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Abstract-Programs can be analyzed to determine bounds on the
ranges of values assumed by variables at various points in the program.
This range information can then be used to eliminate redundant tests,
verify correct operation, choose data tepresentations, select code to be
generated, and provide diagnostic information. Sophisticated analyses
involving the proofs of complex assertions are sometimes required to
derive accurate range information for the p~urpose of proving programs
correct. The performance of such algorithm5 fay be unacceptable for
the routine analysis required during the, compilation process. This
paper presents a discussion of mechanical fange analysis employing
techniques practical for use in a cotnpiler. This analysis can also serve
as a useful adjunct to the more sophisticated techniques required for
program proving.

Index Terms-Constant propagation, optimizing compiler, program
analysis, proof of correctness, weak interpretation.

INTRODUCTION

PROGRAMS can be analyzed to determine bounds on the
ranges of values assumed by variables at various points in

the program. This range information can then be used to elim-
inate redundant tests, verify correct operation, choose data
representations, select code to be generated, and provide
diagnostic information. Sophisticated analyses involving the
proofs of complex assertions are sometimes required to derive
accurate range information for the purpose of proving pro-
grams correct. The performance of such algorithms may be
unacceptable for the routine analysis required during the com-
pilation process. This paper pr6sents a discussion of mechani-
cal range analysis employing techniques practical for use in a
compiler. This analysis can also serve as a useful adjunct to
the more sophisticated tdchniques required for program
proving.
The primary characteristic of the approach presented here is

its decomposition of the problem into two mechanisms called
range propagation and range analysis. Range propagation is a

rather simple algorithm which uses the data and the conditional
structure of a program to derive and propagate refinements in
the accuracy of range information. A refinement at the point
of assignment to a variable is carried to the points where it is
used. This is done in the hopes of improving the accuracy of
the information at those points as well. However, since the
range propagation process is not inductive in nature, the pres-
ence of loops in the data flow graph severely limnits the
derivable results. Range analysis is an algorithm which tracks
the changes applied to a variable at each point in a logp of
the program, but does so in total ignorance of the conditional
structure of the loop. This information is then used as a base
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for induction to derive a range of values for the variable. The
fact that tests are ignored in this computation also leads to
limited accuracy. However, the ranges produced by range
analysis are intersected with those produced by range propaga-
tion, and the range propagation process continues with these
considerably more accurate results. In the most common
cases, the range information produced for loop variables is
completely accurate. The accuracy of range information for
other variables in a loop is refine4 by another technique which
brings together the inductive and cohditional structures of a
program. This technique, called low counting, is employed to
derive bounds on the number of tires the inductive processes
of a loop need to be applied.
The resulting range information is then used to elide unnec-

essary tests and to produce diagnostic information.; The elision
of tests may alter the apparent data flow of a program, and as
a result, further improvements in the range information may
arise from this optimization. Diagnostic information may
indicate that an error condition is possible, and may elaborate
this warning with a description of the way in which the error
may arise.

Assumption,
It is assumed that the program flow graph is redu'cible [1].

It is also assumed that the data flow for the program has been
computed [2] . At each program point, therefore, we can pos-
tulate1 t#he existence of the use and def functions. The use
fun-t,ion U(p,v) yields the set of all program points which may
usp for the value of the variable v its value at program point p.
For convenience, if t is the target variable at program point p,
we may write U(p) to mean U(p,t). The def function D(p,v)
yields the set of all program points which supply definitions
for the variable v at program point p. If, instead of being a
variable, v is a constant, we define D(p,v) { }.

NOTATION

The following notation is used in the manipulation of
ranges:

(1: u]
Lr
Fr
lr

Tr

range with lower bound 1 and upper bound u;
lower bound of the range r;
upper bound of the range r;
least number representable within the data type of r
which is greater than Lr; and
greatest number representable within the data type
of r which is less than Fr.

