m_filename = name;
m_fd = fopen (name.c_str(), "rb");
if (m_fd == NULL) {

error ("Could not open file \"%s\"", name.c_str());
return false;

}

// Check magic number to assure this is a JPEG file
int magic = 0;
fread (&magic, 4, 1, m_fd);
rewind (m_fd);
const int JPEG_MAGIC = 0xffd8ffe0, JPEG_MAGIC_OTHER_ENDIAN = 0xe0ffd8ff;
const int JPEG_MAGIC2 = 0xffd8ffe1, JPEG_MAGIC2_OTHER_ENDIAN = 0xe1ffd8ff;
if (magic != JPEG_MAGIC && magic != JPEG_MAGIC_OTHER_ENDIAN &&

magic != JPEG_MAGIC2 && magic != JPEG_MAGIC2_OTHER_ENDIAN) {
fclose (m_fd);
m_fd = NULL;
error ("\"%s\" is a JPEG file, magic number doesn’t match", name.c_str());
return false;

}

m_cinfo.err = jpeg_std_error (&m_jerr);
jpeg_create_decompress (&m_cinfo); // initialize decompressor
jpeg_stdio_src (&m_cinfo, m_fd); // specify the data source

// Request saving of EXIF and other special tags for later spelunking
for (int mark = 0; mark < 16; ++mark)

jpeg_save_markers (&m_cinfo, JPEG_APP0+mark, 0xffff);
jpeg_save_markers (&m_cinfo, JPEG_COM, 0xffff); // comment marker

jpeg_read_header (&m_cinfo, FALSE); // read the file parameters
if (m_raw)

m_coeffs = jpeg_read_coefficients (&m_cinfo);
else

jpeg_start_decompress (&m_cinfo); // start working
m_next_scanline = 0; // next scanline we’ll read

m_spec = ImageSpec (m_cinfo.output_width, m_cinfo.output_height,
m_cinfo.output_components, TypeDesc::UINT8);

for (jpeg_saved_marker_ptr m = m_cinfo.marker_list; m; m = m->next) {
if (m->marker == (JPEG_APP0+1) &&

! strcmp ((const char *)m->data, "Exif"))
decode_exif ((unsigned char *)m->data, m->data_length, m_spec);

else if (m->marker == (JPEG_APP0+1) &&
! strcmp ((const char *)m->data, "http://ns.adobe.com/xap/1.0/")) {

#ifdef DEBUG
std::cerr << "Found APP1 XMP! length " << m->data_length << "\n";

OpenImageIO Programmer’s Documentation

54 CHAPTER 5. WRITING IMAGEIO PLUGINS

#endif
std::string xml ((const char *)m->data, m->data_length);
OpenImageIO::decode_xmp (xml, m_spec);

}
else if (m->marker == (JPEG_APP0+13) &&

! strcmp ((const char *)m->data, "Photoshop 3.0"))
jpeg_decode_iptc ((unsigned char *)m->data);

else if (m->marker == JPEG_COM) {
if (! m_spec.find_attribute ("ImageDescription", TypeDesc::STRING))

m_spec.attribute ("ImageDescription",
std::string ((const char *)m->data));

}
}

newspec = m_spec;
return true;

}

bool
JpgInput::read_native_scanline (int y, int z, void *data)
{

if (m_raw)
return false;

if (y < 0 || y >= (int)m_cinfo.output_height) // out of range scanline
return false;

if (m_next_scanline > y) {
// User is trying to read an earlier scanline than the one we’re
// up to. Easy fix: close the file and re-open.
ImageSpec dummyspec;
int subimage = current_subimage();
if (! close () ||

! open (m_filename, dummyspec) ||
! seek_subimage (subimage, dummyspec))
return false; // Somehow, the re-open failed

assert (m_next_scanline == 0 && current_subimage() == subimage);
}
while (m_next_scanline <= y) {

// Keep reading until we’re read the scanline we really need
jpeg_read_scanlines (&m_cinfo, (JSAMPLE **)&data, 1); // read one scanline
++m_next_scanline;

}
return true;

}

bool
JpgInput::close ()
{

OpenImageIO Programmer’s Documentation

5.2. IMAGE READERS 55

if (m_fd != NULL) {
// N.B. don’t call finish_decompress if we never read anything
if (m_next_scanline > 0) {

// But if we’ve only read some scanlines, read the rest to avoid
// errors
std::vector<char> buf (spec().scanline_bytes());
char *data = &buf[0];
while (m_next_scanline < spec().height) {

jpeg_read_scanlines (&m_cinfo, (JSAMPLE **)&data, 1);
++m_next_scanline;

}
}
if (m_next_scanline > 0 || m_raw)

jpeg_finish_decompress (&m_cinfo);
jpeg_destroy_decompress (&m_cinfo);
fclose (m_fd);
m_fd = NULL;

}
init (); // Reset to initial state
return true;

}

void
JpgInput::jpeg_decode_iptc (const unsigned char *buf)
{

// APP13 blob doesn’t have to be IPTC info. Look for the IPTC marker,
// which is the string "Photoshop 3.0" followed by a null character.
if (strcmp ((const char *)buf, "Photoshop 3.0"))

return;
buf += strlen("Photoshop 3.0") + 1;

// Next are the 4 bytes "8BIM"
if (strncmp ((const char *)buf, "8BIM", 4))

return;
buf += 4;

// Next two bytes are the segment type, in big endian.
// We expect 1028 to indicate IPTC data block.
if (((buf[0] << 8) + buf[1]) != 1028)

return;
buf += 2;

// Next are 4 bytes of 0 padding, just skip it.
buf += 4;

// Next is 2 byte (big endian) giving the size of the segment
int segmentsize = (buf[0] << 8) + buf[1];
buf += 2;

OpenImageIO Programmer’s Documentation

56 CHAPTER 5. WRITING IMAGEIO PLUGINS

OpenImageIO::decode_iptc_iim (buf, segmentsize, m_spec);
}

5.3 Image Writers

A plugin that writes a particular image file format must implement a subclass of ImageOutput
(described in Chapter 3). This is actually very straightforward and consists of the following
steps, which we will illustrate with a real-world example of writing a JPEG/JFIF plug-in.

1. Read the base class definition from imageio.h, just as with an image reader (see Sec-
tion 5.2).

2. Declare three public items:

(a) An integer called name imageio version that identifies the version of the Im-
ageIO protocol implemented by the plugin, defined in imageio.h as the constant
IMAGEIO VERSION. This allows the library to be sure it is not loading a plugin that
was compiled against a different version of OpenImageIO. Note that if your plugin
has both a reader and writer and they are compiled as separate modules (C++ source
files), you don’t want to declare this in both modules; either one is fine.

(b) A function named name output imageio create that takes no arguments and
returns a new instance of your ImageOutput subclass. (Note that name is the name
of your format, and must match the name of the plugin itself.)

(c) An array of char * called name output extensions that contains the list of file
extensions that are likely to indicate a file of the right format. The list is terminated
by a NULL pointer.

All of these items must be inside an ‘extern "C"’ block in order to avoid name man-
gling by the C++ compiler. Depending on your compiler, you may need to use special
commands to dictate that the symbols will be exported in the DSO; we provide a special
DLLEXPORT macro for this purpose, defined in export.h.

Putting this all together, we get the following for our JPEG example:

extern "C" {
DLLEXPORT int jpeg_imageio_version = IMAGEIO_VERSION;
DLLEXPORT JpgOutput *jpeg_output_imageio_create () {

return new JpgOutput;
}
DLLEXPORT const char *jpeg_input_extensions[] = {

"jpg", "jpe", "jpeg", NULL
};

};

3. The definition and implementation of an ImageOutput subclass for this file format. It
must publicly inherit ImageOutput, and must overload the following methods which are
“pure virtual” in the ImageOutput base class:

OpenImageIO Programmer’s Documentation

5.3. IMAGE WRITERS 57

(a) format name() should return the name of the format, which ought to match the
name of the plugin and by convention is strictly lower-case and contains no whites-
pace.

(b) supports() should return true if its argument names a feature supported by your
format plugin, false if it names a feature not supported by your plugin. See Sec-
tion 3.3 for the list of feature names.

(c) open() should open the file and return true, or should return false if unable to do
so (including if the file was found but turned out not to be in the format that your
plugin is trying to implement).

(d) close() should close the file, if open.

(e) write scanline should write a single scanline to the file, translating from internal
to native data format and handling strides properly.

(f) The virtual destructor, which should close() if the file is still open, addition to
performing any other tear-down activities.

Additionally, your ImageOutput subclass may optionally choose to overload any of the
following methods, which are defined in the ImageOutput base class and only need to be
overloaded if the default behavior is not appropriate for your plugin:

(g) write tile(), only if your format supports writing tiled images.

(h) write rectangle(), only if your format supports writing arbitrary rectangles.

(i) write image(), only if you have a more clever method of doing so than the default
implementation that calls write scanline() or write tile() repeatedly.

Here is how the class definition looks for our JPEG example. Note that the JPEG/JFIF
file format does not support multiple subimages or tiled images.

class JpgOutput : public ImageOutput {
public:

JpgOutput () { init(); }
virtual ˜JpgOutput () { close(); }
virtual const char * format_name (void) const { return "jpeg"; }
virtual bool supports (const char *property) const { return false; }
virtual bool open (const char *name, const ImageSpec &spec,

bool append=false);
virtual bool write_scanline (int y, int z, TypeDesc format,

const void *data, stride_t xstride);
bool close ();

private:
FILE *m_fd;
std::vector<unsigned char> m_scratch;
struct jpeg_compress_struct m_cinfo;
struct jpeg_error_mgr m_jerr;

void init () { m_fd = NULL; }
};

OpenImageIO Programmer’s Documentation

58 CHAPTER 5. WRITING IMAGEIO PLUGINS

Your subclass implementation of open(), close(), and write scanline() are the heart
of an ImageOutput implementation. (Also write tile(), for those image formats that sup-
port tiled output.)

An ImageOutput implementation must properly handle all data formats and strides passed
to write scanline() or write tile(), unlike an ImageInput implementation, which only
needs to read scanlines or tiles in their native format and then have the super-class handle the
translation. But don’t worry, all the heavy lifting can be accomplished with the following helper
functions provided as protected member functions of ImageOutput:

const void * to native scanline (TypeDesc format, const void *data,
stride t xstride, std::vector<unsigned char> &scratch);

Convert a full scanline of pixels (pointed to by data) with the given format and strides
into contiguous pixels in the native format (described by the ImageSpec returned by the
spec() member function). The location of the newly converted data is returned, which
may either be the original data itself if no data conversion was necessary and the requested
layout was contiguous (thereby avoiding unnecessary memory copies), or may point into
memory allocated within the scratch vector passed by the user. In either case, the caller
doesn’t need to worry about thread safety or freeing any allocated memory (other than
eventually destroying the scratch vector).

const void * to native tile (TypeDesc format, const void *data,
stride t xstride, stride t ystride, stride t zstride,
std::vector<unsigned char> &scratch);

Convert a full tile of pixels (pointed to by data) with the given format and strides into con-
tiguous pixels in the native format (described by the ImageSpec returned by the spec()
member function). The location of the newly converted data is returned, which may ei-
ther be the original data itself if no data conversion was necessary and the requested
layout was contiguous (thereby avoiding unnecessary memory copies), or may point into
memory allocated within the scratch vector passed by the user. In either case, the caller
doesn’t need to worry about thread safety or freeing any allocated memory (other than
eventually destroying the scratch vector).

const void * to native rectangle (int xmin, int xmax, int ymin, int ymax,
int zmin, int zmax, TypeDesc format, const void *data,
stride t xstride, stride t ystride, stride t zstride,
std::vector<unsigned char> &scratch);

Convert a rectangle of pixels (pointed to by data) with the given format, dimensions, and
strides into contiguous pixels in the native format (described by the ImageSpec returned
by the spec() member function). The location of the newly converted data is returned,
which may either be the original data itself if no data conversion was necessary and the
requested layout was contiguous (thereby avoiding unnecessary memory copies), or may
point into memory allocated within the scratch vector passed by the user. In either case,
the caller doesn’t need to worry about thread safety or freeing any allocated memory
(other than eventually destroying the scratch vector).

OpenImageIO Programmer’s Documentation

5.3. IMAGE WRITERS 59

The remainder of this section simply lists the full implementation of our JPEG writer, which
relies heavily on the open source jpeg-6b library to perform the actual JPEG encoding.

