Universidade Federal de Minas Gerais - Department of Computer Science

A
P /3\N

RANGE ANALYSIS

PROGRAM ANALYSIS AND OPTIMIZATION — DCC888

Fernando Magno Quintao Pereira
Fernando@Pdcc .wf 719 br

Y fh S (N iRl

RESEARCH SCHOOLS OF THE ECOLE NORMALE SUPERIEURE DE LYON

cccccccc

The Range Analysis Problem

k =0 1) Consider this simple python
while k < 100: program on the left. What is
i = 0 the minimum value that k
: can receive?
J =k
while 1 < 7: 2) What is the maximum value
i =1 4+ 1 that this variable can
C receive?
J =73 -1
k =%k + 1 3) What about variables i and j?
4) Why is this knowledge
important, anyway?

Why does Range Analysis Matter?

* Range Analysis is the problem of finding lower and upper

bounds to the values that ifteger variables can assume

throughout program executjon.

* This knowledge has many uses. >
— Dead code elimination

— Array bounds checking elimination

— Overflow check elimination

— Static branch prediction

What is the output
of this problem? |
mean, how should
we write its
solution?

cccccccc

Dead Code Elimination

* Range analysis gives us the opportunity to do a better
conditional constant propagation.

— Instead of constants, we have ranges.
— Ranges may degenerate into constants, e.g., [a, b],a=b

int foo(int v) {
int u;
if (v < 100) {
u =v & 0x000000FF;

} How could range
return u; analysis helps us to
} improve this code?

cccccccc

Array Bounds Check Elimination

* Type safe languages, such as Java, JavaScript and C# must
guarantee that every array access is within bounds.

* Runtime tests are necessary to check each access.

* Range analysis can be used to eliminate some of these

tests.
int[] a = new int[100];
. : How could range
int 1 = 0; ivsis hel ;
while (i < 100) { analysis helps usto
if (i >= 0 && i < 100) { av0|. eaﬂay ounds
C L check in this example?
a[i1] = 0;
} else {
throw new ArrayIndexOutOfBoundsException()
}
i++;

cccccccc

Integer Overflow Check Elimination

* In many programming languages, integers are made of a
finite number of bits.

* When we try to squeeze a value into one of these finite
numbers, and the value is larger than the capacity of that
type, then something funky may happen:

int main() {
char i = 118;
while (i < 125) {
i += 5;
printf("%8d", 1);
}
printf("\n");

123 -128
-93 -88
-53 -48
-13 -8
27 32
67 72
107 112
123=0
128= 1

133="1

-123
-83
-43

-3
37
17
117

1 1

-118
-78
-38

2
42
82

122

-113
-73
-33

7
47
87

127

-108
-68
-28

12
52
92

-103
-63
-23

17
57
97

= 123
= —128
= —123

-98
-58
-18
22
62
102

char

char

char

l void read matrix(int* data, char w, char h)

O 0 9 O n B~ W

S S S —y
A W O = O
-

Malign Integer Overflows

char buf size = w * h;
if (buf size < BUF SIZE) {
int c0, cl;
int buf[BUF SIZE];
for (cO0 = 0; c0 < h; cO0++) {

for (cl = 0; cl < w; cl++)
int index = c0 * w + cl;
buf[index] = data[index];
}
}
process (buf);

{

{

This program has
a security bug.
Can you spot it?

Malign Integer Overflows

l void read matrix(int* data, char w, char h) {

O 0 9 O n B~ W

S S S —y
A W O = O
-

char buf size = w * h;
if (buf size < BUF SIZE) {
int cO,

int buf[BUF SIZE];

cl;

for (c0 = 0; c0 < h; cO0++) {
for (cl = 0; cl < w; cl++)
int index = c0 * w + cl;
buf[index] = data[index];

}

}

process (buf);

Imagine that w = 6 and h = 22.
In this case, we have that w * h
= 132. But this number is too
large to fit into a char. So, -124
ends up being represented
instead. If BUF_SIZE = 120, then
the test at line 3 is true, and all
the 6 * 22 iterations of
commands at lines 8 and 9 end
up happing. In the end, we have
132 -120 =12 bad memory
writes. That could produce, for
instance, a buffer overflow!

Dynamic Integer Overflow Detection

 Many programming languages guard arithmetic
operations against integer overflows.
— Ada, due to its semantics.
— JIT compiled JavaScript code, to achieve speed.
— Secure C, to prevent overflow vulnerabilities®.
int 1 = 0;
while (i < 100) {

if (i > 255) {
throw new IntegerOverflowException();

} else {
i++; How could we use the
} results of range
} analysis to eliminate
the overflow test?

®: Understanding integer overflow in C/C++, ICSE, and
RICH: Automatically Protecting Against Integer-Based Vulnerabilities, USENIX

cccccccc

Branch Prediction

* Once upon a time, there was a

very important research, whose How can range

. analysis helps us to
goal was to predict the outcome oredict the outcome
of branches statically. of this branch?

* Range analysis was found to be
useful in making branch
prediction more precise.

int 1 = 0;
int N = 100;
while (1 < N) {

* The algorithm described in that if (i < 99) {

paper became, eventually, the printf("Taken!\n");
base of the implementation of i++;

range analysis in the Gnu C }

compiler=.

®: Accurate Static Branch Prediction by Value Range Propagation, PLDI, 1995

Bitwidth Aware Register Allocation

 Some computer architectures have registers of different
sizes.

— As an example, the x86 has registers of eight, 16 and 32
bits (and now 64-bits as well).

— We can either place two eight-bit variables in registers, or
use this register to hold larger values.

* Range analysis frees the developer from worrying about
the sizes of variables declared in programs.