RANGE PROPAGATION

Introducing Test Points

For the purpose of range propagation, the test points in a

program provide vital information. Each test point behaves,
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p (U(p) D(p,l) U,(p) Dt(p,l)

(1) 12,3} {} 121 1{

(2) 11,31 11,31

(3) 12,31 11,31 121 121f}

(21t) I I

(21f) {131}

Fig. 1. Data flow functions.

in fact, like a use of the variables involved in the test, and also
like a group of definitions which supply extra information
about the variables on each outbranch from the test point.
The information on the outbranches are complementary, but
it is necessary to know exactly which outbranches can supply
information to other- program points. This computation can
be done exactly as in [2], except that a test point is decom-
posed into the use point and the several def points just men-
tioned. This gives rise to another pair of functions, the use-test
and the def-test functions, represented as Ut and Dt, respec-
tively.
Let us compare the definitions of Ut and Dt with those of U

and D by the following example:

(1) I=1
(2) IF 1>10 THEN EXIT
(3) I=I+l

loop to (2)

Since program point (2) is a test point, we will have occasional
need to refer more explicitly to the def points which supply
information on its outbranches. In the remainder of this
paper, the use point in the test will be denoted simply by the
number of "the program point, in this case-2. When neces-

sary, this number will be suffixed by the vanrable whose range
information is refined by its definition in the test and by4ior
'f to indicate the true and false outbranches from the test. in
this case, the only relevant variable is I, and so we refer to pr6)
gram points 2It and 2If. The values of the functions of interest
are displayed in Fig. 1.

Basic Range Propagation Algorithm
Information about the ranges of variables may be propagated

through a program in the same way that constants may be
propagated. It is -only necessary to extend the compiler to
apply operators to ranges of values for its operands to derive a

range as the result. Thus, the compiler must be able to per-
form computations like "[-oo: 13] +[-6: 11]'=[- oo:24] ." Fur-
thermore, a range is associated with every definition point in
the program. The range associated with a program point p

will be denoted by p(p). The range propagation algorithm
makes use of a set of program points yet to be processed,
called . All ranges are initialized to [- oo], and is ini-
tialized to contain all program points whose computation
involves a known range. Known ranges arise from the use of
constants or from parameter information derived externally.
Ranges are propagated by iteratively processing program

points chosen from T. Let the chosen point be p. Program

ranges established
node processed new'+

p(l) p(21t) p(21f) p(3)

_-_ _:__ [-X_:x]_ [-_:__]_ [-Qc:]c 11,2,31

1 [11:11 12,31
2 [ I 1:X] [-OC:10] 131
3 __ [-X1 1] 121

2 It[11:] [-x:10]

Fig. 2. Range propagation example.

point p may correspond to a def point or to a test point, but
in either case, a number of source variables sI through sn
must be evaluated. If the source variable si is actually a con-
stant, the corresponding range Ti is just [si :si] . If the source
variable si is not a constant, the corresponding range Fi is
computed by taking the union of the ranges of its correspond-
ing def points. That is,

1U p(j).
j,eD5 (p,s1)

If p is a def point, it applies some operator to sl, sSn to
compute a result. To propagate the range the compiler com-
putes a new result range by applying the operator to 7r,*, ,n.
If the result is a narrower range than p(p), it is assigned as the
new value of p(p) and T is augmented by adding the elements
of Ut(p).

If p is a test point, it applies some test to the sl,*, sn and
branches depending on whether the test is true or false. Corre-
sponding to each test, there exists a set of rules by which the
true-branch and false-branch ranges of the variables may be
derived from their incoming values. For example, if the test is
s1 >s.2, the rules define the true-branch range for s, to be
7r1fn[Jl7r2 :0] . The false-branch range forsI is 7r,fl[-oo: F7r2] .

