OpenimagelO 1.7

Programmer Documentation (n progress)

Editor: Larry Gritz
lg @openimageio.org

Date: 31 Mar 2016

ii

The OpenlmagelO source code and documentation are:

Copyright (c) 2008-2016 Larry Gritz, et al. All Rights Reserved.

The code that implements OpenlmagelO is licensed under the BSD 3-clause (also some-
times known as “new BSD” or “modified BSD”) license:

Redistribution and use in source and binary forms, with or without modification, are per-
mitted provided that the following conditions are met:

e Redistributions of source code must retain the above copyright notice, this list of condi-
tions and the following disclaimer.

e Redistributions in binary form must reproduce the above copyright notice, this list of con-
ditions and the following disclaimer in the documentation and/or other materials provided
with the distribution.

e Neither the name of the software’s owners nor the names of its contributors may be used
to endorse or promote products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIB-
UTORS ”AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FIT-
NESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUD-
ING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABIL-
ITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

This manual and other text documentation about OpenlmagelO are licensed under the Cre-
ative Commons Attribution 3.0 Unported License.

—G)
http://creativecommons.org/licenses/by/3.0/

OpenlmagelO Programmer’s Documentation

iii

I kinda like “Oy-e-oh” with a bit of a groaning Yiddish accent, as in
“Oll0, did you really write yet another file I/0 library?”

Dan Wexler

OpenIlmagelO Programmer’s Documentation

iv

OpenlmagelO Programmer’s Documentation

Contents

1 _Intr 1
.....................................
(1.2 Simplifymmg Assumptions| Lo
I The OpenlmagelO Library APIs|
mage elper Classes
[2.1 ~Data Type Descriptions: TypeDesc|. o v v v v v v v v v v ..
[2.2 Efficient unique strings: ustringl oL
[2.3 Non-owning string views: String vIew|« v v v v v
[2.4 Non-owning array VIEwWS: array VIEW| « v v v v v v i oot
[2.5 Image Specification: ImageSpec| Lo
2.6 “Deep” pixel data: DeepDatal.
(3 ImageOutput: Writing Images|
3.1 Image Output Made Simplef.
3.2 Advanced Image Output|
3.3 ImageOutput Class Reference|
[4 Image I/0: Reading Images|

4.1 Image Input Made Stmple] L.
4.2 Advanced ImageInput| L
4.3 ImageInput Class Reference|.

5 Writing ImagelO Plugins|

5.1 Plugin Introduction|
5.2 ImageReaders|
5.3 Image Writers| e e e
5.4 Tipsand Conventions|
5.5 Building ImagelO Plugins|
undled Image ugins
6.1 BMP|. . . .
6.2 CIneonl. e e

—_

27
27
29
47

55
55
56
68

75
75
75
84
94
95

vi

CONTENTS

6.8 HDR/RGBE

[/ Cached Images| 117
[7.1 Image Cache Introduction and Theory of Operation| 117
[7.2 ImageCache APl 119

[8 Texture Access: TextureSystem| 131
[8.1 Texture System Introduction and Theory of Operation|. 131
8.2 Helper Classes| 131
[8.3 TextureSystem API| L 137

[0 Tmage Buffers| 155
9.1 ImageBuf Introduction and Theory of Operation|. 155
9.2 Constructing, reading, and writing an ImageBuf|. 157
9.3 Getting and setting basic information about an ImageBuf| 160
9.4 Copying ImageBuf’s and blocks of pixels| 162
9.5 Getting and setting individual pixel values — simple but slow| 164
0.6 Miscellaneous| 166
9.7 Iterators — the fast way of accessing individual pixels| 167
9.8 Dealing with buffer datatypes| 170

OpenlmagelO Programmer’s Documentation

CONTENTS vii
(10 Image Processing| 173
[10.1 ImageBufAlgo general principles|. 173
[10.2 Pattern generation| L 174
[10.3 Image transformations and data movement|. 179
[10.4 Image arithmetic| 187
[10.5 Image comparison and statistics| 194
[10.6_Convolutions| e 199
[10.7 Image Enhancement / Restoration| 202
[10.8 Color manipulation| 204
[10.9 Import/export] 207
[10.10Deep 1images|. e e e 211

[T Python Bindings| 215
MLETOVEIVIEW . .« . v ot e e et e e e e e 215
..................................... 215
113 ROIl . . . 218
[11.4 TmageSpec|. e e e e e 220
11.5 DeepDatal 225
[11.6 Imagelnput| 227
[11.7 TmageOutput] e 232

8 ceBuf|] 236

[11.9 ImageBufAlgo| 244
[[LIO0Miscellaneous Utilities] oo v v it it e e 262
[IT.11Python Recipes| 262

I Tmage Utilities| 267
[12 oiiotool: the OIIO Swiss Army Knife| 269
..................................... 269
[12.2 oiiotool Tutorial /Recipes| L. 272
[12.3 oiiotool commands: general and image information| 278
[12.4 oiiotool commands: reading and writing images|. 281
[12.5 oiiotool commands that change the current image metadatal. 287
|12.6 oiiotool commands that shuffle channels or subimages| 289
|12.7 oiiotool commands that adjust the image stack|] 291
[12.8 oiiotool commands that make entirely new images| 291
[12.9 oiiotool commands that do image processing| 294
[12.100iiotool commands for color management| 311
[12.11oiiotool commands for deep images| 313

(13 The iv Image Viewer| 317
(14 Getting Image information With iinfo| 319
[14.1 Using iinfol. e e e e 319
[14.2 iinfo command-lineoptions| 321

OpenlmagelO Programmer’s Documentation

viii

CONTENTS

(15 Converting Image Formats With iconvert|

[15.2 iconvert Recipes|
[15.3 iconvert command-lineoptions|.

[16 Searching Image Metadata With igrep|

[16.1 Using igrep|.
[16.2 igrep command-lineoptions|

17 Comparing Images With 1diff]

(III Appendices|

(A" Building OpenImagelO)|

(B Metadata conventions|

IB.1 Description of theimage{
IB.2 Displayhints|

Index]

323

...... 323
...... 323
...... 325

329

...... 329
...... 329

331

...... 331
...... 331
...... 333

337

...... 337
...... 337
...... 344

347

349

OpenlmagelO Programmer’s Documentation

1 Introduction

Welcome to OpenimagelO!

1.1 Overview

OpenimagelO provides simple but powerful ImageInput and ImageOutput APIs that abstract
the reading and writing of 2D image file formats. They don’t support every possible way of
encoding images in memory, but for a reasonable and common set of desired functionality, they
provide an exceptionally easy way for an application using the APIs support a wide — and
extensible — selection of image formats without knowing the details of any of these formats.

Concrete instances of these APIs, each of which implements the ability to read and/or write
a different image file format, are stored as plugins (i.e., dynamic libraries, DLL’s, or DSO’s)
that are loaded at runtime. The OpenlmagelO distribution contains such plugins for several
popular formats. Any user may create conforming plugins that implement reading and writing
capabilities for other image formats, and any application that uses OpenimagelO would be able
to use those plugins.

The library also implements the helper class ImageBuf, which is a handy way to store
and manipulate images in memory. ImageBuf itself uses ImageInput and ImageOutput for
its file I/O, and therefore is also agnostic as to image file formats. A variety of functions
in the ImageBufAlgo namespace are available to perform image processing operations on
ImageBuf’s.

The ImageCache class transparently manages a cache so that it can access truly vast amounts
of image data (thousands of image files totaling hundreds of GB) very efficiently using only a
tiny amount (tens of megabytes at most) of runtime memory. Additionally, a TextureSystem
class provides filtered MIP-map texture lookups, atop the nice caching behavior of ImageCache.

Finally, the OpenlmagelO distribution contains several utility programs that operate on im-
ages, each of which is built atop ImageInput and ImageOutput, and therefore may read or
write any image file type for which an appropriate plugin is found at runtime. Paramount among
these utilities oiiotool, a command-line image processing engine, and iv, an image viewing
application. Additionally, there are programs for converting images among different formats,
comparing image data between two images, and examining image metadata.

All of this is released as “open source” software using the very permissive “New BSD”
license. So you should feel free to use any or all of OpenlmagelO in your own software, whether
it is private or public, open source or proprietary, free or commercial. You may also modify it on
your own. You are encouraged to contribute to the continued development of OpenimagelO and

2 CHAPTER 1. INTRODUCTION

to share any improvements that you make on your own, though you are by no means required
to do so.

1.2 Simplifying Assumptions

OpenlmagelO is not the only image library in the world. Certainly there are many fine libraries
that implement a single image format (including the excellent 1ibtiff, 1ibjpeg, and OpenEXR
that OpenlmagelO itself relies on). Many libraries attempt to present a uniform API for reading
and writing multiple image file formats. Most of these support a fixed set of image formats,
though a few of these also attempt to provide an extensible set by using the plugin approach.

But in our experience, these libraries are all flawed in one or more ways: (1) They either
support only a few formats, or many formats but with the majority of them somehow incomplete
or incorrect. (2) Their APIs are not sufficiently expressive as to handle all the image features
we need (such as tiled images, which is critical for our texture library). (3) Their APIs are too
complete, trying to handle every possible permutation of image format features, and as a result
are horribly complicated.

The third sin is the most severe, and is almost always the main problem at the end of the day.
Even among the many open source image libraries that rely on extensible plugins, we have not
found one that is both sufficiently flexible and has APIs anywhere near as simple to understand
and use as those of OpenlmagelO.

Good design is usually a matter of deciding what not to do, and OpenimagelO is no ex-
ception. We achieve power and elegance only by making simplifying assumptions. Among
them:

e OpenlimagelO only deals with ordinary 2D images, and to a limited extent 3D volumes,
and image files that contain multiple (but finite) independent images within them. Open-
ImagelO’s support of “movie” files is limited to viewing them as a sequence of separate
frames within the file, but not as movies per se (for example, no support for dealing with
audio or synchronization).

e Pixel data are presented as 8- 16- or 32-bit int (signed or unsigned), 16- 32- or 64-bit float.
NOTHING ELSE. No < 8 bit images, or pixels boundaries that aren’t byte boundaries.
Files with < 8 bits will appear to the client application as 8-bit unsigned grayscale images.

e Only fully elaborated, non-compressed data are accepted and returned by the API. Com-
pression or special encodings are handled entirely within an OpenlmagelO plugin.

e Color space is grayscale or RGB. Non-spectral data, such as XYZ, CMYK, or YUYV, are
converted to RGB upon reading.

o All color channels can be treated (by apps or readers/writers) as having the same data for-
mat (though there is a way to deal with per-channel formats for apps and readers/writers
that truly need it).

o All image channels in a subimage are sampled at the same resolution. For file formats
that allow some channels to be subsampled, they will be automatically up-sampled to the
highest resolution channel in the subimage.

OpenlmagelO Programmer’s Documentation

1.2. SIMPLIFYING ASSUMPTIONS 3

e Color information is always in the order R, G, B, and the alpha channel, if any, always
follows RGB, and Z channel (if any) always follows alpha. So if a file actually stores
ABGR, the plugin is expected to rearrange it as RGBA.

It’s important to remember that these restrictions apply to data passed through the APIs, not
to the files themselves. It’s perfectly fine to have an OpenimagelO plugin that supports YUV
data, or 4 bits per channel, or any other exotic feature. You could even write a movie-reading
ImageInput (despite OpenlmagelO’s claims of not supporting movies) and make it look to
the client like it’s just a series of images within the file. It’s just that all the nonconforming
details are handled entirely within the OpenlmagelO plugin and are not exposed through the
main OpenimagelO APIs.

Historical Origins

OpenlmagelO is the evolution of concepts and tools I've been working on for two decades.

In the 1980’s, every program I wrote that output images would have a simple, custom format
and viewer. I soon graduated to using a standard image file format (TIFF) with my own library
implementation. Then I switched to Sam Leffler’s stable and complete 1ibtiff.

In the mid-to-late-1990’s, I worked at Pixar as one of the main implementors of PhotoRe-
alistic RenderMan, which had display drivers that consisted of an API for opening files and
outputting pixels, and a set of DSO/DLL plugins that each implement image output for each of
a dozen or so different file format. The plugins all responded to the same API, so the renderer
itself did not need to know how to the details of the image file formats, and users could (in
theory, but rarely in practice) extend the set of output image formats the renderer could use by
writing their own plugins.

This was the seed of a good idea, but PRMan’s display driver plugin API was abstruse and
hard to use. So when I started Exluna in 2000, Matt Pharr, Craig Kolb, and I designed a new
API for image output for our own renderer, Entropy. This API, called “ExDisplay,” was C++,
and much simpler, clearer, and easier to use than PRMan’s display drivers.

NVIDIA’s Gelato (circa 2002), whose early work was done by myself, Dan Wexler, Jonathan
Rice, and Eric Enderton, had an API called “ImagelO.” ImagelO was much more powerful and
descriptive than ExDisplay, and had an API for reading as well as writing images. Gelato was
not only “format agnostic™ for its image output, but also for its image input (textures, image
viewer, and other image utilities). We released the API specification and headers (though not
the library implementation) using the BSD open source license, firmly repudiating any notion
that the API should be specific to NVIDIA or Gelato.

For Gelato 3.0 (circa 2007), we refined ImagelO again (by this time, Philip Nemec was
also a major influence, in addition to Dan, Eric, and mysel. This revision was not a major
overhaul but more of a fine tuning. Our ideas were clearly approaching stability. But, alas, the
Gelato project was canceled before Gelato 3.0 was released, and despite our prodding, NVIDIA
executives would not open source the full ImagelO code and related tools.

After I left NVIDIA, I was determined to recreate this work once again — and ONLY once
more — and release it as open source from the start. Thus, OpenlmagelO was born. I started with

IGelato as a whole had many other contributors; those I've named here are the ones I recall contributing to the
design or implementation of the ImagelO APIs

OpenIlmagelO Programmer’s Documentation

4 CHAPTER 1. INTRODUCTION

the existing Gelato ImagelO specification and headers (which were BSD licensed all along),
and made some more refinements since I had to rewrite the entire implementation from scratch
anyway. I think the additional changes are all improvements. This is the software you have in
your hands today.

Acknowledgments

OpenlmagelO incorporates, depends upon, or dynamically links against several other open
source packages, detailed below. These other packages are all distributed under licenses that al-
low them to be used by OpenimagelO. Where not specifically noted, they are all using the same
BSD license that OpenlmagelO uses. Any omissions or inaccuracies in this list are inadvertent
and will be fixed if pointed out. The full original licenses can be found in the relevant parts of
the source code.

OpenimagelO incorporates or distributes:

e The SHA-1 implemenation we use is public domain by Dominik Reichl
http://www.dominik-reichl.de/

e Squish (©) 2006 Simon Brown, MIT license. http://sjbrown.co.uk/?code=squish

e PugiXML (©) 2006-2009 by Arseny Kapoulkine (based on work (©) 2003 Kristen Weg-
ner). http://pugixml.org/

e DPX reader/writer (©) 2009 Patrick A. Palmer. http://code.google.com/p/dpx

e tinyformat.h () 2011 Chris Foster, Boost license. http://github.com/c42f/tinyformat

e lookup3 code by Bob Jenkins, Public Domain. http://burtleburtle.net/bob/c/lookup3.c
e xxhash (©) 2014 Yann Collet, BSD license. http://code.google.com/p/xxhash/

e farmhash () 2014 Google, Inc., MIT license. http://code.google.com/p/farmhash/

e KissFFT (©)2003-2010 Mark Borgerding. http://sourceforge.net/projects/kissfft

e Droid fonts from the Android SDK are distributed under the Apache license.
http://www.droidfonts.com

OpenlmagelO dynamically links against:

e libtiff (©) 1988-1997 Sam Leffler and 1991-1997 Silicon Graphics, Inc.
http://www.remotesensing.org/libtiff

1JG libjpeg © 1991-1998, Thomas G. Lane. http://www.1ijg.org

OpenEXR, Ilmbase, and Half (©) 2006, Industrial Light & Magic.
http://www.openexr.com

z1ib (© 1995-2005 Jean-loup Gailly and Mark Adler. http://www.zlib.net

libpng (©) 1998-2008 Glenn Randers-Pehrson, et al. http://www.libpng.org

OpenlmagelO Programmer’s Documentation

1.2. SIMPLIFYING ASSUMPTIONS 5

e Boost (C) various authors. http://www.boost.org
e GLEW (©) 2002-2007 Milan Ikits, et al. http://glew.sourceforge.net

e Jasper (©) 2001-2006 Michael David Adams, et al.
http://www.ece.uvic.ca/ mdadams/jasper/

e Ptex (©) 2009 Disney Enterprises, Inc. http://ptex.us
e Field3D (©) 2009 Sony Pictures Imageworks. http://sites.google.com/site/field3d/
e GIFLIB (C) 1997 Eric S. Raymond (MIT Licensed). http://giflib.sourceforge.net/

e LibRaw (©) 2008-2013 LibRaw LLC (LGPL, CDDL, and LibRaw licenses).
http://www.libraw.org/

e FFmpeg (©) various authors and distributed under LGPL. https://www. ffmpeg.org

e FreeType (© 1996-2002, 2006 by David Turner, Robert Wilhelm, and Werner Lemberg.
Distributed under the FreeType license (BSD compatible).

e JPEG-Turbo (© 2009-2015 D. R. Commander. Distributed under the BSD license.

OpenIlmagelO Programmer’s Documentation

CHAPTER 1. INTRODUCTION

OpenlmagelO Programmer’s Documentation

Part |

The OpenimagelO Library APIs

2 Image I/0O API Helper Classes

2.1 Data Type Descriptions: TypeDesc

There are two kinds of data that are important to OpenlmagelO:

e [nternal data is in the memory of the computer, used by an application program.

e Native file data is what is stored in an image file itself (i.e., on the “other side” of the
abstraction layer that OpenlmagelO provides).

Both internal and file data is stored in a particular data format that describes the numerical
encoding of the values. OpenlmagelO understands several types of data encodings, and there
is a special class, TypeDesc, that allows their enumeration and is described in the header file
OpenlImageIO/typedesc.h. A TypeDesc describes a base data format type, aggregation into
simple vector and matrix types, and an array length (if it’s an array).

The remainder of this section describes the C++ API for TypeDesc. See Section for
the corresponding Python bindings.

TypeDesc supports the following base data format types, given by the enumerated type

BASETYPE:
UINTS

INT8
UINT16

INT16

UINT

INT

UINT64

INT64

FLOAT

DOUBLE
HALF

8-bit integer values ranging from 0..255, corresponding to the C/C++
unsigned char.

8-bit integer values ranging from -128..127, corresponding to the C/C++ char.
16-bit integer values ranging from 0..65535, corresponding to the C/C++
unsigned short.

16-bit integer values ranging from -32768..32767, corresponding to the C/C++
short.

32-bit integer values, corresponding to the C/C++ unsigned int.

signed 32-bit integer values, corresponding to the C/C++ int.

64-bit integer values, corresponding to the C/C++ unsigned long long (on
most architectures).

signed 64-bit integer values, corresponding to the C/C++ long long (on most
architectures).

32-bit IEEE floating point values, corresponding to the C/C++ float.

64-bit IEEE floating point values, corresponding to the C/C++ double.

16-bit floating point values in the format supported by OpenEXR and OpenGL.

10 CHAPTER 2. IMAGE IO API HELPER CLASSES

A TypeDesc can be constructed using just this information, either as a single scalar value, or an
array of scalar values:

TypeDesc (BASETYPE btype)
TypeDesc (BASETYPE btype, int arraylength)

Construct a type description of a single scalar value of the given base type, or an array
of such scalars if an array length is supplied. For example, TypeDesc (UINT8) describes
an unsigned 8-bit integer, and TypeDesc (FLOAT, 7) describes an array of 7 32-bit float
values. Note also that a non-array TypeDesc may be implicitly constructed from just the
BASETYPE, so it’s okay to pass a BASETYPE to any function parameter that takes a full
TypeDesc.

In addition, TypeDesc supports certain aggregate types, described by the enumerated type
AGGREGATE:

SCALAR a single scalar value (such as a raw int or float in C). This is the default.
VEC2 two values representing a 2D vector.

VEC3 three values representing a 3D vector.

VEC4 four values representing a 4D vector.

MATRIX33 nine values representing a 3 X 3 matrix.
MATRIX44 sixteen values representing a 4 x 4 matrix.

And optionally, a hint about the semantics of the data, described by the enumerated type
VECSEMANTICS]

NOSEMANTICS nothing special known.

COLOR indicates a vector that is intended to represent a “color,” not a spatial
quantity (and of course therefore does not undergo a transformation).

POINT indicates a vector that represents a spatial position and should be trans-
formed by a 4 x 4 matrix as if it had a 4th component of 1.

VECTOR indicates a vector that represents a spatial direction and should be
transformed by a 4 x 4 matrix as if it had a 4th component of 0.

NORMAL indicates a vector that represents a surface normal and should be trans-
formed like a vector, but using the inverse-transpose of a 4 x 4 matrix.

TIMECODE indicates an int [2] representing the standard 4-byte encoding of an
SMPTE timecode.

KEYCODE indicates an int [7] representing the standard 28-byte encoding of an
SMPTE keycode.

These can be combined to fully describe a complex type:

TypeDesc (BASETYPE btype, AGGREGATE agg, VECSEMANTICS xform=NOSEMANTICS)
TypeDesc (BASETYPE btype, AGGREGATE agg, int arraylen)
TypeDesc (BASETYPE btype, AGGREGATE agg, VECSEMANTICS xform, int arraylen)

!1t’s unfortunately called VECSEMANTICS because it used to be used strictly for 3-vectors. If we were to do it over
again, it would just be SEMANTICS.

OpenlmagelO Programmer’s Documentation

2.2. EFFICIENT UNIQUE STRINGS: USTRING 11

Construct a type description of an aggregate (or array of aggregates), with optional vector
transformation semantics. For example, TypeDesc (HALF, COLOR) describes an aggregate
of 3 16-bit floats comprising a color, and TypeDesc (FLOAT, VEC3,POINT) describes an
aggregate of 3 32-bit floats comprising a 3D position.

Note that aggregates and arrays are different. A TypeDesc (FLOAT, 3) is an array of three
floats, a TypeDesc (FLOAT, COLOR) is a single 3-channel color comprised of floats, and
TypeDesc (FLOAT, 3, COLOR) is an array of 3 color values, each of which is comprised of
3 floats.

Of these, the only ones commonly used to store pixel values in image files are scalars of
UINT8, UINT16, FLOAT, and HALF (the last only used by OpenEXR, to the best of our knowl-
edge).

Note that the TypeDesc (which is also used for applications other than images) can describe
many types not used by OpenimagelO. Please ignore this extra complexity; only the above
simple types are understood by OpenlmagelO as pixel storage data types, though a few others,
including STRING and MATRIX44 aggregates, are occasionally used for metadata for certain
image file formats (see Sections [3.2.5] B.2.4] and the documentation of individual ImagelO
plugins for details).

2.2 Efficient unique strings: ustring

A ustringis an alternative to char* or std: : string for storing strings, in which the character
sequence is stored uniquely. If there are many copies of the same ustring, they all point to
the same canonical characters, which themselves are stored only once. This allows ustring’s
to be assigned to one another with only the copy of a pointer assignment (not allocation or
copying of characters), and for == and != comparisons of two ustring values for only the cost
of comparing the pointers (not examining the characters).

OpenlmagelO uses ustring in a few select places, where string assignment/copy and equal-
ity/inequality are the dominant string operation and we want them to be the same low cost as a
simple pointer assignment or comparison. (This primarily comes into play for the ImageCache
and TextureSystem, where we refer to images by their filenames and want very fast lookups.)

Please consult the public header ust ring.h for details, especially if you want to use ust ring
extensively in your own code. But here are the most important details to know if you are calling
the OpenlmagelO functions that take ust ring parameters:

ustring (const char *chars)

ustring (const char *chars, size_ t length)
ustring (const std::string é&str)

ustring (string_ view sref)

Constructs a ustring from a C string (char*), C++ std::string, ora string view.

const char* ustring::c_str ()
const std::string& ustring::string()
string view ustring::operator string view()

OpenIlmagelO Programmer’s Documentation

12 CHAPTER 2. IMAGE IO API HELPER CLASSES

Convert a ustring to a O-terminated C string, a C++ std::string, ora string_view.
All of these are extremely inexpensive.

2.3 Non-owning string views: string view

A string_view a non-owning, non-copying, non-allocating reference to a sequence of char-
acters. It encapsulates both a character pointer and a length.