EAX EBX ECX EDX

AX BX CX DX

AH AL BH BL CH CL DH DL

-8 —
} 16

32

PPGCC

High-Level Synthesis

It is possible to create digital hardware to implement an
specific algorithm.

Bit accurate information is important:

— Less gates to implement registers
— Less gates to implement arithmetic units
— Less wires implementing the interconnects

Range analysis can be more

aggressive in this setting, as we
are allowed to assume that the
input program is devoid of L r |
undefined behavior, i.e., we LR e —
can assume the absence of = B %m ﬁﬂ‘g {)
integer overflows. 0Bk

Interconnects

Solving Range Analysis

k =0

while k < 100:
1 =0
J = k

while 1 < 7:
1 =1 + 1
j=3 -1
= k + 1

k: [0,100] | 1
i: [0, 99]
j: [0, 99]

1)

2)

3)
4)

5)

Can you design an analysis
that solves the range
analysis problem?

Does your analysis
terminate?

Which lattice do you use?
s it fast?

Is it precise?

Infinite Lattices and Non-Termination

* Interpreting the program may not be a good solution, as
the program may not terminate.

* And we must be careful if we go for a data-flow analysis:
the range analysis lattice may be infinite.

And even if we choose a

finite lattice, say, the 32-bit ol
signed integers, the height
of this lattice may be too
high. The algorithm may AN 2
take too long to terminate. - /

-
-~ Y e N
-~ . [-2,0] [0,2)
N Ve P
(2] \ g 7 N\
\\.// - - v
(-2,-1] (-1,0] (0,2 (1, -
H A -~ -\\ / a ~ //' ~ -\\ / -
How can we deal with SO N0 Nl N U T
\\\// \\'// \\// \\,// \\://
this problem? —trm e fo;e1
I N Pt

cccccccc

Widening

* |n the seventies, Cousot and Cousot came u
idea of widening (and narrowing), to deal w
potentially infinite lattices".

— This paper had more than 4,500 citations, in

p with the
ith

Jan of 2013!

 Widening is an operator that we apply on lattice points,
to widen it so much that it can no longer grow.

* We must apply widening with care, so that we will not

lose too much precision during the analysis.

 Widening is one of the core ideas.of Abstract

Interpretation.

Can you think about
any other paper that
~ is so influential?

Y: Abstract Interpretation: a Unified Lattice Model for Static Analysis of Programs by Construction or Approximation of

Fixpoints, POPL, 1977

More About Widening

So, widening is a bit like a "join"
operation (or a meet, depending on
how you see the lattice). But,
instead of giving the least upper
bound, widening gives a value that
is so large that you are sure that it
cannot grow anymore in the lattice.
In other words, widening is a way of
"giving up" on precision. You tried a
bit to find a fixed point, but you
could not, then you decided to
make that search as imprecise as
possible.

élub

ZO—>V <—él

(,—>V «—t,

Abstract Interpretation

Again, if we interpret the program, to find ranges for the
variables, then our algorithm could not terminate.

But we can interpret the program abstractly.
Each variable v has an abstract state [v].

We have an abstract version of each program instruction,
which reads the abstract states of the variables, and uses
this information to update the abstract state of the
variable that the instruction defines.

Cousot and Cousot have defined a formal way to prove
that a given abstract semantics is correct, with respect to
the concrete semantics.

— But we will not see such techniques in this course.

Solving Range Analysis

* In the rest of this class, we will see an algorithm that
solves range analysis.
* This algorithm exercises several techniques used in static
analysis:
— Strongly Connected Components.
— Widening
— Narrowing (ok, we have not seen this yet, but wait...)
— Different program representations
e It is fairly precise, and quite fast.

e But, before we move into the algorithm, let's see,
intuitively, how we solve range analysis.

> 4
,\ Universidade Federal de Minas Gerais — Department of Computer Science — Programming Languages Laboratory EEPGCC

uuuuuuuuuuuuuuuuuu
‘occ-urmG,

RANGE ANALYSIS IN ONE EXAMPLE

AAAAAAAAAAAAAAAAAA E AO . . .
°°°°°°°°°°°°°°°°° ; n intuition on how
DCC-UFMG

Example range analysis works

k: [0, 100]

k =0

while k < 100: S—W—___
l. N]2 We know that k is in the
j _—

interval [0, 100].

1 =1 + 1 Why?
J =3 — 1 e Because it is initialized
k =k + 1 with O.

e Itisonly updated
Can you guess through increments.
therangeofj? | o |t is bounded by 100 in

the loop

Example

Can you
replace the
range of kin j?

k =0
whille k < 100: i: [i, k]

Jo 1
1=O/ V
j = x /

An intuition on how
range analysis works

k: [0, 100]

We know that jis in the

interval [i, k].

Why?

e Because itisinitialized
with k.

e |tisonly updated
through decrements.

e |tislower bounded by i
in the loop

PPPPPPPPPPPPP -GRADUAiAO . . .
°°°°°°°°°°°°°°°°°° ; n intuition on how
DCC-UFMG

Example range analysis works

k: [0, 100]

k =0
while k < 100: < .
i =0 = j: [i, 99]
J = k
while 1 < 7J: But we know more about j:
i =1 + 1 it is upper bounded by 99.
J =3 -1
?
k = k + 1 Why:

e Because itis upper
Can you guess bounded by k-1.

the range of i? e And we aIready know
that k £ 100

An intuition on how

Example range analysis works

We know that i ranges on [0, j]:

e |tisinitialized with O.

e [tisupper bounded by j.

e Itisonly updated through increments. | ki [0, 100]

k =0
while k < 100: —
J = k
while i < : e
1= 1+ 1 i: [0, j]
J =3 -1

k =k + 1

OOOOOOOOOOOOO -GRADUAiAO . . .
°°°°°°°°°°°°°°°°°° ; n intuition on how
DCC-UFMG

Futures range analysis works

We use the limits of variables i and j before
we know their true ranges. This is the

concept that we call Futures.
k: [0, 100]

hile v
while k < 100: e
1= 0 j: [i, 99]
J = k
while 1 < 7: : :
i=1i+1 i: [0,]]
J =3 -1
k =k + 1
A future is like a promise: if we can find a
Can you estimate good estimation for its value, than we can
the values of the find a good fixed point solution to the

futures of i and j? interval analysis.