/*
Copyright 2008 Larry Gritz and the other authors and contributors.
All Rights Reserved.
Based on BSD-licensed software Copyright 2004 NVIDIA Corp.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

* Neither the name of the software’s owners nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

(This is the Modified BSD License)
*/

#include <cassert>
#include <cstdio>
#include <vector>

extern "C" {
#include "jpeglib.h"
}

#include "imageio.h"
using namespace OpenImageIO;
#include "fmath.h"
#include "jpeg_pvt.h"
using namespace Jpeg_imageio_pvt;

#define DBG if(0)

OpenImageIO Programmer’s Documentation

60 CHAPTER 5. WRITING IMAGEIO PLUGINS

// See JPEG library documentation in /usr/share/doc/libjpeg-devel-6b

class JpgOutput : public ImageOutput {
public:

JpgOutput () { init(); }
virtual ˜JpgOutput () { close(); }
virtual const char * format_name (void) const { return "jpeg"; }
virtual bool supports (const std::string &property) const { return false; }
virtual bool open (const std::string &name, const ImageSpec &spec,

bool append=false);
virtual bool write_scanline (int y, int z, TypeDesc format,

const void *data, stride_t xstride);
virtual bool close ();
virtual bool copy_image (ImageInput *in);

private:
FILE *m_fd;
std::string m_filename;
int m_next_scanline; // Which scanline is the next to write?
std::vector<unsigned char> m_scratch;
struct jpeg_compress_struct m_cinfo;
struct jpeg_error_mgr c_jerr;
jvirt_barray_ptr *m_copy_coeffs;
struct jpeg_decompress_struct *m_copy_decompressor;

void init (void) {
m_fd = NULL;
m_copy_coeffs = NULL;
m_copy_decompressor = NULL;

}
};

extern "C" {
DLLEXPORT ImageOutput *jpeg_output_imageio_create () {

return new JpgOutput;
}
DLLEXPORT const char *jpeg_output_extensions[] = {

"jpg", "jpe", "jpeg", NULL
};

};

bool
JpgOutput::open (const std::string &name, const ImageSpec &newspec,

OpenImageIO Programmer’s Documentation

5.3. IMAGE WRITERS 61

bool append)
{

if (append) {
error ("JPG doesn’t support multiple images per file");
return false;

}

// Save name and spec for later use
m_filename = name;
m_spec = newspec;

// Check for things this format doesn’t support
if (m_spec.width < 1 || m_spec.height < 1) {

error ("Image resolution must be at least 1x1, you asked for %d x %d",
m_spec.width, m_spec.height);

return false;
}
if (m_spec.depth < 1)

m_spec.depth = 1;
if (m_spec.depth > 1) {

error ("%s does not support volume images (depth > 1)", format_name());
return false;

}

m_fd = fopen (name.c_str(), "wb");
if (m_fd == NULL) {

error ("Unable to open file \"%s\"", name.c_str());
return false;

}

int quality = 98;
const ImageIOParameter *qual = newspec.find_attribute ("CompressionQuality",

TypeDesc::INT);
if (qual)

quality = * (const int *)qual->data();

m_cinfo.err = jpeg_std_error (&c_jerr); // set error handler
jpeg_create_compress (&m_cinfo); // create compressor
jpeg_stdio_dest (&m_cinfo, m_fd); // set output stream

// Set image and compression parameters
m_cinfo.image_width = m_spec.width;
m_cinfo.image_height = m_spec.height;

if (m_spec.nchannels == 3 || m_spec.nchannels == 4) {
m_cinfo.input_components = 3;
m_cinfo.in_color_space = JCS_RGB;
m_spec.nchannels = 3; // Force RGBA -> RGB
m_spec.alpha_channel = -1; // No alpha channel

} else if (m_spec.nchannels == 1) {
m_cinfo.input_components = 1;

OpenImageIO Programmer’s Documentation

62 CHAPTER 5. WRITING IMAGEIO PLUGINS

m_cinfo.in_color_space = JCS_GRAYSCALE;
}
m_cinfo.density_unit = 2; // RESUNIT_INCH;
m_cinfo.X_density = 72;
m_cinfo.Y_density = 72;
m_cinfo.write_JFIF_header = true;

if (m_copy_coeffs) {
// Back door for copy()
jpeg_copy_critical_parameters (m_copy_decompressor, &m_cinfo);
DBG std::cout << "out open: copy_critical_parameters\n";
jpeg_write_coefficients (&m_cinfo, m_copy_coeffs);
DBG std::cout << "out open: write_coefficients\n";

} else {
// normal write of scanlines
jpeg_set_defaults (&m_cinfo); // default compression
DBG std::cout << "out open: set_defaults\n";
jpeg_set_quality (&m_cinfo, quality, TRUE); // baseline values
DBG std::cout << "out open: set_quality\n";
jpeg_start_compress (&m_cinfo, TRUE); // start working
DBG std::cout << "out open: start_compress\n";

}
m_next_scanline = 0; // next scanline we’ll write

// Write JPEG comment, if sent an ’ImageDescription’
ImageIOParameter *comment = m_spec.find_attribute ("ImageDescription",

TypeDesc::STRING);
if (comment && comment->data()) {

const char **c = (const char **) comment->data();
jpeg_write_marker (&m_cinfo, JPEG_COM, (JOCTET*)*c, strlen(*c) + 1);

}

// Write EXIF info, if we have anything
std::vector<char> exif;
encode_exif (m_spec, exif);
if (exif.size())

jpeg_write_marker (&m_cinfo, JPEG_APP0+1, (JOCTET*)&exif[0], exif.size());

// Write IPTC IIM metadata tags, if we have anything
std::vector<char> iptc;
encode_iptc_iim (m_spec, iptc);
if (iptc.size()) {

static char photoshop[] = "Photoshop 3.0";
std::vector<char> head (photoshop, photoshop+strlen(photoshop)+1);
static char _8BIM[] = "8BIM";
head.insert (head.end(), _8BIM, _8BIM+4);
head.push_back (4); // 0x0404
head.push_back (4);
head.push_back (0); // four bytes of zeroes
head.push_back (0);
head.push_back (0);

OpenImageIO Programmer’s Documentation

5.3. IMAGE WRITERS 63

head.push_back (0);
head.push_back ((char)(iptc.size() >> 8)); // size of block
head.push_back ((char)(iptc.size() & 0xff));
iptc.insert (iptc.begin(), head.begin(), head.end());
jpeg_write_marker (&m_cinfo, JPEG_APP0+13, (JOCTET*)&iptc[0], iptc.size());

}

// Write XMP packet, if we have anything
std::string xmp = OpenImageIO::encode_xmp (m_spec, true);
if (! xmp.empty()) {

static char prefix[] = "http://ns.adobe.com/xap/1.0/";
std::vector<char> block (prefix, prefix+strlen(prefix)+1);
block.insert (block.end(), xmp.c_str(), xmp.c_str()+xmp.length()+1);
jpeg_write_marker (&m_cinfo, JPEG_APP0+1, (JOCTET*)&block[0], block.size());

}

m_spec.set_format (TypeDesc::UINT8); // JPG is only 8 bit

return true;
}

bool
JpgOutput::write_scanline (int y, int z, TypeDesc format,

const void *data, stride_t xstride)
{

y -= m_spec.y;
if (y != m_next_scanline) {

error ("Attempt to write scanlines out of order to %s",
m_filename.c_str());

return false;
}
if (y >= (int)m_cinfo.image_height) {

error ("Attempt to write too many scanlines to %s", m_filename.c_str());
return false;

}
assert (y == (int)m_cinfo.next_scanline);

data = to_native_scanline (format, data, xstride, m_scratch);

jpeg_write_scanlines (&m_cinfo, (JSAMPLE**)&data, 1);
++m_next_scanline;

return true;
}

bool
JpgOutput::close ()

OpenImageIO Programmer’s Documentation

64 CHAPTER 5. WRITING IMAGEIO PLUGINS

{
if (! m_fd) // Already closed

return true;

if (m_next_scanline < spec().height && m_copy_coeffs == NULL) {
// But if we’ve only written some scanlines, write the rest to avoid
// errors
std::vector<char> buf (spec().scanline_bytes(), 0);
char *data = &buf[0];
while (m_next_scanline < spec().height) {

jpeg_write_scanlines (&m_cinfo, (JSAMPLE **)&data, 1);
// DBG std::cout << "out close: write_scanlines\n";
++m_next_scanline;

}
}

if (m_next_scanline >= spec().height || m_copy_coeffs) {
DBG std::cout << "out close: about to finish_compress\n";
jpeg_finish_compress (&m_cinfo);
DBG std::cout << "out close: finish_compress\n";

} else {
DBG std::cout << "out close: about to abort_compress\n";
jpeg_abort_compress (&m_cinfo);
DBG std::cout << "out close: abort_compress\n";

}
DBG std::cout << "out close: about to destroy_compress\n";
jpeg_destroy_compress (&m_cinfo);
fclose (m_fd);
m_fd = NULL;
init();

return true;
}

bool
JpgOutput::copy_image (ImageInput *in)
{

if (in && !strcmp(in->format_name(), "jpeg")) {
JpgInput *jpg_in = dynamic_cast<JpgInput *> (in);
std::string in_name = jpg_in->filename ();
DBG std::cout << "JPG copy_image from " << in_name << "\n";

// Save the original input spec and close it
ImageSpec orig_in_spec = in->spec();
in->close ();
DBG std::cout << "Closed old file\n";

// Re-open the input spec, with special request that the JpgInput
// will recognize as a request to merely open, but not start the

OpenImageIO Programmer’s Documentation

5.4. BUILDING IMAGEIO PLUGINS 65

// decompressor.
ImageSpec in_spec;
ImageSpec config_spec;
config_spec.attribute ("_jpeg:raw", 1);
in->open (in_name, in_spec, config_spec);

// Re-open the output
std::string out_name = m_filename;
ImageSpec orig_out_spec = spec();
close ();
m_copy_coeffs = (jvirt_barray_ptr *)jpg_in->coeffs();
m_copy_decompressor = &jpg_in->m_cinfo;
open (out_name, orig_out_spec);

// Strangeness -- the write_coefficients somehow sets things up
// so that certain writes only happen in close(), which MUST
// happen while the input file is still open. So we go ahead
// and close() now, so that the caller of copy_image() doesn’t
// close the input file first and then wonder why they crashed.
close ();

return true;
}

return ImageOutput::copy_image (in);
}

5.4 Building ImageIO Plugins

FIXME – spell out how to compile and link plugins on each of the major platforms.

OpenImageIO Programmer’s Documentation

66 CHAPTER 5. WRITING IMAGEIO PLUGINS

OpenImageIO Programmer’s Documentation

6 Bundled ImageIO Plugins

6.1 TIFF

6.2 JPEG

6.3 OpenEXR

6.4 HDR/RGBE

6.5 PNG

67

68 CHAPTER 6. BUNDLED IMAGEIO PLUGINS

OpenImageIO Programmer’s Documentation

7 Image Buffer

69

70 CHAPTER 7. IMAGE BUFFER

OpenImageIO Programmer’s Documentation

8 Cached Images

8.1 Image Cache Introduction and Theory of Operation

ImageCache is a utility class that allows an application to read pixels from a large number of
image files while using a remarkably small amount of memory and other resources. Of course
it is possible for an application to do this directly using ImageInput objects. But ImageCache
offers the following advantages:

• ImageCache presents an even simpler user interface than ImageInput— the only sup-
ported operations are asking for an ImageSpec describing a subimage in the file, re-
trieving for a block of pixels, and locking/reading/releasing individual tiles. You refer
to images by filename only; you don’t need to keep track of individual file handles or
ImageInput objects. You don’t need to explicitly open or close files.

• The ImageCache is completely thread-safe; if multiple threads are accessing the same
file, the ImageCache internals will handle all the locking and resource sharing.

• No matter how many image files you are accessing, the ImageCache will maintain a
reasonable number of simultaneously-open files, automatically closing files that have not
been needed recently.

• No matter how large the total pixels in all the image files you are dealing with are, the
ImageCache will use only a small amount of memory. It does this by loading only the
individual tiles requested, and as memory allotments are approached, automatically re-
leasing the memory from tiles that have not been used recently.

In short, if you have an application that will need to read pixels from many large image files,
you can rely on ImageCache to manage all the resources for you. It is reasonable to access
thousands of image files totalling hundreds of GB of pixels, efficiently and using a memory
footprint on the order of 50 MB.

71

72 CHAPTER 8. CACHED IMAGES

Below are some simple code fragments that shows ImageCache in action:

#include "OpenImageIO/imagecache.h"

// Create an image cache and set some options
ImageCache *cache = ImageCache::create ();
cache->attribute ("max_memory_MB", 50.0);
cache->attribute ("autotile", 64);

// Get a block of pixels from a file.
// (for brevity of this example, let’s assume that ’size’ is the
// number of channels times the number of pixels in the requested region)
float pixels[size];
cache->get_pixels ("file1.jpg", 0, xmin, xmax, ymin, ymax, zmin, zmax,

TypeDesc::FLOAT, pixels);

// Get information about a file
ImageSpec spec;
bool ok = cache->get_imagespec ("file2.exr", spec);
if (ok)

std::cout << "resolution is " << spec.width << "x"
<< "spec.height << "\n";

// Request and hold a tile, do some work with its pixels, then release
ImageCache::Tile *tile;
tile = cache->get_tile ("file2.exr", 0, x, y, z);
// The tile won’t be freed until we release it, so this is safe:
TypeDesc format;
void *p = cache->tile_pixels (tile, format);
// Now p points to the raw pixels of the tile, whose data format
// is given by ’format’.
cache->release_tile (tile);
// Now cache is permitted to free the tile when needed

// Note that all files were referenced by name, we never had to open
// or close any files, and all the resource and memory management
// was automatic.

ImageCache::destroy (cache);

OpenImageIO Programmer’s Documentation

8.2. IMAGECACHE API 73

8.2 ImageCache API

8.2.1 Creating and destroying an image cache

ImageCache is an abstract API described as a pure virtual class. The actual internal implemen-
tation is not exposed through the external API of OpenImageIO. Because of this, you cannot
construct or destroy the concrete implementation, so two static methods of ImageCache are
provided:

static ImageCache *ImageCache::create (bool shared=true)

Creates a new ImageCache and returns a pointer to it. If shared is true, create()
will return a pointer to a shared ImageCache (so that multiple parts of an application
that request an ImageCache will all end up with the same one). If shared is false, a
completely unique ImageCache will be created and returned.

static void ImageCache::destroy (ImageCache *x)

Destroys an allocated ImageCache, including freeing all system resources that it holds.

This is necessary to ensure that the memory is freed in a way that matches the way it was
allocated within the library. Note that simply using delete on the pointer will not always
work (at least, not on some platforms in which a DSO/DLL can end up using a different
allocator than the main program).