These rules are elaborated in the following section. If the
resulting range for some variable on some outbranch is nar-

rower than its previous value, the program points yielded by
Ut applied to the corresponding defpoint are added to

Whether it denotes a test or def point, p is then removed
from 4'. Fig. 2 illustrates the range propagation process as

applied to the above example.
It is interesting to observe what the result would be if sub-

script range checks to verify that I is in the range [1 :10] are

inserted between program points (2) and (3). Instead of

merely;concluding that p(2If)= [-oo:10], the more accurate

result fl :10] would be obtained, and both subscript range

tests would be seen to be unnecessary. This surprising effect
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data type test new x range new y range

x=y xny ynx
general

x¢y xn ([-: Ty3 Ut.ly:-X) y n (I-x: TXIU[ iX:xl)

x<y xnj-x: Tyl yntIx:wi

x<y x nf-oc: r Y] y nt l x:xl
arithmetic

x>y xnlLy:xl yn-xI

x>y xnl Ly:a ynrl-Q:TxT

boolean x true

Fig. 3. Result ranges on the true exits from a relational test.

results from the fact that the tests effectively introduce just
the right hypotheses on which an inductive construction of
the range can be based. Thus, no elaborate mechanism is
needed to deal with the most common case of looping through
an array to process each element. Unfortunately, if the loop
contains some paths on which the subscript range checking
hypotheses are not fortuitously introduced, range propagation
is unable to arrive at the correct result, and the complementary
mechanisms described in the section on range analysis are
needed.

Restricting Ranges at Test Points

At any test point, information may be derived about the
values of the variables being tested. This information is im-
plied by the outbranch which is selected. In the simple pro-
gram model discussed, only simple relational tests actually
occur in the Boolean-expression part of the test. Depending
on the data type of the operands, different tests may be per-
mitted. The resulting implications on the ranges of the source
variables along the true branch from the test can be summa-
rized in Fig. 3. The results for the false branch can be derived
by negating the relational operator.

Test Pushing
It is often the case that source programs use various Boolean

combinations of relations as the basis for a conditional branch.
Rather than simply deriving the range of values of the simple
Boolean variable which directly appears in the test, informa-
tion can often be derived about the ranges of variables men-
tioned in the relations which formed the Boolean value being
tested. This occurs most often in languages like PL/I, where
Boolean expressions are defined to be completely evaluated
before a result can be produced. For example, consider the
PL/I source language statement:

IF A>B & (C>D I E>F) THEN GO TO L;

This statement would be decomposed into the following se-

quence of six program points.

(1) tl=A>B
(2) t2=C>D
(3) t3=E>F
(4) t4 = t2 I t3
(5) tS= tl & t4
(6) IF tS THEN GO TO L;

To evaluate the ranges available on the true and fal4e out-

t5 4,jl 3,t2

true, true
true true, true truefilase

falserrue

true,false

fa Ise false,true

-- falsefial/se

Fig. 4. Forcing tree derived during test pushing.

branches from program point (6), we examine its predecessor
nodes. For each examined node, if its operator is a Boolean
operation, and if each of its operands has only one def, we
can determine what Boolean values the operands must have to
compute the Boolean value being assumed for the target. If,
on the other hand, the operator is a relational, we can use
Fig. 3 to derive the constraints:. The constraints employed on
the exit arcs from the test are the ones derived from rela-
tionals whose truth value is completely determined by the
truth value of the final test. If at any time, while pursuing
the consequence of a true/false decision at the branch point,
some intervening variable may be either true or false, no
further conclusions about the implications of the truth or
falsehood of that particular variable need be pursued. Thus,
the preceding example would give rise to the forcing tree de-
scribed by Fig. 4.
An examination of this table shows that on the 'true out-

branch from the test, variables tS, t4, and ti must all be true.
Since ti was derived from the relation A >B, Fig. 3 may be
used to derive restricted ranges for A and B. The ranges for
C, D, E, and F cannot be restricted, since the true, outbranch
may occur whether the relations among them are true or false.
On the false outbranch from this test, no restrictions on the
ranges of A, B, C, D, E, or F can be inferred.

