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Abstract
The integer primitive type has upper and lower bounds in
many programming languages, including C, and Java. These
limits might lead programs that manipulate large integer
numbers to produce unexpected results due to overflows.
There exists a plethora of works that instrument programs
to track the occurrence of these overflows. In this paper we
present an algorithm that uses static range analysis to avoid
this instrumentation whenever possible. Our range analy-
sis contains novel techniques, such as a notion of “future”
bounds to handle comparisons between variables. We have
used this algorithm to avoid some checks created by a dy-
namic instrumentation library that we have implemented in
LLVM. This framework has been used to detect overflows
in hundreds of C/C++ programs. As a testimony of its effec-
tiveness, our range analysis has been able to avoid 25% of
all the overflow checks necessary to secure the C programs
in the LLVM test suite. This optimization has reduced the
runtime overhead of instrumentation by 50%.

Categories and Subject Descriptors D.3.4 [Processors]:
Compilers

General Terms Languages, Performance

Keywords Integer Overflow, Compiler, Range analysis

1. Introduction
The most popular programming languages, including C,
C++ and Java, limit the size of primitive numeric types.
For instance, the int type, in C++, ranges from −231 to
231 − 1. Consequently, there exist numbers that cannot be
represented by these types. In general, these programming
languages resort to a wrapping-arithmetics semantics [27]
to perform integer operations. If a number n is too large to
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fit into a primitive data type T , then n’s value wraps around,
and we obtain nmodulo Tmax. There are situations in which
this semantics is acceptable [11]. For instance, programmers
might rely on this behavior to implement hash functions and
random number generators. On the other hand, there exist
also situations in which this behavior might lead a program
to produce unexpected results. As an example, in 1996, the
Ariane 5 rocket was lost due to an arithmetic overflow – a
bug that resulted in a loss of more than US$370 million [12].

Programming languages such as Ada or Lisp can be cus-
tomized to throw exceptions whenever integer overflows are
detected. Furthermore, there exist recent works proposing to
instrument binaries derived from C, C++ and Java programs
to detect the occurrence of overflows dynamically [4, 11].
Thus, the instrumented program can take some action when
an overflow happens, such as to log the event, or to terminate
the program. However, this safety has a price: arithmetic op-
erations need to be surveilled, and the runtime checks cost
time. Zhang et al. [28] have eliminated some of this over-
head via a tainted flow analysis. We have a similar goal, yet,
our approach is substantially different.

This paper describes the range analysis algorithm that we
have developed to eliminate overflow checks in instrumented
programs. As we show in Section 2, our algorithm has three
core insights. Firstly, in Section 2.1 we show how we rely on
strongly connected components to achieve speed and pre-
cision. It is well-known that this technique is effective in
speeding up constraint resolution [22, Sec 6.3]. Yet, we go
beyond: given our three-phase approach, we improve preci-
sion by solving strong components in topological order. Sec-
ondly, in Section 2.2 we describe this three-phase approach
to extract information from comparisons between variables,
e.g., x < y. Previous algorithms either deal with these
comparisons via expensive relational analyses [9, 16, 19],
or only consider comparisons between variables and con-
stants [18, 23, 24]. Finally, in Section 2.3 we propose a new
program representation that is more precise than other in-
termediate forms used to solve range analysis sparsely. This
new live range splitting strategy is only valid if the instru-
mented program terminates whenever an integer overflow is
detected. If we cannot rely on this guarantee, then our more



conservative live range splitting strategy produces the pro-
gram representation that Bodik et al. [2] call Extended Static
Single Assignment form. In Section 4.1 we show that an in-
terprocedural implementation of our algorithm analyzes pro-
grams with half-a-million lines of code in less than ten sec-
onds. Furthermore, the speed and memory consumption of
our range analysis grows linearly with the program size.

We use our range analysis to reduce the runtime over-
head imposed by a dynamic instrumentation library. This
instrumentation framework, which we describe in Section 3,
has been implemented in the LLVM compiler [17]. We
have logged overflows in a vast number of programs, and
in this paper we focus on SPEC CPU 2006. We have re-
discovered the integer overflows recently observed by Dietz
et al. [11]. The performance of our instrumentation library,
even without the support of range analysis, is within the
5% runtime overhead of Brumley et al.’s [4] state-of-the-art
algorithm. The range analysis halves down this overhead.
Our static analysis algorithm avoids 24.93% of the overflow
checks created by the dynamic instrumentation framework.
With this support, the instrumented SPEC programs are only
1.73% slower. Therefore, we show in this paper that securing
programs against integer overflows is very cheap.