It is safe to destroy even a shared ImageCache, as the implementation of destroy() will
recognize a shared one and only truly release its resources if it has been requested to be
destroyed as many times as shared ImageCache’s were created.

8.2.2 Setting options and limits for the image cache

The following member functions of ImageCache allow you to set (and in some cases retrieve)
options that control the overall behavior of the image cache:

bool attribute (const std::string &name, TypeDesc type, const void *val)

Sets an attribute (i.e., a property or option) of the ImageCache. The name designates the
name of the attribute, type describes the type of data, and val is a pointer to memory
containing the new value for the attribute.

If the ImageCache recognizes a valid attribute name that matches the type specified,
the attribute will be set to the new value and attribute() will return true. If name
is not recognized as a valid attribute name, or if the types do not match (e.g., type is
TypeDesc::FLOAT but the named attribute is a string), the attribute will not be modified,
and attribute() will return false.

Here are examples:

ImageCache *ts;
...
int maxfiles = 50;

OpenImageIO Programmer’s Documentation

74 CHAPTER 8. CACHED IMAGES

ts->attribute ("max_open_files", TypeDesc::INT, &maxfiles);

const char *path = "/my/path";
ts->attribute ("searchpath", TypeDesc::STRING, &path);

Note that when passing a string, you need to pass a pointer to the char*, not a pointer to
the first character. (Rationale: for an int attribute, you pass the address of the int. So
for a string, which is a char*, you need to pass the address of the string, i.e., a char**).

The complete list of attributes can be found at the end of this section.

bool attribute (const std::string &name, int val)
bool attribute (const std::string &name, float val)
bool attribute (const std::string &name, double val)
bool attribute (const std::string &name, const char *val)
bool attribute (const std::string &name, const std::string & val)

Specialized versions of attribute() in which the data type is implied by the type of the
argument.

For example, the following are equivalent to the example above for the general (pointer)
form of attribute():

ts->attribute ("max_open_files", 50);
ts->attribute ("searchpath", "/my/path");

bool getattribute (const std::string &name, TypeDesc type, void *val)

Gets the current value of an attribute of the ImageCache. The name designates the name
of the attribute, type describes the type of data, and val is a pointer to memory where
the user would like the value placed.

If the ImageCache recognizes a valid attribute name that matches the type specified, the
attribute value will be stored at address val and attribute() will return true. If name
is not recognized as a valid attribute name, or if the types do not match (e.g., type is
TypeDesc::FLOAT but the named attribute is a string), no data will be written to val, and
attribute() will return false.

Here are examples:
ImageCache *ts;
...
int maxfiles;
ts->getattribute ("max_open_files", TypeDesc::INT, &maxfiles);

const char *path;
ts->getattribute ("searchpath", TypeDesc::STRING, &path);

Note that when passing a string, you need to pass a pointer to the char*, not a pointer
to the first character. Also, the char* will end up pointing to characters owned by the
ImageCache; the caller does not need to ever free the memory that contains the characters.

The complete list of attributes can be found at the end of this section.

OpenImageIO Programmer’s Documentation

8.2. IMAGECACHE API 75

bool getattribute (const std::string &name, int &val)
bool getattribute (const std::string &name, float &val)
bool getattribute (const std::string &name, double &val)
bool getattribute (const std::string &name, char **val)
bool getattribute (const std::string &name, std::string & val)

Specialized versions of getattribute() in which the data type is implied by the type of
the argument.

For example, the following are equivalent to the example above for the general (pointer)
form of getattribute():

int maxfiles;
ts->getattribute ("max_open_files", &maxfiles);
const char *path;
ts->getattribute ("searchpath", &path);

Image cache attributes

Recognized attributes include the following:

int max open files

The maximum number of file handles that the image cache will hold open simultaneously.
(Default = 100)

float max memory MB

The maximum amount of memory (measured in MB) that the image cache will use for its
“tile cache.” (Default: 50.0 MB)

string searchpath

The search path for images: a colon-separated list of directories that will be searched in
order for any image name that is not specified as an absolute path. (Default: no search
path.)

int autotile

This attributes controls how the image cache deals with images that are not “tiled” (i.e.,
are stored as scanlines).

If autotile is set to 0 (the default), an untiled image will be treated as if it were a single
tile of the resolution of the whole image. This is simple and fast, but can lead to poor
cache behavior if you are simultaneously accessing many large untiled images.

If autotile is nonzero (e.g., 64 is a good recommended value), any untiled images will
be read and cached as if they were constructed in tiles of size autotile × autotile.
This leads to slightly more expensive disk access if you are using only a few images, but
if you are using many untiled images, the caching be much more efficient.

OpenImageIO Programmer’s Documentation

76 CHAPTER 8. CACHED IMAGES

int automip

If automip is set to 0 (the default), an untiled single-subimage file will only be able to
utilize that single subimage.

If autotile is nonzero, any untiled, single-subimage (un-MIP-mapped) images will have
lower-resolution MIP-map levels generated on-demand if pixels are requested from the
lower-res subimages (that don’t really exist). Essentially this makes the ImageCache
pretend that the file is MIP-mapped even if it isn’t.

8.2.3 Getting information about images

bool get image info (ustring filename, ustring dataname,
TypeDesc datatype, void *data)

Retrieves information about the image named by filename. The dataname is a keyword
indcating what information should be retrieved, datatype is the type of data expected,
and data points to caller-owned memory where the results should be placed. It is up
to the caller to ensure that data contains enough space to hold an item of the requested
datatype.

The return value is true if get image info() is able to find the requested dataname
and it matched the requested datatype. If the requested data was not found, or was not
of the right data type, get image info() will return false.

Supported dataname values include:

resolution The resolution of the image file, which is an array of 2 integers (described
as TypeDesc(INT,2)).

texturetype A string describing the type of texture of the given file, which describes
how the texture may be used (also which texture API call is probably the right one
for it). This currently may return one of: "unknown", "Plain Texture", "Volume
Texture", "Shadow", or "Environment".

textureformat A string describing the format of the given file, which describes the kind
of texture stored in the file. This currently may return one of: "unknown", "Plain
Texture", "Volume Texture", "Shadow", "CubeFace Shadow", "Volume Shadow",
"LatLong Environment", or "CubeFace Environment". Note that there are sev-
eral kinds of shadows and environment maps, all accessible through the same API
calls.

channels The number of color channels in the file (an integer).
viewingmatrix The viewing matrix, which is a 4× 4 matrix (an Imath::M44f, de-

scribed as TypeDesc(FLOAT,MATRIX)).
projectionmatrix The projection matrix, which is a 4× 4 matrix (an Imath::M44f,

described as TypeDesc(FLOAT,MATRIX)).
Anything else – For all other data names, the the metadata of the image file will be

searched for an item that matches both the name and data type.

OpenImageIO Programmer’s Documentation

8.2. IMAGECACHE API 77

bool get imagespec (ustring filename, ImageSpec &spec, int subimage=0)

If the named image is found and able to be opened by an available ImageIO plugin,
and the designated subimage exists, this function copies its image specification for that
subimage into spec and returns true. Otherwise, if the file is not found, could not be
opened, is not of a format readable by any ImageIO plugin that could be find, or the
designated subimage did not exist in the file, the return value is false and spec will not
be modified.

std::string resolve filename (const std::string &filename)

Returns the true path to the given file name, with searchpath logic applied.

8.2.4 Getting pixels

bool get pixels (ustring filename, int subimage,
int xmin, int xmax, int ymin, int ymax, int zmin, int zmax,
TypeDesc format, void *result)

Retrieve the rectangle of raw pixels spanning (xmin, ymin, zmin) through (xmax, ymax,
zmax) (inclusive, specified as integer pixel coordinates), of the designated subimage,
storing the pixel values beginning at the address specified by result. The pixel values will
be converted to the type specified by format. It is up to the caller to ensure that result
points to an area of memory big enough to accommodate the requested rectangle (taking
into consideration its dimensions, number of channels, and data format).

8.2.5 Dealing with tiles

ImageCache::Tile get tile (ustring filename, int subimage,
int x, int y, int z)

Find a tile given by an image filename, subimage, and pixel coordinates. An opaque
pointer to the tile will be returned, or NULL if no such file (or tile within the file) exists or
can be read. The tile will not be purged from the cache until after release tile() is
called on the tile pointer. This is thread-safe.

void release tile (ImageCache::Tile *tile)

After finishing with a tile, release tile() will allow it to once again be purged from
the tile cache if required.

const void * tile pixels (ImageCache::Tile *tile, TypeDesc &format)

For a tile retrived by get tile(), return a pointer to the pixel data itself, and also store in
format the data type that the pixels are internally stored in (which may be different than
the data type of the pixels in the disk file). This method should only be called on a tile that
has been requested by get tile() but has not yet been released with release tile().

OpenImageIO Programmer’s Documentation

78 CHAPTER 8. CACHED IMAGES

void invalidate (ustring filename)

Invalidate any loaded tiles or open file handles associated with the filename, so that any
subsequent queries will be forced to re-open the file or re-load any tiles (even those that
were previously loaded and would ordinarily be reused). A client might do this if, for
example, they are aware that an image being held in the cache has been updated on disk.
This is safe to do even if other procedures are currently holding reference-counted tile
pointers from the named image, but those procedures will not get updated pixels until
they release the tiles they are holding.

8.2.6 Errors and statistics

std::string geterror ()

If any other API routines return false, indicating that an error has occurred, this routine
will retrieve the error and clear the error status. If no error has occurred since the last
time geterror() was called, it will return an empty string.

std::string getstats (int level=1)

Returns a big string containing useful statistics about the ImageCache operations, suitable
for saving to a file or outputting to the terminal. The level indicates the amount of detail
in the statistics, with higher numbers (up to a maximum of 5) yielding more and more
esoteric information.

OpenImageIO Programmer’s Documentation

9 Texture Access: TextureSystem

9.1 Texture System Introduction and Theory of Operation

Coming soon. FIXME

9.2 Helper Classes

9.2.1 Imath

The texture functinality of OpenImageIO uses the excellent open source Ilmbase package’s
Imath types when it requires 3D vectors and transformation matrixes. Specifically, we use
Imath::V3f for 3D positions and directions, and Imath::M44f for 4×4 transformation matri-
ces. To use these yourself, we recommend that you:

#include <ImathVec.h>
#include <ImathMatrix.h>

Please refer to the Ilmbase and OpenEXR documentation and header files for more complete
information about use of these types in your own application. However, note that you are not
strictly required to use these classes in your application — Imath::V3f has a memory layout
identical to float[3] and Imath::M44f has a memory layout identical to float[16], so as
long as your own internal vectors and matrices have the same memory layout, it’s ok to just cast
pointers to them when passing as arguments to TextureSystem methods.

9.2.2 VaryingRef: encapsulate uniform and varying

All of the texture access API routines are designed to loook up texture efficiently at many
points at once. Therefore, many of the parameters to the API routines, and many of the fields in
TextureOptions need to accommodate both uniform and varying values. Uniform means that
a single value may be used for each of the many simultaneous texture lookups, whereas varying
means that a different value is provided for each of the positions where you are sampling the
texture.

Please read the comments in "varyingref.h" for the full gory details, but here’s all you
really need to know about it to use the texture functionality. Let’s suppose that we have a routine
whose prototype looks like this:

void API (int n, VaryingRef<float> x);

79

80 CHAPTER 9. TEXTURE ACCESS: TEXTURESYSTEM

This means that parameter x may either be a single value for use at each of the n texture lookups,
or it may have n different values of x.

If you want to pas a uniform value, you may do any of the following:

float x; // just one value
API (n, x); // automatically knows what to do!
API (n, &x); // Also ok to pass the pointer to x
API (n, VaryingRef<float>(x)); // Wordy but correct
API (n, Uniform(x)); // Shorthand

If you want to pass a varying value, i.e., an array of values,

float x[n]; // One value for each of n points
API (n, VaryingRef<float>(x), sizeof(x)); // Wordy but correct
API (n, Varying(x)); // Shorthand if stride is sizeof(x)

You can also initialize a VaryingRef directly:

float x; // just one value
float y[n]; // array of values
VaryingRef<float> r;
r.init (&x); // Initialize to uniform
r.init (&x, 0); // Initialize to uniform the wordy way
r.init (&y, sizeof(float)); // Initialize to varying
...
API (n, r);

9.2.3 TextureOptions

TextureOptions is a structure that holds many options controlling individual texture lookups.
Because each texture lookup API call takes a reference to a TextureOptions, the call signa-
tures remain uncluttered rather than having an ever-growing list of parameters, most of which
will never vary from their defaults. Here is a brief description of the data members of a
TextureOptions structure:

int nchannels
int firstchannel

The number of color channels to look up from the texture — for example, 1 (single
channel), or 3 (for an RGB triple) — and the number of channels to look up. The defaults
are firstchannel = 0, nchannels = 1.

Examples: To retrieve the first three channels (typically RGB), you should have nchannels
= 3, firstchannel = 0. To retrieve just the blue channel, you should have nchannels = 1,
firstchannel = 2.

Wrap swrap, twrap

OpenImageIO Programmer’s Documentation

9.2. HELPER CLASSES 81

Specify the wrap mode for 2D texture lookups (and 3D volume texture lookups, using the
additional zwrap field). These fields are ignored for shadow and environment lookups.

These specify what happens when texture coordinates are found to be outside the usual
[0,1] range over which the texture is defined. Wrap is an enumerated type that may take
on any of the following values:

WrapBlack The texture is black outside the [0,1] range.