Symbolic Range Propagation
It is sometimes the case that programs employ variables to

ptaameterize various constants of program execution. For
example, the size of an array parameter may be unknown at
compile time, or a parameter may denote the number of ele-
ments to be processed in some array. Knowledge of the im-
plicit or explicit relationships among these variables is occasion-
ally crucial for successful optimization of programs.
Consider the following PL/I-like procedure:

X:PROCEDURE(A,N);
DECLARE A(*) FIXED BINARY, N FIXED BINARY;

(i) I = LBOUND(A);
(2) A(I)=0;
(3) I=I+1;
(4) IFI<=NTHENGOTO(2);

END;

Successful removal of that implicit subscript check at program
point (2) which tests if I>HBOUND(A) requires the knowledge
that the parameter constraints for ,this procedure are as
follows:
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1) N is less than or equal to HBOUND(A), and
2) HBOUND(A) is greater than or equal to LBOUND(A),

i.e., A is not empty.
This information may be expressed eitherAin some form of
interface specification, or as tests actually present in the code.
For convenience of presentation, the following discussion
assumes all such constraints to be expressed explicitly in the
code.
Symbolic range information is propagated analogously to

constant range information. The value produced at a defini-
tion point may be constrained to lie in some constant range
and also to bear some relation to the values established at
other definition points. For practical purposes, the form of
this relationship should probably be restricted to some subset
of

<relational-operator> <definition-point> + <constant>.

We will hypothesize that a ratlge of values may contain many
such restrictions in conjunctive form, although this issue will
be discussed more fully in the section on Representation of
Ranges.

In addition to propagating symbolic range information, it is
necessary to derive information- which relates the symbolic
values to one another whenever possible. This need arises in
cases like that produced by the following code sequence:

(1) if A>B then exit;
(2) ifB<C then exit;
(3) if A>C then...

In this example, the range information for the variable A on
entry to program point (3) will indicate that A >B, but will not
carry any information relating B to C. This information must
be supplied by another mechanism. For each interval in the
program, there exists a set of variables whose value is not
changed within that interval. These variables are often called
interval constants. For each interval constant v, the chain of
predecessors expressed by repeated application of the D; func-
tion can be examined to derive relations between v and other
region constants. The sinmplest search for this information is
to apply the function Xp.Dt(p,v) iteratively as long as the
program points arrived at are test points. As these program
points are examined, the program points which relate v to
other interval constants can be examined to establish the rela-
tionship information needed to process the interval. If the
same relationship can be established by such an examination
of the Dt predecessors of both of two interval constants, then
the relationship holds within the interval. This accumulation
of region constant information can be made first for outer
intervals, and later for inner intervals. Because of this order of
processing, searches relating to an interval need be carried out
only as far as the interval head of its containing interval. The
relationship information for the containing interval can be
merged indirectly since the constants for any interval are also
constants for its contained intervals.

RANGE ANALYSIS

Intrqducing Cutpoints
Range analysis complements range propagation by deriving

inductive definitions of the value ranges of variables. Conse-
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quently, range analysis. concerns itself primarily with the
4nalysis of loops. Since the control flow graph is reducible,
each loop must have a single node which is a cutpoint of the
control flow graph. This node, the interval header, can there-
fore be used to cut the data flow graph as well. We can there-
fore postulate a new def function which reflects this cutting.
Unlike the functions Ut and Dt, this function DI can be com-
puted from information -gathered during the derivation of D.
As described in [2], D is computed with an algorithm called
the reach algorithm. -The first phase of this algorithm derives
a preliminary value forD which we may call Dp. Dp describes
the definition points in an interval which can reach a program
point in the interval without looping back through the header.
For each variable v which has a definition point in the loop, a
new program point will be introduced. This program point
will be- denoted CP(v). For those program points which are
not the introduced cutpoints, Dg(p,v) includes Dp(p,v). In
addition, if D(p,v) includes any program points not in Dp(p,v),
thea DI must also include CP(v). For the cutpoint corre-
sponding to the variable v, D1(p,v) is the same as D(h,v) where
h- isthe interval header.

General Range Analysis
Associated with each program point, we define a collection