2. Range Analysis
Following Gawlitza et al.’s notation [14], we shall be per-
forming arithmetic operations over the complete lattice Z =
Z ∪ {−∞,+∞}, where the ordering is naturally given by
−∞ < . . . < −2 < −1 < 0 < 1 < 2 < . . . +∞. For any
x > −∞ we define:

x+∞ =∞ x−∞ = −∞, x 6= +∞
x×∞ =∞ if x > 0 x×∞ = −∞ if x < 0
0×∞ = 0 (−∞)×∞ = not defined

Notice that (∞−∞) is not well-defined. From the lattice
Z we define the product lattice Z2 as follows:

Z2 = {∅} ∪ {[z1, z2]| z1, z2 ∈ Z, z1 ≤ z2, −∞ < z2}

This interval lattice is partially ordered by the subset rela-
tion, which we denote by “v”. Range intersection, “u”, is
defined by:

[a1, a2]u[b1, b2] =

8><>:
[max(a1, b1),min(a2, b2)], if a1 ≤ b1 ≤ a2

or b1 ≤ a1 ≤ b2
[a1, a2] u [b1, b2] = ∅, otherwise

And range union, “t”, is given by:

[a1, a2] t [b1, b2] = [min(a1, b1),max(a2, b2)]

Given an interval ι = [l, u], we let ι↓ = l, and ι↑ = u,
where ι↓ is the lower bound and ι↑ is the upper bound of
a variable. We let V be a set of constraint variables, and
I : V 7→ Z2 a mapping from these variables to intervals in
Z2. Our objective is to solve a constraint system C, formed
by constraints such as those seen in Figure 1(left). We let the

Y = [l, u] e(Y ) = [l, u]

Y = φ(X1, X2)
I[X1] = [l1, u1] I[X2] = [l2, u2]

e(Y ) = [l1, u1] t [l2, u2]

Y = X1 +X2

I[X1] = [l1, u1] I[X2] = [l2, u2]

e(Y ) = [l1 + l2, u1 + u2]

Y = X1 ×X2

L = {l1l2, l1u2, u1l2, u1u2}
I[X1] = [l1, u1] I[X2] = [l2, u2]

e(Y ) = [min(L),max(L)]

Y = aX + b
I[X] = [l, u] kl = al + b ku = au+ b

e(Y ) = [min(kl, ku),max(kl, ku)]

Y = X u [l′, u′]
I[X] = [l, u]

e(Y )← [l, u] u [l′, u′]

Figure 1. A suite of constraints that produce an instance of
the range analysis problem.

φ-functions be as defined by Cytron et al. [10]: they join dif-
ferent variable names into a single definition. Figure 1(right)
defines a valuation function e on the interval domain. Armed
with these concepts, we define the range analysis problem
as follows:

DEFINITION: RANGE ANALYSIS PROBLEM
Input: a set C of constraints ranging over a set V of vari-
ables.
Output: a mapping I such that, for any V ∈ V , e(V) = I[V].

We will use the program in Figure 2(a) to illustrate our
range analysis. Figure 2(b) shows the same program in e-
SSA form [2], and Figure 2(c) outlines the constraints that
we extract from this program. There is a correspondence be-
tween instructions and constraints. Our analysis is sparse [7];
thus, it associates one, and only one, constraint with each in-
teger variable. A possible solution to the range analysis prob-
lem, as obtained via the techniques that we will introduce in
Section 2.1, is given in Figure 2(d).

2.1 Range Propagation
Our range analysis algorithm works in a number of steps.
Firstly, we convert the program to a representation that gives
us subsidies to perform a sparse analysis. We have tested
our algorithm with two different representations, as we dis-
cuss in Section 2.3. Secondly, we extract constraints from
the program representation. Thirdly, we build a constraint
graph, following the strategy pointed by Su and Wagner [25].
However, contrary to them, in a next phase we find the
strongly connected components in this graph, collapse them
into super-nodes, and sort the resulting digraph topologi-



k0 = 0
k1 = ϕ(k0, k2)
(k1 < 100)?

kt = k1∩[-∞,99]
i0 = 0
j0 = kt

i1 = ϕ(i0, i2)
j1 = ϕ(j0, j2)
(i1 < j1)?