WrapClamp The texture coordinates will be clamped to [0,1], i.e., the value outside [0,1]
will be the same as the color at the nearest point on the border.

WrapPeriodic The texture is periodic, i.e., wraps back to 0 after going past 1.

WrapMirror The texture presents a mirror image at the edges, i.e., the coordinates go
from 0 to 1, then back down to 0, then back up to 1, etc.

WrapDefault Use whatever wrap might be specified in the texture file itself, or some
other suitable default (caveat emptor).

The wrap mode does not need to be identical in the s and t directions.

VaryingRef<float> swidth, twidth

For each direction, gives a multiplier for the derivatives. Note that a width of 0 indicates a
point sampled lookup (assuming that blur is also zero). The default width is 1, indicating
that the derivatives should guide the amount of blur applied to the texture filtering (not
counting any additional blur specified).

VaryingRef<float> sblur, tblur

For each direction, specifies an additional amount of pre-blur to apply to the texture (after
derivatives are taken into account), expressed as a portion of the width of the texture. In
other words, blur = 0.1 means that the texture lookup should act as if the texture was
pre-blurred with a filter kernel with a width 1/10 the size of the full image. The default
blur amount is 0, indicating a sharp texture lookup.

VaryingRef<float> bias

For shadow map lookups only, this gives the “shadow bias” amount.

VaryingRef<float> fill

Specifies the value that will be used for any color channels that are requested but not
found in the file. For example, if you perform a 3-channel lookup on a 1-channel texture,
the second two channels will get the fill value.

VaryingRef<int> samples

The number of samples to use for each lookup. Currently this only applies for certain
types of shadow maps.

OpenImageIO Programmer’s Documentation

82 CHAPTER 9. TEXTURE ACCESS: TEXTURESYSTEM

VaryingRef<float> alpha

Specifies a destination for one additional channel to be looked up, the one immediately
following the return value (i.e., channel firstchannel+nchannels). The point of this is to
allow a 4-channel lookup, with the 4th channel put in an entirely different variable than
the 3-channel color. The default for alpha is to point to NULL, indicating that no extra
alpha channel should be retrieved.

Wrap zwrap
VaryingRef<float> zblur, zwidth

Specifies wrap, blur, and width for 3D volume texture lookups only.

9.2.4 SIMD Run Flags

Most of the texture lookup API routines are written to accommodate queries about many points
at once. Furthermore, only a subset of points may need to compute. This is all expressed using
three parameters: Runflag *runflags, int firstactive, int lastactive. There are
also VaryingRef parameters such as s and t that act as if they are arrays.

The firstactive and lastactive indices are the first and last (inclusive) points that
should be computed, and for each point runflags[i] is nonzero if the point should be com-
puted. To illustrate, here is how a routine might be written that would copy values in arg to
result using runflags:

void copy (Runflag *runflags, int firstactive, int lastactive,
VaryingRef<float> arg, VaryingRef <float> result)

{
for (int i = firstactive; i <= lastactive; ++i)

if (runflags[i])
result[i] = arg[i];

}

OpenImageIO Programmer’s Documentation

9.3. TEXTURESYSTEM API 83

9.3 TextureSystem API

9.3.1 Creating and destroying texture systems

TextureSystem is an abstract API described as a pure virtual class. The actual internal imple-
mentation is not exposed through the external API of OpenImageIO. Because of this, you cannot
construct or destroy the concrete implementation, so two static methods of TextureSystem are
provided:

static TextureSystem *TextureSystem::create (bool share=true)

Creates a new TextureSystem and returns a pointer to it. If shared is true, the TextureSystem
created will share its underlying ImageCachewith any other TextureSystem’s or ImageCache’s
that requested shared caches. If shared is false, a completely unique ImageCache will
be created that is private to this particular TextureSystem.

static void TextureSystem::destroy (TextureSystem *x)

Destroys an allocated TextureSystem, including freeing all system resources that it
holds.

This is necessary to ensure that the memory is freed in a way that matches the way it was
allocated within the library. Note that simply using delete on the pointer will not always
work (at least, not on some platforms in which a DSO/DLL can end up using a different
allocator than the main program).

9.3.2 Setting options and limits for the texture system

The following member functions of TextureSystem allow you to set (and in some cases re-
trieve) options that control the overall behavior of the texture system:

bool attribute (const std::string &name, TypeDesc type, const void *val)

Sets an attribute (i.e., a property or option) of the TextureSystem. The name designates
the name of the attribute, type describes the type of data, and val is a pointer to memory
containing the new value for the attribute.

If the TextureSystem recognizes a valid attribute name that matches the type specified,
the attribute will be set to the new value and attribute() will return true. If name
is not recognized as a valid attribute name, or if the types do not match (e.g., type is
TypeDesc::FLOAT but the named attribute is a string), the attribute will not be modified,
and attribute() will return false.

Here are examples:
TextureSystem *ts;
...
int maxfiles = 50;
ts->attribute ("max_open_files", TypeDesc::INT, &maxfiles);

const char *path = "/my/path";
ts->attribute ("searchpath", TypeDesc::STRING, &path);

OpenImageIO Programmer’s Documentation

84 CHAPTER 9. TEXTURE ACCESS: TEXTURESYSTEM

Note that when passing a string, you need to pass a pointer to the char*, not a pointer to
the first character. (Rationale: for an int attribute, you pass the address of the int. So
for a string, which is a char*, you need to pass the address of the string, i.e., a char**).

The complete list of attributes can be found at the end of this section.

bool attribute (const std::string &name, int val)
bool attribute (const std::string &name, float val)
bool attribute (const std::string &name, double val)
bool attribute (const std::string &name, const char *val)
bool attribute (const std::string &name, const std::string & val)

Specialized versions of attribute() in which the data type is implied by the type of the
argument.

For example, the following are equivalent to the example above for the general (pointer)
form of attribute():

ts->attribute ("max_open_files", 50);
ts->attribute ("searchpath", "/my/path");

bool getattribute (const std::string &name, TypeDesc type, void *val)

Gets the current value of an attribute of the TextureSystem. The name designates the
name of the attribute, type describes the type of data, and val is a pointer to memory
where the user would like the value placed.

If the TextureSystem recognizes a valid attribute name that matches the type specified,
the attribute value will be stored at address val and attribute() will return true. If
name is not recognized as a valid attribute name, or if the types do not match (e.g., type
is TypeDesc::FLOAT but the named attribute is a string), no data will be written to val,
and attribute() will return false.

Here are examples:

TextureSystem *ts;
...
int maxfiles;
ts->getattribute ("max_open_files", TypeDesc::INT, &maxfiles);

const char *path;
ts->getattribute ("searchpath", TypeDesc::STRING, &path);

Note that when passing a string, you need to pass a pointer to the char*, not a pointer
to the first character. Also, the char* will end up pointing to characters owned by the
TextureSystem; the caller does not need to ever free the memory that contains the char-
acters.

The complete list of attributes can be found at the end of this section.

OpenImageIO Programmer’s Documentation

9.3. TEXTURESYSTEM API 85

bool getattribute (const std::string &name, int &val)
bool getattribute (const std::string &name, float &val)
bool getattribute (const std::string &name, double &val)
bool getattribute (const std::string &name, char **val)
bool getattribute (const std::string &name, std::string & val)

Specialized versions of getattribute() in which the data type is implied by the type of
the argument.

For example, the following are equivalent to the example above for the general (pointer)
form of getattribute():

int maxfiles;
ts->getattribute ("max_open_files", &maxfiles);
const char *path;
ts->getattribute ("searchpath", &path);

Texture system attributes

Recognized attributes include the following:

int max open files
float max memory MB
string searchpath
int autotile
int automip

These attributes are all passed along to the underlying ImageCache that is used internally
by the TextureSystem. Please consult the ImageCache attribute list in Section 8.2.2 for
explanations of these attributes.

matrix worldtocommon

The 4× 4 matrix that provides the spatial transformation from “world” to a “common”
coordinate system. This is used for shadow map lookups, in which the shadow map itself
encodes the world coordinate system, but positions passed to shadow() are expressed in
“common” coordinates.

matrix commontoworld

The 4× 4 matrix that is the inverse of worldtocommon — that is, it transforms points
from “common” to “world” coordinates.

You do not need to set commontoworld and worldtocommon separately; just setting either
one will implicitly set the other, since each is the inverse of the other.

OpenImageIO Programmer’s Documentation

86 CHAPTER 9. TEXTURE ACCESS: TEXTURESYSTEM

9.3.3 Texture Lookups

bool texture (ustring filename, TextureOptions &options,
float s, float t, float dsdx, float dtdx,
float dsdy, float dtdy, float *result)

Perform a filtered 2D texture lookup on a position centered at 2D coordinates (s, t) from
the texture identified by filename, and using relevant texture options. The filtered
results will be stored in result[].

We assume that this lookup will be part of an image that has pixel coordinates x and y.
By knowing how s and t change from pixel to pixel in the final image, we can properly
filter or antialias the texture lookups. This information is given via derivatives dsdx and
dtdx that define the change in s and t per unit of x, and dsdy and dtdy that define the
change in s and t per unit of y. If it is impossible to know the derivatives, you may pass
0 for them, but in that case you will not receive an antialiased texture lookup.

Fields within options that are honored for 2D texture lookups include the following:

int nchannels

The number of color channels to look up from the texture.

int firstchannel

The index of the first channel to look up from the texture.

Wrap swrap, twrap

Specify the wrap mode for each direction, one of: WrapBlack, WrapClamp, WrapPeriodic,
WrapMirror, or WrapDefault.

VaryingRef<float> swidth, twidth

For each direction, gives a multiplier for the derivatives.

VaryingRef<float> sblur, tblur

For each direction, specifies an additional amount of pre-blur to apply to the texture
(after derivatives are taken into account), expressed as a portion of the width of the
texture.

VaryingRef<float> fill

Specifies the value that will be used for any color channels that are requested but
not found in the file.

VaryingRef<float> alpha

Specifies a destination for one additional channel to be looked up, the one immedi-
ately following the return value (i.e., channel firstchannel + nchannels). The point
of this is to allow a 4-channel lookup, with the 4th channel put in an entirely differ-
ent variable than the 3-channel color. The default for alpha is to point to NULL,
indicating that no extra alpha channel should be retrieved.

OpenImageIO Programmer’s Documentation

9.3. TEXTURESYSTEM API 87

This function returns true upon success, or false if the file was not found or could not
be opened by any available ImageIO plugin.

bool texture (ustring filename, TextureOptions &options,
Runflag *runflags, int firstactive, int lastactive,
VaryingRef<float> s, VaryingRef<float> t,
VaryingRef<float> dsdx, VaryingRef<float> dtdx,
VaryingRef<float> dsdy, VaryingRef<float> dtdy,
float *result)

Perform filtered 2D texture lookups on a collection of positions all at once, which may be
much more efficient than repeatedly calling the single-point version of texture(). The
parameters s, t, dsdx, dtdx, and dsdy, dtdy are now VaryingRef’s that may refer to
either a single or an array of values, as are all the fields in the options.

Texture will be computed at indices firstactive through lastactive, inclusive, but
only at indices where runflags[i] is nonzero. Results will be stored at corresponding
positions of result, that is, result[i*n ... (i+1)*n-1] where n is the number of
channels requested by options.nchannels.

This function returns true upon success, or false if the file was not found or could not
be opened by any available ImageIO plugin.

OpenImageIO Programmer’s Documentation

88 CHAPTER 9. TEXTURE ACCESS: TEXTURESYSTEM

9.3.4 Volume Texture Lookups

bool texture (ustring filename, TextureOptions &options,
const Imath::V3f &P,
const Imath::V3f &dPdx,
const Imath::V3f &dPdy,
float *result)

Perform a filtered 3D volumetric texture lookup on a position centered at 3D position P
from the texture identified by filename, and using relevant texture options. The filtered
results will be stored in result[].

We assume that this lookup will be part of an image that has pixel coordinates x and y.
By knowing how P changes from pixel to pixel in the final image, we can properly filter
or antialias the texture lookups. This information is given via derivatives dPdx and dPdy
that define the changes in P per unit of x and y, respectively. If it is impossible to know the
derivatives, you may pass 0 for them, but in that case you will not receive an antialiased
texture lookup.

Fields within options that are honored for 3D texture lookups include the following:

int nchannels

The number of color channels to look up from the texture.

int firstchannel

The index of the first channel to look up from the texture.

Wrap swrap, twrap, zwrap

Specify the wrap modes for each direction, one of: WrapBlack, WrapClamp, WrapPeriodic,
WrapMirror, or WrapDefault.

VaryingRef<float> swidth, twidth, zwidth

For each direction, gives a multiplier for the derivatives.

VaryingRef<float> sblur, tblur, zblur

For each direction, specifies an additional amount of pre-blur to apply to the texture
(after derivatives are taken into account), expressed as a portion of the width of the
texture.

VaryingRef<float> fill

Specifies the value that will be used for any color channels that are requested but
not found in the file.

VaryingRef<float> alpha

Specifies a destination for one additional channel to be looked up, the one immedi-
ately following the return value (i.e., channel firstchannel + nchannels). The point
of this is to allow a 4-channel lookup, with the 4th channel put in an entirely differ-
ent variable than the 3-channel color. The default for alpha is to point to NULL,
indicating that no extra alpha channel should be retrieved.