A function that takes a string input (but does not need to alter the string in place) may
use a string_view parameter and accept input that is any of char* (C string), string literal
(constant char array), a std: :string (C++ string), or OIIO ustring. For all of these cases,
no extra allocations are performed, and no extra copies of the string contents are performed
(as they would be, for example, if the function took a const std: :stringé& argument but was
passed a char* or string literal).

Furthermore, a function that returns a copy or a substring of one of its inputs (for example,
a substr ()-like function) may return a string view rather than a std::string, and thus
generate its return value without any allocation or copying. Upon assignment to a std: : string
or ustring, it will properly auto-convert.

There are two important caveats to using this class:

1. The string_view merely refers to characters owned by another string, so the string_view

may not be used outside the lifetime of the string it refers to. Thus, string view is great
for parameter passing, but it’s not a good idea to use a string view to store strings in a
data structure (unless you are really sure you know what you’re doing).

2. Because the run of characters that the st ring_ view refers to may not be O-terminated, it
is important to distinguish between the data () method, which returns the pointer to the
characters, and the c_ str () method, which is guaranteed to return a valid C string that is
O-terminated. Thus, if you want to pass the contents of a string view to a function that
expects a O-terminated string (say, fopen), you must call fopen (my_string view.c_-
str()). Note that the usual case is that the string view does refer to a O-terminated
string, and in that case ¢ _str() returns the same thing as data() without any extra expense;
but in the rare case that it is not O-terminated, ¢ _str() will incur extra expense to internally
allocate a valid C string.

string view
string view
string view
string view

(const char *chars)

(const char *chars, size t length)

(const std::string &str)

(ustring ustr)

Constructs a string_view. The string_view doesn’t have its own copy of the charac-
ters, so don’t use the string view after the original string has been destroyed or altered.

Note that the version that takes a const char* but not a length will automatically take
the strlen(chars) to determine the length. (All the other constructors can deduce the
length without walking through all of the characters.)

OpenlmagelO Programmer’s Documentation

2.4. NON-OWNING ARRAY VIEWS: ARRAY VIEW 13

const char* string view::data ()

size t string view::size ()
The raw pointer to the characters (not necessarily O-terminated!) and the length of the
string_view.

const char* string view::c str ()

Return a O-terminated char* version of the string view (a proper C string).

std::string (string view sr)
ustring (string view sr)

Automatic constructions of C++ std: :string or OIIO ustring from a string view.

Additionally, a large portion of the usual API for std: :string is mimicked by string view.
Please consult the public string_view.h header file for full details, if you wish touse string_view
in your own code.

2.4 Non-owning array views: array view

A template array_view<typename T> is a non-owning, non-copying, non- allocating ref-
erence to an array. It encapsulates both a pointer and a length, and thus is a safer way of passing
pointers around (because the function called knows how long the array is). A function that
might ordinarily take a T* and a length could instead just take an array_view<T>.

An array_view may be initialized explicitly from a pointer and length, by initializing with
a std::vector<T>, or by initalizing with a constant (treated as an array of length 1). For all
of these cases, no extra allocations are performed, and no extra copies of the array contents are
made.

Important caveat: The array_ view merely refers to items owned by another array, so the
array view should not be used outside the lifetime of the array it refers to. Thus, array view
is great for parameter passing, but it’s not a good idea to use a array_ view to store strings in
a data structure (unless you are really sure you know what you’re doing).

Commonly used array view methods include:

array_ view<T> (T *data, size_t len)

array view<T> (

array view<T> (T *begin, T *end)
(

array view<T> (std::vector<T> &vec)

Constructs a array_view. The array_view doesn’t have its own copy of the array
elements, so don’t use the array view after the original array has been destroyed or
altered.

T* array view<I>::data ()
size t array view<I>::size ()

The raw pointer to the array, and its length.

OpenIlmagelO Programmer’s Documentation

14 CHAPTER 2. IMAGE IO API HELPER CLASSES

T& array view<T>::operator[] (size t pos)
References a single element of the array_view.

Please consult the public array view.h header file for full details, if you wish touse array view
in your own code.

2.5 Image Specification: ImageSpec

An ImageSpec is a structure that describes the complete format specification of a single image.
It contains:

e The image resolution (number of pixels) and origin. This specifies what is often called
the “pixel data window.”

e The full size and offset of an abstract “full” or “display” window. Differing full and
data windows can indicate that the pixels are a crop region or a larger image, or contain
overscan pixels.

e Whether the image is organized into tiles, and if so, the tile size.
o The native data format of the pixel values (e.g., float, 8-bit integer, etc.).

e The number of color channels in the image (e.g., 3 for RGB images), names of the chan-
nels, and whether any particular channels represent alpha and depth.

e A user-extensible (and format-extensible) list of any other arbitrarily-named and -typed
data that may help describe the image or its disk representation.

The remainder of this section describes the C++ API for ImageSpec. See Section for
the corresponding Python bindings.

2.5.1 ImageSpec Data Members

The ImageSpec contains data fields for the values that are required to describe nearly any image,
and an extensible list of arbitrary attributes that can hold metadata that may be user-defined or
specific to individual file formats. Here are the hard-coded data fields:

int width, height, depth
int x, y, 2z

width, height, depth are the size of the data of this image, i.e., the number of pixels
in each dimension. A depth greater than 1 indicates a 3D “volumetric” image.

X, y, z indicate the origin of the pixel data of the image. These default to (0,0,0), but
setting them differently may indicate that this image is offset from the usual origin.

Therefore the pixel data are defined over pixel coordinates [x ... x+width-1] horizontally,
[y ... ytheight-1] vertically, and [z ... z+depth-1] in depth.

OpenlmagelO Programmer’s Documentation

2.5. IMAGE SPECIFICATION: IMAGESPEC 15

int full width, full height, full depth
int full x, full vy, full z

These fields define a “full” or “display” image window over the region [full x ...
full x+full width-1] horizontally, [full y .. full y+full height-1] verti-
cally, and [full_z ... full z+full depth-1]in depth.

Having the full display window different from the pixel data window can be helpful in
cases where you want to indicate that your image is a crop window of a larger image (if
the pixel data window is a subset of the full display window), or that the pixels include
overscan (if the pixel data is a superset of the full display window), or may simply indicate
how different non-overlapping images piece together.

int tile width, tile height, tile depth

If nonzero, indicates that the image is stored on disk organized into rectangular tiles of
the given dimension. The default of (0,0,0) indicates that the image is stored in scanline
order, rather than as tiles.

int nchannels

The number of channels (color values) present in each pixel of the image. For example,
an RGB image has 3 channels.

TypeDesc format

std::vector<TypeDesc> channelformats

std:

Describes the native format of the pixel data values themselves, as a TypeDesc (see[2.1)).
Typical values would be TypeDesc: : UINTS8 for 8-bit unsigned values, TypeDesc: : FLOAT
for 32-bit floating-point values, etc.

If all channels of the image have the same data format, that will be described by format
and channelformats will be empty (zero length).

If there are different data formats for each channel, they will be described in the channelformats
vector, and the format field will indicate a single default data format for applications that

don’t wish to support per-channel formats (usually this will be the format of the channel

that has the most precision).

:vector<std::string> channelnames

The names of each channel, in order. Typically this will be "R", "G","B", "A" (alpha),
"Z" (depth), or other arbitrary names.

int alpha_ channel

The index of the channel that represents alpha (pixel coverage and/or transparency). It
defaults to -1 if no alpha channel is present, or if it is not known which channel represents
alpha.

OpenIlmagelO Programmer’s Documentation

16 CHAPTER 2. IMAGE IO API HELPER CLASSES

int z_ channel

The index of the channel that respresents z or depth (from the camera). It defaults to -1 if
no depth channel is present, or if it is not know which channel represents depth.

bool deep

If t rue, this indicates that the image describes contains “deep” data consisting of multiple
samples per pixel. If false, it’s an ordinary image with one data value (per channel) per
pixel.

ParamValuelList extra attribs

A list of arbitrarily-named and arbitrarily-typed additional attributes of the image, for
any metadata not described by the hard-coded fields described above. This list may be
manipulated with the attribute () and find attribute () methods.

2.5.2 ImageSpec member functions

ImageSpec contains the following methods that manipulate format specs or compute useful
information about images given their format spec:

ImageSpec (int xres, int yres, int nchans, TypeDesc fmt = UINTS)

Constructs an ImageSpec with the given x and y resolution, number of channels, and
pixel data format.

All other fields are set to the obvious defaults — the image is an ordinary 2D image (not a
volume), the image is not offset or a crop of a bigger image, the image is scanline-oriented
(not tiled), channel names are “R”, “G”, “B,” and “A” (up to and including 4 channels,
beyond that they are named “channel n”), the fourth channel (if it exists) is assumed to be
alpha, and values are assumed to be linear.

void set format (TypeDesc fmt)

Sets the format as described.

void default channel names ()

Sets the channelnames to reasonable defaults for the number of channels. Specifically,
channel names are set to “R”, “G”, “B,” and “A” (up to and including 4 channels, beyond
that they are named “channeln”.

size_t channel bytes () const

Returns the number of bytes comprising each channel of each pixel (i.e., the size of a
single value of the type described by the format field).

OpenlmagelO Programmer’s Documentation

2.5. IMAGE SPECIFICATION: IMAGESPEC 17

size_t channel bytes (int chan, bool native=false) const
Returns the number of bytes needed for the single specified channel. If native is false
(default), compute the size of one channel of this->format, but if native is true, com-
pute the size of the channel in terms of the “native” data format of that channel as stored
in the file.

size t pixel bytes (bool native=false) const

Returns the number of bytes comprising each pixel (i.e. the number of channels multi-
plied by the channel size).

If native is true, this will be the sum of all the per-channel formats in channelformats.
If native is false (the default), or if all channels use the same format, this will simply be
the number of channels multiplied by the width (in bytes) of the format.

size t pixel bytes (int chbegin, int chend, bool native=false) const
Returns the number of bytes comprising the range of channels [chbegin, chend) for each
pixel.
If native is true, this will be the sum of the per-channel formats in channelformats
(for the given range of channels). If native is false (the default), or if all channels use
the same format, this will simply be the number of channels multiplied by the width (in
bytes) of the format.

imagesize t scanline bytes (bool native=false) const
Returns the number of bytes comprising each scanline, i.e.,
pixel bytes(native) * width
This will return std: :numeric limits<imagesize t>::max () inthe eventof an over-
flow where it’s not representable in an imagesize t.

imagesize_t tile_ pixels () const
Returns the number of tiles comprising an image tile (if it’s a tiled image). This will return
std::numeric limits<imagesize t>::max() in the event of an overflow where it’s
not representable in an imagesize t.

imagesize t tile bytes (bool native=false) const
Returns the number of bytes comprising an image tile (if it’s a tiled image), i.e.,
pixel bytes(native) * tile width * tile height * tile depth
This will return std: :numeric limits<imagesize t>::max () inthe eventof anover-
flow where it’s not representable in an imagesize t.

imagesize t image pixels () const
Returns the number of pixels comprising an entire image image of these dimensions. This
will return std: :numeric limits<imagesize t>::max () in the event of an overflow
where it’s not representable in an imagesize t.

OpenIlmagelO Programmer’s Documentation

18

CHAPTER 2. IMAGE IO API HELPER CLASSES

imagesize t image bytes (bool native=false) const

bool

void

void
void
void
void

void

Returns the number of bytes comprising an entire image of these dimensions, i.e.,

pixel bytes(native) * width * height * depth

This will return std: :numeric limits<imagesize t>::max () inthe eventof an over-
flow where it’s not representable in an imagesize t.

size t safe () const

Return true if an image described by this spec can the sizes (in pixels or bytes) of its
scanlines, tiles, and the entire image can be represented by a size_t on that platform. If
this returns false, the client application should be very careful allocating storage!

attribute (string view name, TypeDesc type,

const void *value)
Add a metadata attribute to extra_attribs, with the given name and data type. The
value pointer specifies the address of the data to be copied.

attribute (string view name, unsigned int value)
attribute (string view name, int value)
attribute (string view name, float value)
attribute (string view name, string_ view value)

Shortcuts for passing attributes comprised of a single integer, floating-point value, or
string.

erase attribute (string view name,
TypeDesc searchtype=UNKNOWN,
bool casesensitive=false)

Searches extra attribs for an attribute matching name, and if it exists, remove it en-
tirely from extra_attribs. If searchtype is anything other than TypeDesc: : UNKNOWN,
matches will be restricted only to attributes with the given type. The name compari-
son will be exact if casesensitive is true, otherwise in a case-insensitive manner if
caseinsensitive is false.

ImageIOParameter * find attribute (string view name,

TypeDesc searchtype=UNKNOWN,
bool casesensitive=false)

const ImagelIOParameter * find attribute (string view name,

TypeDesc searchtype=UNKNOWN,
bool casesensitive=false) const

Searches extra_attribs for an attribute matching name, returning a pointer to the at-
tribute record, or NULL if there was no match. If searchtype is anything other than
TypeDesc: : UNKNOWN, matches will be restricted only to attributes with the given type.
The name comparison will be exact if casesensitive is true, otherwise in a case-
insensitive manner if caseinsensitive is false.

OpenlmagelO Programmer’s Documentation

2.5. IMAGE SPECIFICATION: IMAGESPEC 19

const ImageIOParameter * find attribute (string view name,
ImageIOParameter &tmpparam,
TypeDesc searchtype=UNKNOWN,
bool casesensitive=false) const

Search for the named attribute and return the pointer to its ImageIOParameter record,
or NULL if not found. This variety of find_ attribute () can retrieve items such as
"width", which are part of the ImageSpec, but not in extra attribs. The tmpparam
is a temporary storage area owned by the caller, which is used as temporary buffer in
cases where the information does not correspond to an actual extra attribs (in this
case, the return value will be &tmpparam).

int get int attribute (string view name, int defaultval=0) const

Gets an integer metadata attribute (silently converting to int even if if the data is really
int8, uint8, int16, uint16, or uint32), and simply substituting the supplied default value if
no such metadata exists. This is a convenience function for when you know you are just
looking for a simple integer value.

float get float attribute (string view name, float defaultval=0) const

Gets a float metadata attribute (silently converting to float even if the data is really half
or double), simply substituting the supplied default value if no such metadata exists. This
is a convenience function for when you know you are just looking for a simple float value.

string view get string attribute (string view name,
string view defaultval = "") const

Gets a string metadata attribute, simply substituting the supplied default value if no such
metadata exists. This is a convenience function for when you know you are just looking
for a simple string value.

static std::string metadata wval (const ImageIOParamaeter &p, bool human=true)
const

For a given parameter p, format the value nicely as a string. If human is true, use especially
human-readable explanations (units, or decoding of values) for certain known metadata.

std::string to xml () const

Saves the contents of the ImageSpec as XML, returning it as a string.

void from xml (const char *xml) const

Populates the fields of the TmageSpec based on the XML passed in.

TypeDesc channelformat (int chan) const

Returns a TypeDesc describing the format of the requested channel.

OpenIlmagelO Programmer’s Documentation

NEW

20 CHAPTER 2. IMAGE IO API HELPER CLASSES

void get channelformats (std::vector<TypeDesc> &formats) const

Fill in an array of channel formats describing all channels in the image. (Note that this
differs slightly from the member data channelformats, which is empty if there are not
separate per-channel formats.)

2.6 “Deep” pixel data: DeepData

A DeepData holds the contents of an image of “deep” pixels (multiple depth samples per pixel).
Commonly used DeepData fields and methods include:
void init (const ImageSpec é&spec)

Initialize the DeepData based on the ImageSpec’s total number of pixels, number and
types of channels. At this stage, all pixels are assumed to have 0 samples, and no sample
data is allocated.

void init (int npix, int nchan,
array view<const TypeDesc> channeltypes),
array_ view<const std::string> channelnames)

Initialize the DeepData with a number of pixels, channels, channel types, and channel
names.

void clear ()

Reset the DeepData to be equivalent to its empty initial state.

void free ()

Not only clear (), but also ensure that all allocated memory has been truly freed.

int npixels () const

Retrieve the total number of pixels.

int nchannels () const

Retrieve the number of channels.

string view channelname (int c) const

Retrieve the name of channel c.

TypeDesc channeltype (int c) const

Retrieve the data type of channel c.

OpenlmagelO Programmer’s Documentation

2.6. “DEEP” PIXEL DATA: DEEPDATA 21

size t channelsize (int c) const

Retrieve the size (in bytes) of one datum of channel c.

size t samplesize () const

Retrieve the packed size (in bytes) of all channels of one sample.

int samples (int pixel) const

Retrieve the number of samples for the given pixel index.

void set samples (int pixel, int samps)

Set the number of samples for the given pixel index.

void insert samples (int pixel, int samplepos, int n=1)

Insert n samples of the specified pixel, betinning at the sample position index. After N EW'
insertion, the new samples will have uninitialized values. '

void erase samples (int pixel, int samplepos, int n=1)

Remove n samples of the specified pixel, betinning at the sample position index. N EW |

float deep value (int pixel, int channel, int sample) const
uint32_ t deep_ value uint (int pixel, int channel, int sample) const

Retrieve the value of the given pixel, channel, and sample indices, for floating point or
unsigned integer channel types, respectively.

void set deep value (int pixel, int channel, int sample, float value)
void set deep wvalue (int pixel, int channel, int sample, uint32_ t wvalue)

Set the value of the given pixel, channel, and sample indices, for floating point or unsigned
integer channel types, respectively.

bool copy deep sample (int pixel, int sample,
const DeepData &src, int srcpixel, int srcsample)

Copy a deep sample from src to this DeepData. They must have the same channel layout. N EW '

Return true if ok, false if the operation could not be performed.

bool copy deep pixel (int pixel, const DeepData &src, int srcpixel)

Copy an entire deep pixel from src to this DeepData, completely replacing any pixel N EW'
data for that pixel. They must have the same channel layout. Return t rue if ok, false if :

the operation could not be performed.

OpenIlmagelO Programmer’s Documentation

NEW!

NEW!

NEW!

NEW!

22 CHAPTER 2. IMAGE IO API HELPER CLASSES

void split (int pixel, float depth)
Split any samples of the pixel that cross depth.

void sort (int pixel)
Sort the samples of the pixel by their Z depth.

void merge overlaps (int pixel)
Merge any adjacent samples in the pixel that exactly overlap in z range. This is only
useful if the pixel has previously been split at all sample starts and ends, and sorted by
depth. Note that this may change the number of samples in the pixel.

bool merge deep pixels (int pixel, const DeepData &src, int srcpixel)
Merge the samples of src’s pixel into this DeepData’s pixel. Return true if ok, false if
the operation could not be performed.

bool occlusion cull (int pixel)
Eliminate any samples beyond an opaque sample.

2.6.1 Miscellaneous Utilities

These helper functions are not part of any other OpenlmagelO class, they just exist in the
OpenImageIO namespace as general utilities. (See Section[I1.10]for the corresponding Python
bindings.)

int openimageio version ()

std:

Returns a numeric value for the version of OpenlmagelO, 10000 for each major version,
100 for each minor version, 1 for each patch. For example, OpenlmagelO 1.2.3 would
return a value of 10203.

:string geterror ()

Returns any error string describing what went wrong if ImageInput::create() or
ImageOutput: :create () failed (since in such cases, the ImageInput or ImageOutput
itself does not exist to have its own geterror () function called). This function returns
the last error for this particular thread; separate threads will not clobber each other’s
global error messages.

OpenlmagelO Programmer’s Documentation

NEW!

2.6. “DEEP” PIXEL DATA: DEEPDATA 23

bool attribute (string view name, TypeDesc type, const void *val)

Sets an global attribute (i.e., a property or option) of OpenlmagelO. The name designates
the name of the attribute, type describes the type of data, and val is a pointer to memory
containing the new value for the attribute.

If the name is known, valid attribute that matches the type specified, the attribute will be
set to the new value and attribute () will return true. If name is not recognized, or if
the types do not match (e.g., type is TypeDesc: : TypeFloat but the named attribute is a
string), the attribute will not be modified, and attribute () will return false.

The following are the recognized attributes:

int threads

Some OpenlmagelO operations can be accelerated if allowed to spawn multiple
threads to parallelize the task. (Examples: simultaneous format conversions of mul-
tiple scanlines read together, or many ImageBufAlgo operations.) This attribute
sets the default number of threads that will be spawned for these operations (the
“fan out”). The default is 0, which means that it should spawn as many threads as
there are hardware cores present on the system.

Situations where the main application logic is essentially single threaded (i.e., one
top-level call into OIIO at a time) should leave this at the default value, or some
reasonable number of cores, thus allowing lots of threads to fill the cores when
OIIO has big tasks to complete. But situations where you have many threads at
the application level, each of which is expected to be making separate OIIO calls
simultaneously, should set this to 1, thus having each calling thread do its own work
inside of OIIO rather than spawning new threads with a high overall “fan out.”

int exr threads

Sets the internal OpenEXR thread pool size. The default is to use as many threads
as the amount of hardware concurrency detected. Note that this is separate from the
OIIO "threads" attribute.

string plugin_ searchpath

A colon-separated list of directories to search for dynamically-loaded format plug-
ins.

string format list

A comma-separated list of all the names of all supported image format readers
and writers. (Note: can only be retrieved by getattribute (), cannot be set by
attribute().)

OpenIlmagelO Programmer’s Documentation

24 CHAPTER 2. IMAGE 1I/0 API HELPER CLASSES
string extension list
For each format, the format name, followed by a colon, followed by a comma-
separated list of all extensions that are presumed to be used for that format. Semi-
colons separate the lists for formats. For example,
"tiff:tif; jpeg:jpg, jpeg;openexr:exr"
(Note: can only be retrieved by getattribute (), cannot be set by attribute().)
int read chunk
When performing a read__image (), this is the number of scanlines it will attempt to
read at a time (some formats are more efficient when reading and decoding multiple
scanlines). The default is 256. The special value of 0 indicates that it should try to
read the whole image if possible.
bool attribute (string view name, int wval)
bool attribute (string view name, float val)
bool attribute (string view name, const char *val)
bool attribute (string view name, const std::string & wval)
Specialized versions of attribute () in which the data type is implied by the type of the
argument.
bool getattribute (string view name, TypeDesc type, void *val)
Gets the current value of a global attribute. The name designates the name of the attribute,
type describes the type of data, and val is a pointer to memory where the user would
like the value placed.
If the attribute name is valid and matches the type specified, the attribute value will be
stored at address val and attribute () will return true. If name is not recognized as a
valid attribute name, or if the types do not match (e.g., type is TypeDesc: : TypeFloat
but the named attribute is a string), no data will be written to val, and attribute () will
return false.
The complete list of attributes can be found above, in the description of the attribute ()
function.
bool getattribute (string view name, int &val)
bool getattribute (string view name, float &val)
bool getattribute (string view name, char **val)
bool getattribute (string view name, std::string & val)

Specialized versions of getattribute () in which the data type is implied by the type of
the argument.

For example, the following are equivalent to the example above for the general (pointer)
form of getattribute():

OpenlmagelO Programmer’s Documentation

2.6. “DEEP” PIXEL DATA: DEEPDATA 25

int threads;

0II0::getattribute ("threads", &threads);
std::string path;

0IIO0::getattribute ("plugin_searchpath", &path);

int get int attribute (string view name, int defaultvalue=0)
float get float attribute (string view name, float defaultvalue=0)
string view get string attribute (string view name,

string view defaultvalue="")

Specialized versions of getattribute () for common types, in which the data is returned N EW '

directly, and a supplied default value is returned if the attribute was not found.

For example, the following are equivalent to the example above for the general (pointer)
form of getattribute():

int threads = 0IIO::getattribute ("threads", 0);
string_view path = OIIO::getattribute ("plugin_searchpath");

void declare imageio format (const std::string &format name,
ImagelInput::Creator input creator,
const char **input extensions,
ImageOutput: :Creator output creator,
const char **output extensions)

Register the input and output ‘create’ routines and list of file extensions for a particular
format.