PROGRAMA DE ?os»ﬁvuow\il&o
EM CIENCIA DA COMPUTAGAO
DCC-UFMG

Standoff

To find the bounds of j, we need the bounds
of i. Yet, to find the bounds of i, we need the

bounds of j. {9
k=0 j: [i, 99] i: [0, j]
while k < 100:
1 =0
J = k
while 1 < 7:
1 =1 + 1
J =37 -1
k =k + 1

How can we solve this
apparent deadlock?

. . S
/\ Universidade Federal de Minas Gerais — Department of Computer Science — Programming Languages Laboratory EEGCC

THE RANGE ANALYSIS ALGORITHM

e-SSA Interprocedural qutext
Sensitiveness

!

coEutlrld' t Extract
strain Constraints
graph

Strongly Connected Components
Compute Sort Remove control
SCCs topologically dep. edges

The micro algorithm:
for each SCC in topological order:

Growth | S Futurg . Narrowi.ng
analysis Resolution analysis

The Overall Structure of the Algorithm

< e-SSA >—><Interprocedural >—>< Lo >
Sensitiveness

Build
. Extract
constraint |<— :
Constraints
graph

Strongly Connected Components

Compute Sort Remove control
SCCs topologically dep. edges

The micro algorithm:
for each SCC in topological order:

Growth Future Narrowing
analysis Resolution analysis

k =0
while k < 100:
1 =0
J =k
while 1 < 7:
1 =1+ 1
j =3 -1
k =k + 1

We would like to associate an
abstract state, i.e., a range,
with each variable. What
would be the abstract state
associated with variable k,?
What about k,?

1 C|>(j—ol 12)
1 = (ID(jo/]2)
j‘l < jl)?
/
+1 N
k, =
- 1

1) So, in the end, what should
be the abstract state of k,?

2) Can we improve these
bounds? print k, <—

S
*
*
*

The abstract state of

must be [100, 100]

The abstract state
of variable k,

inside the loop
must be [0, 99]

variable k, here |- '

e-SSA

C

Interprocedural

¢

(Context Sensitiveness

Extract Constraints

¢

Build Constraint Graph

¢

C

Generate SCC’s

)

)

Growth Analysis

¢

Future Resolution

¢

Narrowing Analysis

&

) Extended Static Single Assignment Form

) . The first step to solve range analysis is to

convert the target program into e-SSA
form®.

* This intermediate representation let us
learn from conditional tests.

— Hence, it improves precision of the range
analysis.

* Itincreases the program size, but not too
much.

— Less than 10% on the average.

©: ABCD: eliminating array bounds checks on demand (PLDI'00)

C

Interprocedural

)

¢

(Context Sensitiveness >

Extract Constraints

¢

Build Constraint Graph

¢

C

Generate SCC’s

)

)

Growth Analysis

¢

Future Resolution

¢

Narrowing Analysis

&

Extended Static Single Assignment Form

i v=
(original) >0

/\

=v+10

\/

(e-SSA) vo=°
(v, > 0)?

/N

=V0 N [1,]

v, =V, N [-o0, 0]
u,=v, +10

A\ /

Cb(uoa 1)
V3 = ¢(Vy; Vy)

0:u2
.=V2

(SSA) V=
(v > 0)?
/ \
u,=v+10 u =

u, = ¢(u09 ul)
o = u2

.:V

To generate e-SSA
form, we split the
live ranges of
variables that are
used right after
conditional tests.

 Q

PROGRAMA DE POS-GRADUAEAO
EM CIENCIA DA COMPUTAGAO

Extended Static Single Assignment Form

1)

2)

3)

What is now [k,], [k], and
[k¢l?

How does e-SSA improves the
precision of our results?

Can you think about any
other intermediate
representation that could
improve our results even
further?

k, = Cb(kor k,)
(k, < 100)7?
/ tl
k., = kiN[==,99]
i, = 0
Jo = k¢
1, = (b(j-or 1,)

i = i,n[-=,ft(3,)-1]

jt jlﬂ[ft(il)/‘l"”] k2 =
i, =1, + 1

j2 jt -1

Splitting After Uses

Let's imagine that we are guarding programs against integer
overflows, and that an overflow would abort the program. In this
case, we can be more aggressive. If we have an operation such as
u=v+ 10, and an overflow did not happen, then we know that
after u is defined, v must be less than MAX_INT — 10.