of information called the derivation. The derivation describes
all that is known about how the value of each source variable
at that definition point is derived from other program points.
The derivation, of a variable v at program point p is written
zA(p,v). In its most general form, the derivation for a source
variable is a set of equations by which the value of that variable
may be derived from values computed at other program points.
Initially, the derivation for each source variable v at a program
point p is the set of equalities with its def points in the cut
graph, i.e., {v=-<j+je-D(p,v)}. After a program point is
processed while doing range propagation, a set of equations
describing the value acssigned to the target are established using
the operator at the pyogramrpoint and the derivationis for the
source variables. These equations are used to substitute for
occurrences of the definition point wherever it appears in other
derivations. The program points in whose derivations such
substitutions are ;made are added to 'P. Note that since the
cutpoints are*not processed by range propagation, this sub-
stitutiono rule also does not apply. Instead, whenever it is the
case that the derivation at a cutpoint of some loop refers only
to itself and to progra-m points outside the loop, the derivation
describes a recursive set of values determined by the values on
entry to the loop. This set of values is computed'under some
assumption about the number of iterations of the loop, and
the result is established as the range at the cutpoint. The loop
count is initially assumed to be infinite but may be modified
as described below in the section on loop counting. The
derivation 'may thus, in some cases, be used to derive a range
for the result. In fact, it is sometimes the case that mutual
recursions exist among the derivations associated with several
cutpoints of a loop. This subset of the derivations can be
solved if:'

1) the equations in each derivation refer only- to program
points outside the lbop and to other cutpoints in the sub-
set being considered, and
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Fig. 5. Range propagation augmented by range analysis.

2) the graph showing which cutpoints are involved in the
derivations for a cutpoint is a reducible graph whose order
2 induced graph [1] is acychic.

In order to integrate the ranges thus established with the infor-
mation established by range propagation, additional processing
is performed. Those program points whose derivations refer to
a cutpoint whose range has been established are added to
and, in addition, they are flagged with an indication that
derivation processing is required. Whenever a node with such
an indication is processed by range propagation, an auxiliary
range, denoted by Si, is computed by evaluating the equations
in the derivation after substituting for each def point its range.

Range propagation then uses the intersection of rir with Si as

the value for each operand of the instruction to compute the
new result range.

Consider the example used to illustrate range propagation in
an earlier section assuming that the cutpoint named 2I was

introduced above node 2. Fig. 5 should be compared with the
similar table presented to illustrate range propagation (Fig. 2).
The major improvement occurs after node 3 is processed for
the first time. The derivation established for node 2I contains
sufficient information to conclude that the value of I at the
cutpoint must be greater than or equal to one. But when re-

processing node 3, this constraint is intersected with the
already established range of I less than or equal to 10. Hence,
the input range is [1: 10] and the result range is [2: 1 1 ] .

On occasion, it is useful to establish that a variable takes on
all values in a range in a monotonic fashion. A recursive defi-
nition in which the value of the variable is incremented or

decremented uniformly by one can be used to establish this

property. The utility of this information derives from the
tendency of programmers to compare for equality in the loop
terminating condition, and from the fact that it may be nec-

essary to establish that some assignment has been made to all
elements of an array.

Restricted Range Analysis
Dealing with the most general form of derivation may be

appropriate for programs intending to use the value ranges for

construction of proofs about the properties of programs. In

fact, for program analyses like that discussed by Sites [3] or
even King [4], the use of the data flow information to direct
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the propagation of derived information can improve the effi-
ciency of the process. Rather than representing the "state" of

a computation completely at each point, the data flow infor-

mation allows immediate propagation of information to its

point of use.

For the purposes of program optimization in a compiler,

however, the overhead implied by the symbolic manipulation

of general expressions in a derivation is probably not worth

the improvement which can be achieved over more restricted

forms. From a practical point of view, range analysis is prob-
ably most useful for propagating constants of various types

and for keeping track of the linear or geometric sequences

encountered for the control variables of loops. In order to

cope with such sequences, and to utilize certain other mono-

tonicity properties of operators, the equations in a derivation
should probably be restricted to a subset of the form:

< source-variable> =< constant >X< program-point >

< constant>.

Whenever a substitution can be made which preserves the valid
form of a derivation, it is made. If the substitution would
violate the form it is not made. However, when the derivation
at a cutpoint is being examined to determine if an induction
can be made, the range of values at such nonsubstitutable def
points may be substituted instead. For example, assume cut-

point 9J of some program has the derivation {=1,=<9J>+1,
=<15>+3}. Furthermore, assume that although program

point 15 is within the loop, p(15)=[-5 :41. The conclusion
can still be drawn that the source values for J are in the range

[-2:oo]. Without further information, however, it is impos-
sible to know what increments may be applied to J for each
iteration of the loop.