OpenIlmagelO Programmer’s Documentation

26

CHAPTER 2. IMAGE IO API HELPER CLASSES

OpenlmagelO Programmer’s Documentation

3 ImageOutput: Writing Images

3.1 Image Output Made Simple
Here is the simplest sequence required to write the pixels of a 2D image to a file:

#include <OpenImagelIO/imageio.h>
OITO_NAMESPACE_USING

const char *filename = "foo.jpg";

const int xres = 640, yres = 480;

const int channels = 3; // RGB

unsigned char pixels[xres*yres*channels];

ImageOutput *out = ImageOutput::create (filename);
if (! out)
return;
ImageSpec spec (xres, yres, channels, TypeDesc::UINTS8);
out->open (filename, spec);
out->write_image (TypeDesc::UINT8, pixels);
out->close ();
ImageOutput::destroy (out);

This little bit of code does a surprising amount of useful work:

e Search for an ImagelO plugin that is capable of writing the file ("foo. jpg"), deducing
the format from the file extension. When it finds such a plugin, it creates a subclass
instance of ImageOutput that writes the right kind of file format.

ImageOutput *out = ImageOutput::create (filename);

e Open the file, write the correct headers, and in all other important ways prepare a file
with the given dimensions (640 x 480), number of color channels (3), and data format
(unsigned 8-bit integer).

ImageSpec spec (xres, yres, channels, TypeDesc::UINTS);
out->open (filename, spec);

27

28 CHAPTER 3. IMAGEOUTPUT: WRITING IMAGES

e Write the entire image, hiding all details of the encoding of image data in the file, whether
the file is scanline- or tile-based, or what is the native format of data in the file (in this
case, our in-memory data is unsigned 8-bit and we’ve requested the same format for disk
storage, but if they had been different, write image () would do all the conversions for
us).

out->write_image (TypeDesc::UINT8, &pixels);

e Close the file, destroy and free the ImageOutput we had created, and perform all other
cleanup and release of any resources needed by the plugin.

out->close ();
ImageOutput::destroy (out);

What happens when the file format doesn’t support the spec?

The open () call will fail (return false and set an appropriate error message) if the output
format cannot accommodate what is requested by the ImageSpec. This includes:

e Dimensions (width, height, or number of channels) exceeding the limits supported by the
file formatl[l]

e Volumetric (depth > 1) if the format does not support volumetric data.
e Tile size > 1 if the format does not support tiles.
e Multiple subimages or MIP levels if not supported by the format.

However, several other mismatches between requested ImageSpec and file format capabil-
ities will be silently ignored, allowing open () to succeed:

o If the pixel data format is not supported (for example, a request for half pixels when
writing a JPEG/JFIF file), the format writer may substitute another data format (generally,
whichever commonly-used data format supported by the file type will result in the least
reduction of precision or range).

o [fthe ImageSpec requests different per-channel data formats, but the format supports only
a single format for all channels, it may just choose the most precise format requested and
use it for all channels.

e If the file format does not support arbitrarily-named channels, the channel names may be
lost when saving the file.

e Any other metadata in the ImageSpec may be summarily dropped if not supported by the
file format.

10ne exception to the rule about number of channels is that a file format that supports only RGB, but not alpha,
is permitted to silently drop the alpha channel without considering that to be an error.

OpenlmagelO Programmer’s Documentation

3.2. ADVANCED IMAGE OUTPUT 29

3.2 Advanced Image Output

Let’s walk through many of the most common things you might want to do, but that are more
complex than the simple example above.

3.2.1 Writing individual scanlines, tiles, and rectangles

The simple example of Section |3.1|wrote an entire image with one call. But sometimes you are
generating output a little at a time and do not wish to retain the entire image in memory until it
is time to write the file. OpenlmagelO allows you to write images one scanline at a time, one
tile at a time, or by individual rectangles.

Writing individual scanlines

Individual scanlines may be written using the write scanline () API call:

unsigned char scanline[xres*channels];
out->open (filename, spec);
int z = 0; // Always zero for 2D images
for (int y = 0; vy < yres; ++y) {
. generate data in scanline[0..xres*channels-1]
out->write_scanline (y, z, TypeDesc::UINT8, scanline);

}

out->close ();

The first two arguments to write scanline () specify which scanline is being written by
its vertical (y) scanline number (beginning with 0) and, for volume images, its slice (z) number
(the slice number should be 0 for 2D non-volume images). This is followed by a TypeDesc
describing the data you are supplying, and a pointer to the pixel data itself. Additional optional
arguments describe the data stride, which can be ignored for contiguous data (use of strides is
explained in Section [3.2.3).

All ImageOutput implementations will accept scanlines in strict order (starting with scan-
line 0, then 1, up to yres-1, without skipping any). See Section[3.2.7for details on out-of-order
or repeated scanlines.

The full description of the write scanline () function may be found in Section@

Writing individual tiles

Not all image formats (and therefore not all ImageOutput implementations) support tiled im-
ages. If the format does not support tiles, then write tile() will fail. An application using
OpenimagelO should gracefully handle the case that tiled output is not available for the chosen
format.

Once you create () an ImageOutput, you can ask if it is capable of writing a tiled image
by using the supports ("tiles") query:

OpenIlmagelO Programmer’s Documentation

30 CHAPTER 3. IMAGEOUTPUT: WRITING IMAGES

ImageOutput *out = ImageOutput::create (filename);
if (! out->supports ("tiles")) {
// Tiles are not supported

}

Assuming that the ImageOutput supports tiled images, you need to specifically request a
tiled image when you open () the file. This is done by setting the tile size in the ImageSpec
passed to open (). If the tile dimensions are not set, they will default to zero, which indicates
that scanline output should be used rather than tiled output.

int tilesize = 64;

ImageSpec spec (xres, yres, channels, TypeDesc::UINTS8);
spec.tile_width = tilesize;

spec.tile_height = tilesize;

out->open (filename, spec);

In this example, we have used square tiles (the same number of pixels horizontally and
vertically), but this is not a requirement of OpenlmagelO. However, it is possible that some
image formats may only support square tiles, or only certain tile sizes (such as restricting tile
sizes to powers of two). Such restrictions should be documented by each individual plugin.

unsigned char tile[tilesize*tilesize*channels];
int z = 0; // Always zero for 2D images
for (int y = 0; y < yres; vy += tilesize) {
for (int x = 0; x < xres; x += tilesize) {
. generate data in tilef[]
out->write_tile (x, y, z, TypeDesc::UINT8, tile);

}

out->close ();

The first three arguments to write tile () specify which tile is being written by the pixel
coordinates of any pixel contained in the tile: x (column), y (scanline), and z (slice, which
should always be 0 for 2D non-volume images). This is followed by a TypeDesc describing
the data you are supplying, and a pointer to the tile’s pixel data itself, which should be ordered
by increasing slice, increasing scanline within each slice, and increasing column within each
scanline. Additional optional arguments describe the data stride, which can be ignored for
contiguous data (use of strides is explained in Section [3.2.3).

All ImageOutput implementations that support tiles will accept tiles in strict order of in-
creasing y rows, and within each row, increasing x column, without missing any tiles. See
Section for details on out-of-order or repeated tiles.

The full description of the write tile () function may be found in Section

Writing arbitrary rectangles

Some ImageOutput implementations — such as those implementing an interactive image dis-
play, but probably not any that are outputting directly to a file — may allow you to send arbitrary

OpenlmagelO Programmer’s Documentation

3.2. ADVANCED IMAGE OUTPUT 31

rectangular pixel regions. Once you create () an ImageOutput, you can ask if it is capable of
accepting arbitrary rectangles by using the supports ("rectangles") query:

ImageOutput *out = ImageOutput::create (filename);
if (! out->supports ("rectangles")) {
// Rectangles are not supported

If rectangular regions are supported, they may be sent using the write rectangle () API
call:

unsigned int rect[...];
. generate data in rect[]
out->write_rectangle (xbegin, xend, ybegin, yend, zbegin, zend,
TypeDesc: :UINT8, rect);

The first six arguments to write_rectangle () specify the region of pixels that is being
transmitted by supplying the minimum and one-past-maximum pixel indices in x (column), y
(scanline), and z (slice, always O for 2D non-volume images)E] The total number of pixels being
transmitted is therefore:

(xend-xbegin) * (yend-ybegin) * (zend-zbegin)

This is followed by a TypeDesc describing the data you are supplying, and a pointer to the
rectangle’s pixel data itself, which should be ordered by increasing slice, increasing scanline
within each slice, and increasing column within each scanline. Additional optional arguments
describe the data stride, which can be ignored for contiguous data (use of strides is explained in

Section[3.2.3).

3.2.2 Converting data formats

The code examples of the previous sections all assumed that your internal pixel data is stored

as unsigned 8-bit integers (i.e., 0-255 range). But OpenimagelO is significantly more flexible.

You may request that the output image be stored in any of several formats. This is done
by setting the format field of the ImageSpec prior to calling open. You can do this upon
construction of the ImageSpec, as in the following example that requests a spec that stores data
as 16-bit unsigned integers:

ImageSpec spec (xres, yres, channels, TypeDesc::UINT16);

Or, for an ImageSpec that has already been constructed, you may reset its format using the
set format () method.

ImageSpec spec (...);
spec.set_format (TypeDesc::UINT16);

20penlmagelO nearly always follows the C++ STL convention of specifying ranges as [begin, end), that is,
begin, begin+l, ..., end-1.

OpenIlmagelO Programmer’s Documentation

32 CHAPTER 3. IMAGEOUTPUT: WRITING IMAGES

Note that resetting the format must be done before passing the spec to open (), or it will
have no effect on the file.

Individual file formats, and therefore ImageOutput implementations, may only support
a subset of the formats understood by the OpenimagelO library. Each ImageOutput plugin
implementation should document which data formats it supports. An individual ImageOutput
implementation may choose to simply fail to open (), though the recommended behavior is
for open () to succeed but in fact choose a data format supported by the file format that best
preserves the precision and range of the originally-requested data format.

Itis not required that the pixel data passedtowrite image(),write scanline(),write tile(),
orwrite_rectangle () actually be in the same data format as that requested as the native for-
mat of the file. You can fully mix and match data you pass to the various write routines and
OpenimagelO will automatically convert from the internal format to the native file format. For
example, the following code will open a TIFF file that stores pixel data as 16-bit unsigned in-
tegers (values ranging from 0 to 65535), compute internal pixel values as floating-point values,
with write image () performing the conversion automatically:

ImageOutput *out = ImageOutput::create ("myfile.tif");
ImageSpec spec (xres, yres, channels, TypeDesc::UINT16);
out->open (filename, spec);

float pixels [xres*yres*channels];
out->write_image (TypeDesc::FLOAT, pixels);

Note that write scanline(),write tile(),andwrite rectangle have a parameter that
works in a corresponding manner.

3.2.3 Data Strides

In the preceeding examples, we have assumed that the block of data being passed to the write
functions are contiguous, that is:

e cach pixel in memory consists of a number of data values equal to the declared number
of channels that are being written to the file;

e successive column pixels within a row directly follow each other in memory, with the first
channel of pixel x immediately following last channel of pixel x — 1 of the same row;

o for whole images, tiles or rectangles, the data for each row immediately follows the pre-
vious one in memory (the first pixel of row y immediately follows the last column of row

y—1);

e for 3D volumetric images, the first pixel of slice z immediately follows the last pixel of
of slice z—1.

Please note that this implies that data passed to write tile() be contiguous in the shape
of a single tile (not just an offset into a whole image worth of pixels), and that data passed to
write rectangle () be contiguous in the dimensions of the rectangle.

OpenlmagelO Programmer’s Documentation

3.2. ADVANCED IMAGE OUTPUT 33

Thewrite_scanline () function takes an optional xst ride argument, and the write_image (),
write tile(),andwrite rectangle functions take optional xstride, ystride, and zstride
values that describe the distance, in bytes, between successive pixel columns, rows, and slices,
respectively, of the data you are passing. For any of these values that are not supplied, or are
given as the special constant AutoStride, contiguity will be assumed.

By passing different stride values, you can achieve some surprisingly flexible functionality.

A few representative examples follow:

e Flip an image vertically upon writing, by using negative y stride:

unsigned char pixels[xres*yres*channels];
int scanlinesize = xres * channels * sizeof (pixels[0]);

out->write_image (TypeDesc::UINTS,
(char *)pixels+(yres-1)*scanlinesize, // offset to last

AutoStride, // default x stride
-scanlinesize, // special y stride
AutoStride); // default z stride

e Write a tile that is embedded within a whole image of pixel data, rather than having a
one-tile-only memory layout:

unsigned char pixels[xres*yres*channels];
int pixelsize = channels * sizeof (pixels[0]);
int scanlinesize = xres * pixelsize;

out->write_tile (x, y, 0, TypeDesc::UINTS,
(char *)pixels + y*scanlinesize + x*pixelsize,
pixelsize,
scanlinesize);

e Write only a subset of channels to disk. In this example, our internal data layout consists
of 4 channels, but we write just channel 3 to disk as a one-channel image:

// In-memory representation is 4 channel
const int xres = 640, yres = 480;

const int channels = 4; // RGBA

const int channelsize = sizeof (unsigned char);
unsigned char pixels[xres*yres*channels];

// File representation is 1 channel

ImageOutput *out = ImageOutput::create (filename);
ImageSpec spec (xres, yres, 1, TypeDesc::UINT8);
out->open (filename, spec);

// Use strides to write out a one-channel "slice" of the image
out->write_image (TypeDesc::UINTS,
(char *)pixels+3*channelsize, // offset to chan 3

OpenIlmagelO Programmer’s Documentation

34 CHAPTER 3. IMAGEOUTPUT: WRITING IMAGES

channels*channelsize, // 4 channel x stride
AutoStride, // default y stride
AutoStride); // default z stride

Please consult Section [3.3]for detailed descriptions of the stride parameters to each write
function.

3.2.4 Writing a crop window or overscan region

The ImageSpec fields width, height, and depth describe the dimensions of the actual pixel
data.

At times, it may be useful to also describe an abstract full or display image window, whose
position and size may not correspond exactly to the data pixels. For example, a pixel data
window that is a subset of the full display window might indicate a crop window; a pixel data
window that is a superset of the full display window might indicate overscan regions (pixels
defined outside the eventual viewport).

The ImageSpec fields full width, full height, and full depth describe the dimen-
sions of the full display window, and full x, full vy, full_z describe its origin (upper left
corner). The fields %, y, z describe the origin (upper left corner) of the pixel data.

These fields collectively describe an abstract full display image ranging from [full x ...
full x+full width-1] horizontally, [full vy ... full y+full height-1] vertically, and
[full_z.. full z+full depth-1]indepth (if itis a 3D volume), and actual pixel data over
the pixel coordinate range [x ... x+width-1] horizontally, [y ... y+height-1] vertically, and [z

.. z+depth-1] in depth (if it is a volume).

Not all image file formats have a way to describe display windows. An ImageOutput
implementation that cannot express display windows will always write out the width x height
pixel data, may upon writing lose information about offsets or crop windows.

Here is a code example that opens an image file that will contain a 32 x 32 pixel crop
window within an abstract 640 x 480 full size image. Notice that the pixel indices (column,
scanline, slice) passed to the write functions are the coordinates relative to the full image, not
relative to the crop widow, but the data pointer passed to the write functions should point to the
beginning of the actual pixel data being passed (not the the hypothetical start of the full data, if
it was all present).

int fullwidth = 640, fulllength = 480; // Full display image size

int cropwidth = 16, croplength = 16; // Crop window size

int xorigin = 32, yorigin = 128; // Crop window position

unsigned char pixels [cropwidth * croplength * channels]; // Crop size!

ImageOutput *out = ImageOutput::create (filename);

ImageSpec spec (cropwidth, croplength, channels, TypeDesc::UINT8);
spec.full_x = 0;

spec.full_y = 0;

spec.full_width = fullwidth;

spec.full length = fulllength;

OpenlmagelO Programmer’s Documentation

3.2. ADVANCED IMAGE OUTPUT 35

spec.x xorigin;
spec.y = yorigin;

out->open (filename, spec);

int z = 0; // Always zero for 2D images
for (int y = yorigin; vy < yorigint+croplength; ++y) {
out->write_scanline (y, z, TypeDesc::UINTS,
(y-yorigin) *cropwidth*channels);
}

out->close ();

3.2.5 Writing metadata

The ImageSpec passed to open () can specify all the common required properties that describe
an image: data format, dimensions, number of channels, tiling. However, there may be a variety
of additional metadatcﬂ that should be carried along with the image or saved in the file.

The remainder of this section explains how to store additional metadata in the ImageSpec.
It is up to the ImageOutput to store these in the file, if indeed the file format is able to accept the
data. Individual ImageOutput implementations should document which metadata they respect.

Channel names

In addition to specifying the number of color channels, it is also possible to name those channels.
Only a few ImageOutput implementations have a way of saving this in the file, but some do,
so you may as well do it if you have information about what the channels represent.

By convention, channel names for red, green, blue, and alpha (or a main image) should be
named "R", "G", "B", and "A", respectively. Beyond this guideline, however, you can use any
names you want.

The ImageSpec has a vector of strings called channelnames. Upon construction, it starts
out with reasonable default values. If you use it at all, you should make sure that it contains the
same number of strings as the number of color channels in your image. Here is an example:

int channels = 4;
ImageSpec spec (width, length, channels, TypeDesc::UINT8);
spec.channelnames.clear ();
spec.channelnames.push_back (
spec.channelnames.push_back (
spec.channelnames.push_back ("
spec.channelnames.push_back (

Here is another example in which custom channel names are used to label the channels in an
8-channel image containing beauty pass RGB, per-channel opacity, and texture s,# coordinates
for each pixel.

int channels = 8;
ImageSpec spec (width, length, channels, TypeDesc::UINTS8);

3Metadata refers to data about data, in this case, data about the image that goes beyond the pixel values and
description thereof.

OpenIlmagelO Programmer’s Documentation

36 CHAPTER 3. IMAGEOUTPUT: WRITING IMAGES

spec.channelnames.clear ();

spec.channelnames.push_back ("R");
spec.channelnames.push_back ("G");
spec.channelnames.push_back ("B");
spec.channelnames.push_back ("opacityR");
spec.channelnames.push_back ("opacityG");
spec.channelnames.push_back ("opacityB");
spec.channelnames.push_back ("texture_s");
spec.channelnames.push_back ("texture_t");

The main advantage to naming color channels is that if you are saving to a file format that
supports channel names, then any application that uses OpenlmagelO to read the image back
has the option to retain those names and use them for helpful purposes. For example, the iv
image viewer will display the channel names when viewing individual channels or displaying
numeric pixel values in “pixel view” mode.

Specially-designated channels

The ImageSpec contains two fields, alpha channel and z channel, which can be used to
designate which channel indices are used for alpha and z depth, if any. Upon construction, these
are both set to -1, indicating that it is not known which channels are alpha or depth. Here is an
example of setting up a 5-channel output that represents RGBAZ:

int channels = 5;

ImageSpec spec (width, length, channels, format);
spec.channelnames.push_back ("R");
spec.channelnames.push_back (
spec.channelnames.push_back (
spec.channelnames.push_back ("
spec.channelnames.push_back (
spec.alpha_channel = 3;
spec.z_channel = 4;

There are two advantages to designating the alpha and depth channels in this manner:

e Some file formats may require that these channels be stored in a particular order, with
a particular precision, or the ImageOutput may in some other way need to know about
these special channels.

Arbitrary metadata

For all other metadata that you wish to save in the file, you can attach the data to the ImageSpec
using the attribute () methods. These come in polymorphic varieties that allow you to attach
an attribute name and a value consisting of a single int, unsigned int, float, char*, or
std: :string, as shown in the following examples:

ImageSpec spec (...);

OpenlmagelO Programmer’s Documentation

3.2. ADVANCED IMAGE OUTPUT 37

unsigned int u = 1;
spec.attribute ("Orientation", u);

float x = 72.0;
spec.attribute ("dotsize", £f);

std::string s = "Fabulous image writer 1.0";
spec.attribute ("Software", s);

These are convenience routines for metadata that consist of a single value of one of these
common types. For other data types, or more complex arrangements, you can use the more
general form of attribute (), which takes arguments giving the name, type (as a TypeDesc),
number of values (1 for a single value, > 1 for an array), and then a pointer to the data values.
For example,

ImageSpec spec (...);

// Attach a 4x4 matrix to describe the camera coordinates
float mymatrix[1l6] = { ... };
spec.attribute ("worldtocamera", TypeDesc::TypeMatrix, &mymatrix);

// Attach an array of two floats giving the CIE neutral color
float neutral[2] = { ... };
spec.attribute ("adoptedNeutral", TypeDesc (TypeDesc::FLOAT, 2), &neutral);

In general, most image file formats (and therefore most ImageOutput implementations) are
aware of only a small number of name/value pairs that they predefine and will recognize. Some
file formats (OpenEXR, notably) do accept arbitrary user data and save it in the image file. If an
ImageOutput does not recognize your metadata and does not support arbitrary metadata, that
metadatum will be silently ignored and will not be saved with the file.

Each individual ImageOutput implementation should document the names, types, and
meanings of all metadata attributes that they understand.

Color space hints

We certainly hope that you are using only modern file formats that support high precision and
extended range pixels (such as OpenEXR) and keeping all your images in a linear color space.
But you may have to work with file formats that dictate the use of nonlinear color values. This
is prevalent in formats that store pixels only as 8-bit values, since 256 values are not enough to
linearly represent colors without banding artifacts in the dim values.

Since this can (and probably will) happen, we have a convention for explaining what color
space your image pixels are in. Each individual ImageOutput should document how it uses this
(or not).

The ImageSpec: :extra attribs field should store metadata that reveals the color space
of the pixels you are sending the ImageOutput. The "oiio:ColorSpace™" attribute may take on
any of the following values:

"Linear" indicates that the color pixel values are known to be linear.

OpenIlmagelO Programmer’s Documentation

38 CHAPTER 3. IMAGEOUTPUT: WRITING IMAGES

"GammaCorrected" indicates that the color pixel values (but not alpha or z) have already
been gamma corrected (raised to the power 1/v), and that the gamma exponent may be
found in the "oiio:Gamma" metadata.

"sRGB" indicates that the color pixel values are in SRGB color space.
"AdobeRGB" indicates that the color pixel values are in Adobe RGB color space.
"Rec709" indicates that the color pixel values are in Rec709 color space.

"KodakLog" indicates that the color pixel values are in Kodak logarithmic color space.

The color space hints only describe color channels. You should always pass alpha, depth, or
other non-color channels with linear values.

Here is a simple example of setting up the ImageSpec when you know that the pixel values
you are writing are linear:

ImageSpec spec (width, length, channels, format);
spec.attribute ("oiio:ColorSpace", "Linear");

If a particular ImageOutput implementation is required (by the rules of the file format it
writes) to have pixels in a particular color space, then it should try to convert the color values of
your image to the right color space if it is not already in that space. For example, JPEG images
must be in SRGB space, so if you declare your pixels to be "Linear", the JPEG ImageOutput
will convert to SRGB.

If you leave the "oiio:ColorSpace" unset, the values will not be transformed, since the
plugin can’t be sure that it’s not in the correct space to begin with.

3.2.6 Controlling quantization

It is possible that your internal data format (that in which you compute pixel values that you
pass to the write functions) is of greater precision or range than the native data format of the
output file. This can occur either because you specified a lower-precision data format in the
ImageSpec that you passed to open (), or else that the image file format dictates a particular
data format that does not match your internal format. For example, you may compute float
pixels and pass those to write image (), but if you are writing a JPEG/JFIF file, the values
must be stored in the file as 8-bit unsigned integers.

The conversion from floating-point formats to integer formats (or from higher to lower
integer, which is done by first converting to float) is always done by rescaling the value so
that 0.0 maps to integer 0 and 1.0 to the maximum value representable by the integer type, then
rounded to an integer value for final output. Here is the code that implements this transformation
(T is the final output integer type):

float value = quant_max * input;
T output = (T) clamp ((int) (value + 0.5), quant_min, quant_max);

OpenlmagelO Programmer’s Documentation

3.2. ADVANCED IMAGE OUTPUT 39

The values of the quantization parameters are set in one of three ways: (1) upon construction
of the ImageSpec, they are set to the default quantization values for the given data format; (2)
upon call to ImageSpec::set format (), the quantization values are set to the defaults for
the given data format; (3) or, after being first set up in this manner, you may manually change
the quantization parameters in the ImageSpec, if you want something other than the default
quantization.
Default quantization for each integer type is as follows:

Data Format min max
UINTS 0 255
INTS8 -128 127
UINT16 0 65535
INT16 -32768 32767
UINT 0 | 4294967295
INT -2147483648 | 2147483647

Note that the default is to use the entire positive range of each integer type to represent the
floating-point (0..1) range. Floating-point types do not attempt to remap values, and do not
clamp (except to their full floating-point range).