(original) V=* (eSSA) v~ (U-SSA) Vo=
(v>0)? (v, > 0)? (v > 0)?

u=v-+10 u=- / \ N 0]/ \
v, = v, N [-o0,
\ / vlivofl[;)oo, 0] Vzi"on [1, o] u(1)=v(1)+10 Vzivoﬂ 1, 0]
*=u YT M \ ul/ v, =v; N [-0, Max - 10] Y
N

U, = ¢(uoa u1) U, = ¢(u0’ ul)
V3 = ¢(Vp Vz) V3= ¢(V4’ V2)
=1, =u,

C

Interprocedural

)

¢

(Context Sensitiveness >

Extract Constraints

¢

Build Constraint Graph

¢

C

Generate SCC’s

)

)

Growth Analysis

¢

Future Resolution

¢

Narrowing Analysis

&

Inter-procedural Analysis

We can make our analysis inter-procedural
by adding dependencies between formal
and actual parameters.

main () :
0 100
a = 0 l l
b = 100 a 10000 b 100000
foo(a, b) \/ \ /
foo (10000, 100000) o) 0,
foo(k, N): kl 1}
while k < N:
i=20; 3=k constraint
while i < j: graph of
. . the body
= +
l. l of foo
J = 71 -
k = k + 1

Inter-procedural Analysis

We can make our analysis inter-procedural
by adding dependencies between formal
and actual parameters.

1) What is [k] in this
example?

2) How could we make

main () :
this analysis more 0 100
. a =0
precise? | |
b =100 a 10000 100000

foo(a, b) \/ \¢/

foo (10000, 100000) ¢
foo(k, N): K N
while k < N:
i=0; 3 =%k constraint
while 1 < 7j: graph of
. . the body
= +
l. l of foo
J = J -
k =k +1

C Interprocedural)

(Context Sensitiveness >

Extract Constraints

Build Constraint Graph
C Generate SCC’s)
1

v

Growth Analysis

¢

Future Resolution

¢

Context Sensitiveness

We can distinguish different calling sites if
we do function inlining.

main () :

foo (0, 100)
foo (10000,

foo(k, N):

Narrowing Analysis

&

while k < N:

i=0; 7=

while 1 <
1 = +
j:
k =k

+ U e e
|

100000)

k

J:

.
’

main () :

ka = 0; N, = 100

while ka < Ng:
ia = 0; ja = k
while ia < ja:

a

j‘a:j‘a
J, — 1
5 .+t 1

k, = 10000; N, =

while k < N_:
i, = 0; 3, = k,
while i, < J.:

lb:l

jb:

kp = ky

100000

Context Sensitiveness

We can distinguish different calling sites if
we do function inlining.

main () :
foo (0, 100)

1) Whatis [k_], and [k,] in
this example?

2) What are the
disadvantages of doing
function inlining?

3) In which other ways
could we make our
analysis context
sensitive?

foo (10000,

foo(k, N):
while k < N:

while
i =
j =
k =k

+ U e e
|

i=0; 7=

100000)

k

J:

main () :

ka = 0; N, = 100

while ka < Ng:
ia = 0; ja = k
while ia < ja:

a

j‘a - ia
J, — 1
5 .+t 1

k, = 10000; N, =

while k < N_:
i, = 0; 3, = k,
while i, < J.:

100000

lb:l

jb:

kp = ky

C

Interprocedural

)

¢

C Context Sensitiveness >

Extract Constraints

¢

Build Constraint Graph

C

¢

Generate SCC’s

)

)

Growth Analysis

¢

Future Resolution

¢

Narrowing Analysis

&

Extraction of Constraints

To solve range analysis, we must solve a
constraint system. Constraints are built
around an evaluation function e.

Y = [l,u] e(Y) = [l,u]
B I[X1] = [l,ua] I[X2] = [l2, ug]
Y =¢(X1, Xz) e(Y) = [l1,u1] U [la2, ue]
B I[X1] = [lh,ua] I[X2] = [l2, ug]
Y_X1+X2 G(Y) = [l1+l2,U1+U2]
L fut {lllz, l1U2,U1l2,U1U2}
Y= X1 x X I[X1] = [l,wn] I[X2] = [l2, u2]

e(Y) = [min(L), max(L)]

IX]=[,u] k=al+b ky=au+b

Y=aX+0b

e(Y) = [min(ki, k), max(ki, kv)]

I1X] = [, 4]
e(Y)=[l,u] M [l',u]

Y =Xn[, v

) Extraction of Constraints

C

Interprocedural

Each constraint comes out of one instruction in the
) e-SSA form program. The solution to this constraint

¢

(Context Sensitiveness >

system is the solution of our range analysis.

o = 0
Extract Constraints k. = q)(kO,]{2)
1
i k, = 0 k= (ko Okz) ke = k; N [—o0, 99]
Build Constraint Graph (ky < 100)%
/ tJ iO = 0
\t ’kiiztkf”oo’ 1y = ko=, 99) i=k
C Generate SCC’s) P £ i, = 0 0 £
Growth Analysis i= (i, 1i,) J. = ¢(Jgr 33)
jl = Cp(jol 32) l — l + l
‘I((i, < §,)°? 2 t
Future Resoluti L.
uture Resolution /) 7, Jt 1
J(I, = 1,0[~=,ft(3,)-1] kK, = ke +1

Narrowing Analysis

jt = jlﬂ[ft(il),-l-x’] k2 = kt + 1 ' _ ' '
i, =i, + 1 J. = J. N [ft(1,), +oo]
j2 = jt -1

j‘t - il n [_Ooa ft(jl)]

C

Interprocedural

)

¢

(Context Sensitiveness >

Extract Constraints

¢

Build Constraint Graph

¢

C

Generate SCC’s

)

)

Growth Analysis

¢

Future Resolution

¢

Narrowing Analysis

&

Constraint Graph

The main data structure that we use in our
analysis is the constraint graph.

* This graph has a data vertex for each
variable in the program.

 The graph has also an operation vertex
for each constraint in the system.

* Dependence relations determine the
edges.