OpenImageIO Programmer’s Documentation

9.3. TEXTURESYSTEM API 89

This function returns true upon success, or false if the file was not found or could not
be opened by any available ImageIO plugin.

bool texture (ustring filename, TextureOptions &options,
Runflag *runflags, int firstactive, int lastactive,
VaryingRef<Imath::V3f> P,
VaryingRef<Imath::V3f> dPdx,
VaryingRef<Imath::V3f> dPdy,
float *result)

Perform filtered 3D volumetric texture lookups on a collection of positions all at once,
which may be much more efficient than repeatedly calling the single-point version of
texture(). The parameters P, dPdx, and dPdy are now VaryingRef’s that may refer to
either a single or an array of values, as are all the fields in the options.

Texture will be computed at indices firstactive through lastactive, inclusive, but
only at indices where runflags[i] is nonzero. Results will be stored at corresponding
positions of result, that is, result[i*n ... (i+1)*n-1] where n is the number of
channels requested by options.nchannels.

This function returns true upon success, or false if the file was not found or could not
be opened by any available ImageIO plugin.

OpenImageIO Programmer’s Documentation

90 CHAPTER 9. TEXTURE ACCESS: TEXTURESYSTEM

9.3.5 Shadow Lookups

bool shadow (ustring filename, TextureOptions &options,
const Imath::V3f &P,
const Imath::V3f &dPdx,
const Imath::V3f &dPdy,
float *result)

Perform a shadow map lookup on a position centered at 3D coordinate P (in a designated
“common” space) from the shadow map identified by filename, and using relevant tex-
ture options. The filtered results will be stored in result[].

We assume that this lookup will be part of an image that has pixel coordinates x and y.
By knowing how P changes from pixel to pixel in the final image, we can properly filter
or antialias the texture lookups. This information is given via derivatives dPdx and dPdy
that define the changes in P per unit of x and y, respectively. If it is impossible to know the
derivatives, you may pass 0 for them, but in that case you will not receive an antialiased
texture lookup.

Fields within options that are honored for 2D texture lookups include the following:

VaryingRef<float> swidth, twidth

For each direction, gives a multiplier for the derivatives.

VaryingRef<float> sblur, tblur

For each direction, specifies an additional amount of pre-blur to apply to the texture
(after derivatives are taken into account), expressed as a portion of the width of the
texture.

VaryingRef<float> bias

Specifies the amount of shadow bias to use — this effectively ignores shadow oc-
clusion that is closer than the bias amount to the surface, helping to eliminate self-
shadowing artifacts.

VaryingRef<int> samples

Specifies the number of samples to use when evaluating the shadow map. More
samples will give a smoother, less noisy, appearance to the shadows, but may also
take longer to compute.

This function returns true upon success, or false if the file was not found or could not
be opened by any available ImageIO plugin.

bool shadow (ustring filename, TextureOptions &options,
Runflag *runflags, int firstactive, int lastactive,
VaryingRef<Imath::V3f> P,
VaryingRef<Imath::V3f> dPdx,
VaryingRef<Imath::V3f> dPdy,
float *result)

OpenImageIO Programmer’s Documentation

9.3. TEXTURESYSTEM API 91

Perform filtered shadow map lookups on a collection of positions all at once, which may
be much more efficient than repeatedly calling the single-point version of shadow(). The
parameters P, dPdx, and dPdy are now VaryingRef’s that may refer to either a single or
an array of values, as are all the fields in the options.

Shadow lookups will be computed at indices firstactive through lastactive, in-
clusive, but only at indices where runflags[i] is nonzero. Results will be stored at
corresponding positions of result, that is, result[i*n ... (i+1)*n-1] where n is
the number of channels requested by options.nchannels.

This function returns true upon success, or false if the file was not found or could not
be opened by any available ImageIO plugin.

OpenImageIO Programmer’s Documentation

92 CHAPTER 9. TEXTURE ACCESS: TEXTURESYSTEM

9.3.6 Environment Lookups

bool environment (ustring filename, TextureOptions &options,
const Imath::V3f &R,
const Imath::V3f &dRdx,
const Imath::V3f &dRdy,
float *result)

Perform a filtered directional environment map lookup in the direction of vector R, from
the texture identified by filename, and using relevant texture options. The filtered
results will be stored in result[].

We assume that this lookup will be part of an image that has pixel coordinates x and y.
By knowing how R changes from pixel to pixel in the final image, we can properly filter
or antialias the texture lookups. This information is given via derivatives dRdx and dRdy
that define the changes in R per unit of x and y, respectively. If it is impossible to know the
derivatives, you may pass 0 for them, but in that case you will not receive an antialiased
texture lookup.

Fields within options that are honored for 3D texture lookups include the following:

int nchannels

The number of color channels to look up from the texture.

int firstchannel

The index of the first channel to look up from the texture.

VaryingRef<float> swidth, twidth

For each direction, gives a multiplier for the derivatives.

VaryingRef<float> sblur, tblur

For each direction, specifies an additional amount of pre-blur to apply to the texture
(after derivatives are taken into account), expressed as a portion of the width of the
texture.

VaryingRef<float> fill

Specifies the value that will be used for any color channels that are requested but
not found in the file.

VaryingRef<float> alpha

Specifies a destination for one additional channel to be looked up, the one immedi-
ately following the return value (i.e., channel firstchannel + nchannels). The point
of this is to allow a 4-channel lookup, with the 4th channel put in an entirely differ-
ent variable than the 3-channel color. The default for alpha is to point to NULL,
indicating that no extra alpha channel should be retrieved.

This function returns true upon success, or false if the file was not found or could not
be opened by any available ImageIO plugin.

OpenImageIO Programmer’s Documentation

9.3. TEXTURESYSTEM API 93

bool environment (ustring filename, TextureOptions &options,
Runflag *runflags, int firstactive, int lastactive,
VaryingRef<Imath::V3f> R,
VaryingRef<Imath::V3f> dRdx,
VaryingRef<Imath::V3f> dRdy,
float *result)

Perform filtered directional environment map lookups on a collection of directions all at
once, which may be much more efficient than repeatedly calling the single-point version
of environment(). The parameters R, dRdx, and dRdy are now VaryingRef’s that may
refer to either a single or an array of values, as are all the fields in the options.

Results will be computed at indices firstactive through lastactive, inclusive, but
only at indices where runflags[i] is nonzero. Results will be stored at corresponding
positions of result, that is, result[i*n ... (i+1)*n-1] where n is the number of
channels requested by options.nchannels.

This function returns true upon success, or false if the file was not found or could not
be opened by any available ImageIO plugin.

OpenImageIO Programmer’s Documentation

94 CHAPTER 9. TEXTURE ACCESS: TEXTURESYSTEM

9.3.7 Texture Metadata, Raw Texels, and Errors

bool get texture info (ustring filename, ustring dataname,
TypeDesc datatype, void *data)

Retrieves information about the texture named by filename. The dataname is a keyword
indcating what information should be retrieved, datatype is the type of data expected,
and data points to caller-owned memory where the results should be placed. It is up
to the caller to ensure that data contains enough space to hold an item of the requested
datatype.

The return value is true if get texture info() is able to find the requested dataname
and it matched the requested datatype. If the requested data was not found, or was not
of the right data type, get texture info() will return false.

Supported dataname values include:

resolution The resolution of the texture file, which is an array of 2 integers (described
as TypeDesc(INT,2)).

texturetype A string describing the type of texture of the given file, which describes
how the texture may be used (also which texture API call is probably the right one
for it). This currently may return one of: "unknown", "Plain Texture", "Volume
Texture", "Shadow", or "Environment".

textureformat A string describing the format of the given file, which describes the kind
of texture stored in the file. This currently may return one of: "unknown", "Plain
Texture", "Volume Texture", "Shadow", "CubeFace Shadow", "Volume Shadow",
"LatLong Environment", or "CubeFace Environment". Note that there are sev-
eral kinds of shadows and environment maps, all accessible through the same API
calls.

channels The number of color channels in the file (an integer).

viewingmatrix The viewing matrix, which is a 4× 4 matrix (an Imath::M44f, de-
scribed as TypeDesc(FLOAT,MATRIX)).

projectionmatrix The projection matrix, which is a 4× 4 matrix (an Imath::M44f,
described as TypeDesc(FLOAT,MATRIX)).

Anything else – For all other data names, the the metadata of the image file will be
searched for an item that matches both the name and data type.

bool get imagespec (ustring filename, ImageSpec &spec)

If the named image is found and able to be opened by an available ImageIO plugin, this
function copies its image specification into spec and returns true. Otherwise, if the file
is not found, could not be opened, or is not of a format readable by any ImageIO plugin
that could be find, the return value is false.

OpenImageIO Programmer’s Documentation

9.3. TEXTURESYSTEM API 95

bool get texels (ustring filename, TextureOptions &options,
int xmin, int xmax, int ymin, int ymax,
int zmin, int zmax, int level,
TypeDesc format, void *result)

Retrieve the rectangle of raw unfiltered texels spanning (xmin, ymin, zmin) through
(xmax, ymax, zmax) (inclusive, specified as integer pixel coordinates), at the named MIP-
map level, storing the texel values beginning at the address specified by result. The texel
values will be converted to the type specified by format. It is up to the caller to ensure that
result points to an area of memory big enough to accommodate the requested rectangle
(taking into consideration its dimensions, number of channels, and data format).

Fields within options that are honored for raw texel retieval include the following:

int nchannels

The number of color channels to look up from the texture.

int firstchannel

The index of the first channel to look up from the texture.

VaryingRef<float> fill

Specifies the value that will be used for any color channels that are requested but
not found in the file.

Return true if the file is found and could be opened by an available ImageIO plugin,
otherwise return false.

std::string resolve filename (const std::string &filename)

Returns the true path to the given file name, with searchpath logic applied.

std::string geterror ()

If any other API routines return false, indicating that an error has occurred, this routine
will retrieve the error and clear the error status. If no error has occurred since the last
time geterror() was called, it will return an empty string.

std::string getstats (int level=1, bool icstats=true)

Returns a big string containing useful statistics about the ImageCache operations, suitable
for saving to a file or outputting to the terminal. The level indicates the amount of detail
in the statistics, with higher numbers (up to a maximum of 5) yielding more and more
esoteric information. If icstats is true, the returned string will also contain all the
statistics of the underlying ImageCache, but if false will only contain texture-specific
statistics.

OpenImageIO Programmer’s Documentation

96 CHAPTER 9. TEXTURE ACCESS: TEXTURESYSTEM

OpenImageIO Programmer’s Documentation

Part II

Image Utilities

97

10 The iv Image Viewer

The iv program is a great interactive image viewer. Because iv is built on top on OpenImageIO,
it can display images of any formats readable by ImageInput plugins on hand.

More documentation on this later.

99

100 CHAPTER 10. THE IV IMAGE VIEWER

OpenImageIO Programmer’s Documentation

11 Getting Image information With
iinfo

The iinfo program will print either basic information (name, resolution, format) or detailed
information (including all metadata) found in images. Because iinfo is built on top on Open-
ImageIO, it will print information about images of any formats readable by ImageInput plugins
on hand.

11.1 Using iinfo

The iinfo utility is invoked as follows:

iinfo [options] filename ...

Where filename (and any following strings) names the image file(s) whose information
should be printed. The image files may be of any format recognized by OpenImageIO (i.e.,
for which ImageInput plugins are available).

In its most basic usage, it simply prints the resolution, number of channels, pixel data type,
and file format type of each of the files listed:

$ iinfo img_6019m.jpg grid.tif lenna.png

img_6019m.jpg : 1024 x 683, 3 channel, uint8 jpeg
grid.tif : 512 x 512, 3 channel, uint8 tiff
lenna.png : 120 x 120, 4 channel, uint8 png

The -s flag also prints the uncompressed sizes of each image file, plus a sum for all of the
images:

$ iinfo -s img_6019m.jpg grid.tif lenna.png

img_6019m.jpg : 1024 x 683, 3 channel, uint8 jpeg (2.00 MB)
grid.tif : 512 x 512, 3 channel, uint8 tiff (0.75 MB)
lenna.png : 120 x 120, 4 channel, uint8 png (0.05 MB)
Total size: 2.81 MB

The -v option turns on verbose mode, which exhaustively prints all metadata about each
image:

101

102 CHAPTER 11. GETTING IMAGE INFORMATION WITH IINFO

$ iinfo -v img_6019m.jpg

img_6019m.jpg : 1024 x 683, 3 channel, uint8 jpeg
channel list: R, G, B
Color space: sRGB
ImageDescription: "Family photo"
Make: "Canon"
Model: "Canon EOS DIGITAL REBEL XT"
Orientation: 1 (normal)
XResolution: 72
YResolution: 72
ResolutionUnit: 2 (inches)
DateTime: "2008:05:04 19:51:19"
Exif:YCbCrPositioning: 2
ExposureTime: 0.004
FNumber: 11
Exif:ExposureProgram: 2 (normal program)
Exif:ISOSpeedRatings: 400
Exif:DateTimeOriginal: "2008:05:04 19:51:19"
Exif:DateTimeDigitized: "2008:05:04 19:51:19"
Exif:ShutterSpeedValue: 7.96579 (1/250 s)
Exif:ApertureValue: 6.91887 (f/11)
Exif:ExposureBiasValue: 0
Exif:MeteringMode: 5 (pattern)
Exif:Flash: 16 (no flash, flash supression)
Exif:FocalLength: 27 (27 mm)
Exif:ColorSpace: 1
Exif:PixelXDimension: 2496
Exif:PixelYDimension: 1664
Exif:FocalPlaneXResolution: 2855.84
Exif:FocalPlaneYResolution: 2859.11
Exif:FocalPlaneResolutionUnit: 2 (inches)
Exif:CustomRendered: 0 (no)
Exif:ExposureMode: 0 (auto)
Exif:WhiteBalance: 0 (auto)
Exif:SceneCaptureType: 0 (standard)
Keywords: "Carly; Jack"

11.2 iinfo command-line options

--help

Prints usage information to the terminal.