The "oiio:dither" attribute in the ImageSpec is used to signal the desire for dithering
when writing float data to a uint8 file. Dithering can reduce visible banding when converting
continuous float data to low bit depth integer images. The attribute is an integer, and if O
(the default), it means not to dither. If nonzero, it requests that the results are dithered prior to
quantization, and the specific nonzero value acts as a “seed” to the hash function that determines
the per-pixel dither values (two images using the same seed will have the same dither pattern,
different seeds will yield different dither patterns).

3.2.7 Random access and repeated transmission of pixels

All ImageOutput implementations that support scanlines and tiles should write pixels in strict
order of increasing z slice, increasing y scanlines/rows within each slice, and increasing x col-
umn within each row. It is generally not safe to skip scanlines or tiles, or transmit them out of
order, unless the plugin specifically advertises that it supports random access or rewrites, which
may be queried using:

ImageOutput *out = ImageOutput::create (filename);
if (out->supports ("random_access"))

Similarly, you should assume the plugin will not correctly handle repeated transmissions of a
scanline or tile that has already been sent, unless it advertises that it supports rewrites, which
may be queried using:

if (out->supports ("rewrite"))

OpenIlmagelO Programmer’s Documentation

40 CHAPTER 3. IMAGEOUTPUT: WRITING IMAGES

3.2.8 Multi-image files

Some image file formats support storing multiple images within a single file. Given a created
ImageOutput, you can query whether multiple images may be stored in the file:

ImageOutput *out = ImageOutput::create (filename);
if (out->supports ("multiimage"))

Some image formats allow you to do the initial open () call without declaring the specifics
of the subimages, and simply append subimages as you go. You can detect this by checking

if (out->supports ("appendsubimage"))

In this case, all you have to do is, after writing all the pixels of one image but before calling
close (), call open () again for the next subimage and pass AppendSubimage as the value for
the mode argument (see Section [3.3|for the full technical description of the arguments to open).
The close () routine is called just once, after all subimages are completed. Here is an example:

const char *filename = "foo.tif";

int nsubimages; // assume this is set

ImageSpec specs[]; // assume these are set for each subimage
unsigned char *pixels[]; // assume a buffer for each subimage

// Create the ImageOutput
ImageOutput *out = ImageOutput::create (filename);

// Be sure we can support subimages
if (subimages > 1 && (! out->supports("multiimage") |
! out->supports ("appendsubimage"))) {
std::cerr << "Does not support appending of subimages\n";
ImageOutput::destroy (out);
return;

// Use Create mode for the first level.
ImageOutput: :OpenMode appendmode = ImageOutput::Create;

// Write the individual subimages

for (int s = 0; s < nsubimages; ++s) {
out->open (filename, specs[s], appendmode);
out—>write_image (TypeDesc::UINT8, pixels[s]);
// Use AppendSubimage mode for subsequent levels
appendmode = ImageOutput::AppendSubimage;

}

out->close ();

ImageOutput::destroy (out);

On the other hand, if out->supports ("appendsubimage™) returns false, then you must
use a different open () variety that allows you to declare the number of subimages and their
specifications up front.

OpenlmagelO Programmer’s Documentation

3.2. ADVANCED IMAGE OUTPUT 41

Below is an example of how to write a multi-subimage file, assuming that you know all the
image specifications ahead of time. This should be safe for any file format that supports multiple
subimages, regardless of whether it supports appending, and thus is the preferred method for
writing subimages, assuming that you are able to know the number and specification of the
subimages at the time you first open the file.

const char *filename = "foo.tif";

int nsubimages; // assume this is set

ImageSpec specs[]; // assume these are set for each subimage
unsigned char *pixels([]; // assume a buffer for each subimage

// Create the ImageOutput
ImageOutput *out = ImageOutput::create (filename);

// Be sure we can support subimages

if (subimages > 1 && ! out->supports ("multiimage")) {
std::cerr << "Cannot write multiple subimages\n";
ImageOutput::destroy (out);
return;

// Open and declare all subimages
out->open (filename, nsubimages, specs);

// Write the individual subimages

for (int s = 0; s < nsubimages; ++s) {
if (s > 0) // Not needed for the first, which is already open

out->open (filename, specs[s], ImageInput::AppendSubimage);

out->write_image (TypeDesc::UINT8, pixels([s]);

}

out->close ();

ImageOutput::destroy (out);

In both of these examples, we have used write image (), butofcoursewrite scanline(),
write tile(),andwrite rectangle () work as you would expect, on the current subimage.

3.2.9 MIP-maps

Some image file formats support multiple copies of an image at successively lower resolu-
tions (MIP-map levels, or an “image pyramid”). Given a created ImageOutput, you can query
whether MIP-maps may be stored in the file:

ImageOutput *out = ImageOutput::create (filename);
if (out->supports ("mipmap"))

If you are working with an ImageOutput that supports MIP-map levels, it is easy to write
these levels. After writing all the pixels of one MIP-map level, call open () again for the next
MIP level and pass ImageInput: :AppendMIPLevel as the value for the mode argument, and

OpenIlmagelO Programmer’s Documentation

42 CHAPTER 3. IMAGEOUTPUT: WRITING IMAGES

then write the pixels of the subsequent MIP level. (See Section[3.3|for the full technical descrip-
tion of the arguments to open ().) The close () routine is called just once, after all subimages
and MIP levels are completed.

Below is pseudocode for writing a MIP-map (a multi-resolution image used for texture

mapping):

const char *filename = "foo.tif";

const int xres = 512, yres = 512;

const int channels = 3; // RGB

unsigned char *pixels = new unsigned char [xres*yres*channels];

// Create the ImageOutput
ImageOutput *out = ImageOutput::create (filename);

// Be sure we can support either mipmaps or subimages

if (! out->supports ("mipmap") && ! out->supports ("multiimage")) {
std::cerr << "Cannot write a MIP-map\n";
ImageOutput::destroy (out);
return;

}

// Set up spec for the highest resolution

ImageSpec spec (xres, yres, channels, TypeDesc::UINTS8);

// Use Create mode for the first level.
ImageOutput: :OpenMode appendmode = ImageOutput::Create;

// Write images, halving every time, until we’re down to
// 1 pixel in either dimension
while (spec.width >= 1 && spec.height >= 1) {
out->open (filename, spec, appendmode);
out->write_image (TypeDesc::UINT8, pixels);
// Assume halve() resamples the image to half resolution
halve (pixels, spec.width, spec.height);
// Don’t forget to change spec for the next iteration
spec.width /= 2;
spec.height /= 2;

// For subsequent levels, change the mode argument to
// open(). If the format doesn’t support MIPmaps directly,
// try to emulate it with subimages.
if (out->supports ("mipmap"))
appendmode = ImageOutput::AppendMIPLevel;
else
appendmode = ImageOutput::AppendSubimage;
}
out->close ();
ImageOutput::destroy (out);

In this example, we have used write image (),butofcoursewrite scanline(),write tile(),
and write rectangle () work as you would expect, on the current MIP level.

OpenlmagelO Programmer’s Documentation

3.2. ADVANCED IMAGE OUTPUT 43

3.2.10 Per-channel formats
Some image formats allow separate per-channel data formats (for example, half data for colors

and float data for depth). When this is desired, the following steps are necessary:

1. Verify that the writer supports per-channel formats by checking
supports ("channelformats").

2. The ImageSpec passed to open () should have its channelformats vector filled with the
types for each channel.

3. Thecalltowrite scanline,read scanlines,write tile,write tiles,orwrite -
image should pass a data pointer to the raw data, already in the native per-channel format
of the file and contiguously packed, and specify that the data is of type TypeDesc: : UNKNOWN.

For example, the following code fragment will write a 5-channel image to an OpenEXR
file, consisting of R/G/B/A channels in half and a Z channel in float:

// Mixed data type for the pixel
struct Pixel { half r,qg,b,a; float z; };
Pixel pixels[xres*yres];

ImageOutput *out = ImageOutput::create ("foo.exr");

// Double check that this format accepts per-channel formats

if (! out->supports("channelformats")) {
ImageOutput::destroy (out);
return;

// Prepare an ImageSpec with per-channel formats
ImageSpec spec (xres, yres, 5, TypeDesc::FLOAT);
spec.channelformats.push_back (TypeDesc::HALF);
spec.channelformats.push_back (TypeDesc::HALF);
spec.channelformats.push_back (TypeDesc::HALF);
spec.channelformats.push_back (TypeDesc::HALF);
spec.channelformats.push_back (TypeDesc::FLOAT);
spec.channelnames.clear ();
spec.channelnames.push_back (
spec.channelnames.push_back (
spec.channelnames.push_back ("
spec.channelnames.push_back (
spec.channelnames.push_back (

out->open (filename, spec);

out->write_image (TypeDesc::UNKNOWN, /* use channel formats */
pixels, /* data buffer */
sizeof (Pixel)); /* pixel stride */

OpenIlmagelO Programmer’s Documentation

44 CHAPTER 3. IMAGEOUTPUT: WRITING IMAGES

3.2.11 Writing “deep” data

Some image file formats (OpenEXR only, at this time) support the concept of “deep” pixels —
those containing multiple samples per pixel (and a potentially differing number of them in each
pixel). You can tell if a format supports deep images by checking supports ("deepdata"),
and you can specify a deep data in an ImageSpec by setting its deep field will be true.

Deep files cannot be written with the usual write scanline,write scanlines,write -
tile, write tiles, write image functions, due to the nature of their variable number of
samples per pixel. Instead, ImageOutput has three special member functions used only for
writing deep data:

bool write_deep_scanlines (int ybegin, int yend, int z,
const DeepData &deepdata);

bool write_deep_tiles (int xbegin, int xend, int ybegin, int yend,
int zbegin, int zend, const DeepData &deepdata);

bool write_deep_image (const DeepData &deepdata);

It is only possible to write “native” data types to deep files; that is, there is no automatic
translation into arbitrary data types as there is for ordinary images. All three of these functions
are passed deep data in a special DeepData structure, described in detail in Section [2.6]

Here is an example of using these methods to write a deep image:

// Prepare the spec for 'half’ RGBA, ’'float’ =z

int nchannels = 5;

ImageSpec spec (xres, yres, nchannels);

TypeDesc channeltypes[] = { TypeDesc::HALF, TypeDesc::HALF,
TypeDesc: :HALF, TypeDesc::HALF, TypeDesc::FLOAT };

spec.z_channel = 4;

spec.channelnames[spec.z_channel] = "Z";

spec.channeltypes.assign (channeltypes+0, channeltypes+nchannels);

spec.deep = true;

// Prepare the data (sorry, complicated, but need to show the gist)
DeepData deepdata;
deepdata.init (spec);
for (int y = 0; y < yres; ++y)
for (int x = 0; x < xres; ++x)
deepdata.set_samples (y*xres+x, ...samples for that pixel...);
deepdata.alloc (); // allocate pointers and data
int pixel = 0;
for (int y = 0; y < yres; ++y)
for (int x = 0; x < xres; ++x, ++pixel)
for (int chan = 0; chan < nchannels; ++chan)
for (int samp = 0; samp < deepdata.samples(pixel); ++samp)
deepdata.set_deep_value (pixel, chan, samp, ...value...);

// Create the output

OpenlmagelO Programmer’s Documentation

3.2. ADVANCED IMAGE OUTPUT 45

ImageOutput *out = ImageOutput::create (filename);

if (! out)
return;
// Make sure the format can handle deep data and per-channel formats
if (! out->supports("deepdata") || ! out->supports("channelformats")
return;

// Do the I/O (this is the easy part!)
out->open (filename, spec);
out->write_deep_image (deepdata);
out->close ();

ImageOutput::destroy (out);

3.2.12 Copying an entire image

Suppose you want to copy an image, perhaps with alterations to the metadata but not to the
pixels. You could open an ImageInput and perform a read image (), and open another
ImageOutput and call write image () to output the pixels from the input image. However,
for compressed images, this may be inefficient due to the unnecessary decompression and sub-
sequent re-compression. In addition, if the compression is lossy, the output image may not
contain pixel values identical to the original input.

A special copy image method of ImageOutput is available that attempts to copy an image
from an open ImageInput (of the same format) to the output as efficiently as possible with
without altering pixel values, if at all possible.

Not all format plugins will provide an implementation of copy_ image (in fact, most will
not), but the default implemenatation simply copies pixels one scanline or tile at a time (with
decompression/recompression) so it’s still safe to call. Furthermore, even a provided copy -
image is expected to fall back on the default implementation if the input and output are not able
to do an efficient copy. Nevertheless, this method is recommended for copying images so that
maximal advantage will be taken in cases where savings can be had.

The following is an example use of copy image to transfer pixels without alteration while
modifying the image description metadata:

// Open the input file

const char *input = "input.jpg";

ImageInput *in = Imagelnput::create (input);
ImageSpec in_spec;

in->open (input, in_spec);

// Make an output spec, identical to the input except for metadata
ImageSpec out_spec = in_spec;
out_spec.attribute ("ImageDescription", "My Title");

// Create the output file and copy the image
const char *output = "output.jpg";

ImageOutput *out = ImageOutput::create (output);
out->open (output, out_spec);

out->copy_image (in);

OpenIlmagelO Programmer’s Documentation

46 CHAPTER 3. IMAGEOUTPUT: WRITING IMAGES

// Clean up

out->close ();
ImageOutput::destroy (out);
in->close ();
ImagelInput::destroy (in);

3.2.13 Custom search paths for plugins

When you call ImageOutput: :create (), the OpenlmagelO library will try to find a plugin
that is able to write the format implied by your filename. These plugins are alternately known
as DLL’s on Windows (with the .d11 extension), DSO’s on Linux (with the . so extension), and
dynamic libraries on Mac OS X (with the .dylib extension).

OpenlmagelO will look for matching plugins according to search paths, which are strings
giving a list of directories to search, with each directory separated by a colon (‘:’). Within a
search path, any substrings of the form ${F00} will be replaced by the value of environment
variable FOO. For example, the searchpath "${HOME}/plugins:/shared/plugins" will first
check the directory " /home/tom/plugins" (assuming the user’s home directory is /home/tom),
and if not found there, will then check the directory "/shared/plugins"”.

The first search path it will check is that stored in the environment variable 0II0 LIBRARY -
PATH. It will check each directory in turn, in the order that they are listed in the variable. If no
adequate plugin is found in any of the directories listed in this environment variable, then it will
check the custom searchpath passed as the optional second argument to ImageOutput : : create (),
searching in the order that the directories are listed. Here is an example:

char *mysearch = "/usr/myapp/lib:${HOME}/plugins";
ImageOutput *out = ImageOutput::create (filename, mysearch);

3.2.14 Error checking

Nearly every ImageOutput API function returns a bool indicating whether the operation suc-
ceeded (true) or failed (false). In the case of a failure, the TmageOutput will have saved
an error message describing in more detail what went wrong, and the latest error message
is accessible using the ImageOutput method geterror (), which returns the message as a
std::string.

The exception to this rule is ImageQutput : : create, which returns NULL if it could not cre-
ate an appropriate ImageOutput. And in this case, since no ImageOutput exists for which you
can callits geterror () function, there exists a global geterror () function (in the OpenImageIO
namespace) that retrieves the latest error message resulting from a call to create.

Here is another version of the simple image writing code from Section [3.1] but this time it
is fully elaborated with error checking and reporting:

#include <OpenImagelIO/imageio.h>
OITIO_NAMESPACE_USING

const char *filename = "foo.jpg";

OpenlmagelO Programmer’s Documentation

3.3. IMAGEOUTPUT CLASS REFERENCE 47

const int xres = 640, yres = 480;
const int channels = 3; // RGB
unsigned char pixels[xres*yres*channels];

ImageOutput *out = ImageOutput::create (filename);
if (! out) {
std::cerr << "Could not create an ImageOutput for "
<< filename << ", error ="
<< OpenImagelO::geterror() << "\n";
return;
}

ImageSpec spec (xres, yres, channels, TypeDesc::UINT8);

if (! out->open (filename, spec)) {
std::cerr << "Could not open " << filename
<< ", error = " << out->geterror() << "\n";
ImageOutput::destroy (out);
return;

if (! out->write_image (TypeDesc::UINT8, pixels)) {
std::cerr << "Could not write pixels to " << filename
<< ", error = " << out->geterror() << "\n";
ImageOutput::destroy (out);
return;

if (! out->close ()) {
std::cerr << "Error closing " << filename
<< ", error = " << out->geterror() << "\n";
ImageOutput::destroy (out);
return;

ImageOutput::destroy (out);

3.3 ImageOutput Class Reference

static ImageOutput * create (const std::string &filename,
const std::string &plugin_ searchpath="")

Create an ImageOutput that can be used to write an image file. The type of image
file (and hence, the particular subclass of ImageOutput returned, and the plugin that
contains its methods) is inferred from the extension of the file name. The plugin -
searchpath parameter is a colon-separated list of directories to search for OpenlmagelO
plugin DSO/DLL’s.

void destroy (ImageOutput *Output)

OpenIlmagelO Programmer’s Documentation

48 CHAPTER 3. IMAGEOUTPUT: WRITING IMAGES

Destroy an ImageOutput that was created by create (). The destroy () method is just
a wrapper around operator delete, but by being implemented within the OpenlmagelO
DLL, it can ensure that the memory deallocation is done in the same DLL arena as where
it was originally allocated. This is considered safer than a bare delete when used inside
“plug-ins,” especially on Windows systems.

const char * format name ()

Returns the canonical name of the format that this ImageOutput instance is capable of
writing.

int supports (string_view feature) const

Given the name of a feature, tells if this ImageOutput instance supports that feature.
Most queries will simply return O for “doesn’t support the feature” and nonzero for “sup-
ports the feature,” but it is acceptable to have queries return other nonzero integers to
indicate varying degrees of support or limits (but those queries should be clearly docu-
mented as such). The following features are recognized by this query:

"tiles" Is this plugin able to write tiled images?

"rectangles" Can this plugin accept arbitrary rectangular pixel regions (via write -

rectangle ())? False indicates that pixels must be transmitted viawrite_scanline()
(if scanline-oriented) orwrite tile() (iftile-oriented, and only if supports ("tiles")

returns true).

"random access" May tiles or scanlines be written in any order? False indicates that
they must be in successive order.

"multiimage" Does this format support multiple subimages within a single file?

"appendsubimage" Does this format support multiple subimages that can be succes-
sively appended at will, without needing to pre-declare the number and specifica-
tions the subimages when the file is first opened?

"mipmap" Does this format support resolutions per image/subimage (MIP-map levels)?
"volumes" Does this format support “3D” pixel arrays (a.k.a. volume images)?
"alpha" Does this format support an alpha channel?

"nchannels" Does this format support an arbitrary number of channels (beyond RGBA)?

"rewrite" Does this plugin allow the same scanline or tile to be sent more than once?
Generally this is true for plugins that implement some sort of interactive display,
rather than a saved image file.

"empty" Does this plugin support passing a NULL data pointer to the various write
routines to indicate that the entire data block is composed of pixels with value zero.
Plugins that support this achieve a speedup when passing blank scanlines or tiles
(since no actual data needs to be transmitted or converted).

OpenlmagelO Programmer’s Documentation

3.3. IMAGEOUTPUT CLASS REFERENCE 49

"channelformats" Does this format writer support per-channel data formats, respect-
ing the ImageSpec’s channelformats field? (If not, it only accepts a single data
format for all channels and will ignore the channelformats field of the spec.)

"displaywindow" Does the image format support specifying a display (“full”’) window
that is distinct from the pixel data window?

"origin" Does the image format support specifying a pixel window origin (i.e., nonzero
ImageSpecx, y, z)?

"negativeorigin" Does the image format allow pixel and data window origins (i.e.,
nonzero ImageSpecx, v, z, full_x, full vy, full z) to have negative values?

"deepdata" Does the image format allow “deep” data consisting of multiple values per
pixel (and potentially a differing number of values from pixel to pixel)?

"arbitrary_ metadata" Does the image file format allow metadata with arbitrary names
(and either arbitrary, or a reasonable set of, data types)? (Versus the file format sup-
porting only a fixed list of specific metadata names/values?

"exif" Does the image file format support Exif camera data (either specifically, or via
arbitrary named metadata)?

"iptc" Does the image file format support IPTC data (either specifically, or via arbitrary
named metadata)?

This list of queries may be extended in future releases. Since this can be done simply by
recognizing new query strings, and does not require any new API entry points, addition
of support for new queries does not break “link compatibility” with previously-compiled
plugins.

bool open (const std::string &name, const ImageSpec &newspec,
OpenMode mode=Create)

Open the file with given name, with resolution and other format data as given in newspec.
This function returns true for success, false for failure. Note that it is legal to call
open () multiple times on the same file without a call to close (), if it supports multiim-
age and mode is AppendSubimage, or if it supports MIP-maps and mode is AppendMIPLevel
— this is interpreted as appending a subimage, or a MIP level to the current subimage, re-
spectively.

bool open (const std::string &name, int subimages, const ImageSpec *specs)

Open the file with given name, expecting to have a given total number of subimages, de-
scribed by specs[0..subimages-1]. Return true for success, false for failure. Upon
success, the first subimage will be open and ready for transmission of pixels. Subsequent
subimages will be denoted with the usual call of open (name, spec, AppendSubimage)
(and MIP levels by open (name, spec, AppendMIPLevel)).

The purpose of this call is to accommodate format-writing libraries that must know the

number and specifications of the subimages upon first opening the file; such formats can
be detected by

OpenIlmagelO Programmer’s Documentation

50

CHAPTER 3. IMAGEOUTPUT: WRITING IMAGES

supports ("multiimage") && ! supports ("appendsubimage")

The individual specs passed to the appending open () calls for subsequent subimages
must match the ones originally passed.

const ImageSpec & spec ()

bool

bool

bool

Returns the spec internally associated with this currently open ImageOutput.

close ()

Closes the currently open file associated with this ImageOutput and frees any memory
or resources associated with it.

write scanline (int y, int z, TypeDesc format, const void *data,
stride t xstride=AutoStride)
Write the scanline that includes pixels (x,y,z) from data. For 2D non-volume images, z
isignored. The xst ride value gives the data spacing of adjacent pixels (in bytes). Strides
set to the special value AutoStride imply contiguous data, i.e.,
xstride = spec.nchannels * format.size()

This method automatically converts the data from the specified format to the actual out-
put format of the file. If format is TypeDesc: :UNKNOWN, the data is assumed to al-
ready be in the file’s native format (including per-channel formats, as specified in the
ImageSpec’s channelformats field, if applicable). Return true for success, false for
failure. It is a failure to call write scanline () with an out-of-order scanline if this
format driver does not support random access.

write scanlines (int ybegin, int yend, int z,

TypeDesc format, const void *data,

stride t xstride=AutoStride, stride t ystride=AutoStride)
Write a block of scanlines that include pixels (x,y,z), where ybegin <y < yend. This
is essentially identical to write scanline (), except that it can write more than one
scanline at a time, which may be more efficient for certain image format writers.

For 2D non-volume images, z is ignored. The xstride value gives the distance between
successive pixels (in bytes), and ystride gives the distance between successive scan-
lines. Strides set to the special value AutoStride imply contiguous data, i.e.,

xstride = spec.nchannels*format.size ()

ystride = spec.width*xstride

This method automatically converts the data from the specified format to the actual out-
put format of the file. If format is TypeDesc: :UNKNOWN, the data is assumed to al-
ready be in the file’s native format (including per-channel formats, as specified in the
ImageSpec’s channelformats field, if applicable). Return true for success, false for
failure. It is a failure to call write scanline () with an out-of-order scanline if this
format driver does not support random access.

OpenlmagelO Programmer’s Documentation

3.3. IMAGEOUTPUT CLASS REFERENCE 51

bool

bool

bool

write tile (int x, int y, int z, TypeDesc format, const void *data,
stride t xstride=AutoStride, stride t ystride=AutoStride,
stride t zstride=AutoStride)

Write the tile with (x,y,z) as the upper left corner. For 2D non-volume images, z is
ignored. The three stride values give the distance (in bytes) between successive pixels,
scanlines, and volumetric slices, respectively. Strides set to the special value AutoStride
imply contiguous data in the shape of a full tile, i.e.,

xstride = spec.nchannels * format.size()

ystride = xstride * spec.tile width

zstride = ystride * spec.tile height
This method automatically converts the data from the specified format to the actual out-
put format of the file. If format is TypeDesc: :UNKNOWN, the data is assumed to al-
ready be in the file’s native format (including per-channel formats, as specified in the
ImageSpec’s channelformats field, if applicable). Return true for success, false for
failure. It is a failure to call write tile () with an out-of-order tile if this format driver
does not support random access.