— If constraint C defines variable v, and uses
variable u, then we have two edges:

e u—>~C
e Co>vV

The Constraint Graph

0 . K, - $ < k, 41 < k
o (kyr ky)

k; N [0, 99]

0) i k, — = [-20,99] 3 -
kt

¢ (15, 1,) |

6 (Gor 3,) b — i, iy 3,
io+ 1 "

3, - 1 e

k., + 1 41 «—1, <« {-w,ft{jﬁ:l] [ft\zz'])‘:-mo]- =]y ——s—1
J, N [f(1,), +oo]

i, N [~oo, ft(5,)]

The dashed edges denote dependences between
a variable and the owner of its future bound.

C) Strongly Connected Components

(Interprocedural) e |tis well-known in the literature that we

(4 ") can improve the speed of the constraint
Context Sensitiveness
solver if we process strongly connected
Extract Constraints components of our constraint graph in
Y topological order.
Build Constraint Graph
J * Furthermore, SCCs also improves the
(Generate SCC's) precision of our results, as we will see
¥ soon.
Growth Analysis
Future Resolution Do you recall the
i algorithm to find the
Narrowing Analysis strong components
é} of a graph?

The next phases of our
algorithm will be
performed once for each
SCC in the constraint
graph, in topological
order.

Quick recap: why
can we solve range
analysis faster if we
use SCCs?

-SCC1, .SCC2. SCC3... . ,
i (E E k, E ¢ k, 1+ k.

__

-SLC4. -SL0S, SEC6, --S6C
E . EE >1, | Ej; | Ezv |

SCC. 8
1, @ 1, /jl »: J2

___________________1
<
R

cccccccc

C) The Three-Phases Approach

C

nterprocedural) * N the next phase of this algorithm, we

C

l iterate three steps, for each strongly
Context Sensitiveness > connected Component;

— Widening: we find how each variable

Extract Constraints
] grows (towards -oo, towards +oo, towards
. . both directions, or it remains stable)
Build Constraint Graph
J — Future resolution: we replace futures by
C Generate SCC’s) concrete bounds.
y — Narrowing: We recover part of the
Growth Analysis imprecision of the widening phase by
¢ considering the bounds in conditional
Future Resolution tests
Narrowing Analysis * Widening ensures termination. Narrowing

é) Improves precision.

C

Interprocedural

)

¢

(Context Sensitiveness >

Extract Constraints

¢

Build Constraint Graph

C

¢

Generate SCC’s

)

)

Growth Analysis

¢

Future Resolution

¢

Narrowing Analysis

&

Widening

e We need to know how each variable in the
program grows.

— For instance, if the variable is only updated via
increment operations, then it grows towards

+0°o,

 We do not consider any bounds imposed by
conditionals at this point.

IY]=[L1, 1] e(Y), <I[Y], e(Y)r >I[Y]
I[Y] < e(Y) IY] < [~00, +00]
e(Y), <I[Y], e(Y)r > I[Y]4

I[Y] + [—00, I[Y]1] IY] « [I[Y],, +o0]

How do we read
this notation?

C

Interprocedural

)

¢

(Context Sensitiveness >

Extract Constraints

¢

Build Constraint Graph

¢

C

Generate SCC’s

)

)

Growth Analysis

¢

Future Resolution

¢

Narrowing Analysis

&

How to read this Notation

Each constraint variable Y is associated with a
current interval I[Y].

The abstract semantics of this variable is given
by an evaluation function e(Y).

If e(Y) will decrease the lower bound of Y, then
we make this lower bound the most imprecise,
e.g., we assign it minus infinity.

The other constraints have similar meanings.

e(Y), <IY]
IY] & [~o0, I[Y]4]

How is the lattice of
this growth analysis?

C

Interprocedural

)

¢

(Context Sensitiveness >

Extract Constraints

¢

Build Constraint Graph

¢

C

Generate SCC’s

)

)

Growth Analysis

¢

Future Resolution

¢

Narrowing Analysis

&

Widening

[—o0, +0]
N\
[—o0,] l¢, +o0]
NS
(¢, 5]
T
[L, L]
[Qa 0] — O
L~
1,[L, 1] 101, 1]

A |

[-OO, ft(‘]])_ 1]

l

+l «— 1 [L,1]

We can use this very
simple widening operator
to find out how each
variable grows. Notice
that our lattice is pretty
short now.

What is the result of
our growth analysis
in this program on
the left?

 Q

PROGRAMA DE POS-GRADUAEAO
EM CIENCIA DA COMPUTAGAO
DCC-UFMG

C e-SSA
C Interprocedural
(Context Sensitiveness >

Extract Constraints

¢

Build Constraint Graph

C Generate SCC’s)
|

¥

Growth Analysis

¢

Future Resolution

¢

Narrowing Analysis

&

)
)

Iy]=[1, 1]
I[Y] — e(Y)

!

+1 «— 1, [1, 1]
[Q, 0] ——— > 0]
(lo) /
. b
12[1, 1] < ll[O’O]

Widening

s~ B
e
-

What is going
to be the next
- state of i,?

o
o
o

+1 «— 1 [1, 1]
0,0 — ¢ %
(lo) /l \

1,0L,1] 1,[0,0]

-
c—trccam=="

!

[-c0, ft(J))-1]

Vo

+1 «—1,[0,0]

J
/
4

PPGCC ?
P CIENCIA DA COMPOTAGKD
C e-SSA
C Interprocedural

)

¢

(Context Sensitiveness >

e(Y)r > IY];

Extract Constraints

¢

Build Constraint Graph

C ¢

Generate SCC’s)
|

¥

Growth Analysis

¢

Future Resolution

¢

Narrowing Analysis

&

[-o0, ft(J))-1]

!

+1 <—1.[0,0]

[-o0, ft(J,)-1]

’

+l «——1,[0,]

IY] — [I[Y]}, +-00]

-
St aca=="

-

Widening

What is the

next change?