-v

Verbose output — prints all metadata of the image files.

OpenImageIO Programmer’s Documentation

11.2. IINFO COMMAND-LINE OPTIONS 103

-f

Print the filename as a prefix to every line. For example,

$ iinfo -v -f img_6019m.jpg

img_6019m.jpg : 1024 x 683, 3 channel, uint8 jpeg
img_6019m.jpg : channel list: R, G, B
img_6019m.jpg : Color space: sRGB
img_6019m.jpg : ImageDescription: "Family photo"
img_6019m.jpg : Make: "Canon"
...

-m pattern

Match the pattern (specified as an extended regular expression) against data metadata
field names and print only data fields whose names match. The default is to print all data
fields found in the file (if -v is given).

For example,

$ iinfo -v -f -m ImageDescription test*.jpg

test3.jpg : ImageDescription: "Birthday party"
test4.jpg : ImageDescription: "Hawaii vacation"
test5.jpg : ImageDescription: "Bob’s graduation"
test6.jpg : ImageDescription: <unknown>

Note: the -m option is probably not very useful without also using the -v and -f options.

-s

Show the image sizes, including a sum of all the listed images.

OpenImageIO Programmer’s Documentation

104 CHAPTER 11. GETTING IMAGE INFORMATION WITH IINFO

OpenImageIO Programmer’s Documentation

12 Converting Image Formats With
iconvert

12.1 Overview

The iconvert program will read an image (from any file format for which an ImageInput
plugin can be found) and then write the image to a new file (in any format for which an
ImageOutput plugin can be found). In the process, iconvert can optionally change the file for-
mat or data format (for example, converting floating-point data to 8-bit integers), apply gamma
correction, switch between tiled and scanline orientation, or alter or add certain metadata to the
image.

The iconvert utility is invoked as follows:

iconvert [options] input output

Where input and output name the input image and desired output filename. The image files
may be of any format recognized by OpenImageIO (i.e., for which ImageInput plugins are
available). The file format of the output image will be inferred from the file extension of the
output filename (e.g., "foo.tif" will write a TIFF file).

Alternately, any number of files may be specified as follows:

iconvert --inplace [options] file1 file2 ..

When the --inplace option is used, any number of file names ≥ 1 may be specified, and
the image conversion commands are applied to each file in turn, with the output being saved
under the original file name. This is useful for applying the same conversion to many files,
or simply if you want to replace the input with the output rather than create a new file with a
different name.

12.2 iconvert Recipes

This section will give quick examples of common uses of iconvert.

Converting between file formats

It’s a snap to converting among image formats supported by OpenImageIO (i.e., for which
ImageInput and ImageOutput plugins can be found). The iconvert utility will simply infer
the file format from the file extension. The following example converts a PNG image to JPEG:

105

106 CHAPTER 12. CONVERTING IMAGE FORMATS WITH ICONVERT

iconvert lena.png lena.jpg

Changing the data format or bit depth

Just use the -d option to specify a pixel data format. For example, assuming that in.tif uses
16-bit unsigned integer pixels, the following will convert it to an 8-bit unsigned pixels:

iconvert -d uint8 in.tif out.tif

Changing the compression

The following command converts writes a TIFF file, specifically using LZW compression:

iconvert --compression lzw in.tif out.tif

The following command writes its results as a JPEG file at a compression quality of 50
(pretty severe compression):

iconvert --quality 50 big.jpg small.jpg

Gamma-correcting an image

The following gamma-corrects the pixels, raising all pixel values to x1/2.2 upon writing:

iconvert -g 2.2 in.tif out.tif

Converting between scanline and tiled images

Convert a scanline file to a tiled file with 16×16 tiles:

iconvert --tile 16 16 s.tif t.tif

Convert a tiled file to scanline:

iconvert --scanline t.tif s.tif

Converting images in place

You can use the --inplace flag to cause the output to replace the input file, rather than create a
new file with a different name. For example, this will re-compress all of your TIFF files to use
ZIP compression (rather than whatever they currently are using):

iconvert --inplace --compression zip *.tif

OpenImageIO Programmer’s Documentation

12.3. ICONVERT COMMAND-LINE OPTIONS 107

Change the file modification time to the image capture time

Many image formats (including JPEGs from digital cameras) contain an internal time stamp
indicating when the image was captured. But the time stamp on the file itself (what you’d see in
a directory listing from your OS) most likely shows when the file was last copied, not when it
was created or captured. You can use the following command to re-stamp your files so that the
file system modification time matches the time that the digital image was originally captured:

iconvert --inplace --adjust-time *.jpg

Add captions, keywords, IPTC tags

For formats that support it, you can add a caption/image description, keywords, or arbitrary
string metadata:

iconvert --inplace --adjust-time --caption "Hawaii vacation" *.jpg

iconvert --inplace --adjust-time --keyword "John" img18.jpg img21.jpg

iconvert --inplace --adjust-time --attrib IPTC:State "HI" \
--attrib IPTC:City "Honolulu" *.jpg

12.3 iconvert command-line options

--help

Prints usage information to the terminal.

-v

Verbose status messages.

--inplace

Causes the output to replace the input file, rather than create a new file with a different
name.

Without this flag, iconvert expects two file names, which will be used to specify the
input and output files, respectively.

But when --inplace option is used, any number of file names ≥ 1 may be specified, and
the image conversion commands are applied to each file in turn, with the output being
saved under the original file name. This is useful for applying the same conversion to
many files.

For example, the following example will add the caption “Hawaii vacation” to all JPEG
files in the current directory:

iconvert --inplace --adjust-time --caption "Hawaii vacation" *.jpg

OpenImageIO Programmer’s Documentation

108 CHAPTER 12. CONVERTING IMAGE FORMATS WITH ICONVERT

-d datatype

Attempt to sets the output pixel data type to one of: uint8, sint8, uint16, sint16,
half, float, double.

If the -d option is not supplied, the output data type will be the same as the data format
of the input file.

In either case, the output file format itself (implied by the file extension of the output
filename) may trump the request if the file format simply does not support the requested
data type.

-g gamma

Applies a gamma correction of 1/gamma to the pixels as they are output.

--sRGB

Explicitly tags the image as being in sRGB color space. Note that this does not alter pixel
values, it only marks which color space those values refer to (and only works for file
formats that understand such things). An example use of this command is if you have an
image that is not explicitly marked as being in any particular color space, but you know
that the values are sRGB.

--tile x y

Requests that the output file be tiled, with the given x× y tile size, if tiled images are
supported by the output format. By default, the output file will take on the tiledness and
tile size of the input file.

--scanline

Requests that the output file be scanline-oriented (even if the input file was tile-oriented),
if scanline orientation is supported by the output file format. By default, the output file
will be scanline if the input is scanline, or tiled if the input is tiled.

--compression method

Sets the compression method for the output image. Each ImageOutput plugin will have
its own set of methods that it supports.

By default, the output image will use the same compression technique as the input image
(assuming it is supported by the output format, otherwise it will use the default compres-
sion method of the output plugin).

--quality q

Sets the compression quality, on a 1–100 floating-point scale. This only has an effect if
the particular compression method supports a quality metric (as JPEG does).

OpenImageIO Programmer’s Documentation

12.3. ICONVERT COMMAND-LINE OPTIONS 109

--no-copy-image

Ordinarily, iconvert will attempt to use ImageOutput::copy image underneath to
avoid de/recompression or alteration of pixel values, unless other settings clearly contra-
dict this (such as any settings that must alter pixel values). The use of --no-copy-image
will force all pixels to be decompressed, read, and compressed/written, rather than copied
in compressed form. We’re not exactly sure when you would need to do this, but we put
it in just in case.

--adjust-time

When this flag is present, after writing the output, the resulting file’s modification time
will be adjusted to match any "DateTime" metadata in the image. After doing this, a
directory listing will show file times that match when the original image was created or
captured, rather than simply when iconvert was run. This has no effect on image files
that don’t contain any "DateTime" metadata.

--caption text

Sets the image metadata "ImageDescription". This has no effect if the output image
format does not support some kind of title, caption, or description metadata field. Be
careful to enclose text in quotes if you want your caption to include spaces or certain
punctuation!

--keyword text

Adds a keyword to the image metadata "Keywords". Any existing keywords will be
preserved, not replaced, and the new keyword will not be added if it is an exact duplicate
of existing keywords. This has no effect if the output image format does not support some
kind of keyword field.

Be careful to enclose text in quotes if you want your keyword to include spaces or certain
punctuation. For image formats that have only a single field for keywords, OpenImageIO
will concatenate the keywords, separated by semicolon (‘;’), so don’t use semicolons
within your keywords.

--clear-keywords

Clears all existing keywords in the image.

--attrib name text

Sets the named image metadata attribute to a string given by text. For example, you could
explicitly set the IPTC location metadata fields with:

iconvert --attrib "IPTC:City" "Berkeley" in.jpg out.jpg

OpenImageIO Programmer’s Documentation

110 CHAPTER 12. CONVERTING IMAGE FORMATS WITH ICONVERT

--orientation orient

Explicitly sets the image’s "Orientation" metadata to a numeric value (see Section B.2
for the numeric codes). This only changes the metadata field that specifies how the image
should be displayed, it does NOT alter the pixels themselves, and so has no effect for
image formats that don’t support some kind of orientation metadata.

--rotcw
--rotccw
--rot180

Adjusts the image’s "Orientation" metadata by rotating it 90◦ clockwise, 90◦ de-
grees counter-clockwise, or 180◦, respectively, compared to its current setting. This only
changes the metadata field that specifies how the image should be displayed, it does NOT
alter the pixels themselves, and so has no effect for image formats that don’t support some
kind of orientation metadata.

OpenImageIO Programmer’s Documentation

13 Searching Image Metadata With
igrep

The igrep program search one or more image files for metadata that match a string or regular
expression.

13.1 Using igrep

The igrep utility is invoked as follows:

igrep [options] pattern filename ...

Where pattern is a POSIX.2 regular expression (just like the Unix/Linux grep(1) com-
mand), and filename (and any following names) specify images or directories that should be
searched. An image file will “match” if any of its metadata contains values contain substring
that are recognized regular expression. The image files may be of any format recognized by
OpenImageIO (i.e., for which ImageInput plugins are available).

Example:

$ igrep Jack *.jpg
bar.jpg: Keywords = Carly; Jack
foo.jpg: Keywords = Jack
test7.jpg: ImageDescription = Jack on vacation

13.2 igrep command-line options

--help

Prints usage information to the terminal.

-d

Print directory names as it recurses. This only happens if the -r option is also used.

-E

Interpret the pattern as an extended regular expression (just like egrep or grep -E).

111

112 CHAPTER 13. SEARCHING IMAGE METADATA WITH IGREP

-f

Match the expression against the filename, as well as the metadata within the file.

-i

Ignore upper/lower case distinctions. Without this flag, the expression matching will be
case-sensitive.

-l

Simply list the matching files by name, surpressing the normal output that would include
the metadata name and values that matched. For example:

$ igrep Jack *.jpg
bar.jpg: Keywords = Carly; Jack
foo.jpg: Keywords = Jack
test7.jpg: ImageDescription = Jack on vacation

$ igrep -l Jack *.jpg
bar.jpg
foo.jpg
test7.jpg

-r

Recurse into directories. If this flag is present, any files specified that are directories will
have any image file contained therein to be searched for a match (an so on, recursively).

-v

Invert the sense of matching, to select image files that do not match the expression.

OpenImageIO Programmer’s Documentation

14 Comparing Images With idiff

14.1 Overview

The idiff program compares two images, printing a report about how different they are and
optionally producin g a third image that records the pixel-by-pixel differences between them.
There are a variety of options and ways to compare (absolute pixel difference, various thresholds
for warnings and errors, and also an optional perceptual difference metric).

Because idiff is built on top on OpenImageIO, it can compare two images of any formats
readable by ImageInput plugins on hand. They may have any (or different) file formats, data
formats, etc.

14.2 Using idiff

The idiff utility is invoked as follows:

idiff [options] image1 image2

Where input1 and input2 are the names of two image files that should be compared. They
may be of any format recognized by OpenImageIO (i.e., for which image-reading plugins are
available).

If the two input images are not the same resolutions, or do not have the same number of
channels, the comparison will return FAILURE immediately and will not attempt to compare
the pixels of the two images. If they are the same dimensions, the pixels of the two images will
be compared, and a report will be printed including the mean and maximum error, how many
pixels were above the warning and failure thresholds, and whether the result is PASS, WARNING,
or FAILURE. For example:

$ idiff a.jpg b.jpg

Comparing "a.jpg" and "b.jpg"
Mean error = 0.00450079
Max error = 0.254902 @ (700, 222, B)
574062 pixels (82.1%) over 1e-06
574062 pixels (82.1%) over 1e-06

FAILURE

The “mean error” is the average difference (per channel, per pixel). The “max error” is
the largest difference in any pixel channel, and will point out on which pixel and channel it

113

114 CHAPTER 14. COMPARING IMAGES WITH IDIFF

was found. It will also give a count of how many pixels were above the warning and failure
thresholds.

The metadata of the two images (e.g., the comments) are not currently compared; only
differences in pixel values are taken into consideration.