This function returns t rue if it successfully writes the tile, otherwise false for a failure.
The call will fail if the image is not tiled, or if (x,y,z) is not actually a tile boundary.

write tiles (int xbegin, int xend, int ybegin, int yend,
int zbegin, int zend, TypeDesc format, const void *data,
stride t xstride=AutoStride, stride t ystride=AutoStride,
stride t zstride=AutoStride)

Write the tiles that include pixels xbegin < x < xend, ybegin <y < yend, zbegin <z <
zend from data, converting if necessary from format specified into the file’s native data
format. If format is TypeDesc: : UNKNOWN, the data will be assumed to already be in the
native format (including per-channel formats, if applicable). The stride values give the
data spacing of adjacent pixels, scanlines, and volumetric slices, respectively (measured
in bytes). Strides set to the special value of AutoStride imply contiguous data in the
shape of the region specified, i.e.,

xstride = spec.nchannels * spec.pixel size()

ystride = xstride * (xend - xbegin)

zstride = ystride * (yend - ybegin)
The data for those tiles is assumed to be in the usual image order, as if it were just one
big tile, and not “paded” to a whole multiple of the tile size.

This function returns true if it successfully writes the tiles, otherwise false for a failure.
The call will fail if the image is not tiled, or if the pixel ranges do not fall along tile (or
image) boundaries, or if it is not a valid tile range.

write rectangle (int xbegin, int xend, int ybegin, int yend,
int zbegin, int zend, TypeDesc format, const void *data,
stride t xstride=AutoStride, stride t ystride=AutoStride,
stride t zstride=AutoStride)

OpenIlmagelO Programmer’s Documentation

52

CHAPTER 3. IMAGEOUTPUT: WRITING IMAGES

bool

bool

bool

bool

Write pixels covering the range that includes pixels xbegin < x < xend, ybegin <y <
yend, zbegin < z < zend. The three stride values give the distance (in bytes) between
successive pixels, scanlines, and volumetric slices, respectively. Strides set to the special
value AutoStride imply contiguous data, i.e.,

xstride = spec.nchannels*format.size ()

ystride = xstride* (xend-xbegin)

zstride = ystride* (yend-ybegin)
This method automatically converts the data from the specified format to the actual out-
put format of the file. If format is TypeDesc: :UNKNOWN, the data is assumed to al-
ready be in the file’s native format (including per-channel formats, as specified in the
ImageSpec’s channelformats field, if applicable). Return true for success, false for
failure. It is a failure to call write_rectangle for a format plugin that does not return
true for supports ("rectangles").

write image (TypeDesc format, const void *data,
stride t xstride=AutoStride, stride t ystride=AutoStride,
stride t zstride=AutoStride,
ProgressCallback progress callback=NULL,
void *progress callback data=NULL)

Write the entire image of spec.width X spec.height X spec.depth pixels, with the
given strides and in the desired format. If format is TypeDesc: : UNKNOWN, the data is
assumed to already be in the file’s native format (including per-channel formats, as spec-
ified in the ImageSpec’s channelformats field, if applicable). Strides set to the special
value AutoStride imply contiguous data, i.e.,

xstride = spec.nchannels * format.size()

ystride = xstride * spec.width

zstride = ystride * spec.height
The function will internally either call write scanline() orwrite tile (), depend-
ing on whether the file is scanline- or tile-oriented.

Because this may be an expensive operation, a progress callback may be passed. Period-
ically, it will be called as follows:

progress_callback (progress_callback_data, float done)

where done gives the portion of the image (between 0.0 and 1.0) that has been written
thus far.

write deep scanlines (int ybegin, int yend, int z,
const DeepData &deepdata)

write deep tiles (int xbegin, int xend, int ybegin, int yend,
int zbegin, int zend, const DeepData &deepdata)

write deep image (const DeepData &deepdata)

Write deep data for a block of scanlines, a block of tiles, or an entire image (analogously

to the usual write scanlines,write_tiles, and write_ image, but with deep data).
Return true for success, false for failure.

OpenlmagelO Programmer’s Documentation

3.3. IMAGEOUTPUT CLASS REFERENCE 53

bool copy image (Imagelnput *in)

Read the current subimage of in, and write it as the next subimage of *this, in a way that
is efficient and does not alter pixel values, if at all possible. Both in and this must be
a properly-opened ImageInput and ImageOutput, respectively, and their current images
must match in size and number of channels. Return true if it works ok, false if for
some reason the operation wasn’t possible.

If a particular ImageOutput implementation does not supply a copy_ image method, it
will inherit the default implementation, which is to simply read scanlines or tiles from
in and write them to *this. However, some file format implementations may have a
special technique for directly copying raw pixel data from the input to the output, when
both input and output are the same file type and the same data format. This can be
more efficient than in->read image followed by out->write image, and avoids any
unintended pixel alterations, especially for formats that use lossy compression.

int send to output (const char *format, ...)

General message passing between client and image output server. This is currently unde-
fined and is reserved for future use.

int send to client (const char *format, ...)

General message passing between client and image output server. This is currently unde-
fined and is reserved for future use.

void threads (int n)
int threads () const

Get or set the threading policy for this ImageOutput, controlling the maximum amount of
parallelizing thread “fan-out” that might occur during large write operations. The default
of 0 means that the global attribute ("threads") value should be used (which itself
defaults to using as many threads as cores; see Section [2.6.1].

The main reason to change this value is to set it to 1 to indicate that the calling thread
should do all the work rather than spawning new threads. That is probably the desired
behavior in situations where the calling application has already spawned multiple worker
threads.

std::string geterror ()

Returns the current error string describing what went wrong if any of the public methods
returned false indicating an error. (Hopefully the implementation plugin called error ()
with a helpful error message.)

OpenIlmagelO Programmer’s Documentation

54

CHAPTER 3. IMAGEOUTPUT: WRITING IMAGES

OpenlmagelO Programmer’s Documentation

4

4.1

Image I/0: Reading Images

Image Input Made Simple

Here is the simplest sequence required to open an image file, find out its resolution, and read the
pixels (converting them into 8-bit values in memory, even if that’s not the way they’re stored in
the file):

#include <OpenlmagelO/imageio.h>
OITO_NAMESPACE_USING

ImageInput *in = Imagelnput::open (filename);
if (! in)

return;
const ImageSpec &spec = in->spec();
int xres = spec.width;
int yres = spec.height;
int channels = spec.nchannels;
std::vector<unsigned char> pixels (xres*yres*channels);
in->read_image (TypeDesc::UINT8, &pixels[0]);
in->close ();
ImagelInput::destroy (in);

Here is a breakdown of what work this code is doing:

e Search for an ImagelO plugin that is capable of reading the file ("foo. jpg"), first by

trying to deduce the correct plugin from the file extension, but if that fails, by opening
every ImagelO plugin it can find until one will open the file without error. When it finds
the right plugin, it creates a subclass instance of ImageInput that reads the right kind of
file format, and tries to fully open the file.

ImageInput *in = Imagelnput::open (filename);
The specification, accessible as in->spec (), contains vital information such as the di-
mensions of the image, number of color channels, and data type of the pixel values. This

is enough to allow us to allocate enough space for the image.

const ImageSpec &spec = in->spec();
int xres = spec.width;

55

56 CHAPTER 4. IMAGE I/O: READING IMAGES

int yres = spec.height;
int channels = spec.nchannels;
std::vector<unsigned char> pixels (xres*yres*channels);

Note that in this example, we don’t care what data format is used for the pixel data in the
file — we allocate enough space for unsigned 8-bit integer pixel values, and will rely on
OpenlmagelO’s ability to convert to our requested format from the native data format of
the file.

e Read the entire image, hiding all details of the encoding of image data in the file, whether
the file is scanline- or tile-based, or what is the native format of the data in the file (in this
case, we request that it be automatically converted to unsigned 8-bit integers).

in->read_image (TypeDesc::UINT8, &pixels[0]);

e Close the file, destroy and free the ImageInput we had created, and perform all other
cleanup and release of any resources used by the plugin.

in->close ();
ImagelInput::destroy (in);

4.2 Advanced Image Input

Let’s walk through some of the most common things you might want to do, but that are more
complex than the simple example above.

4.2.1 Reading individual scanlines and tiles

The simple example of Sectiond.1|read an entire image with one call. But sometimes you want
to read a large image a little at a time and do not wish to retain the entire image in memory as
you process it. OpenlmagelO allows you to read images one scanline at a time or one tile at a
time.

Examining the ImageSpec reveals whether the file is scanline or tile-oriented: a scanline
image will have spec.tile_width and spec.tile_height set to O, whereas a tiled images
will have nonzero values for the tile dimensions.

Reading scanlines

Individual scanlines may be read using the read_scanline () API call:

in = Imagelnput::open (filename);
const ImageSpec &spec = in->spec();
if (spec.tile_width == 0) {
std::vector<unsigned char> scanline (spec.width*spec.channels);

OpenlmagelO Programmer’s Documentation

4.2. ADVANCED IMAGE INPUT 57

for (int y = 0; vy < yres; ++y) {
in->read_scanline (y, 0, TypeDesc::UINT8, &scanline[0]);
. process data in scanline[0..width*channels-1]

}
} else {
. handle tiles, or reject the file ...

}

in->close ();

The first two arguments to read scanline () specify which scanline is being read by its
vertical (y) scanline number (beginning with 0) and, for volume images, its slice (z) number (the
slice number should be 0 for 2D non-volume images). This is followed by a TypeDesc describ-
ing the data type of the pixel buffer you are supplying, and a pointer to the pixel buffer itself.
Additional optional arguments describe the data stride, which can be ignored for contiguous
data (use of strides is explained in Section[4.2.3).

Nearly all ImageInput implementations will be most efficient reading scanlines in strict
order (starting with scanline 0O, then 1, up to yres-1, without skipping any). An ImageInput
is required to accept read scanline () requests in arbitrary order, but depending on the file
format and reader implementation, out-of-order scanline reads may be inefficient.

There is also a read scanlines () function that operates similarly, except that it takes a
ybegin and yend that specify a range, reading all scanlines ybegin <y < yend. For most
image format readers, this is implemented as a loop over individual scanlines, but some image
format readers may be able to read a contiguous block of scanlines more efficiently than reading
each one individually.

The full descriptions of the read_scanline () and read_scanlines () functions may be
found in Section 4.3

Reading tiles

Once you open () an image file, you can find out if it is a tiled image (and the tile size) by exam-
ining the ImageSpec’s tile width, tile height, and tile depth fields. If they are zero,
it’s a scanline image and you should read pixels using read_scanline (), not read_tile().

in = Imagelnput::open (filename);
const ImageSpec &spec = in->spec();

if (spec.tile_width == 0) {
. read by scanline ...
} else {
// Tiles

int tilesize = spec.tile_width * spec.tile_height;
std::vector<unsigned char> tile (tilesize * spec.channels);
for (int y = 0; vy < yres; vy += spec.tile_height) {
for (int x = 0; x < xres; x += spec.tile_width) {
in->read_tile (x, y, 0, TypeDesc::UINT8, &tile[0]);
. process the pixels in tile[]

OpenIlmagelO Programmer’s Documentation

58 CHAPTER 4. IMAGE I/O: READING IMAGES

}
}

in->close ();

The first three arguments to read tile() specify which tile is being read by the pixel
coordinates of any pixel contained in the tile: x (column), y (scanline), and z (slice, which
should always be 0 for 2D non-volume images). This is followed by a TypeDesc describing the
data format of the pixel buffer you are supplying, and a pointer to the pixel buffer. Pixel data
will be written to your buffer in order of increasing slice, increasing scanline within each slice,
and increasing column within each scanline. Additional optional arguments describe the data
stride, which can be ignored for contiguous data (use of strides is explained in Section |4.2.3)).

All ImageInput implementations are required to support reading tiles in arbitrary order
(i.e., not in strict order of increasing y rows, and within each row, increasing x column, without
missing any tiles).

The full description of the read_tile () function may be found in Section4.3]

4.2.2 Converting formats

The code examples of the previous sections all assumed that your internal pixel data is stored
as unsigned 8-bit integers (i.e., 0-255 range). But OpenlmagelO is significantly more flexible.

You may request that the pixels be stored in any of several formats. This is done merely
by passing the read function the data type of your pixel buffer, as one of the enumerated type
TypeDesc.

It is not required that the pixel data buffer passed to read image (), read scanline(),
or read tile() actually be in the same data format as the data in the file being read. Open-
ImagelO will automatically convert from native data type of the file to the internal data format
of your choice. For example, the following code will open a TIFF and read pixels into your
internal buffer represented as float values. This will work regardless of whether the TIFF file
itself is using 8-bit, 16-bit, or float values.

ImageInput *in = ImageInput::open ("myfile.tif");
const ImageSpec &spec = in->spec();

int numpixels = spec.width * spec.height;
float pixels = new float [numpixels * channels];

in->read_image (TypeDesc::FLOAT, pixels);

Note that read scanline () and read tile () have a parameter that works in a correspond-
ing manner.

You can, of course, find out the native type of the file simply by examining spec.format.
If you wish, you may then allocate a buffer big enough for an image of that type and request
the native type when reading, therefore eliminating any translation among types and seeing the
actual numerical values in the file.

OpenlmagelO Programmer’s Documentation

4.2. ADVANCED IMAGE INPUT 59

4.2.3 Data Strides

In the preceeding examples, we have assumed that the buffer passed to the read functions (i.e.,
the place where you want your pixels to be stored) is contiguous, that is:

e cach pixel in memory consists of a number of data values equal to the number of channels
in the file;

e successive column pixels within a row directly follow each other in memory, with the first
channel of pixel x immediately following last channel of pixel x — 1 of the same row;

e for whole images or tiles, the data for each row immediately follows the previous one in
memory (the first pixel of row y immediately follows the last column of row y — 1);

e for 3D volumetric images, the first pixel of slice z immediately follows the last pixel of
of slice z— 1.

Please note that this implies that read_tile () will write pixel data into your buffer so that
it is contiguous in the shape of a single tile, not just an offset into a whole image worth of pixels.

The read scanline () function takes an optional xst ride argument, and the read image ()
and read tile() functions take optional xstride, ystride, and zstride values that de-
scribe the distance, in bytes, between successive pixel columns, rows, and slices, respectively,
of your pixel buffer. For any of these values that are not supplied, or are given as the special
constant AutoStride, contiguity will be assumed.

By passing different stride values, you can achieve some surprisingly flexible functionality.
A few representative examples follow:

e Flip an image vertically upon reading, by using negative y stride:

unsigned char pixels[spec.width * spec.height * spec.nchannels];
int scanlinesize = spec.width * spec.nchannels * sizeof (pixels[0]);

in->read_image (TypeDesc::UINTS,
(char *)pixels+(yres-1)*scanlinesize, // offset to last

AutoStride, // default x stride
-scanlinesize, // special y stride
AutoStride); // default z stride

e Read a tile into its spot in a buffer whose layout matches a whole image of pixel data,
rather than having a one-tile-only memory layout:

unsigned char pixels[spec.width * spec.height * spec.nchannels];
int pixelsize = spec.nchannels * sizeof (pixels[0]);
int scanlinesize = xpec.width * pixelsize;

in->read_tile (x, y, 0, TypeDesc::UINTS,
(char *)pixels + y*scanlinesize + x*pixelsize,
pixelsize,
scanlinesize);

OpenIlmagelO Programmer’s Documentation

60 CHAPTER 4. IMAGE I/O: READING IMAGES

Please consult Section [4.3] for detailed descriptions of the stride parameters to each read
function.

4.2.4 Reading metadata

The ImageSpec that is filled in by TmageInput: :open () specifies all the common properties
that describe an image: data format, dimensions, number of channels, tiling. However, there
may be a variety of additional metadata that are present in the image file and could be queried
by your application.

The remainder of this section explains how to query additional metadata in the TmageSpec.
It is up to the ImageInput to read these from the file, if indeed the file format is able to carry
additional data. Individual ImageInput implementations should document which metadata
they read.

Channel names

In addition to specifying the number of color channels, the ImageSpec also stores the names of
those channels in its channelnames field, which is a vector<std: :string>. Its length should
always be equal to the number of channels (it’s the responsibility of the ImageInput to ensure
this).

Only a few file formats (and thus ImageInput implementations) have a way of specifying
custom channel names, so most of the time you will see that the channel names follow the
default convention of being named "R", "G", "B", and "A", for red, green, blue, and alpha,
respectively.

Here is example code that prints the names of the channels in an image:

ImageInput *in = Imagelnput::open (filename);
const ImageSpec &spec = in->spec();
for (int 1 = 0; 1 < spec.nchannels; ++1i)
std::cout << "Channel " << 1 << " is "
<< spec.channelnames[i] << "\n";

Specially-designated channels

The ImageSpec contains two fields, alpha channel and z channel, which designate which
channel numbers represent alpha and z depth, if any. If either is set to -1, it indicates that it is
not known which channel is used for that data.

If you are doing something special with alpha or depth, it is probably safer to respect the
alpha channel and z channel designations (if not set to -1) rather than merely assuming
that, for example, channel 3 is always the alpha channel.

Arbitrary metadata

All other metadata found in the file will be stored in the ImageSpec’s extra attribs field,
which is a ParamValueList, which is itself essentially a vector of ParamValue instances. Each
ParamValue stores one meta-datum consisting of a name, type (specified by a TypeDesc),
number of values, and data pointer.

OpenlmagelO Programmer’s Documentation

4.2. ADVANCED IMAGE INPUT 61

If you know the name of a specific piece of metadata you want to use, you can find it
using the ImageSpec::find_attribute () method, which returns a pointer to the matching
ParamValue, or NULL if no match was found. An optional TypeDesc argument can narrow
the search to only parameters that match the specified type as well as the name. Below is an
example that looks for orientation information, expecting it to consist of a single integer:

ImageInput *in = Imagelnput::open (filename);
const ImageSpec &spec = in->spec();

ParamValue *p = spec.find_attribute ("Orientation", TypeDesc::Typelnt);

if (p) {
int orientation = * (int *) p->data();
} else {

std::cout << "No integer orientation in the file\n";

By convention, ImageInput plugins will save all integer metadata as 32-bit integers (TypeDesc:

or TypeDesc: :UINT), even if the file format dictates that a particular item is stored in the file
as a 8- or 16-bit integer. This is just to keep client applications from having to deal with all
the types. Since there is relatively little metadata compared to pixel data, there’s no real mem-
ory waste of promoting all integer types to int32 metadata. Floating-point metadata and string
metadata may also exist, of course.

For certain common types, there is an even simpler method for retrieving the metadata:

int i = spec.get_int_attribute ("Orientation", 0);
float f = spec.get_float_attribute ("PixelAspectRatio", 1.0f);
std::string s = spec.get_string_attribute ("ImageDescription", "");

This method simply returns the value. The second argument is the default value to use if the
attribute named is not found. These versions will do automatic type conversion as well — for
example, if you ask for a float and the attribute is really an int, it will return the proper float for
it; or if the attribute is a UINT16 and you call get int attribute, it will succeed, promoting
to an int.

It is also possible to step through all the metadata, item by item. This can be accomplished
using the technique of the following example:

for (size_t 1 = 0; 1 < spec.extra_attribs.size(); ++1i) {
const ParamValue &p (spec.extra_attribs[i]);

printf (" %s: ", p.name.c_str());
if (p.type() == TypeDesc::TypeString)

printf ("\"\%s\"", *(const char **)p.data());
else if (p.type() == TypeDesc::TypeFloat)

printf ("\%g", *(const float *)p.data());
else 1if (p.type() == TypeDesc::Typelnt)

printf ("\%d", *(const int *)p.data());
else if (p.type() == TypeDesc::UINT)

printf ("\%u", *(const unsigned int *)p.data());
else 1if (p.type() == TypeDesc::TypeMatrix) {

const float *f = (const float *)p.data();

OpenIlmagelO Programmer’s Documentation

¢ INT

62 CHAPTER 4. IMAGE I/O: READING IMAGES

printf ("\$f \$f \%f \&%f \%f \%f \%f \%f "
"\%f \SE \%f \&f \%f \%f \%f \%f",
fro1, £riy, f£[21, £r31, f£r41, £rs51, frel, f£[71,
£181, £19], £[10], f[11), f£[12], £[13], f[14], £[15]);
}
else
printf (" <unknown data type> ");
printf ("\n");

Each individual ImageInput implementation should document the names, types, and mean-
ings of all metadata attributes that they understand.

Color space hints

We certainly hope that you are using only modern file formats that support high precision and
extended range pixels (such as OpenEXR) and keeping all your images in a linear color space.
But you may have to work with file formats that dictate the use of nonlinear color values. This
is prevalent in formats that store pixels only as 8-bit values, since 256 values are not enough to
linearly represent colors without banding artifacts in the dim values.

The ImageSpec::extra attribs field may store metadata that reveals the color space the
image file in the "oiio:ColorSpace" attribute, which may take on any of the following values:

"Linear" indicates that the color pixel values are known to be linear.

"GammaCorrected" indicates that the color pixel values (but not alpha or z) have already
been gamma corrected (raised to the power 1/7), and that the gamma exponent may be
found in the "oiio:Gamma" metadata.

"sRGB" indicates that the color pixel values are in SRGB color space.
"AdobeRGB" indicates that the color pixel values are in Adobe RGB color space.
"Rec709" indicates that the color pixel values are in Rec709 color space.

"KodakLog" indicates that the color pixel values are in Kodak logarithmic color space.

The ImageInput sets the "oiio:ColorSpace" metadata in a purely advisory capacity —
the read will not convert pixel values among color spaces. Many image file formats only sup-
port nonlinear color spaces (for example, JPEG/JFIF dictates use of SRGB). So your application
should intelligently deal with gamma-corrected and sRGB input, at the very least.

The color space hints only describe color channels. You should assume that alpha or depth
(z) channels (designated by the alpha channel and z channel fields, respectively) always
represent linear values and should never be transformed by your application.

OpenlmagelO Programmer’s Documentation

4.2. ADVANCED IMAGE INPUT 63

4.2.5 Multi-image files and MIP-maps

Some image file formats support multiple discrete subimages to be stored in one file, and/or
miltiple resolutions for each image to form a MIPmap. When you open () an ImageInput, it
will by default point to the first (i.e., number 0) subimage in the file, and the highest resolution
(level 0) MIP-map level. You can switch to viewing another subimage or MIP-map level using
the seek subimage () function:

ImageInput *in = ImageInput::open (filename);
const ImageSpec &spec = in->spec();

int subimage 1;
int miplevel 0;
if (in->seek_subimage (subimage, miplevel, spec)) {

} else {
. no such subimage/miplevel ...

}

The seek subimage () function takes three arguments: the index of the subimage to switch
to (starting with 0), the MIPmap level (starting with O for the highest-resolution level), and a
reference to an ImageSpec, into which will be stored the spec of the new subimage/miplevel.
The seek_subimage () function returns true upon success, and false if no such subimage or
MIP level existed. It is legal to visit subimages and MIP levels out of order; the ImageInput is
responsible for making it work properly. It is also possible to find out which subimage and MIP
level is currently being viewed, using the current subimage () and current miplevel ()
functions, which return the index of the current subimage and MIP levels, respectively.

Below is pseudocode for reading all the levels of a MIP-map (a multi-resolution image used
for texture mapping) that shows how to read multi-image files:

ImageInput *in = Imagelnput::open (filename);
const ImageSpec &spec = in->spec();

int num_miplevels = 0;

while (in->seek_subimage (0, num_miplevels, spec)) {
// Note: spec has the format of the current subimage/miplevel
int npixels = spec.width * spec.height;
int nchannels = spec.nchannels;
unsigned char *pixels = new unsigned char [npixels * nchannels];
in->read_image (TypeDesc::UINT8, pixels);

. do whatever you want with this level, in pixels ...

delete [] pixels;

++num_miplevels;
}
// Note: we break out of the while loop when seek_subimage fails
// to find a next MIP level.

in->close ();

OpenIlmagelO Programmer’s Documentation

64 CHAPTER 4. IMAGE I/O: READING IMAGES

Imagelnput::destroy (in);

In this example, we have used read image (), but of course read scanline () and read tile()
work as you would expect, on the current subimage and MIP level.