”
-
-
-

00— ¢
(lo) / l ‘\‘
1,[1,1] 1[0,]

C Interprocedural)

(Context Sensitiveness >

Extract Constraints

Build Constraint Graph
C Generate SCC’s)
1

¥

Growth Analysis

¢

Future Resolution

¢

Narrowing Analysis

&

Widening

[—o0, +0]

N

[o0, c] ¢, +oo]

N

[¢y, €]

T

[L, L]

A |

[-OO, ft(‘]])_ 1]

l

+l «— 1 [L,1]

What is the
complexity of the
growth analysis?

C Interprocedural

)

¢

(Context Sensitiveness >

Extract Constraints

¢

Build Constraint Graph

¢

C Generate SCC’s

)

)

Growth Analysis

¢

Future Resolution

¢

Narrowing Analysis

&

How is the
constraint graph

Future Resolution | .ferfuture

resolution?

In the next step, we must replace futures
by concrete bounds.

Futures exist at intersection constraints.

If a variable's bound remained stable
during the widening step, then we know
that it can only shrink.

[0. 0] > ¢ b < [0. 99]
1,01, +o0] il[ol. +oo]][99 J [, 98]
A ?S‘g A
[-c. ftb)-l] TH(7)| +]
+1 e—_it[ol. +0] j t[—£. 99] —> —1

C

Interprocedural

)

¢

C Context Sensitiveness >

Extract Constraints

¢

Build Constraint Graph

¢

C

Generate SCC’s

)

)

Growth Analysis

¢

Future Resolution

¢

Narrowing Analysis

&

Future Resolution

How can we guarantee that
we will have applied the
growth analysis on a
variable before solving the
futures that depend on it?

[0. 0] > ¢ ¢ < 0. 99]
/ \
1,1, +] 1 l[ol +o0] J 1[‘£ 99] 7 5[98]
o i98] [0. L]
+1 Bit[oi. +00] J t[—£. 99] —» —1

C

Interprocedural

¢

(Context Sensitiveness >

)

Extract Constraints

¢

Build Constraint Graph

¢

C

Generate SCC’s

)

)

Growth Analysis

¢

Future Resolution

¢

Narrowing Analysis

&

Future Resolution

The control dependency edges that we add
to our constraint graph ensure the correct
ordering when solving futures. If v is a future
of u, either v's component will be solved
before u's, or these variables are both in the
same strong component.

i2 ¢ j-l ~_ /,j 1 ¢ J 2
+1 i, [0, £t(j,)-1] (7)), +oo] I, m
¢ = 10, 99]
. \ .
J 1 [, 99] J 5[, 98] Can you come up
/ with rules to
,
[0, +<0] replace futures by
J, concrete bounds?

J o[-, 99] —— —1

Future Resolution
Y =XMO[L#V)+d IV =u
Y = XN{utd u,c € ZU {—o00,+o0}
Y=XnN[fV)+c, I\WV| =1
(V) + ¢ ul VI l,c e ZU{—0o0,+x}
Y=XnN[+c,ul
[0, 0] /; ¢ ¢ \[0. 99]
1,[1.+2] 1[0, +0m] J,[2,99] J [, 98]
p i l 0 By the way, our results are
‘ still very imprecise. How
[-o0. 98] [0, +o0] could we improve our
l l results for the program on
_ . the left?
Tl «——1.[0,+x] J [0, 99] — —1

> ¢
Narrowing Analysis
C e-SSA)
C Interprocedural) * Once we are done with future resolution, we
v need to narrow the ranges of the variables.

(Context Sensitiveness >

* This narrowing is guided by the intersection
constraints that we have derived from

Extract Constraints

) conditional tests.
Build Constraint Graph
J 0.0 > D I .
C Generate SCC’s) [] $ g LO 99]

1

Growth Analysis 1,[1,+2] 1[0, +0] J,[.99] J,[~. 98]
\I(A A

Future Resolution i i
J{ -0, 98] [0, +o0]

Narrowing Analysis i i

é) +1 «——1 [0, +u] 3 o[-, 99] — > —1

C Interprocedural)

(Context Sensitiveness >

Extract Constraints

¢

Build Constraint Graph

C Generate SCC’s)
|

v

Growth Analysis

¢

Future Resolution

¢

Narrowing Analysis

&

Narrowing Analysis

variable i is less than 99.

future resolution.

* We then propagate this
restriction throughout every
part of the graph that is
influenced by i.

We got this number, 99, out of

In this example, we know that

Could you provide
an abstract
interpretation of
the instructions
that resulted in our
narrowing analysis?

[0.0]7;»¢l [0, 0] /fj'
1 ,[1, +oo] 1[0, +o] 1,[1, +o0] 1[0, +oo]

| i | l
[-ff..l98] [-o0. 98]

| l
+1 «——1.[0,+x] +1 11 [0.98]

’ZZ“S?:SD{E;%%?G?XQE&" N a rrOWi ng An a IyS i S

IY] = — e(Y) > —o0 IY]; > e(Y),
IY] — [e(Y), I[Y]1] IY] — le(Y), I[Y]1]

I[Y]T = +00 G(Y)T < +00 I[Y]T < G(Y)T
IY] — [I[Y]},e(Y)1] IY] — [I[Y]}, e(Y)q]

: [0,0] ———= ¢ [0, 0] b

1) What is the role of th

twoarures c()enr(t)heecl)eft) / l / l

side? 1,01 +] 1[0, +] 1 [1+e] [1[0, +o0]

A i A i
2) What is the role of the [_w.'%] (o0 98]
two rules on the right : l
side? l '
+1 «——1 [0, +o0] +1 -1 [0, 98]

Narrowing Analysis

IY] = -0 e(Y), > —o0

IY], > e(Y),

IY] — [e(Y), I[Y]1] IY] < [e(Y), I[Y]1]

IY] = 400 e(Y)r < +o0

I[Y]; < e(Y);

IY] — [I[Y]},e(Y)1] IY] [I[Y]}, e(Y)]

The two rules on the left do the actual narrowing.
Notice that we are only recovering ranges that
were bound to either minus or plus infinity by the
growth analysis. The other two rules, on the right,
are there to ensure that our analysis terminates.