LooP COUNTING
Given the preliminary information generated by range propa-

gation and the recursion information established by range

analysis, it is often possible to derive an upper bound on the

number of iterations made when the loop is entered. This loop
coint can be established if three conditions hold.
Condition 1: There must exist at least one test of a numeric

variable which is at a program point that will
be executed on each iteration of the loop.

Condition 2: This test must compare the variable to an es-

tablished range.

Condition 3: The variable involved must have a solvable set
of recurrences established by range analysis.

In fact, each such test point in the loop will establish an upper

bound, and the smallest of these is the least upper bound
derivable with the given information. This bound may then be
fed back into the range analysis to revise the ranges assigned
to the cutpoints. Although more general cases may be solvable,
it is useful to note that if the form of the equations in deriva-
tions is restricted to the linear form described above, the loop
count may always be established in a direct manner. Further-
more, the vast majority of loops contain loop variables which
take on values in some arithmetic or geometric series, and
solutions to the loop counts in such programs is often possible
within this restricted form.

ranges established derivations
node new 'I

p1) p(21t) p(21f) p(3) A( I,) A(21,I) A(3l1)

| cc:xa I-c0cr] [ xzcjIot :c | t1 {f I=<3>l} {=<21> 11i,2,3 |

- tll _l_-1-1=<3>1 [2,3,211

2 -el.X1 l-X:101 13,21,

3 [-: 111 2-+ 21,21

21 lel I:xj [2,31

3 [2:111 _21

2 11:101 13-

3 = = = [2:111 i I1
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REPRESENTATION OF RANGES

The choice of representation for a range depends most
critically upon the data type.

Boolean and Character
These ranges are best represented by listing the values which

are possible. However, the ranges of bit string data can be
represented as a string of 0's, I's, and X's which represent un-

known bit positions.

Numeric
The numeric data types lend themselves to the most exten-

sive analysis, and hence the representation of numeric ranges is
the richest of the scalar types. A numeric range can be repre-
sented as a list of range descriptions. Each range description
describes an arithmetic sequence with a lower bound, upper
bound, and increment. The total range is the union of the
ranges given by the range descriptors. An extremely useful
additional piece of information is an indication for each range
description of whether or not the range is densely and mono-

tonically covered, and whether the monotonicity is increasing
or decreasing. This information is useful both in the represen-

tation of array ranges and in dealing with those loops whose
termination test is expressed as an equality rather than an in-
equality. Although machine generated code rarely has this
form, humans have a tendency not to be defensive in their
programming and to, in fact, write loops which terminate
when the counter is equal to some set value. The lists of range

descriptions should have a bounded length, and this bound
provides a useful mechanism for implementing the various
range operations such as union and intersection. If an algo-
rithm is implemented which compresses, at some possible
loss of accuracy, a range description list of length m to fit in
length n, then the union and intersection operations can be
written to merely concatenate or pairwise intersect their
inputs. The resulting lists will be too long, but the choiqe of
how to compress them can be done in a uniform way.

In. addition to the range constant information, symbolic
range information may also be maintained. The most general
form of this information is a conjunctive (or disjunctive)
normal form for propositions, where each, proposition de-
scribes a bound on the range. These range bounds are most
generally expressed as a relation between values in the range

and an expression involving other definition points in the pro-

gram. In a real implementation, these expressions would not
be more complex than those manipulated by the range analysis
algorithms, and might reasonably have an even simpler form.
A choice cons6nant with the arithmetic/geometric series restric-
tion described above is to restrict range bounds to a subset of
the form:

< relational-operator>< definition-point> +< constant >.

Rather than allowing the full complexity of a conjunction of
disjunctions of these range bounds, it is probably sufficient to
restrict the form of the symbolic range information to a con-

junction of range bounds, suppressing disjunctive information
entirely. The union and intersection of such ranges can then

be easily computed as the intersection or union, respectively,
of the sets of range bounds.