4.2.6 Per-channel formats

Some image formats allow separate per-channel data formats (for example, half data for colors
and float data for depth). If you want to read the pixels in their true native per-channel formats,
the following steps are necessary:

1. Check the ImageSpec’s channelformats vector. If non-empty, the channels in the file
do not all have the same format.

2. Whencalling read scanline, read scanlines,read tile,read tiles,orread -
image, pass a format of TypeDesc: : UNKNOWN to indicate that you would like the raw data
in native per-channel format of the file written to your data buffer.

For example, the following code fragment will read a 5-channel image to an OpenEXR file,
consisting of R/G/B/A channels in half and a Z channel in float:

ImageInput *in = ImagelInput::open (filename);
const ImageSpec &spec = in->spec();

// Allocate enough space
unsigned char *pixels = new unsigned char [spec.image_bytes(true)];

in->read_image (TypeDesc::UNKNOWN, /* use native channel formats */
pixels); /* data buffer */

if (spec.channelformats.size() > 0) {
. the buffer contains packed data in the native
per-channel formats ...
} else {
. the buffer contains all data per spec.format ...

4.2.7 Reading “deep” data

Some image file formats (OpenEXR only, at this time) support the concept of “deep” pixels —
those containing multiple samples per pixel (and a potentially differing number of them in each
pixel). You can tell an image is “deep” from its ImageSpec: the deep field will be true.

Deep files cannot be read with the usual read_scanline, read_scanlines, read_tile,
read tiles, read image functions, due to the nature of their variable number of samples
per pixel. Instead, ImageInput has three special member functions used only for reading deep
data:

OpenlmagelO Programmer’s Documentation

4.2. ADVANCED IMAGE INPUT 65

bool read_native_deep_scanlines (int ybegin, int yend, int z,
int chbegin, int chend,
DeepData &deepdata);

bool read_native_deep_tiles (int xbegin, int xend, int ybegin, int yend,
int zbegin, int zend,
int chbegin, int chend, DeepData &deepdata);

bool read_native_deep_image (DeepData &deepdata);

It is only possible to read “native” data types from deep files; that is, there is no automatic
translation into arbitrary data types as there is for ordinary images. All three of these functions
store the resulting deep data in a special DeepData structure, described in detail in Section 2.6

Here is an example of using these methods to read a deep image from a file and print all its
values:

ImageInput *in = Imagelnput::open (filename);
if (! in)
return;
const ImageSpec &spec = in->spec();
if (spec.deep) {
DeepData deepdata;
in->read_native_deep_image (deepdata);
int p = 0; // absolute pixel number
for (int y = 0; y < spec.height; ++y) {
for (int x = 0; x < spec.width; ++x, ++p) {
std::cout << "Pixel " << x << ", " <<y << ":\n";
if (deepdata.samples(p) == 0)
std::cout << " no samples\n";
else
for (int ¢ = 0; ¢ < spec.nchannels; ++c) {
TypeDesc type = deepdata.channeltype (c);
std::cout << " " << spec.channelnames[c] << ": ";
void *ptr = deepdata.pointers[p*spec.nchannels+c]
for (int s = 0; s < deepdata.samples(p); ++s) {
if (type.basetype == TypeDesc::FLOAT ||
type.basetype == TypeDesc::HALF)
std::cout << deepdata.deep_value(p, c, s) << ' ';
else if (type.basetype == TypeDesc::UINT32)
std::cout << deepdata.deep_value_uint(p, c, s) << ' ';
}

std::cout << "\n";

}
in->close ();
ImagelInput::destroy (in);

OpenIlmagelO Programmer’s Documentation

66 CHAPTER 4. IMAGE I/O: READING IMAGES

4.2.8 Custom search paths for plugins

Please see Section[2.6.1]for discussion about setting the plugin search path via the attribute ()
function. For example:

std::string mysearch = "/usr/myapp/lib:S${HOME}/plugins";
OpenImagelO::attribute ("plugin_searchpath", mysearch);
ImageInput *in = Imagelnput::open (filename);

4.2.9 Error checking

Nearly every ImageInput API function returns a bool indicating whether the operation suc-
ceeded (true) or failed (false). In the case of a failure, the ImageInput will have saved an er-
ror message describing in more detail what went wrong, and the latest error message is accessi-
ble using the ImageInput method geterror (), which returns the message as a std: :string.

The exceptions to this rule are static methods such as the static ImageInput::open and
ImagelInput::create, which return NULL if it could not create an appropriate ImageInput
(and open it, in the case of open(). In such a case, since no ImageInput is returned for
which you can call its geterror () function, there exists a global geterror () function (in the
OpenImageIO namespace) that retrieves the latest error message resulting from a call to static
open () or create().

Here is another version of the simple image reading code from Section but this time it
is fully elaborated with error checking and reporting:

#include <OpenImagelIO/imageio.h>
OITIO_NAMESPACE_USING

const char *filename = "foo.jpg";
int xres, yres, channels;
std::vector<unsigned char> pixels;

ImageInput *in = Imagelnput::open (filename);

if (! in) {
std::cerr << "Could not open " << filename
<< ", error = " << OpenlImagelIO::geterror() << "\n";
return;

}

const ImageSpec &spec = in->spec();
xres = spec.width;

yres = spec.height;

channels = spec.nchannels;
pixels.resize (xres*yres*channels);

if (! in->read_image (TypeDesc::UINT8, &pixels([0])) {
std::cerr << "Could not read pixels from " << filename
<< ", error = " << in->geterror() << "\n";
Imagelnput::destroy (in);
return;

OpenlmagelO Programmer’s Documentation

4.2. ADVANCED IMAGE INPUT

67

if (! in->close ()) {
std::cerr << "Error closing " << filename
<< ", error = " << in->geterror() << "\n";

ImagelInput::destroy (in);
return;

}
ImagelInput::destroy (in);

OpenIlmagelO Programmer’s Documentation

68

CHAPTER 4. IMAGE I/O: READING IMAGES

4.3

ImageInput Class Reference

ImageInput * open (const std::string &filename,

const ImageSpec *config=NULL)

Create an ImageInput subclass instance that is able to read the given file and open it,
returning the opened ImageInput if successful. If it fails, return NULL and set an error
that can be retrieved by OpenImageIO: :geterror ().

The config, if not NULL, points to an ImageSpec giving requests or special instructions.
ImageInput implementations are free to not respond to any such requests, so the default
implementation is just to ignore config.

The open () function will first try to make an ImageInput corresponding to the format
implied by the file extension (for example, "foo.tif" will try the TIFF plugin), but if
one is not found or if the inferred one does not open the file, every known ImageInput
type will be tried until one is found that will open the file.

ImageInput * create (const std::string &filename,

void

const std::string &plugin_searchpath="")

Create and return an ImageInput implementation that is able to read the given file.
The plugin_searchpath parameter is a colon-separated list of directories to search
for OpenlmagelO plugin DSO/DLL’s (not a searchpath for the image itself!). This will
actually just try every ImagelO plugin it can locate, until it finds one that’s able to open
the file without error. This just creates the ImageInput, it does not open the file.

destroy (Imagelnput *input)

Destroy an ImageInput that was created by create() or open(). The destroy()
method is just a wrapper around operator delete, but by being implemented within the
OpenlimagelO DLL, it can ensure that the memory deallocation is done in the same DLL
arena as where it was originally allocated. This is considered safer than a bare delete
when used inside “plug-ins,” especially on Windows systems.

const char * format name (void) const

Return the name of the format implemented by this class.

int supports (string view feature)

Given the name of a feature, tells if this ImageInput instance supports that feature. Most
queries will simply return O for “doesn’t support the feature” and nonzero for “supports
the feature,” but it is acceptable to have queries return other nonzero integers to indicate
varying degrees of support or limits (but those queries should be clearly documented as
such). The following features are recognized by this query:

OpenlmagelO Programmer’s Documentation

4.3. IMAGEINPUT CLASS REFERENCE 69

"arbitrary metadata" Does the image file format allow metadata with arbitrary
names (and either arbitrary, or a reasonable set of, data types)? (Versus the file
format supporting only a fixed list of specific metadata names/values?

"exif" Does the image file format support Exif camera data (either specifically, or via
arbitrary named metadata)?

"iptc" Does the image file format support IPTC data (either specifically, or via arbitrary
named metadata)?

"procedural" Might the image “file format” generate pixels procedurally, without the
need for any disk file to be present?

bool valid file (const std::string &filename) const

Return true if the named file is a file of the type for this ImageInput. The imple-
mentation will try to determine this as efficiently as possible, in most cases much less
expensively than doing a full open (). Note that a file can appear to be of the right type
(i.e., valid_file () returning true) but still fail a subsequent call to open (), such as if
the contents of the file are truncated, nonsensical, or otherwise corrupted.

bool open (const std::string &name, ImageSpec &newspec)

Opens the file with given name and seek to the first subimage in the file. Various file
attributes are put in newspec and a copy is also saved internally to the ImageInput (re-
trievable via spec (). From examining newspec or spec (), you can discern the resolu-
tion, if it’s tiled, number of channels, native data format, and other metadata about the
image. Return true if the file was found and opened okay, otherwise false.

bool open (const std::string &name, ImageSpec &newspec,
const ImageSpec &config)

Opens the file with given name, similarly to open (name, newspec). However, in this
version, any non-default fields of config, including metadata, will be taken to be con-
figuration requests, preferences, or hints. The default implementation of open (name,
newspec, config) will simply ignore config and calls the usual open (name, newspec).
But a plugin may choose to implement this version of open and respond in some way to
the configuration requests. Supported configuration requests should be documented by
each plugin.

const ImageSpec & spec (void) const

Returns a reference to the image format specification of the current subimage. Note that
the contents of the spec are invalid before open () or after close ().

bool close ()

Closes an open image.

OpenIlmagelO Programmer’s Documentation

70

CHAPTER 4. IMAGE I/O: READING IMAGES

int current subimage (void) const

bool

bool

bool

bool

bool

Returns the index of the subimage that is currently being read. The first subimage (or the
only subimage, if there is just one) is number 0.

seek subimage (int subimage, int miplevel, ImageSpec &newspec)

Seek to the given subimage and MIP-map level within the open image file. The first
subimage in the file has index 0, and for each subimage, the highest-resolution MIP level
has index 0. Return true on success, false on failure (including that there is not a
subimage or MIP level with those indices). The new subimage’s vital statistics are put
in newspec (and also saved internally in a way that can be retrieved via spec ()). The
ImageInput is expected to give the appearance of random access to subimages and MIP
levels — in other words, if it can’t randomly seek to the given subimage or MIP level,
it should transparently close, reopen, and sequentially read through prior subimages and
levels.

read scanline (int y, int z, TypeDesc format, void *data,
stride t xstride=AutoStride)

Read the scanline that includes pixels (x,y,z) into data (z = 0 for non-volume images),
converting if necessary from the native data format of the file into the format specified. If
format is TypeDesc: : UNKNOWN, the data will be preserved in its native format (including
per-channel formats, if applicable). The xstride value gives the data spacing of adjacent
pixels (in bytes). Strides set to the special value AutoSt ride imply contiguous data, i.e.,
xstride = spec.nchannels * spec.pixel size()

The ImageInput is expected to give the appearance of random access — in other words,
if it can’t randomly seek to the given scanline, it should transparently close, reopen,
and sequentially read through prior scanlines. The base ImageInput class has a default
implementation that calls read_native_scanline () and then does appropriate format
conversion, so there’s no reason for each format plugin to override this method.

read scanline (int y, int z, float *data)
This simplified version of read_ scanline () reads to contiguous float pixels.

read scanlines (int ybegin, int yend, int z,
TypeDesc format, void *data,
stride t xstride=AutoStride, stride t ystride=AutoStride)
read scanlines (int ybegin, int yend, int gz,
int chbegin, int chend, TypeDesc format, void *data,
stride t xstride=AutoStride, stride t ystride=AutoStride)

Read all the scanlines that include pixels (x,y,z), where ybegin <y < yend, into data.
This is essentially identical to read scanline (), except that can read more than one
scanline at a time, which may be more efficient for certain image format readers.

The version that specifies a channel range will read only channels [chbegin,chend) into
the buffer.

OpenlmagelO Programmer’s Documentation

4.3. IMAGEINPUT CLASS REFERENCE 71

bool

bool

bool

bool

read tile (int x, int y, int z, TypeDesc format, void *data,
stride t xstride=AutoStride, stride t ystride=AutoStride,
stride t zstride=AutoStride)

Read the tile whose upper-left origin is (x,y,z) into data (z = 0 for non-volume images),
converting if necessary from the native data format of the file into the format specified. If
format is TypeDesc: : UNKNOWN, the data will be preserved in its native format (including
per-channel formats, if applicable). The stride values give the data spacing of adjacent
pixels, scanlines, and volumetric slices, respectively (measured in bytes). Strides set to
the special value of AutoStride imply contiguous data in the shape of a full tile, i.e.,

xstride = spec.nchannels * spec.pixel size()

ystride = xstride * spec.tile width

zstride = ystride * spec.tile height
The ImageInput is expected to give the appearance of random access — in other words,
if it can’t randomly seek to the given tile, it should transparently close, reopen, and se-
quentially read through prior tiles. The base ImageInput class has a default implemen-
tation that calls read_native_tile() and then does appropriate format conversion, so
there’s no reason for each format plugin to override this method.

This function returns t rue if it successfully reads the tile, otherwise false for a failure.
The call will fail if the image is not tiled, or if (x,y,z) is not actually a tile boundary.

read tile (int x, int y, int z, float *data)

Simple version of read_tile that reads to contiguous float pixels.

read tiles (int xbegin, int xend, int ybegin, int yend,
int zbegin, int zend, TypeDesc format, void *data,
stride t xstride=AutoStride, stride t ystride=AutoStride,
stride t zstride=AutoStride)

read tiles (int xbegin, int xend, int ybegin, int yend,
int zbegin, int zend, int chbegin, int chend,
TypeDesc format, void *data,
stride t xstride=AutoStride, stride t ystride=AutoStride,
stride t zstride=AutoStride)

Read the tiles bounded by xbegin < x < xend, ybegin <y < yend, zbegin <z <
zend into data converting if necessary from the file’s native data format into the speci-
fied buffer format. If format is TypeDesc: : UNKNOWN, the data will be preserved in its
native format (including per-channel formats, if applicable). The stride values give the
data spacing of adjacent pixels, scanlines, and volumetric slices, respectively (measured
in bytes). Strides set to the special value of AutoStride imply contiguous data in the
shape of the region specified, i.e.,

xstride = spec.nchannels * spec.pixel size()

ystride = xstride * (xend - xbegin)

zstride = ystride * (yend - ybegin)
The ImageInput is expected to give the appearance of random access — in other words,

OpenIlmagelO Programmer’s Documentation

72

CHAPTER 4. IMAGE I/O: READING IMAGES

bool

bool

if it can’t randomly seek to the given tile, it should transparently close, reopen, and se-
quentially read through prior tiles. The base ImageInput class has a default implementa-
tion that calls read native tiles () and then does appropriate format conversion, so
there’s no reason for each format plugin to override this method.

This function returns t rue if it successfully reads the tiles, otherwise false for a failure.
The call will fail if the image is not tiled, or if the pixel ranges do not fall along tile (or
image) boundaries, or if it is not a valid tile range.

The version that specifies a channel range will read only channels [chbegin,chend) into
the buffer.

read image (TypeDesc format, void *data,
stride t xstride=AutoStride, stride t ystride=AutoStride,
stride t zstride=AutoStride,
ProgressCallback progress callback=NULL,
void *progress callback data=NULL)
read image (int chbegin, int chend,
TypeDesc format, void *data,
stride t xstride=AutoStride, stride t ystride=AutoStride,
stride t zstride=AutoStride,
ProgressCallback progress callback=NULL,
void *progress callback data=NULL)

Read the entire image of spec.width * spec.height * spec.depth pixels into data
(which must already be sized large enough for the entire image) with the given strides,
converting into the desired data format. If format is TypeDesc: : UNKNOWN, the data will
be preserved in its native format (including per-channel formats, if applicable). This
function will automatically handle either tiles or scanlines in the file.

Strides set to the special value of AutoStride imply contiguous data, i.e.,

xstride = spec.nchannels * pixel size()

ystride = xstride * spec.width

zstride = ystride * spec.height
The function will internally either call read scanlines or read tiles, depending on
whether the file is scanline- or tile-oriented.

The version that specifies a channel range will read only channels [chbegin,chend) into
the buffer.

Because this may be an expensive operation, a progress callback may be passed. Period-
ically, it will be called as follows:

progress_callback (progress_callback_data, float done)

where done gives the portion of the image (between 0.0 and 1.0) that has been read thus
far.

OpenlmagelO Programmer’s Documentation

4.3. IMAGEINPUT CLASS REFERENCE 73

bool

bool

bool

bool

bool

bool

read image (float *data)

Simple version of read image () reads to contiguous float pixels.

read native scanline (int y, int z, void *data)

The read native scanline () function is just like read scanline (), except that it
keeps the data in the native format of the disk file and always reads into contiguous mem-
ory (no strides). It’s up to the user to have enough space allocated and know what to do
with the data. IT IS EXPECTED THAT EACH FORMAT PLUGIN WILL OVERRIDE
THIS METHOD.

read native scanlines (int ybegin, int yend, int z, void *data)

The read native scanlines () functionis justlike read native scanline,except
that it reads a range of scanlines rather than only one scanline. It is not necessary for
format plugins to override this method — a default implementation in the ImageInput
base class simply calls read native scanline for each scanline in the range. But
format plugins may optionally override this method if there is a way to achieve higher
performance by reading multiple scanlines at once.

read native scanlines (int ybegin, int yend, int z,
int chbegin, int chend, void *data)

A variant of read native scanlines that reads only a subset of channels
[chbegin,chend). If a format reader subclass does not override this method, the default
implementation will simply call the all-channel version of read_native_ scanlines
into a temporary buffer and copy the subset of channels.

read native tile (int x, int y, int z, void *data)

The read native tile() function is just like read tile(), except that it keeps the
data in the native format of the disk file and always read into contiguous memory (no
strides). It’s up to the user to have enough space allocated and know what to do with
the data. IT IS EXPECTED THAT EACH FORMAT PLUGIN WILL OVERRIDE THIS
METHOD IF IT SUPPORTS TILED IMAGES.

read native tiles (int xbegin, int xend, int ybegin, int yend,
int zbegin, int zend, void *data)

The read_native_ tiles() function is just like read tiles(), except that it keeps
the data in the native format of the disk file and always read into contiguous memory (no
strides). If a format reader does not override this method, the default implementation it
will simply be a loop calling read native tile for each tile in the block.

OpenIlmagelO Programmer’s Documentation

74

CHAPTER 4. IMAGE I/O: READING IMAGES

bool

bool

bool

bool

read native tiles (int xbegin, int xend, int ybegin, int yend,
int zbegin, int zend, int chbegin, int chend, void *data)

A variant of read native tiles() thatreads only a subset of channels
[chbegin,chend). If a format reader subclass does not override this method, the default
implementation will simply call the all-channel version of read_native tiles intoa
temporary buffer and copy the subset of channels.

read native deep scanlines (int ybegin, int yend, int z,
int chbegin, int chend, DeepData &deepdata)
read native deep tiles (int xbegin, int xend, int ybegin, int yend,
int zbegin, int zend, int chbegin, int chend, DeepData &deepdata)
read native deep image (DeepData &deepdata)

Read native deep data from scanlines, tiles, or an entire image, storing the results in
deepdata (analogously to the usual read scanlines, read tiles, and read image,
but with deep data). Only channels [chbegin,chend) will be read.

int send to input (const char *format, ...)

General message passing between client and image input server. This is currently unde-
fined and is reserved for future use.

int send to client (const char *format, ...)

General message passing between client and image input server. This is currently unde-
fined and is reserved for future use.

void threads (int n)
int threads () const

std:

Get or set the threading policy for this ImageInput, controlling the maximum amount of
parallelizing thread “fan-out” that might occur during large read operations. The default
of 0 means that the global attribute ("threads") value should be used (which itself
defaults to using as many threads as cores; see Section [2.6.1).

The main reason to change this value is to set it to 1 to indicate that the calling thread
should do all the work rather than spawning new threads. That is probably the desired
behavior in situations where the calling application has already spawned multiple worker
threads.

:string geterror () const

Returns the current error string describing what went wrong if any of the public methods
returned false indicating an error. (Hopefully the implementation plugin called error ()
with a helpful error message.)

OpenlmagelO Programmer’s Documentation

5 Writing ImagelO Plugins

5.1 Plugin Introduction

As explained in Chapters (4 and |3} the ImagelO library does not know how to read or write any
particular image formats, but rather relies on plugins located and loaded dynamically at run-
time. This set of plugins, and therefore the set of image file formats that OpenimagelO or its
clients can read and write, is extensible without needing to modify OpenlmagelO itself.

This chapter explains how to write your own OpenlmagelO plugins. We will first explain
separately how to write image file readers and writers, then tie up the loose ends of how to build
the plugins themselves.

5.2 Image Readers

A plugin that reads a particular image file format must implement a subclass of ImageInput
(described in Chapter [d). This is actually very straightforward and consists of the following
steps, which we will illustrate with a real-world example of writing a JPEG/JFIF plug-in.

1. Read the base class definition from imageio.h. It may also be helpful to enclose the
contents of your plugin in the same namespace that the OpenlmagelO library uses:

#include <OpenImageIO/imageio.h>
OITIO_PLUGIN_NAMESPACE_BEGIN

. everything else ...

OITO_PLUGIN_NAMESPACE_END

2. Declare three public items:

(a) An integer called name__imageio_version that identifies the version of the Im-
agelO protocol implemented by the plugin, defined in imageio.h as the constant
OIIO_PLUGIN_VERSION. This allows the library to be sure it is not loading a plugin
that was compiled against an incompatible version of OpenimagelO.

(b) A function named name input imageio create that takes no arguments and
returns a new instance of your ImageInput subclass. (Note that name is the name
of your format, and must match the name of the plugin itself.)

75

76 CHAPTER 5. WRITING IMAGEIO PLUGINS

(c) An array of char * called name_input_extensions that contains the list of file
extensions that are likely to indicate a file of the right format. The list is terminated
by a NULL pointer.

All of these items must be inside an ‘extern "C"’ block in order to avoid name mangling
by the C++ compiler, and we provide handy macros OIIO_PLUGIN_EXPORTS_BEGIN
and OIIO PLUGIN EXPORTS END to make this easy. Depending on your compiler, you
may need to use special commands to dictate that the symbols will be exported in the
DSO; we provide a special 0II0 EXPORT macro for this purpose, defined in export .h.

Putting this all together, we get the following for our JPEG example:

OITO_PLUGIN_EXPORTS_BEGIN
OIIO_EXPORT int jpeg_imageio_version = OIIO_PLUGIN_VERSION;
OIIO_EXPORT JpglInput *jpeg_input_imageio_create () {
return new Jpglnput;

}
OIIO_EXPORT const char *jpeg_input_extensions[] = {

Iljpg"’ ijell’ lljpegll, NULL
i
OIIO_PLUGIN_EXPORTS_END

3. The definition and implementation of an ImageInput subclass for this file format. It must
publicly inherit ImageInput, and must overload the following methods which are “pure
virtual” in the ImageInput base class:

(a) format name () should return the name of the format, which ought to match the
name of the plugin and by convention is strictly lower-case and contains no whites-
pace.

(b) open () should open the file and return true, or should return false if unable to do
so (including if the file was found but turned out not to be in the format that your
plugin is trying to implement).

(c) close() should close the file, if open.

(d) read native scanline should read a single scanline from the file into the ad-
dress provided, uncompressing it but keeping it in its native data format without any
translation.

(e) The virtual destructor, which should close () if the file is still open, addition to
performing any other tear-down activities.

Additionally, your ImageInput subclass may optionally choose to overload any of the
following methods, which are defined in the ImageInput base class and only need to be
overloaded if the default behavior is not appropriate for your plugin:

(f) supports (), only if your format supports any of the optional features described in
Section

OpenlmagelO Programmer’s Documentation

5.2. IMAGE READERS 77

(g) valid_file(), if your format has a way to determine if a file is of the given format
in a way that is less expensive than a full open ().

(h) seek subimage (), only if your format supports reading multiple subimages within
a single file.

(i) read native scanlines (), only if your format has a speed advantage when
reading multiple scanlines at once. If you do not supply this function, the default
implementation will simply call read_scanline () for each scanline in the range.