What is the
complexity of the
narrowing analysis?
How long does it
take to converge?

C

Interprocedural

)

¢

(Context Sensitiveness >

Extract Constraints

¢

Build Constraint Graph

¢

C

Generate SCC’s

)

)

Growth Analysis

¢

Future Resolution

¢

Narrowing Analysis

&

Final Solution

t N) = O

N (@)

= ()

N

'_\
e — —’ — — — — — — L—

RO Gl SR H e e el o

(_1_

N N N N NN N NN NNN

~

~

o o B O O
=

I
=S

~

~

r], !) /) /] /D T/

O B O O O
=

~

Improving Precision

int main(int N) { tooLong
int 1 = 0;
while (1) ({ l / \
int tooLong = 0O;
while (1 <= N) {
if (i ==N) \ / T
tooLong = 1; tooLong;
J
} The code on the left was
if (tooLong) taken from SPEC CPU 2006. It
break; illustrates an imprecision of
} our widening operator.

J

return 1i;

What would be the result of
} the range analysis on the
constraint graph above?

Improving Precision

tooLong,

\ / \ 1) clearly, [tooLong,], and

[tooLong,] are [0, 1], yet we
are super imprecise. What is

\ / the source of this
imprecision?
tooLong;

2) Would narrowing or future
resolution be able to recover
this imprecision?

tooLong,[0, +oo] .

3) How can we solve this
imprecision?

\

i\

S
N

tooLong;

N

0, +oo] 0

|

Jump-Set Widening

* We could solve the previous example precisely, if we
could iterate two rounds of abstract interpretation before
applying widening.

Why is that so?

* But the previous strategy does not work always.

* The problem of our widening operator is that it jumps
into either —eo or +oo too fast.

* It would be good if we could consider
some smaller limits before going to
maximum imprecision.

But, which
constants should
we use?

cccccccc

Jump-Set Widening

A common heuristics is to collect the constants in the
source code of the program representation, and to use
these constants as the gradual limits of widening.

* In our example, we would jump to {0, 1, +oo}

1) How would be the results of

tooLong jump-set widening for this
particular example?

2) How is the lattice used in the
growth analysis with jump-set
widening?

\ / T 3) s this lattice always the same

tooLong1 for all the instances of
constraint graphs?

l

Because each different constraint

graph will have different
constants, each of them will be
using a different lattice for the
widening operator.

1 tooLong,|0, 1]

N\

¢ ¢

RN
NN

tooLong, [0, 1]

0

Jump-Set Widening

PPGCC
| Strong Components and Precision
0 K, > P <« K, < +1
l 4
k, [-00,99] Sk
What would we : -
obtain if we run our Jo <
widening analysis in l
this entire graph, J1 ¢ Js
instead of only within l T
strong components? [£(i). +o0] L3 1
17 t

Widening of the Entire Graph
[0, 0] [1, +oo]
0 k'o o) k; +1
l f
[0, +00] F----- k, [-00,99] Sk,
[19 OO] ----- Jo < -
[_OO, OO] ----- J 1 ¢ < j 2
And what happens if we [ft()), +oo] =]t -1
run our widening/ ‘\
resolution/narrowing [_OO‘ o]

steps together, for each
component, in
topological order?

[1, +oo]

[—o0, 0]

Argh: the bounds of j are very imprecise...

Strong Components and Precision
[0, O] [1,99]
0 klo ¢ k'2 +1
l l
[0, 99] F------ kK, [-20,99] > K eeeeees [1, 100]
The cool thing about the strong Jo< =
components is that we only |
move into a component C, J1 ¢ < J)
once we have gotten the l T
maximum precision for the [ft(i,), +oc] -7 ~1

intervals of all the components
that C, de.pen.ds on. Like in this And how would the
example, j, will only get a abstract state of the j-
constant interval, instead of variables be now, after
+oo, from k.. widening?

Strong Components and Precision
[0, 0] [1,99]
0 k'o o) k'2 +1
l /
[0, 99] F------ Ky [-0,99] >R —mmmed [1, 100]
jo < =
[—o0, 99] F---34 ¢ < 35 -=-4[~o0, 100]
[£t(i), +o0] -7, -1
Now, if we run future \
resolution (the bounds of i, [—o0, 99]

are not shown), we would
have a very precise result
for the j variables.

A Vast Space to Explore

PPGCC
D araap0
14 1 g
A
[¢0]
o,
(72}
13 15
>
12
BDEHJ
BDEGI BCEH) o BD%EI
-
11 = BDEGJ -
BCEGJ BCEHI
-
10 BCEGI
ADEHJ
9 ADEGI ACEHJ}LADEH
AEDGJ -
ACEHI
8 ®<~—ACEGJ
-
ACEGI
7
10 15 20
A: SSA C: O iterations
B: e-SSA D: 16 iterations

E: intra
F: inter

BDFGl e O
BCFGJ = BDEH
-
BCFGI BCFHJ =
BCFHI
ADFGI ADFHJ
ACFGJa = ADFGJ
- “ADFHI
ACFGI -
ACFHI
25 30

G: no inlining
H: inlining

Which are the good,
the bad and the ugly
points in this chart?