Arrays
Arrays are a continual nemesis in program analysis, but the

analysis of ranges can be applied very usefully to them. When-
ever an assignment is made to an array element, and the sub-
script range is dense and monotonic with an increment of one,
then the array elements whose subscripts lie within that range
are certain to have the range computed by the right-half side
of the assignment. If no symbolic ranges are employed, an
array range can be represented as a list of pairs. Each pair
contains a range for the subscripts and a range for the values.
In the presence of symbolic ranges, however, the situation is
more complex since the relation between symbolic values may
not be known when the range is established. A trick can be
employed by which the symbolic ranges for an array at its
various def points are chained together. An array range would
then consist of a subscript range paired with an element range,
and in addition, a list of previous definition point predecessors
would be retained. When the range of some element is desired,
the array range value is examined. If the desired element is
provably in the subscript range then the value range is used. If
the desired element is provably not in the subscript range, then
the union of the various ranges for that element given by ex-
amining the predecessors is used. If the case is not determin-
able, then the union of both ranges is used.

TEST ELISION USING THE RANGE INFORMATION
The data flow algorithm described,in [2] maintains the use

and def information associated with the edges of the control
flow graph, rather than with the nodes. This complication has
been avoided in the previous description because the values at
a node can be derived as the union of the values on incoming
(for def) or outgoing (for use) edges. Maintaining the infor-
mation in edge form, however, has the useful consequence that
it is possible to determine the value of a variable separately on
each edge entering a test point. Whenever it is established that
the range of a variable on some incoming edge is sufficiently
constrained to guarantee the resulting direction of control
flow, the edge may be rerouted so that it leads to that successor
of the test so determined. This can result in removing a loop
in the program or converting the loop into straight-line code.
Consider the program fragment in Fig. 6. The rerouting per-

formed in this example significantly altered the data flow of
the program. Some of the original definition points for the
test of J no longer reach the test, and if this alteration of the
data flow goes unrecognized, the elimination of that test, and
possibly of all the code at B as well, will not be made. The
fact that such a significant alteration of data flow is possible
requires either that a strategy for incrementally altering the
data flow functions be employed, or that the alterations be
"batched" in alternate cycles of analysis and flow modifica-
tion. Occasionally, range propagation will compute an empty
range,on exit from some test. This indicates that the subse-
quent,tode cannot be reached via that test and may therefore
be dead. If the "batched" approach to flow graph alteration
is employed, some efficiencies can be gained by detecting the
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Fig. 6. Flow graph before and after eliding test ofI<6.

presence of dead code and setting the ranges associated with
all the definition points in the dead code to empty ranges.

This may considerably improve the accuracy of the range

propagation results on each pass of analysis, and may also
reduce the number of analysis/modification cycles required
to achieve a stable result.

DIAGNOSTICS USING THE RANGE INFORMATION

The placement of use and def information on the edges of
the control flow graph permits the generation of diagnostics
to give the programmer insight into potential bugs in his pro-

gram. After dead code is eliminated from the program, the
compiler can examine the program to determine if any invoca-
tions of the error diagnostic routine remain to be invoked at

run time. If so, each such point serves as a starting point for
the generation of diagnostic information. Each error point is
usually preceded by some test which could not be elided. The
programmer should be notified of the fact that this test point
can lead to an error, along with the names of the variables
involved in the test and their ranges. However, better infor-
mation may also be derivable. If only one def point leads to
the point at which an error may be noticed, that def point
should be examined. If the erroneous values resulting at that
def point could be caused by only a single source variable,
and by only a single def point of that source variable, then this
further def point should be examined. This process is repeated
until multiple sources for the erroneous' values are detected.
The compiler can then generate a diagnostic which indicates
that the error indication which arises from the error point can

be caused only by values at the last examined def point. This
point can reasonably be regarded as the earliest point at which
the error could be detected. The compiler should also provide
range information on the value defined at that point. In addi-
tion, an option could be provided which allows the compiler
to remove the error test from its original location and replace
it with an equivalent test at the earliest point at which the
error can be detected. If the error test is necessarily performed
at run time, moving the test in such a manner may result in

further optimization of the program.

TERMINATION

One of the necessary properties of an algorithm iS that it

terminates. Informally, the proof of terminationttgoes as

follows.

