
Algorithm 1: Edge weight calculation.
Data: KB (knowledge base); property weights; fl; fg; cmax

Result: Weighted edges for graph traversal

1 foreach node in KB do

/* Exclude triples with literals, only count traversable connections */

2 lin ← count (s, p, node) where s is not a literal;

3 lout ← count (node, p, o) where o is not a literal;

4 ltotal ← lin + lout;

5 insert (node, links, ltotal) into KB;

6 end

7 E ← select (s, p, o, ls, lo) from KB where (s, p, o) and (s, links, ls) and (o, links, lo);

8 E ← join E with property weights on p;

/* Enable traversing edges in both directions */

9 Espo ← select (s : s, p : p, o : o, wp : wp, l : lo, dir : ’spo’) from E;

10 Eops ← select (s : o, p : p, o : s, wp : wp, l : ls, dir : ’ops’) from E;

11 E ← concatenate Espo, Eops;

/* Calculate the weights */

12 E ← sort and repartition E by s;

13 G← group E by s, p, dir;

14 result← ∅;

15 foreach group in G do

16 gsize ← count items in group;

17 foreach item in group do

18 item.wrel ← item.wp · (item.l)fl · (gsize)fg ;

19 end

20 group← order group by wrel ascending limit cmax;

21 foreach item in group do

22 add ((item.s, genericRelation, item.o), weight, item.wrel) to result;

23 end

24 end

25 return result ;

1



Algorithm 2: Graph neighborhood expansion.
Data: KB (knowledge base); candidate; depthmax; distmax

Result: List of entities in the neighborhood of candidate

1 candidate.dist← 0;

2 active← {candidate};

3 result← ∅;

4 for depth← 1 to depthmax do

5 activenew ← ∅;

6 foreach v in active do

7 if v.dist > distmax then

8 continue;

9 end

10 foreach (u, weight) in neighbors(v) do

11 dist← v.dist+ weight;

12 mutex lock u;

13 if u not visited or u.dist > dist then

14 u.dist← dist;

15 add u to activenew;

16 add u to result;

17 end

18 mutex release u;

19 end

20 end

21 active← activenew;

22 end

23 result← select u from result where (u, isEntityLinkingTarget, true);

24 return result ;

2



Algorithm 3: Entity-entity coherence algorithm.
Data: max_eliminate_factor; data – array of (mention, candidates); where

candidates in an array of (candidate, score, neighbors); where neighbors is an

array of (neighbor, distance)

Result: Mapping from candidate to boost

1 all_c← flatten data.candidates;

2 max_candidates← min(0.75 · |all_c|, 5 · |data|);

3 all_c← select distinct (candidate, neighbors) from all_c order by score descending

limit max_candidates;

4 related_ents← flatten all_c to (neighbor, distance, candidate);

5 S ← 0|all_c|×|all_c|;

6 foreach c1 in related_ents do

7 foreach c2 in related_ents do

8 if c1 and c2 are linked to the same mention then continue end;

9 similarity ← 1 / (1 + c1.distance+ c2.distance);

10 if similarity > S[c1.candidate, c2.candidate] then

11 S[c1.candidate, c2.candidate]← similarity;

12 end

13 end

14 end

15 result← ∅;

16 for i← 0 to max_eliminate_factor · |all_c| do

17 cr ← find a non-taboo row in S with smallest sum;

18 if cr corresponds to the last candidate of a mention then

19 add (candidate of cr, sum of cr row in S) to result;

20 mark row cr as taboo;

21 else

22 set column cr in S to zeros;

23 mark row cr as taboo;

24 end

25 end

26 add remaining non-taboo rows to result;

27 return result ;

3



Algorithm 4: Candidate selection and enhancement.
Data: mentions – an array of (mention, candidates); β – 0.3 by default

Result: final set of relevant entities

/* Collect all identified mentions and their parents */

1 entities← ∅;

2 foreach (mention, candidates) in mentions do

3 (candidate, score) ← find top-scoring candidate in candidates;

4 add (mention.text, mention.lemma, candidate, score) to entities;

5 foreach parent in parent entities of candidate do

6 add (mention.text, mention.lemma, parent, parent.weight · score) to entities;

7 end

8 end

/* Group by candidate, aggregate scores */

9 grouped← group entities by candidate;

10 results← ∅;

11 foreach g in grouped do

12 score← |unique(g.lemma)| · |g.lemma|β ·mean(g.score);

13 add (g.candidate, score) to results;

14 end

/* Narrow down the result set to n most relevant entities */

15 results← order results by score descending;

16 knee← find knee in results.score;

17 results← take first knee rows in results;

18 return results;

4