(j) read native tile(), only if your format supports reading tiled images.

(k) read_native_tiles(), only if your format supports reading tiled images and
there is a speed advantage when reading multiple tiles at once. If you do not supply
this function, the default implementation will simply call read native tile()
for each tile in the range.

(1) “Channel subset” versions of read native scanlines () and/or read native -
tiles (), only if your format has a more efficient means of reading a subset of chan-
nels. If you do not supply these methods, the default implementation will simply use
read native scanlines() orread native tiles() toread into atemporary
all-channel buffer and then copy the channel subset into the user’s buffer.

(m) read native deep scanlines() and/or read native deep tiles(), only
if your format supports “deep” data images.

Here is how the class definition looks for our JPEG example. Note that the JPEG/JFIF
file format does not support multiple subimages or tiled images.

class Jpglnput : public Imagelnput {

public:
JpgInput () { init(); }
virtual “JpgInput () { close(); }

virtual const char * format_name (void) const { return "jpeg"; }
virtual bool open (const std::string &name, ImageSpec &spec);
virtual bool read_native_scanline (int y, int z, void *data);
virtual bool close ();

private:
FILE *m_fd;
bool m_first_scanline;
struct jpeg_decompress_struct m_cinfo;
struct jpeg_error_mgr m_jerr;

void init () { m_fd = NULL; }

Your subclass implementation of open (), close(), and read native scanline() are
the heart of an ImageInput implementation. (Also read_native_tile() and seek_subimage (),
for those image formats that support them.)

The remainder of this section simply lists the full implementation of our JPEG reader, which
relies heavily on the open source jpeg-6b library to perform the actual JPEG decoding.

OpenIlmagelO Programmer’s Documentation

78 CHAPTER 5. WRITING IMAGEIO PLUGINS

/*
Copyright 2008 Larry Gritz and the other authors and contributors.
All Rights Reserved.
Based on BSD-licensed software Copyright 2004 NVIDIA Corp.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:

* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

* Neither the name of the software’s owners nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS

"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT

LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR

A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT

OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,

SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT

LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,

DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY

THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT

(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE

OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

(This is the Modified BSD License)
*/

#include <cassert>
#include <cstdio>
#include <algorithm>

#include "OpenlImageIO/imageio.h"
#include "OpenImageIO/filesystem.h"
#include "OpenlImageIO/fmath.h"
#include "OpenlImageIO/color.h"
#include "jpeg_pvt.h"

OIIO_PLUGIN_NAMESPACE_BEGIN
// N.B. The class definition for JpgInput is in Jjpeg_pvt.h.
// Export version number and create function symbols
OIIO_PLUGIN_EXPORTS_BEGIN

OIIO_EXPORT int jpeg_imageio_version = OIIO_PLUGIN_VERSION;

OIIO_EXPORT Imagelnput *jpeg_input_imageio_create () {

return new Jpglnput;
OIIO_EXPORT qonst char *jpegTinputTegtensiqn§[] = {
} "jpg", "jpe", "jpeg"["jlf", "jflf", "jfl", NULL
i

OIIO_PLUGIN_EXPORTS_END

static const uint8_t JPEG_MAGICL
static const uint8_t JPEG_MAGIC2

Oxff;
0xd8;

// For explanations of the error handling, see the "example.c" in the
// libjpeg distribution.

static void
my_error_exit (j_common_ptr cinfo)
{
/* cinfo->err really points to a my_error_mgr struct, so coerce pointer */
JpgInput::my_error_ptr myerr = (Jpglnput::my_error_ptr) cinfo->err;

OpenlmagelO Programmer’s Documentation

5.2. IMAGE READERS 79

/* Always display the message. */
/* We could postpone this until after returning, if we chose. */
// (*cinfo->err->output_message) (cinfo);
myerr->jpginput->jpegerror (myerr, true);

/* Return control to the setjmp point */
longjmp (myerr->set jmp_buffer, 1);

static void

my_output_message (j_common_ptr cinfo)

{
JpgInput::my_error_ptr myerr = (Jpglnput::my_error_ptr) cinfo->err;
myerr->jpginput->jpegerror (myerr, true);

static std::string

comp_info_to_attr (const jpeg_decompress_struct &cinfo)

{
// Compare the current 6 samples with our known definitions
// to determine the corresponding subsampling attr
std::vector<int> comp;
comp.push_back (cinfo.comp_info[0].h_samp_factor);
comp.push_back (cinfo.comp_info[0].v_samp_factor);
comp.push_back (cinfo.comp_info[l].h_samp_factor);
comp.push_back (cinfo.comp_info[l].v_samp_factor);
comp.push_back (cinfo.comp_info[2].h_samp_factor);
comp.push_back (cinfo.comp_info[2].v_samp_factor);
size_t size = comp.size();

if (std::equal (JPEG_444_COMP, JPEG_444_COMP+size, comp.begin()))
return JPEG_444_STR;

else if (std::equal (JPEG_422_COMP, JPEG_422_COMP+size, comp.begin()))
return JPEG_422_STR;

else if (std::equal (JPEG_420_COMP, JPEG_420_COMP+size, comp.begin()))
return JPEG_420_STR;

else if (std::equal (JPEG_411_COMP, JPEG_411_COMP+size, comp.begin()))
return JPEG_411_STR;

return "";

void
JpgInput::jpegerror (my_error_ptr myerr, bool fatal)
{

// Send the error message to the ImageInput
char errbuf [JMSG_LENGTH_MAX];

(*m_cinfo.err->format_message) ((j_common_ptr)é&m_cinfo, errbuf);
error ("JPEG error: %s (\"$s\")", errbuf, filename().c_str());

// Shut it down and clean it up

if (fatal) {
m_fatalerr = true;
close ();
m_fatalerr = true; // because close() will reset it

bool
JpgInput::valid_file (const std::string &filename) const

{
FILE *fd = Filesystem::fopen (filename, "rb");
if (! fd)
return false;

// Check magic number to assure this is a JPEG file

OpenlmagelO Programmer’s Documentation

80 CHAPTER 5. WRITING IMAGEIO PLUGINS

uint8_t magic[2] = {0, 0};
bool ok = (fread (magic, sizeof (magic), 1, fd) == 1);
fclose (fd);
if (magic[0] != JPEG_MAGICl || magic[l] != JPEG_MAGIC2) {
ok = false;
}
return ok;
}
bool

JpgInput::open (const std::string &name, ImageSpec &newspec,
const ImageSpec &config)
{

const ImageIOParameter *p = config.find_attribute ("_jpeg:raw",
TypeDesc: :Typelnt);

m_raw = p && *(int *)p->data();

return open (name, newspec);

bool
JpgInput::open (const std::string &name, ImageSpec &newspec)
{
// Check that file exists and can be opened
m_filename = name;
m_fd = Filesystem::fopen (name, "rb");
if (m_fd == NULL) {
error ("Could not open file \"$s\"", name.c_str());
return false;

}

// Check magic number to assure this is a JPEG file
uint8_t magic[2] = {0, 0};

if (fread (magic, sizeof (magic), 1, m_£fd) != 1) {
error ("Empty file \"%s\"", name.c_str());

close_file ();
return false;

}

rewind (m_£fd);
if (magic[0] != JPEG_MAGICl || magic[l] != JPEG_MAGIC2) {
close_file ();
error ("\"%s\" is not a JPEG file, magic number doesn’t match (was 0x%x%x)",
name.c_str (), int(magic[0]), int(magic[l]));
return false;

}

// Set up the normal JPEG error routines, then override error_exit and
// output_message so we intercept all the errors.
m_cinfo.err = jpeg_std_error ((jpeg_error_mgr *)&m_jerr);
m_jerr.pub.error_exit = my_error_exit;
m_Jjerr.pub.output_message = my_output_message;
if (setjmp (m_jerr.setjmp_buffer)) {
// Jump to here if there’s a libjpeg internal error
// Prevent memory leaks, see example.c in jpeg distribution
jpeg_destroy_decompress (&m_cinfo);
close_file ();
return false;

}

jpeg_create_decompress (&m_cinfo); // initialize decompressor
jpeg_stdio_src (&m_cinfo, m_£fd); // specify the data source

// Request saving of EXIF and other special tags for later spelunking
for (int mark = 0; mark < 16; ++mark)

jpeg_save_markers (&m_cinfo, JPEG_APPO+mark, Oxffff);
jpeg_save_markers (&m_cinfo, JPEG_COM, Oxffff); // comment marker

// read the file parameters
if (jpeg_read_header (&m_cinfo, FALSE) != JPEG_HEADER OK || m_fatalerr) {

OpenlmagelO Programmer’s Documentation

5.2. IMAGE READERS

81

error ("Bad JPEG header for \"$s\"", filename().c_str());
return false;

}
int nchannels = m_cinfo.num_components;

if (m_cinfo.jpeg_color_space == JCS_CMYK ||
m_cinfo.jpeg_color_space == JCS_YCCK) {
// CMYK jpegs get converted by us to RGB
m_cinfo.out_color_space = JCS_CMYK; // pre-convert YCbCrK->CMYK
nchannels = 3;
m_cmyk = true;

}

if (m_raw)
m_coeffs = jpeg_read_coefficients (&m_cinfo);
else
jpeg_start_decompress (&m_cinfo); // start working

if (m_fatalerr)
return false;
m_next_scanline = 0; // next scanline we’ll read

m_spec = ImageSpec (m_cinfo.output_width, m_cinfo.output_height,
nchannels, TypeDesc::UINT8);

// Assume JPEG is in SRGB unless the Exif or XMP tags say otherwise.
m_spec.attribute ("oiio:ColorSpace", "sRGB");

if (m_cinfo.jpeg_color_space == JCS_CMYK)
m_spec.attribute ("jpeg:ColorSpace", "CMYK");

else if (m_cinfo.jpeg_color_space == JCS_YCCK)
m_spec.attribute ("jpeg:ColorSpace", "YCbCrK");

// If the chroma subsampling is detected and matches something
// we expect, then set an attribute so that it can be preserved
// in future operations.
std::string subsampling = comp_info_to_attr(m_cinfo);
if (!subsampling.empty())

m_spec.attribute (JPEG_SUBSAMPLING_ATTR, subsampling);

for (jpeg_saved_marker_ptr m = m_cinfo.marker_list; m; m = m->next) {
if (m—->marker == (JPEG_APP0+1) &&
! strcmp ((const char *)m->data, "Exif")) {
// The block starts with "Exif\0\0", so skip 6 bytes to get
// to the start of the actual Exif data TIFF directory
decode_exif ((unsigned char *)m->data+6, m->data_length-6, m_spec);
}
else 1if (m->marker == (JPEG_APPO+1) &&
! strcmp ((const char *)m->data, "http://ns.adobe.com/xap/1.0/")) {
#ifndef NDEBUG
std::cerr << "Found APP1 XMP! length " << m->data_length << "\n";
#endif
std::string xml ((const char *)m->data, m->data_length);
decode_xmp (xml, m_spec);
}
else if (m->marker == (JPEG_APP(0+13) &&
! strcmp ((const char *)m->data, "Photoshop 3.0"))
jpeg_decode_iptc ((unsigned char *)m->data);
else 1if (m->marker == JPEG_COM) {
if (! m_spec.find_attribute ("ImageDescription", TypeDesc::STRING))
m_spec.attribute ("ImageDescription",
std::string ((const char *)m->data, m->data_length));

}

// Handle density/pixelaspect. We need to do this AFTER the exif is
// decoded, in case it contains useful information.
float xdensity = m_spec.get_float_attribute ("XResolution");
float ydensity = m_spec.get_float_attribute ("YResolution");
if (! xdensity || ! ydensity) {

xdensity = float (m_cinfo.X_density);

ydensity = float (m_cinfo.Y_density);

if (xdensity && ydensity) {

m_spec.attribute ("XResolution", xdensity);

OpenlmagelO Programmer’s Documentation

82 CHAPTER 5. WRITING IMAGEIO PLUGINS

m_spec.attribute ("YResolution", ydensity);

}

}
if (xdensity && ydensity) {
float aspect = ydensity/xdensity;
if (aspect !'= 1.0f)
m_spec.attribute ("PixelAspectRatio", aspect);
switch (m_cinfo.density_unit) {

case 0 : m_spec.attribute ("ResolutionUnit", "none"); break;
case 1 : m_spec.attribute ("ResolutionUnit", "in"); break;
case 2 : m_spec.attribute ("ResolutionUnit", "cm"); break;

}
}

read_icc_profile(&m_cinfo, m_spec); /// try to read icc profile

newspec = m_spec;
return true;

bool
JpgInput::read_icc_profile (j_decompress_ptr cinfo, ImageSpec& spec)
{

int num_markers = 0;

std::vector<unsigned char> icc_buf;

unsigned int total_length = 0;

const int MAX_SEQ NO = 255;

unsigned char marker_present [MAX_SEQ NO + 1]; // one extra is used to store the flag if marker is found, se
unsigned int data_length[MAX_SEQ_NO + 1]; // store the size of each marker
unsigned int data_offset [MAX_SEQ_NO + 1]; // store the offset of each marker

memset (marker_present, 0, (MAX_SEQ NO + 1));

for (jpeg_saved_marker_ptr m = cinfo->marker_list; m; m = m->next) {
if (m->marker == (JPEG_APP0O + 2) &&
!'stremp ((const char *)m->data, "ICC_PROFILE")) {

if (num_markers ==
num_markers = GETJOCTET (m->data[13]);

else if (num_markers != GETJOCTET (m->data[13]))
return false;

int seqg_no = GETJOCTET (m->data[l2]);

if (seq_no <= 0 || seg_no > num_markers)
return false;

if (marker_present[seq_no]) // duplicate marker
return false;

marker_present [seq_no] = 1; // flag found marker

data_length[seq_no] = m->data_length - ICC_HEADER_SIZE;
}
}
if (num_markers == 0)
return false;

// checking for missing markers
for (int seg_no = 1; seq_no <= num_markers; seq_not++) {
if (marker_present[seqg_no] == 0)
return false; // missing sequence number
data_offset[seq_no] = total_length;
total_length += data_length[seqg_no];
}

if (total_length == 0)
return false; // found only empty markers

icc_buf.resize (total_length*sizeof (JOCTET));

// and fill it in
for (jpeg_saved_marker_ptr m = cinfo->marker_list; m; m = m->next) {
if (m->marker == (JPEG_APP0O + 2) &&
!'stremp ((const char *)m->data, "ICC_PROFILE")) {
int seqg_no = GETJOCTET (m->data[l2]);
memcpy (&icc_buf[0] + data_offset[seqg_no],
m->data + ICC_HEADER_SIZE, data_length[seqg_no]);

OpenlmagelO Programmer’s Documentation

5.2. IMAGE READERS 83

}
spec.attribute (ICC_PROFILE_ATTR, TypeDesc (TypeDesc::UINT8, total_length), &icc_buf[0]);
return true;

static void

cmyk_to_rgb (int n, const unsigned char *cmyk, size_t cmyk_stride,
unsigned char *rgb, size_t rgb_stride)

{

for (; n; --n, cmyk += cmyk_stride, rgb += rgb_stride) {
// JPEG seems to store CMYK as 1-x

float C = convert_type<unsigned char, float> (cmyk[0]);
float M = convert_type<unsigned char,float>(cmyk[1]);
float Y = convert_type<unsigned char, float> (cmyk[2]);
float K = convert_type<unsigned char, float>(cmyk[3]);
float R = C * K;

float G = M * K;

float B = Y * K;

rgb[0] = convert_type<float,unsigned char>(R);

rgb[l] = convert_type<float,unsigned char>(G);

rgb[2] = convert_type<float,unsigned char>(B);

bool
JpgInput::read_native_scanline (int y, int z, void *data)
if (m_raw)
return false;
if (y < 0 || y >= (int)m_cinfo.output_height) // out of range scanline

return false;
if (m_next_scanline > y) {
// User is trying to read an earlier scanline than the one we’re
// up to. Easy fix: close the file and re-open.
ImageSpec dummyspec;
int subimage = current_subimage();

if (! close () ||
! open (m_filename, dummyspec) ||
! seek_subimage (subimage, 0, dummyspec))
return false; // Somehow, the re-open failed
assert (m_next_scanline == 0 && current_subimage() == subimage);

}

// Set up our custom error handler

if (setjmp (m_jerr.setjmp_buffer)) {
// Jump to here if there’s a libjpeg internal error
return false;

}

void *readdata = data;
if (m_cmyk) {
// If the file’s data is CMYK, read into a 4-channel buffer, then
// we'll have to convert.
m_cmyk_buf.resize (m_spec.width * 4);
readdata = &m_cmyk_buf[0];
ASSERT (m_spec.nchannels == 3);

for (; m_next_scanline <= y; ++m_next_scanline) {
// Keep reading until we’ve read the scanline we really need
if (jpeg_read_scanlines (&m_cinfo, (JSAMPLE **)g&readdata, 1) !=1
|| m_fatalerr) {
error ("JPEG failed scanline read (\"$s\")", filename().c_str());

return false;

}

if (m_cmyk)

cmyk_to_rgb (m_spec.width, (unsigned char *)readdata, 4,

OpenlmagelO Programmer’s Documentation

84 CHAPTER 5. WRITING IMAGEIO PLUGINS

(unsigned char *)data, 3);

return true;

bool
JpgInput::close ()
{

if (m_fd != NULL) {
// unnecessary? Jjpeg_abort_decompress (&m_cinfo);
jpeg_destroy_decompress (&m_cinfo);
close_file ();

}
init (); // Reset to initial state
return true;

void
JpgInput::jpeg_decode_iptc (const unsigned char *buf)
{

// APP13 blob doesn’t have to be IPTC info. Look for the IPTC marker,
// which is the string "Photoshop 3.0" followed by a null character.
if (strcmp ((const char *)buf, "Photoshop 3.0"))

return;
buf += strlen("Photoshop 3.0") + 1;

// Next are the 4 bytes "8BIM"

if (strncmp ((const char *)buf, "8BIM", 4))
return;

buf += 4;

// Next two bytes are the segment type, in big endian.
// We expect 1028 to indicate IPTC data block.

if (((buf[0] << 8) + buf[l]) != 1028
return;
buf += 2;
// Next are 4 bytes of 0 padding, just skip it.
buf += 4;
// Next is 2 byte (big endian) giving the size of the segment
int segmentsize = (buf[0] << 8) + buf[l];
buf += 2;

decode_iptc_iim (buf, segmentsize, m_spec);

}
OITIO_PLUGIN_NAMESPACE_END

5.3 Image Writers

A plugin that writes a particular image file format must implement a subclass of ImageOutput
(described in Chapter [3). This is actually very straightforward and consists of the following
steps, which we will illustrate with a real-world example of writing a JPEG/JFIF plug-in.

1. Read the base class definition from imageio.h, just as with an image reader (see Sec-
tion[5.2)).

2. Declare three public items:

(a) An integer called name imageio version that identifies the version of the Im-

OpenlmagelO Programmer’s Documentation

5.3. IMAGE WRITERS 85

(b)

(©

agelO protocol implemented by the plugin, defined in imageio.h as the constant
OIIO PLUGIN_ VERSION. This allows the library to be sure it is not loading a plu-
gin that was compiled against an incompatible version of OpenimagelO. Note that if
your plugin has both a reader and writer and they are compiled as separate modules
(C++ source files), you don’t want to declare this in both modules; either one is fine.

A function named name output imageio create that takes no arguments and
returns a new instance of your ImageOutput subclass. (Note that name is the name
of your format, and must match the name of the plugin itself.)

An array of char * called name output extensions that contains the list of file
extensions that are likely to indicate a file of the right format. The list is terminated
by a NULL pointer.

All of these items must be inside an ‘extern "C" block in order to avoid name mangling
by the C++ compiler, and we provide handy macros OII0 PLUGIN EXPORTS BEGIN

and

OIIO_PLUGIN_EXPORTS_END to mamke this easy. Depending on your compiler,

you may need to use special commands to dictate that the symbols will be exported in the
DSO; we provide a special 0OIT0_EXPORT macro for this purpose, defined in export . h.

Putting this all together, we get the following for our JPEG example:

3. The

OITO_PLUGIN_EXPORTS_BEGIN
OIIO_EXPORT int jpeg_imageio_version = OIIO_PLUGIN_VERSION;
OIIO_EXPORT JpgOutput *jpeg_output_imageio_create () {

return new JpgOutput;

}
OIIO_EXPORT const char *jpeg_input_extensions[] = {

"jpg", "jpe", "jpeg", NULL
bi

OITO_PLUGIN_EXPORTS_END

definition and implementation of an ImageOutput subclass for this file format. It

must publicly inherit ImageOutput, and must overload the following methods which are
“pure virtual” in the ImageOutput base class:

(a)

(b)

(©)

(d)

format_name () should return the name of the format, which ought to match the
name of the plugin and by convention is strictly lower-case and contains no whites-
pace.

supports () should return true if its argument names a feature supported by your
format plugin, false if it names a feature not supported by your plugin. See Sec-
tion[3.3] for the list of feature names.

open () should open the file and return true, or should return false if unable to do
so (including if the file was found but turned out not to be in the format that your
plugin is trying to implement).

close () should close the file, if open.

OpenIlmagelO Programmer’s Documentation

86

CHAPTER 5. WRITING IMAGEIO PLUGINS

(e)

()

write_ scanline should write a single scanline to the file, translating from internal
to native data format and handling strides properly.

The virtual destructor, which should close () if the file is still open, addition to
performing any other tear-down activities.

Additionally, your ImageOutput subclass may optionally choose to overload any of the
following methods, which are defined in the ImageOutput base class and only need to be
overloaded if the default behavior is not appropriate for your plugin:

(2

(b
®

@
9]

@

write_ scanlines (), only if your format supports writing scanlines and you can
get a performance improvement when outputting multiple scanlines at once. If
youdon’t supply write scanlines (), the default implementation will simply call
write scanline () separately for each scanline in the range.

write tile(), only if your format supports writing tiled images.

write_ tiles(), only if your format supports writing tiled images and you can
get a performance improvement when outputting multiple tiles at once. If you don’t
supply write tiles(), the default implementation will simply call write tile()
separately for each tile in the range.

write rectangle (), only if your format supports writing arbitrary rectangles.

write_image (), only if you have a more clever method of doing so than the default
implementation that calls write scanline() orwrite tile() repeatedly.

write deep scanlines() and/or write deep tiles(), only if your format
supports “deep” data images.

It is not strictly required, but certainly appreciated, if a file format does not support tiles,
to nonetheless accept an ImageSpec that specifies tile sizes by allocating a full-image
buffer in open (), providing an implementation of write_ tile() that copies the tile of

data

to the right spots in the buffer, and having close () then call write scanlines to

process the buffer now that the image has been fully sent.

Here is how the class definition looks for our JPEG example. Note that the JPEG/JFIF
file format does not support multiple subimages or tiled images.

class JpgOutput : public ImageOutput {
public:
JpgOutput () { init(); }
virtual “JpgOutput () { close(); }
virtual const char * format_name (void) const { return "jpeg"; }
virtual int supports (string_view property) const { return false; }
virtual bool open (const std::string &name, const ImageSpec &spec,
bool append=false);
virtual bool write_scanline (int y, int z, TypeDesc format,
const void *data, stride_t xstride);
bool close ();
private:
FILE *m_fd;

OpenlmagelO Programmer’s Documentation

5.3. IMAGE WRITERS 87

std::vector<unsigned char> m_scratch;
struct jpeg_compress_struct m_cinfo;
struct jpeg_error_mgr m_jerr;

void init () { m_fd = NULL; }
i

Your subclass implementation of open (), close (), and write scanline () are the heart
of an ImageOutput implementation. (Also write tile(), for those image formats that sup-
port tiled output.)