-
BDFHI

-
ACFHJ

Time (secs)
35 40

I: simple widening
J: jump-set widening

\ ;a‘

The Intermediate Representation
14 -
},’ BDFGl a " "
13 - % BCFGJ = BDFHJ
g BCFG| BCFH) = BDFHI
12 1 BCFHI
BDEGI BCEH, BDEHJ BDEH
11 1| _\m=BDEGJ - ADFGI ADFHJ
BCEGJ BCEHI ACFGJ o ® ADFGY
10 - | BCEGI - -ADFHI -
ADEFL) ACFGI ACF_HI ACFHJ
9 7| ADEGI ACEHJ LADEHI
AEDGJ -
8 | =—aceey ACEHI
ACEGI
. Time (secs)
10 15 20 25 30 35 40
A: SSA C: 0 iterations G: no inlining I: simple widening
B: e-SSA D: 16 iterations H: inlining J: jJump-set widening

Intra vs Inter Procedural Analysis

PPGCC
D araap0
14 1 g
A
[¢0]
o,
(72}
13 15
>
12
BDEHJ
BDEGI BCEH) o BD%EI
-
11 = BDEGJ -
BCEGJ BCEHI
-
10 BCEGI
ADEHJ
9 ADEGI ACEHJ}LADEH
AEDGJ -
ACEHI
8 ®<~—ACEGJ
-
ACEGI
7
10 15 20
A: SSA C: O iterations
B: e-SSA D: 16 iterations

E: intra
F: inter

BDFGI..-BDFGJ
BCFGJ = BDFH.
- -
BCFG-I BCFH) = BDFHI
BCFHI
ADFGI ADFHJ
ACFGJa = ADFGJ
-
ADFHI -
ACFGT - ACFHJ
ACFHI
Time (secs)
25 30 35 40

G: no inlining
H: inlining

I: simple widening
J: jump-set widening

PPGC

ROGRAMA DE #osmuouAiAo
EM CIENCIA DA COMPUTAGAO

The Impact of Inlining

14 my
T BDFGI .--BEHFGJ
13 - % BCFGJ = BDFHJ
g BCFG| BCFH) = BDFHI
12 - BCFHI
BDEHJ BDEHI
BDEG BCEHJ_ = -
11 - _\—BDE 5J - ADFGI ADFHJ
BCEGJ BCEHI ACFGJ o * Aprdy
- | BCEGI - -ADFHI -
10 ACFGI - ACFHJ
ADEHJ ACFHI
9 7| ADEGI AGEHJ L ADEHI
.ZAEDGJ -
ACEHI
8 - | “~—ACEGJ
ACEGI :
Time (secs)
7 T T T T T 1
10 15 20 25 30 35 40
A: SSA C: 0 iterations E: intra G: no inlining I: simple widening
B: e-SSA D: 16 iterations F: inter H: inlining J: jJump-set widening

Limits of Range Analysis on the Interval Lattice

k =0
1) Considering the program on

s = (the left. What is the range of k?
while k < 100:

k = k + 1 2) What would be the range of s,

using our algorithm?

s = s + 1
print k
print s

k =0 Again: what are k, = 0
= 0 the ranges of the s, = 0
S = L 100 variables?
while <
k =k + 1 l
s =5+ 1 K, = (kg k)
print k s, = d(syr 5,)
print s (k, < 100)°?
v \/
ky = k; N [100, +e] k, = k; N [-=, 99]
print k, ks = k, + 1
s, = s; +1

print s,

Limits of Range Analysis on the Interval Lattice

We end up bounding s to [0, +o°], because there are no
constraints bounding this variable. The range analysis on kg 0
the interval lattice is not strong enough to capture the S
relation between variables s, and k;. In other words, this
analysis is sparse. It forgets the information that s and k
are varying together along every program point, because
it does not keep track of program points anyway.

< |

]{1 - q)(kor k2)

s; = ¢(sy, 5,)
(k; < 100)7
v \/
k3 = kl N [1001 +°°] k2 = kl N [_°°, 99]
print k3 k3 = kz + 1
s, = s; +1

print s,

PROGRAMA DE POS-GRADUAEAO
EM CIENCIA DA COMPUTAGAO
- UFM

Relational Analyses

Analyses that can capture the relation between s and k,
in the previous example, are called relational analyses.

They are more precise than the range analysis on the
interval lattice.

But they are more
expensive also.

— Polyhedrons®

— Octagons®
Usually these analyses are very geometrical.
They also use the ideas of widening and narrowing.

®: Automatic Discovery of Linear Restraints Among Variables of a Program
®: The octagon abstract domain, 2006

A Bit of History

The ideas of widening and narrowing were introduced by
Cousot and Cousot, together with all the framework of
abstract interpretation.

The algorithm that we have presented was invented by
Campos et al., and subsequently improved by Rodrigues
et al. An initial version of it appeared in a paper by
Douglas and Pereira.

Cousot, P. and Cousot, R. "Abstract Interpretation: a Unified Lattice Model for
Static Analysis of Programs by Construction or Approximation of Fixpoints",
POPL, p 238-252 (1977)

Couto, D. and Pereira, F. "The Design and Implementation of a Non-Iterative
Range Analysis Algorithm on a Production Compiler", SBLP, p 45-59 (2011)
Campos, V., Rodrigues, R., and Pereira, F. "Speed and Precision in Range
Analysis", SBLP, p 42-56 (2012)

Rodrigues, R., Campos, V. and Pereira, F. "A Fast and Low Overhead Technique
to Secure Programs Against Integer Overflows", CGO, (2013)