In order to show that this process terminates, it is only
necessary to show that program points may be added to

the set only a finite number of times. A program point

is added to T for either of two reasons: a substitution is

made into its derivation, or some refinement is made in
a range which defines one of its source variables. These
two cases are considered separately.

Derivations

The data flow graph derived from the derivations of the
program points is a directed acyclic graph because it
results from the introduction of cutpoints into the
original data flow graph of the program. For the purpose

of counting the number of additions made to T, we may

reflect the fact that substitutions may be made sepa-
rately into each of the successors of a node by splitting
the nodes in this graph to form an equivalent graph in
which each node has only one successor. Thsis equivalent
graph is also directed acyclic. A program point is added
to T at the same time that a node is removed from this,
equivalent graph by a TI transformation [5] which re-

moves a node from the graph. The number of times a

program point is added to 4' by reason of derivation pro-

cessing is therefore bounded by the number of nodes in
the equivalent graph.

Range Refinements

Additions are made to only when the range of a

variable at some def point is narrowed. But since com-

puter representations allow for only a finite number of
values, this narrowing can be performed only a finite
number of times at each program point. But there are

only a finite number of program points and hence, only
a finite number of additions may be made to .

This proof of the termination of the range propagation pro-

cess is, however, unsettling since the guarantee that a loop will
iterate only several trillion times is not comforting. To help
provide a more realistic estimate of the processing require-

ments two observations are in order. First, most ranges are-
completely narrowed when each program point has been pro-
cessed at most three times. The first time establishes a bound
derived from the termination test of some loop containing the
statement. The second time forwards the derivation informa-
tion to constr'uct the induction characteristics of the loop. The
third time establishes a bound derived from the i'nitial condi-
tions and the induction information of the loop. Second,
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some ranges cannot be completely represented. For example,
a variable which ranges over the primes can have no expres-
sion other than as a list of specific values. Furthermore, even
a geometric series of values is not representable with the
restricted range representation suggested above. In these
cases, the range propagation algorithm will attempt to com-
pletely enumerate the list of acceptable values whenever the
range is not an arithmetic series. This complete enumeration
-is prevented by the choice of a finite representation for ranges.
Because the representation is constrained in size, the number
of iterations is limited to the number of separately listable
values in the representation. At some point in the processing,
an overly broad range is derived which is representable within
the size constraint. At that point, no further refinement is
possible.
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A Study of the Physical Structure of Algorithms
STUART H. ZWEBEN

Abstract-A theory of the structural composition of an algoithm is Index Terms-Algorithm structure, frequency analysis, programming
presented which allows the frequencies of occurrence of the individual models, programming study, software physics.
operators and operands to be estimated. It provides justification for
some recent hypotheses which suggest certain functional relationships
between properties of algorithms.
The theory for operands is based in part on models of program con-

struction due to Bayer, while that of operators is based on the work f I. INTRODUCTION AND BACKGROUND
Zipf and Mandelbrot in natural language. A further relationship be- F OR THE past several years, many experiments have been
tween the construction of algorithms and natural language text is J undertaken which have proposed some interesting func-
indicated by demonstrating that the s izeof an algoithm as predicted t al relationships among properties of algorithms. In par-
by one of Bayer's programming models and the size of a piece of text tic4r; thrhaebnanu eroppes(e,frxml,
as predicted by Zipf's natural language model are identical. there have been a nunber of papers (see, for example,
The theory is tested experimentally on a variety of algorlthms [21 -[6]) written in support of a hypothesis due to Halstead

written in several programming languages with good statistical results. [1] that the length N of a well-written algorithm (defined to
be the total number of occurrences of all of its operators and
operan4Fs) is related to the cardinalities i71 and i72 of its

Manuscript received June 23, 1976; revised August 30, 1976. operat* and operand sets, respectively, by the equation
The -uth-r is-A1witkth n--*-4n of --AoqZ*freqScc h Uiest Colubus OH 43210. N=Xi log1 U1+2 log2 I2U.O

Science, Ohio State University, Columbus, OH 43210. (1)
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N =,771 1092 771 + 7?2 1092 t72.