An ImageOutput implementation must properly handle all data formats and strides passed
towrite_scanline() orwrite_tile(), unlike an ImageInput implementation, which only
needs to read scanlines or tiles in their native format and then have the super-class handle the
translation. But don’t worry, all the heavy lifting can be accomplished with the following helper
functions provided as protected member functions of ImageOutput that convert a scanline, tile,
or rectangular array of values from one format to the native format(s) of the file.

const void * to_native scanline (TypeDesc format, const void *data,
stride t xstride, std::vector<unsigned char> &scratch,
unsigned int dither=0, int yorigin=0, int zorigin=0)

Convert a full scanline of pixels (pointed to by data) with the given format and strides
into contiguous pixels in the native format (described by the ImageSpec returned by the
spec () member function). The location of the newly converted data is returned, which
may either be the original data itself if no data conversion was necessary and the requested
layout was contiguous (thereby avoiding unnecessary memory copies), or may point into
memory allocated within the scratch vector passed by the user. In either case, the caller
doesn’t need to worry about thread safety or freeing any allocated memory (other than
eventually destroying the scratch vector).

const void * to_native tile (TypeDesc format, const void *data,
stride t xstride, stride t ystride, stride t zstride,
std::vector<unsigned char> &scratch, unsigned int dither=0,
int xorigin=0, int yorigin=0, int zorigin=0)

Convert a full tile of pixels (pointed to by data) with the given format and strides into con-
tiguous pixels in the native format (described by the ImageSpec returned by the spec ()
member function). The location of the newly converted data is returned, which may ei-
ther be the original data itself if no data conversion was necessary and the requested
layout was contiguous (thereby avoiding unnecessary memory copies), or may point into
memory allocated within the scratch vector passed by the user. In either case, the caller
doesn’t need to worry about thread safety or freeing any allocated memory (other than
eventually destroying the scratch vector).

const void * to_native rectangle (int xbegin, int xend,
int ybegin, int yend, int zbegin, int zend,

OpenIlmagelO Programmer’s Documentation

88 CHAPTER 5. WRITING IMAGEIO PLUGINS

TypeDesc format, const void *data,

stride t xstride, stride t ystride, stride t zstride,
std::vector<unsigned char> &scratch, unsigned int dither=0,
int xorigin=0, int yorigin=0, int zorigin=0)

Convert a rectangle of pixels (pointed to by data) with the given format, dimensions, and
strides into contiguous pixels in the native format (described by the ImageSpec returned
by the spec () member function). The location of the newly converted data is returned,
which may either be the original data itself if no data conversion was necessary and the
requested layout was contiguous (thereby avoiding unnecessary memory copies), or may
point into memory allocated within the scratch vector passed by the user. In either case,
the caller doesn’t need to worry about thread safety or freeing any allocated memory
(other than eventually destroying the scratch vector).

For float to 8 bit integer conversions only, if dither parameter is nonzero, random dither
will be added to reduce quantization banding artifacts; in this case, the specific nonzero dither
value is used as a seed for the hash function that produces the per-pixel dither amounts, and the
optional origin parameters help it to align the pixels to the right position in the dither pattern.

The remainder of this section simply lists the full implementation of our JPEG writer, which
relies heavily on the open source jpeg-6b library to perform the actual JPEG encoding.

/*
Copyright 2008 Larry Gritz and the other authors and contributors.
All Rights Reserved.
Based on BSD-licensed software Copyright 2004 NVIDIA Corp.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:

* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

* Neither the name of the software’s owners nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS

"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT

LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR

A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT

OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,

SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT

LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,

DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY

THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT

(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE

OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

(This is the Modified BSD License)
*/

#include <cassert>
#include <cstdio>
#include <vector>

#include "OpenImageIO/imageio.h"
#include "OpenImageIO/filesystem.h"
#include "OpenlImageIO/fmath.h"
#include "jpeg_pvt.h"

OpenlmagelO Programmer’s Documentation

5.3. IMAGE WRITERS

89

OIIO_PLUGIN_NAMESPACE_BEGIN

#define DBG if (0)

// See JPEG library documentation in /usr/share/doc/libjpeg-devel-6b

class JpgOutput : public ImageOutput {

public:
JpgOutput () { init(); }
virtual “JpgOutput () { close(); }

virtual const char * format_name (void) const { return "jpeg"; }
virtual int supports (string_view feature) const {
return (feature == "exif"
|| feature == "iptc");
}
virtual bool open (const std::string &name, const ImageSpec &spec,
OpenMode mode=Create);
virtual bool write_scanline (int y, int z, TypeDesc format,
const void *data, stride_t xstride);
virtual bool write_tile (int x, int y, int z, TypeDesc format,
const void *data, stride_t xstride,
stride_t ystride, stride_t zstride);
virtual bool close ();
virtual bool copy_image (ImageInput *in);

private:
FILE *m_fd;
std::string m_filename;
unsigned int m_dither;
int m_next_scanline; // Which scanline is the next to write?
std::vector<unsigned char> m_scratch;
struct jpeg_compress_struct m_cinfo;
struct jpeg_error_mgr c_jerr;
jvirt_barray_ptr *m_copy_coeffs;
struct jpeg_decompress_struct *m_copy_decompressor;
std::vector<unsigned char> m_tilebuffer;

voild init (void) {
m_fd = NULL;
m_copy_coeffs = NULL;
m_copy_decompressor = NULL;

void set_subsampling (const int components[]) {
jpeg_set_colorspace (&m_cinfo, JCS_YCbCr);

m_cinfo.comp_info[0].h_samp_factor = components[0];
m_cinfo.comp_info[0].v_samp_factor = components[l];
m_cinfo.comp_info[l].h_samp_factor = components[2];
m_cinfo.comp_info[l].v_samp_factor = components[3];
m_cinfo.comp_info[2].h_samp_factor = components[4];
m_cinfo.comp_info[2].v_samp_factor = components[5];

OITIO_PLUGIN_EXPORTS_BEGIN

OIIO_EXPORT ImageOutput *7jpeg_output_imageio_create () {
return new JpgOutput;

}

OIIO_EXPORT const char *jpeg_output_extensions|[] = {

} "jpg"["jpe"["jpeg", lljifll, lljfif"’ lljfill, NULL
1

OIIO_PLUGIN_EXPORTS_END

bool

OpenlmagelO Programmer’s Documentation

90 CHAPTER 5. WRITING IMAGEIO PLUGINS

JpgOutput::open (const std::string &name, const ImageSpec &newspec,
OpenMode mode)
{

if (mode != Create) {
error ("%s does not support subimages or MIP levels", format_name());
return false;

}

// Save name and spec for later use
m_filename = name;
m_spec = newspec;

// Check for things this format doesn’t support
if (m_spec.width < 1 || m_spec.height < 1) {
error ("Image resolution must be at least 1x1, you asked for %d x %d",
m_spec.width, m_spec.height);
return false;
}
if (m_spec.depth < 1)
m_spec.depth = 1;
if (m_spec.depth > 1) {
error ("%s does not support volume images (depth > 1)", format_name());
return false;

}

if (m_spec.nchannels != 1 && m_spec.nchannels != 3 &&
m_spec.nchannels != 4)
error ("%s does not support %$d-channel images",
format_name (), m_spec.nchannels);

return false;

}

m_fd = Filesystem::fopen (name, "wb");

if (m_fd == NULL) {
error ("Unable to open file \"$s\"", name.c_str());
return false;

}

m_cinfo.err = jpeg_std_error (&c_jerr); // set error handler
jpeg_create_compress (&m_cinfo); // create compressor
jpeg_stdio_dest (&m_cinfo, m_£fd); // set output stream

// Set image and compression parameters
m_cinfo.image_width = m_spec.width;
m_cinfo.image_height = m_spec.height;

if (m_spec.nchannels == || m_spec.nchannels == 4) {
m_cinfo.input_components = 3;
m_cinfo.in_color_space = JCS_RGB;

} else if (m_spec.nchannels == 1) {
m_cinfo.input_components = 1;
m_cinfo.in_color_space = JCS_GRAYSCALE;

}

string_view resunit = m_spec.get_string_attribute ("ResolutionUnit");
if (Strutil::iequals (resunit, "none"))
m_cinfo.density_unit = 0;
else if (Strutil::iequals (resunit, "in"))
m_cinfo.density_unit = 1;
else if (Strutil::iequals (resunit, "cm"))
m_cinfo.density_unit = 2;
else
m_cinfo.density_unit = 0;
m_cinfo.X_density = int (m_spec.get_float_attribute ("XResolution"));
m_cinfo.Y_density = int (m_spec.get_float_attribute ("YResolution"));
float aspect = m_spec.get_float_attribute ("PixelAspectRatio", 1.0f);
if (m_cinfo.X_ density <= 1 && m_cinfo.Y_density <= 1 && aspect != 1.0f) {
// No useful [XY]Resolution, but there is an aspect ratio requested.
// Arbitrarily pick 72 dots per undefined unit, and jigger it to
// honor it as best as we can.
m_cinfo.X_density = 72;
m_cinfo.Y_density = int (m_cinfo.X_ density * aspect);
m_spec.attribute ("XResolution", 72.0f);
m_spec.attribute ("YResolution", 72.0f*aspect);

OpenlmagelO Programmer’s Documentation

5.3. IMAGE WRITERS 91

}
m_cinfo.write_JFIF_header = TRUE;

if (m_copy_coeffs) {
// Back door for copy()
jpeg_copy_critical_parameters (m_copy_decompressor, &m_cinfo);
DBG std::cout << "out open: copy_critical_parameters\n";
jpeg_write_coefficients (&m_cinfo, m_copy_coeffs);
DBG std::cout << "out open: write_coefficients\n";

} else {
// normal write of scanlines
jpeg_set_defaults (&m_cinfo); // default compression
// Careful -- jpeg_set_defaults overwrites density

m_cinfo.X_density = int (m_spec.get_float_attribute ("XResolution"));

m_cinfo.Y_density = int (m_spec.get_float_attribute ("YResolution", m_cinfo.X_density));
DBG std::cout << "out open: set_defaults\n";

int quality = newspec.get_int_attribute ("CompressionQuality", 98);

jpeg_set_quality (&m_cinfo, quality, TRUE); // baseline values

DBG std::cout << "out open: set_quality\n";

if (m_cinfo.input_components == 3) {
std::string subsampling = m_spec.get_string_attribute (JPEG_SUBSAMPLING_ATTR);
if (subsampling == JPEG_444_STR)
set_subsampling (JPEG_444_COMP) ;
else if (subsampling == JPEG_422_STR)
set_subsampling (JPEG_422_COMP) ;
else if (subsampling == JPEG_420_STR)
set_subsampling (JPEG_420_COMP) ;
else if (subsampling == JPEG_411_STR)
set_subsampling (JPEG_411_COMP);

DBG std::cout << "out open: set_colorspace\n";

jpeg_start_compress (&m_cinfo, TRUE); // start working
DBG std::cout << "out open: start_compress\n";

}

m_next_scanline = 0; // next scanline we’ll write

// Write JPEG comment, if sent an ’ImageDescription’
ImageIOParameter *comment = m_spec.find_attribute ("ImageDescription",
TypeDesc: :STRING) ;
if (comment && comment->data()) {
const char **c = (const char **) comment->dataf();
jpeg_write_marker (&m_cinfo, JPEG_COM, (JOCTET*)*c, strlen(*c) + 1);

if (Strutil::iequals (m_spec.get_string_attribute ("oiio:ColorSpace"), "sRGB"))
m_spec.attribute ("Exif:ColorSpace", 1);

// Write EXIF info

std::vector<char> exif;

// Start the blob with "Exif" and two nulls. That’s how it
// always is in the JPEG files I've examined.

exif.push_back ('E");
exif.push_back ('x");
exif.push_back ("i");
exif.push_back ("f’);
(0)

exif.push_back ;

exif.push_back (0);

encode_exif (m_spec, exif);

jpeg_write_marker (&m_cinfo, JPEG_APPO0+1, (JOCTET*)&exif[0], exif.size());

// Write IPTC IIM metadata tags, if we have anything
std::vector<char> iptc;

encode_iptc_iim (m_spec, iptc);

if (iptc.size()) {

static char photoshop[] = "Photoshop 3.0";

std::vector<char> head (photoshop, photoshop+strlen (photoshop)+1l);
static char _8BIM[] = "8BIM";

head.insert (head.end(), _8BIM, _8BIM+4);

head.push_back (4); // 0x0404

head.push_back (4);

head.push_back (0); // four bytes of zeroes

OpenlmagelO Programmer’s Documentation

92 CHAPTER 5. WRITING IMAGEIO PLUGINS

head.push_back (
head.push_back (
head.push_back (
head.push_back ((char) (iptc.size() >> 8)); // size of block
head.push_back ((char) (iptc.size() & O0xff));

iptc.insert (iptc.begin(), head.begin(), head.end());

jpeg_write_marker (&m_cinfo, JPEG_APP0+13, (JOCTET*)é&iptc[0], iptc.size());

}

// Write XMP packet, if we have anything
std::string xmp = encode_xmp (m_spec, true);
if (! xmp.empty()) {

static char prefix[] = "http://ns.adobe.com/xap/1.0/";
std::vector<char> block (prefix, prefix+strlen(prefix)+1);
block.insert (block.end(), xmp.c_str(), xmp.c_str()+xmp.length());

jpeg_write_marker (&m_cinfo, JPEG_APP0+1, (JOCTET*)&block[0], block.size());
}

m_spec.set_format (TypeDesc::UINT8); // JPG is only 8 bit

// Write ICC profile, if we have anything
const ImageIOParameter* icc_profile_parameter = m_spec.find_attribute (ICC_PROFILE_ATTR);
if (icc_profile_parameter != NULL) {
unsigned char *icc_profile = (unsigned char*)icc_profile_parameter->data();
unsigned int icc_profile_length = icc_profile_parameter->type().size();
if (icc_profile && icc_profile_length) {
/* Calculate the number of markers we’ll need, rounding up of course */
int num_markers = icc_profile_length / MAX_DATA_BYTES_IN_MARKER;
if ((unsigned int) (num_markers * MAX_DATA BYTES_IN_MARKER) != icc_profile_length)
num_markers++;
int curr_marker = 1; /* per spec, count strarts at 1*/
std::vector<unsigned char> profile (MAX_DATA_BYTES_IN_MARKER + ICC_HEADER_SIZE);
while (icc_profile_length > 0) {
// length of profile to put in this marker
unsigned int length = std::min (icc_profile_length, (unsigned int)MAX_DATA_BYTES_IN_MARKER);
icc_profile_length -= length;
// Write the JPEG marker header (APP2 code and marker length)
strcpy ((char *)é&profile[0], "ICC_PROFILE");
profile[1l1] ;
profile[12] curr_marker;
profile[13] = (unsigned char) num_markers;
memcpy (&profile[0] + ICC_HEADER_SIZE, icc_profile+length* (curr_marker-1), length);
jpeg_write_marker (&m_cinfo, JPEG_APPO + 2, &profile[0], ICC_HEADER_SIZE+length);
curr_marker++;

}
m_dither = m_spec.get_int_attribute ("oiio:dither", 0);

// If user asked for tiles -- which JPEG doesn’t support, emulate it by
// buffering the whole image.
if (m_spec.tile_width && m_spec.tile_height)

m_tilebuffer.resize (m_spec.image_bytes());

return true;

bool

JpgOutput::write_scanline (int y, int z, TypeDesc format,
const void *data, stride_t xstride)

{

y —-= m_spec.y;
if (v != m_next_scanline) ({
error ("Attempt to write scanlines out of order to %s",
m_filename.c_str());
return false;
}
if (v >= (int)m_cinfo.image_height) {
error ("Attempt to write too many scanlines to %s", m_filename.c_str());
return false;

OpenlmagelO Programmer’s Documentation

5.3. IMAGE WRITERS 93

assert (y == (int)m_cinfo.next_scanline);
// It's so common to want to write RGBA data out as JPEG (which only
// supports RGB) than it would be too frustrating to reject it.

Instead, we just silently drop the alpha. Here’s where we do the
dirty work, temporarily doctoring the spec so that
to_native_scanline properly contiguizes the first three channels,
then we restore it. The call to to_native_scanline below needs
m_spec.nchannels to be set to the true number of channels we’re
writing, or it won’t arrange the data properly. But if we
doctored m_spec.nchannels = 3 permanently, then subsequent calls
to write_scanline (including any surrounding call to write_image)
with stride=AutoStride would screw up the strides since the

// user’s stride is actually not 3 channels.

int save_nchannels = m_spec.nchannels;

m_spec.nchannels = m_cinfo.input_components;

R
N

~
~

data = to_native_scanline (format, data, xstride, m_scratch,
m_dither, y, z);
m_spec.nchannels = save_nchannels;

jpeg_write_scanlines (&m_cinfo, (JSAMPLE**)g&data, 1);
++m_next_scanline;

return true;

bool

JpgOutput::write_tile (int x, int y, int z, TypeDesc format,
const void *data, stride_t xstride,
stride_t ystride, stride_t zstride)

// Emulate tiles by buffering the whole image
return copy_tile_to_image_buffer (x, y, z, format, data, xstride,
ystride, zstride, &m_tilebuffer([0]);

bool
JpgOutput::close ()
{
if () m_fd) { // Already closed
return true;
init();

}
bool ok = true;

if (m_spec.tile_width) {
// We've been emulating tiles; now dump as scanlines.
ASSERT (m_tilebuffer.size());
ok &= write_scanlines (m_spec.y, m_spec.y+m_spec.height, 0,
m_spec.format, &m_tilebuffer[0]);
std::vector<unsigned char>().swap (m_tilebuffer); // free it

}

if (m_next_scanline < spec().height && m_copy_coeffs == NULL) {
// But if we’ve only written some scanlines, write the rest to avoid
// errors
std::vector<char> buf (spec().scanline_bytes(), 0);

char *data = &buf[0];

while (m_next_scanline < spec().height) {
jpeg_write_scanlines (&m_cinfo, (JSAMPLE **)&data, 1);
// DBG std::cout << "out close: write_scanlines\n";
++m_next_scanline;

}

if (m_next_scanline >= spec().height || m_copy_coeffs) {
DBG std::cout << "out close: about to finish_compress\n";
jpeg_finish_compress (&m_cinfo);

OpenlmagelO Programmer’s Documentation

94 CHAPTER 5. WRITING IMAGEIO PLUGINS
DBG std::cout << "out close: finish_compress\n";
} else {
DBG std::cout << "out close: about to abort_compress\n";
jpeg_abort_compress (&m_cinfo);
DBG std::cout << "out close: abort_compress\n";
}
DBG std::cout << "out close: about to destroy_compress\n";
jpeg_destroy_compress (&m_cinfo);
fclose (m_fd);
m_fd = NULL;
init ();
return ok;
}
bool

JpgOutput::copy_image (Imagelnput *in)

{

if (in && !strcmp(in->format_name(), "jpeg")) {

}

JpgInput *jpg_in = dynamic_cast<JpgInput *> (in);
std::string in_name = jpg_in->filename ();
DBG std::cout << "JPG copy_image from " << in_name << "\n";

// Save the original input spec and close it
ImageSpec orig_in_spec = in->spec();
in->close ();

DBG std::cout << "Closed old file\n";

// Re-open the input spec, with special request that the JpgInput
// will recognize as a request to merely open, but not start the
// decompressor.

ImageSpec in_spec;

ImageSpec config_spec;

config_spec.attribute ("_jpeg:raw", 1);

in->open (in_name, in_spec, config_spec);

// Re-open the output

std::string out_name = m_filename;

ImageSpec orig_out_spec = spec();

close ();

m_copy_coeffs = (jvirt_barray_ptr *)jpg_in->coeffs();
m_copy_decompressor = &jpg_in->m_cinfo;

open (out_name, orig_out_spec);

// Strangeness -- the write_coefficients somehow sets things up
// so that certain writes only happen in close(), which MUST

// happen while the input file is still open. So we go ahead
// and close() now, so that the caller of copy_image() doesn’t
// close the input file first and then wonder why they crashed.
close ();

return true;

return ImageOutput::copy_image (in);

}

OITIO_PLUGIN_NAMESPACE_END

5.4 Tips and Conventions

OpenimagelO’s main goal is to hide all the pesky details of individual file formats from the
client application. This inevitably leads to various mismatches between a file format’s true ca-
pabilities and requests that may be made through the OpenlmagelO APIs. This section outlines
conventions, tips, and rules of thumb that we recommend for image file support.

OpenlmagelO Programmer’s Documentation

5.5. BUILDING IMAGEIO PLUGINS 95

Readers

o If the file format stores images in a non-spectral color space (for example, YUV), the
reader should automatically convert to RGB to pass through the OIIO APIs. In such a
case, the reader should signal the file’s true color space viaa "Foo:colorspace" attribute
in the TmageSpec.

e “Palette” images should be automatically converted by the reader to RGB.

o If the file supports thumbnail images in its header, the reader should store the thumbnail
dimensions in attributes "thumbnail width", "thumbnail height", and "thumbnail -
nchannels" (all of which should be int), and the thumbnail pixels themselves in "thumbnail -
image" as an array of channel values (the array length is the total number of channel
samples in the thumbnail).

Writers

The overall rule of thumb is: try to always “succeed” at writing the file, outputting the closest
approximation of the user’s data as possible. But it is permissible to fail the open () call if it is
clearly nonsensical or there is no possible way to output a decent approximation of the user’s
data. Some tips:

o If the client application requests a data format not directly supported by the file type,
silently write the supported data format that will result in the least precision or range loss.

e It is customary to fail a call to open () if the ImageSpec requested a number of color
channels plainly not supported by the file format. As an exception to this rule, it is
permissible for a file format that does not support alpha channels to silently drop the
fourth (alpha) channel of a 4-channel output request.

o If the app requests a "Compression" not supported by the file format, you may choose
as a default any lossless compression supported. Do not use a lossy compression unless
you are fairly certain that the app wanted a lossy compression.

o I[f the file format is able to store images in a non-spectral color space (for example, YUV),
the writer may accept a "Foo:colorspace" attribute in the ImageSpec as a request to
automatically convert and store the data in that format (but it will always be passed as
RGB through the OIIO APIs).

e [f the file format can support thumbnail images in its header, and the ImageSpec contain
attributes "thumbnail width", "thumbnail height", "thumbnail nchannels", and
"thumbnail image", the writer should attempt to store the thumbnail if possible.

5.5 Building ImagelO Plugins

FIXME - spell out how to compile and link plugins on each of the major platforms.

OpenIlmagelO Programmer’s Documentation

96

CHAPTER 5. WRITING IMAGEIO PLUGINS

OpenlmagelO Programmer’s Documentation

6 Bundled ImagelO Plugins

This chapter lists all the image format plugins that are bundled with OpenlmagelO. For each
plugin, we delineate any limitations, custom attributes, etc. The plugins are listed alphabetically
by format name.

6.1 BMP

BMP is a bitmap image file format used mostly on Windows systems. BMP files use the file
extension . bmp.

BMP is not a nice format for high-quality or high-performance images. It only supports
unsigned integer 1-, 2-, 4-, and 8- bits per channel; only grayscale, RGB, and RGBA; does not
support MIPmaps, multiimage, or tiles.

ImageSpec Attribute Type BMP header data or explanation
"XResolution" float hres

"YResolution" float vres

"ResolutionUnit" string always "m" (pixels per meter)

6.2 Cineon

Cineon is an image file format developed by Kodak that is commonly used for scanned motion
picture film and digital intermediates. Cineon files use the file extension .cin.

6.3 DDS

DDS (Direct Draw Surface) is an image file format designed by Microsoft for use in Direct3D
graphics. DDS files use the extension .dds.

DDS is an awful format, with several compression modes that are all so lossy as to be
completely useless for high-end graphics. Nevertheless, they are widely used in games and
graphics hardware directly supports these compression modes. Alas.

OpenlmagelO currently only supports reading DDS files, not writing them.

97

98

CHAPTER 6. BUNDLED IMAGEIO PLUGINS

ImageSpec Attribute Type DDS header data or explanation

"compression" string compression type

"oiio:BitsPerSample"| int bits per sample

"textureformat" string Set correctly to one of "Plain Texture", "Volume
Texture", or "CubeFace Environment".

"texturetype" string Set correctly to one of "Plain Texture", "Volume
Texture", or "Environment".

"dds:CubeMapSides" string For environment maps, which cube faces are present (e.g.,
"+x -x +y -y"if x & y faces are present, but not z).

6.4 DPX

DPX (Digital Picture Exchange) is an image file format used for motion picture film scanning,
. DPX files use the file extension .dpx.

output, and digital intermediates

OIIO Attribute Type DPX header data or explanation

"ImageDescription" string Description of image element

"Copyright" string Copyright statement

"Software" string Creator

"DocumentName" string Project name

"DateTime" string Creation date/time

"Orientation" int the orientation of the DPX image data (see
B2

"compression" string The compression type

"PixelAspectRatio" float pixel aspect ratio

"oiio:BitsPerSample" int the true bits per sample of the DPX file.

"oiio:Endian" string When writing, force a particular endianness
for the output file ("1little" or "big")

"smpte:TimeCode™" int[2] SMPTE time