Raising the thresholds

By default, if any pixels differ between the images, the comparison will fail. You can allow
some differences to still pass by raising the failure thresholds. The following example will
allow images to pass the comparison test, as long as no more than 10% of the pixels differ by
0.004 (just above a 1/255 threshold):

idiff -fail 0.004 -failpercent 10 a.jpg b.jpg

But what happens if a just a few pixels are very different? Maybe you want that to fail, also.
The following adjustment will fail if at least 10% of pixels differ by 0.004, or if any pixel differs
by more than 0.25:

idiff -fail 0.004 -failpercent 10 -hardfail 0.25 a.jpg b.jpg

If none of the failure criteria are met, and yet some pixels are still different, it will still give
a WARNING. But you can also raise the warning threshold in a similar way:

idiff -fail 0.004 -failpercent 10 -hardfail 0.25 \
-warn 0.004 -warnpercent 3 a.jpg b.jpg

The above example will PASS as long as fewer than 3% of pixels differ by more than 0.004. If
it does, it will be a WARNING as long as no more than 10% of pixels differ by 0.004 and no
pixel differs by more than 0.25, otherwise it is a FAILURE.

Output a difference image

Ordinary text output will tell you how many pixels failed or were warnings, and which pixel
had the biggest difference. But sometimes you need to see visually where the images differ.
You can get idiff to save an image of the differences between the two input images:

idiff -o diff.tif -abs a.jpg b.jpg

The -abs flag saves the absolute value of the differences (i.e., all positive values or zero).
If you omit the -abs, pixels in which a.jpg have smaller values than b.jpg will be negative in
the difference image (be careful in this case of using a file format that doesn’t support negative
values).

You can also scale the difference image with the -scale, making them easier to see. And
the -od flag can be used to output a difference image only if the comparison fails, but not if the
images pass within the designated threshold (thus saving you the trouble and space of saving a
black image).

OpenImageIO Programmer’s Documentation

14.3. IDIFF REFERENCE 115

14.3 idiff Reference

The various command-line options are discussed below:

General options

--help

Prints usage information to the terminal.

-v

Verbose output — more detail about what it finds when comparing images. (Currently,
there is no extra info to print.)

Thresholds and comparison options

-fail A
-failpercent B
-hardfail C

Sets the threshold for FAILURE: if more than B% of pixels (on a 0-100 floating point scale)
are greater than A different, or if any pixels are more than C different. The defaults are to
fail if more than 0% (any) pixels differ by more than 0.00001 (1e-6), and C is infinite.

-warn A
-warnpercent B
-hardwarn C

Sets the threshold for WARNING: if more than B% of pixels (on a 0-100 floating point scale)
are greater than A different, or if any pixels are more than C different. The defaults are to
warn if more than 0% (any) pixels differ by more than 0.00001 (1e-6), and C is infinite.

-p

Does an additional test on the images to attempt to see if they are perceptually different
(whether you are likely to discern a difference visually), using Hector Yee’s metric. If
this option is enabled, the statistics will additionally show a report on how many pixels
failed the perceptual test, and the test overall will fail if more than the “fail percentage”
failed the perceptual test.

OpenImageIO Programmer’s Documentation

116 CHAPTER 14. COMPARING IMAGES WITH IDIFF

Difference image output

-o outputfile

Outputs a difference image to the designated file. This difference image pixels consist are
each of the value of the corresponding pixel from image1 minus the value of the pixel
image2.

The file extension of the output file is used to determine the file format to write (e.g.,
"out.tif" will write a TIFF file, "out.jpg" will write a JPEG, etc.). The data format
of the output file will be format of whichever of the two input images has higher precision
(or the maximum precision that the designated output format is capable of, if that is less
than either of the input imges).

Note that pixels whose value is lower in image1 than in image2, this will result in negative
pixels (which may be clamped to zero if the image format does not support negative
values)), unless the -abs option is also used.

-abs

Will cause the output image to consist of the absolute value of the difference between the
two input images (so all values in the difference image ≥ 0).

-scale factor

Scales the values in the difference image by the given (floating point) factor. The main
use for this is to make small actual differences more visible in the resulting difference
image by giving a large scale factor.

-od

Causes a difference image to be produce only if the image comparison fails. That is, even
if the -o option is used, images that are within the comparison threshold will not write
out a useless black (or nearly black) difference image.

Process return codes

The idiff program will return a code that can be used by scripts to indicate the results:

0 OK: the images match within the warning and error thresholds.
1 Warning: the errors differ a little, but within error thresholds.
2 Failure: the errors differ a lot, outside error thresholds.
3 The images weren’t the same size and couldn’t be compared.
4 File error: could not find or open input files, etc.

OpenImageIO Programmer’s Documentation

15 Creating MIP-mapped texture files
with maketx

The maketx program will read an image (from any file format for which an ImageInput plugin
can be found) and then write the image as a tiled, mip-mapped texture, environment, or shadow
map file that can be accessed efficiently by OpenImageIO’s texture API.

More documentation on this later.

117

118 CHAPTER 15. CREATING MIP-MAPPED TEXTURE FILES WITH MAKETX

OpenImageIO Programmer’s Documentation

Part III

Appendices

119

A Building OpenImageIO

121

122 APPENDIX A. BUILDING OPENIMAGEIO

OpenImageIO Programmer’s Documentation

B Metadata conventions

The ImageSpec class, described thoroughly in Section 2.2, provides the basic description of an
image that are essential across all formats — resolution, number of channels, pixel data format,
etc. Individual images may have additional data, stored as name/value pairs in the extra -
attribs field. Though literally anything can be stored in extra attribs — it’s specifically
designed for format- and user-extensibility — this chapter establishes some guidelines and lays
out all of the field names that OpenImageIO understands.

B.1 Description of the image

"ImageDescription" : string

The image description, title, caption, or comments.

"Keywords" : string

Semicolon-separated keywords describing the contents of the image. (Semicolons are
used rather than commas because of the common case of a comma being part of a keyword
itself, e.g., “Kurt Vonnegut, Jr.” or “Washington, DC.”)

"Artist" : string

The artist, creator, or owner of the image.

"Copyright" : string

Any copyright notice or owner of the image.

"DateTime" : string

The creation date of the image, in the following format: YYYY:MM:DD HH:MM:SS (exactly
19 characters long, not including a terminating NULL). For example, 7:30am on Dec 31,
2008 is encoded as "2008:12:31 07:30:00".

"DocumentName" : string

The name of an overall document that this image is a part of.

123

124 APPENDIX B. METADATA CONVENTIONS

"Software" : string

The software that was used to create the image.

"HostComputer" : string

The name or identity of the computer that created the image.

B.2 Display hints

"Orientation" : int

By default, image pixels are ordered from the top of the display to the bottom, and within
each scanline, from left to right (i.e., the same ordering as English text and scan progres-
sion on a CRT). But the "Orientation" field can suggest that it should be displayed
with a different orientation, according to the TIFF/EXIF conventions:

1 normal (top to bottom, left to right)
2 flipped horizontally (top to botom, right to left)
3 rotate 180◦ (bottom to top, right to left)
4 flipped vertically (bottom to top, left to right)
5 transposed (left to right, top to bottom)
6 rotated 90◦ clockwise (right to left, top to bottom)
7 transverse (right to left, bottom to top)
8 rotated 90◦ counter-clockwise (left to right, bottom to top)

"PixelAspectRatio" : float

The aspect ratio (x/y) of the individual pixels, with square pixels being 1.0 (the default).

"XResolution" : float
"YResolution" : float
"ResolutionUnit" : string

The number of horizontal (x) and vertical (y) pixels per resolution unit. This ties the
image to a physical size (where applicable, such as with a scanned image, or an image
that will eventually be printed).

Different file formats may dictate different resolution units. For example, the TIFF Im-
ageIO plugin supports "none", "in", and "cm".

B.3 Disk file format info/hints

"BitsPerSample" : int

OpenImageIO Programmer’s Documentation

B.4. PHOTOGRAPHS OR SCANNED IMAGES 125

Number of bits per sample in the file.

Note that this may not match the reported ImageSpec::format, if the plugin is translat-
ing from an unsupported format. For example, if a file stores 4 bit grayscale per channel,
the "BitsPerSample" may be 4 but the format field may be TypeDesc::UINT8 (be-
cause the OpenImageIO APIs do not support fewer than 8 bits per sample).

"planarconfig" : string

"contig" indicates that the file has contiguous pixels (RGB RGB RGB...), whereas
"separate" indicate that the file stores each channel separately (RRR...GGG...BBB...).

Note that only contiguous pixels are transmitted through the OpenImageIO APIs, but this
metadata indicates how it is (or should be) stored in the file, if possible.

"compression" : string

Indicates the type of compression the file uses. Supported compression modes will vary
from ImageInput plugin to plugin, and each plugin should document the modes it sup-
ports. If ImageInput::open is called with an ImageSpec that specifies an compression
mode not supported by that ImageInput, it will choose a reasonable default. As an ex-
ample, the TIFF ImageInput plugin supports "none", "lzw", "ccittrle", "zip" (the
default), "packbits".

"CompressionQuality" : int

Indicates the quality of compression to use (0–100), for those plugins and compression
methods that allow a variable amount of compression, with higher numbers indicating
higher image fidelity.

B.4 Photographs or scanned images

The following metadata items are specific to photos or captured images.

"Make" : string

For captured or scanned image, the make of the camera or scanner.

"Model" : string

For captured or scanned image, the model of the camera or scanner.

"ExposureTime" : float

The exposure time (in seconds) of the captured image.

"FNumber" : float

The f/stop of the camera when it captured the image.

OpenImageIO Programmer’s Documentation

126 APPENDIX B. METADATA CONVENTIONS

B.5 Texture Information

Several standard metadata are very helpful for images that are intended to be used as textures
(especially for OpenImageIO’s TextureSystem).

"textureformat" : string

The kind of texture that this image is intended to be. We suggest the following names:

"Plain Texture" Ordinary 2D texture
"Volume Texture" 3D volumetric texture
"Shadow" Ordinary z-depth shadow map
"CubeFace Shadow" Cube-face shadow map
"Volume Shadow" Volumetric (“deep”) shadow map
"LatLong Environment" Latitude-longitude (rectangular) environment map
"CubeFace Environment" Cube-face environment map

"wrapmodes" : string

Give the intended texture wrap mode indicating what happens with texture coordinates
outside the [0...1] range. We suggest the following names: "black", "periodic",
"clamp", "mirror". If the wrap mode is different in each direction, they should simply
be separated by a comma. For example, "black" means black wrap in both directions,
whereas "clamp,periodic" means to clamp in u and be periodic in v.

"fovcot" : float

The cotangent (x/y) of the field of view of the original image (which may not be the same
as the aspect ratio of the pixels of the texture, which may have been resized).

"worldtocamera" : matrix44

For shadow maps or rendered images this item (of type TypeDesc::PT MATRIX) is the
world-to-camera matrix describing the camera position.

"worldtoscreen" : matrix44

For shadow maps or rendered images this item (of type TypeDesc::PT MATRIX) is the
world-to-screen matrix describing the full projection of the 3D view onto a [−1...1]×
[−1...1] 2D domain.

"updirection" : string

For environment maps, indicates which direction is “up” (valid values are "y" or "z"), to
disambiguate conventions for environment map orientation.

OpenImageIO Programmer’s Documentation

B.6. EXIF METADATA 127

B.6 Exif metadata

The following Exif metadata tags correspond to items in the “standard” set of metadata.

Exif tag OpenImageIO metadata convention
ColorSpace (stored in ImageSpec::Linearity)
ExposureTime "ExposureTime"
FNumber "FNumber"

The other remaining Exif metadata tags all include the “Exif:” prefix to keep it from clash-
ing with other names that may be used for other purposes.

"Exif:ExposureProgram" : int

The exposure program used to set exposure when the picture was taken:

0 unknown
1 manual
2 normal program
3 aperture priority
4 shutter priority
5 Creative program (biased toward depth of field)
6 Action program (biased toward fast shutter speed)
7 Portrait mode (closeup photo with background out of focus)
8 Landscape mode (background in focus)

"Exif:SpectralSensitivity" : string

The camera’s spectral sensitivity, using the ASTM conventions.

"Exif:ISOSpeedRatings" : int

The ISO speed and ISO latitude of the camera as specified in ISO 12232.

"Exif:DateTimeOriginal" : string

Date and time that the original image data was generated (in "YYYY:MM:DD HH:MM:SS"
format).

"Exif:DateTimeDigitized" : string

Date and time that the image was stored as digital data (in "YYYY:MM:DD HH:MM:SS"
format).

"Exif:CompressedBitsPerPixel" : float

The compression mode used, measured in compressed bits per pixel.

OpenImageIO Programmer’s Documentation

128 APPENDIX B. METADATA CONVENTIONS

"Exif:ShutterSpeedValue" : float

Shutter speed, in APEX units: − log2(exposuretime)

"Exif:ApertureValue" : float

Aperture, in APEX units: 2 log2(fnumber)

"Exif:BrightnessValue" : float

Brightness value, assumed to be in the range of −99.99 – 99.99.

"Exif:ExposureBiasValue" : float

Exposure bias, assumed to be in the range of −99.99 – 99.99.

"Exif:MaxApertureValue" : float

Smallest F number of the lens, in APEX units: 2 log2(fnumber)

"Exif:SubjectDistance" : float

Distance to the subject, in meters.

"Exif:MeteringMode" : int

The metering mode:

0 unknown
1 average
2 center-weighted average
3 spot
4 multi-spot
5 pattern
6 partial
255 other

"Exif:LightSource" : int

The kind of light source:

OpenImageIO Programmer’s Documentation

B.6. EXIF METADATA 129

0 unknown
1 daylight
2 tungsten (incandescent light)
4 flash
9 fine weather
10 cloudy weather
11 shade
12 daylight fluorescent (D 5700-7100K)
13 day white fluorescent (N 4600-5400K)
14 cool white fuorescent (W 3900 - 4500K)
15 white fluorescent (WW 3200 - 3700K)
17 standard light A
18 standard light B
19 standard light C
20 D55
21 D65
22 D75
23 D50
24 ISO studio tungsten
255 other light source

"Exif:Flash" int

A sum of:

1 if the flash fired
0 no strobe return detection function
4 strobe return light was not detected
6 strobe return light was detected
8 compulsary flash firing
16 compulsary flash supression
24 auto-flash mode
32 no flash function (0 if flash function present)
64 red-eye reduction supported (0 if no red-eye reduction mode)

"Exif:FocalLength" : float

Actual focal length of the lens, in mm.

"Exif:SubsecTime" : string

Fractions of a second to augment the "DateTime" (expressed as text of the digits to the
right of the decimal).

"Exif:SubsecTimeOriginal" : string

Fractions of a second to augment the "Exif:DateTimeOriginal" (expressed as text of
the digits to the right of the decimal).

OpenImageIO Programmer’s Documentation

130 APPENDIX B. METADATA CONVENTIONS

"Exif:SubsecTimeDigitized" : string

Fractions of a second to augment the "Exif:DateTimeDigital" (expressed as text of
the digits to the right of the decimal).

"Exif:PixelXDimension" : int
"Exif:PixelYDimension" : int

The x and y dimensions of the valid pixel area. FIXME – better explanation?

"Exif:FlashEnergy" : float

Strobe energy when the image was captures, measured in Beam Candle Power Seconds
(BCPS).

"Exif:FocalPlaneXResolution" : float
"Exif:FocalPlaneYResolution" : float
"Exif:FocalPlaneResolutionUnit" : int

The number of pixels in the x and y dimension, per resolution unit. The code for resolution
units is: 2 for inches.

"Exif:ExposureIndex" : float

The exposure index selected on the camera.

"Exif:SensingMethod" : int

The image sensor type on the camra:

1 undefined
2 one-chip color area sensor
3 two-chip color area sensor
4 three-chip color area sensor
5 color sequential area sensor
7 trilinear sensor
8 color trilinear sensor

"Exif:FileSource" : int

Set to 3, if captured by a digital camera, otherwise it should not be present.

"Exif:SceneType" : int

Set to 1, if a directly-photographed image, otherwise it should not be present.

"Exif:CustomRendered" : int

Set to 0 for a normal process, 1 if some custom processing has been performed on the
image data.

OpenImageIO Programmer’s Documentation

B.6. EXIF METADATA 131

"Exif:ExposureMode" : int

The exposure mode:

0 auto
1 manual
2 auto-bracket

"Exif:WhiteBalance" : int

Set to 0 for auto white balance, 1 for manual white balance.

"Exif:DigitalZoomRatio" : float

The digital zoom ratio used when the image was shot.

"Exif:FocalLengthIn35mmFilm" : int

The equivalent focal length of a 35mm camera, in mm.

"Exif:SceneCaptureType" : int

The type of scene that was shot:

0 standard
1 landscape
2 portrait
3 night scene

"Exif:GainControl" : float

The degree of overall gain adjustment:

0 none
1 low gain up
2 high gain up
3 low gain down
4 high gain down

"Exif:Contrast" : int

The direction of contrast processing applied by the camera:

0 normal
1 soft
2 hard

OpenImageIO Programmer’s Documentation

132 APPENDIX B. METADATA CONVENTIONS

"Exif:Saturation" : int

The direction of saturation processing applied by the camera:

0 normal
1 low saturation
2 high saturation

"Exif:Sharpness" : int

The direction of sharpness processing applied by the camera:

0 normal
1 soft
2 hard

"Exif:SubjectDistanceRange" : int

The distance to the subject:

0 unknown
1 macro
2 close
3 distant

"Exif:ImageUniqueID" : string

A unique identifier for the image, as 16 ASCII hexidecimal digits representing a 128-bit
number.

B.7 GPS Exif metadata

The following GPS-related Exif metadata tags correspond to items in the “standard” set of
metadata.

"GPS:LatitudeRef" : string

Whether the "GPS:Latitude" tag refers to north or south: "N" or "S".

"GPS:Latitude" : float[3]

The degrees, minutes, and seconds of latitude (see also "GPS:LatitudeRef").

"GPS:LongitudeRef" : string

Whether the "GPS:Longitude" tag refers to east or west: "E" or "W".

OpenImageIO Programmer’s Documentation

B.7. GPS EXIF METADATA 133

"GPS:Longitude" : float[3]

The degrees, minutes, and seconds of longitude (see also "GPS:LongitudeRef").

"GPS:AltitudeRef" : string

A value of 0 indicates that the altitude is above sea level, 1 indicates below sea level.

"GPS:Altitude" : float

Absolute value of the altitude, in meters, relative to sea level (see "GPS:AltitudeRef"
for whether it’s above or below sea level).

"GPS:TimeStamp" : float[3]

Gives the hours, minutes, and seconds, in UTC.

"GPS:Satellites" : string

Information about what satellites were visible.

"GPS:Status" : string

"A" indicates a measurement in progress, "V" indicates measurement interoperability.

"GPS:MeasureMode" : string

"2" indicates a 2D measurement, "3" indicates a 3D measurement.

"GPS:DOP" : float

Data degree of precision.

"GPS:SpeedRef" : string

Indicates the units of the related "GPS:Speed" tag: "K" for km/h, "M" for miles/h, "N"
for knots.

"GPS:Speed" : float

Speed of the GPS receiver (see "GPS:SpeedRef" for the units).

"GPS:TrackRef" : string

Describes the meaning of the "GPS:Track" field: "T" for true direction, "M" for magnetic
direction.

OpenImageIO Programmer’s Documentation

134 APPENDIX B. METADATA CONVENTIONS

"GPS:Track" : float

Direction of the GPS receiver movement (from 0–359.99). The related "GPS:TrackRef"
indicate whether it’s true or magnetic.

"GPS:ImgDirectionRef" : string

Describes the meaning of the "GPS:ImgDirection" field: "T" for true direction, "M" for
magnetic direction.

"GPS:ImgDirection" : float

Direction of the image when captured (from 0–359.99). The related "GPS:ImgDirectionRef"
indicate whether it’s true or magnetic.

"GPS:MapDatum" : string

The geodetic survey data used by the GPS receiver.

"GPS:DestLatitudeRef" : string

Whether the "GPS:DestLatitude" tag refers to north or south: "N" or "S".

"GPS:DestLatitude" : float[3]

The degrees, minutes, and seconds of latitude of the destination (see also "GPS:DestLatitudeRef").

"GPS:DestLongitudeRef" : string

Whether the "GPS:DestLongitude" tag refers to east or west: "E" or "W".

"GPS:DestLongitude" : float[3]

The degrees, minutes, and seconds of longitude of the destination (see also "GPS:DestLongitudeRef").

"GPS:DestBearingRef" : string

Describes the meaning of the "GPS:DestBearing" field: "T" for true direction, "M" for
magnetic direction.

"GPS:DestBearing" : float

Bearing to the destination point (from 0–359.99). The related "GPS:DestBearingRef"
indicate whether it’s true or magnetic.

"GPS:DestDistanceRef" : string

Indicates the units of the related "GPS:DestDistance" tag: "K" for km, "M" for miles,
"N" for knots.

OpenImageIO Programmer’s Documentation

B.8. IPTC METADATA 135

"GPS:DestDistance" : float

Distance to the destination (see "GPS:DestDistanceRef" for the units).

"GPS:ProcessingMethod" : string

Processing method information.

"GPS:AreaInformation" : string

Name of the GPS area.

"GPS:DateStamp" : string

Date according to the GPS device, in format "YYYY:MM:DD".

"GPS:Differential" : int

If 1, indicates that differential correction was applied.

B.8 IPTC metadata

The IPTC (International Press Telecommunications Council) publishes conventions for storing
image metadata, and this standard is growing in popularity and is commonly used in photo-
browsing programs to record captions and keywords.

The following IPTC metadata items correspond exactly to metadata in the OpenImageIO
conventions, so it is recommended that you use the standards and that plugins supporting IPTC
metadata respond likewise:

IPTC tag OpenImageIO metadata convention
Caption "ImageDescription"

Keyword IPTC keywords should be concatenated, separated by
semicolons (;), and stored as the "Keywords" attribute.

ExposureTime "ExposureTime"

CopyrightNotice "Copyright"

Creator "Artist"

The remainder of IPTC metadata fields should use the following names, prefixed with
“IPTC:” to avoid conflicts with other plugins or standards.

"IPTC:ObjectName" : string

The name of the object in the picture.

"IPTC:Instructions" : string

Special instructions for handling the image.

OpenImageIO Programmer’s Documentation

136 APPENDIX B. METADATA CONVENTIONS

"IPTC:AuthorsPosition" : string

The job title or position of the creator of the image.

"IPTC:City" : string
"IPTC:State" : string
"IPTC:Country" : string

The city, state, and country of the location of the image.

"IPTC:Headline" : string

Any headline that is meant to accompany the image.

"IPTC:Provider" : string

The provider of the image, or credit line.

"IPTC:Source" : string

The source of the image.

"IPTC:Contact" : string

The contact information for the image (possibly including name, address, email, etc.).

"IPTC:CaptionWriter" : string

The name of the person who wrote the caption or description of the image.

B.9 Extension conventions

To avoid conflicts with other plugins, or with any additional standard metadata names that may
be added in future verions of OpenImageIO, it is strongly advised that writers of new plugins
should prefix their metadata with the name of the format, much like the "Exif:" and "IPTC:"
metadata.

OpenImageIO Programmer’s Documentation

C Glossary

Channel One of several data values persent in each pixel. Examples include red, green, blue,
alpha, etc. The data in one channel of a pixel may be represented by a single number,
whereas the pixel as a whole requires one number for each channel.

Client A client (as in “client application”) is a program or library that uses OpenImageIO or
any of its constituent libraries.

Data format The type of numerical representation used to store a piece of data. Examples
include 8-bit unsigned integers, 32-bit floating-point numbers, etc.

Image File Format The specification and data layout of an image on disk. For example, TIFF,
JPEG/JFIF, OpenEXR, etc.

Metadata Data about data. As used in OpenImageIO, this means Information about an image,
beyond describing the values of the pixels themselves. Examples include the name of the
artist that created the image, the date that an image was scanned, the camera settings used
when a photograph was taken, etc.

Native data format The data format used in the disk file representing an image. Note that with
OpenImageIO, this may be different than the data format used by an application to store
the image in the computer’s RAM.

Pixel One pixel element of an image, consisting of one number describing each channel of data
at a particular location in an image.

Scanline A single horizontal row of pixels of an image. See also tile.

Scanline Image An image whose data layout on disk is organized by breaking the image up
into horizontal scanlines, typically with the ability to read or write an entire scanline at
once. See also tiled image.

Tile A rectangular region of pixels of an image. A rectangular tile is more spatially coherent
than a scanline that stretches across the entire image — that is, a pixel’s neighbors are
most likely in the same tile, whereas a pixel in a scanline image will typically have most
of its immediate neighbors on different scanlines (requiring additional scanline reads in
order to access them).

Tiled Image An image whose data layout on disk is organized by breaking the image up into
rectangular regions of pixels called tiles. All the pixels in a tile can be read or written at
once, and individual tiles may be read or written separately from other tiles.

137

138 APPENDIX C. GLOSSARY

Volume Image A 3-D set of pixels that has not only horizontal and vertical dimensions, but
also a ”depth” dimension.

OpenImageIO Programmer’s Documentation

Index

attribute, 73, 83

crop windows, 21

data formats, 7

getattribute, 74, 84

iconvert, 105
idiff, 113
igrep, 111
iinfo, 101
Image Cache, 71–78
Image I/O API, 7–13, 15–48
ImageOutput, 15
ImageSpec, 9
iv, 99

maketx, 117

Orientation, 124
overscan, 21

Texture System, 79–95

139

	Introduction
	Overview
	Simplifying Assumptions

	I The ImageIO Library
	Image I/O API
	Data Type Descriptions: TypeDesc
	Image Specification: ImageSpec

	ImageOutput: Writing Images
	Image Output Made Simple
	Advanced Image Output
	ImageOutput Class Reference

	Image I/O: Reading Images
	Image Input Made Simple
	Advanced Image Input
	ImageInput Class Reference

	Writing ImageIO Plugins
	Plugin Introduction
	Image Readers
	Image Writers
	Building ImageIO Plugins

	Bundled ImageIO Plugins
	TIFF
	JPEG
	OpenEXR
	HDR/RGBE
	PNG

	Image Buffer
	Cached Images
	Image Cache Introduction and Theory of Operation
	ImageCache API

	Texture Access: TextureSystem
	Texture System Introduction and Theory of Operation
	Helper Classes
	TextureSystem API

	II Image Utilities
	The iv Image Viewer
	Getting Image information With iinfo
	Using iinfo
	iinfo command-line options

	Converting Image Formats With iconvert
	Overview
	iconvert Recipes
	iconvert command-line options

	Searching Image Metadata With igrep
	Using igrep
	igrep command-line options

	Comparing Images With idiff
	Overview
	Using idiff
	idiff Reference

	Creating MIP-mapped texture files with maketx

	III Appendices
	Building OpenImageIO
	Metadata conventions
	Description of the image
	Display hints
	Disk file format info/hints
	Photographs or scanned images
	Texture Information
	Exif metadata
	GPS Exif metadata
	IPTC metadata
	Extension conventions

	Glossary
	Index