k2 = kt + 1
it = i1∩[-∞,ft(j1)-1]
jt = j1∩[ft(i1),+∞]
i2 = it + 1
j2 = jt - 1

I[i0] = [0, 0]
I[i1] = [0, 99]
I[i2] = [1, 99]
I[it] = [0, 98]
I[j0] = [0, 99]
I[j1] = [-1, 99]
I[j2] = [-1, 98]
I[jt] = [0, 99]
I[k0] = [0, 0]
I[k1] = [0, 100]
I[k2] = [1, 100]
I[kt] = [0, 99]
I[kt] = [100, 100]

kf = k1∩[100,+∞]
print kf

t f

f t

k = 0

while k < 100:

  i = 0

  j = k

  while i < j:

    i = i + 1

    j = j - 1

  k = k + 1

print k

K0 = 0
Kt = K1 ∩ [-∞, 99]
Kf = K1 ∩ [100, +∞]
K1 = ϕ(K0, K2)
I0 = 0
j0 = Kt
I1 = ϕ(I0, I2)
J1 = ϕ(J0, J2)

If = I1 ∩ [-∞, ft(J1)-1]
Jt = J1 ∩ [ft(I1), +∞]
I2 = It + 1
J2 = Jt - 1
K2 = Kt + 1

(a) (b)

(c) (d)

Figure 2. (a) Example program. (b) Control Flow Graph
in e-SSA form. (c) Constraints that we extract from the
program. (d) Possible solution to the range analysis problem.

cally. Finally, for each strong component, we apply a three-
phase approach to determine the ranges of the variables.
Building the Constraint Graph. Given a set C of con-
straints, which define and/or use constraint variables from
a set V , we build a constraint graph G = (C ∪ V, E). The
vertices in C are the constraint nodes, and the nodes in V are
the variable nodes. If V ∈ V is used in constraint C ∈ C,
then we create an edge

−−→
V C. If constraint C ∈ C defines vari-

able V ∈ V , then we create an edge
−−→
CV . Figure 3 shows the

constraint graph that we build for the program in Figure 2(b).
Our algorithm introduces the notion of future ranges, which
we use to extract range information from comparisons be-
tween variables. In Section 2.3 we explain how futures are
created. If V is used by constraint C as the input of a future
range, then the edge from V to C represents what Ferrante
et al. call a control dependence [13, p.323]. We use dashed
lines to represent these edges. All the other edges denote
data dependences [13, p.322]. As we will show later, control
dependence edges increase the precision of our algorithm to
solve future bounds.
Propagating Ranges in Topological Order. After building
the constraint graph, we find its strongly connected compo-
nents. We collapse these components in super nodes, and
then propagate ranges along the resulting digraph. This ap-

0 k0

k1 kt

k2

j0

j1

jt

j2

0 i0

i1

it

i2

[-∞,99]

[-∞, ft(j1)-1] [ft(i1), +∞]

+1

=

−1+1

ϕ

ϕ ϕ

[100, +∞]kf

Figure 3. The constraint graph that we build for the pro-
gram in Figure 2(b).

proach is essential for scalability, because all the complex-
ity of our algorithm lies in the resolution of strong compo-
nents. Our tests show that the vast majority of the strongly
connected components are singletons. For instance, 99.11%
of the SCCs in SPEC CPU 2006 dealII (447.dealII) have
only one node. Moreover, the composite components usu-
ally contain a small number of nodes. As an example, the
largest component in dealII has 2,131 nodes, even though
dealII’s constraint graph has over one million nodes. This
large SCC exists due to a long chain of mutually recursive
function calls.

2.2 A Three-Phase Approach to Solve Strong
Components

We find the ranges of the variables in each strongly con-
nected component in three phases. First we determine the
growth pattern of each variable in the component via widen-
ing. In the second step, we replace future bounds by actual
limits. Finally, a narrowing phase starting from conditional
tests improves the precision of our results.
Widening: we start solving constraints by determining how
each program variable might grow. For instance, if a vari-
able is only updated by sums with positive numbers, then
it only grows up. If, instead, a variable is only updated by
sums with negative numbers, then it grows down. Some vari-
ables can also grow in both directions. We discover these
growth patterns by abstractly interpreting the constraints that
constitute the strongly connected component. We ensure ter-
mination via a widening operator. Our implementation uses
jump-set widening, which is typically used in range analy-
sis [22, p.228]. This operator is a generalization of Cousot
and Cousot’s original widening operator [8], which we de-
scribe below:

I[Y ] =

8>>><>>>:
if I[Y ] = [⊥,⊥] then e(Y )

elif e(Y )↓ < I[Y ]↓ and e(Y )↑ > I[Y ]↑ then [−∞,∞]

elif e(Y )↓ < I[Y ]↓ then [−∞, I[Y ]↑]

elif e(Y )↑ > I[Y ]↑ then [I[Y ]↓,∞]

We let [l, u]↓ = l and [l, u]↑ = u. We let ⊥ denote non-
initialized intervals, so that [⊥,⊥] t [l, u] = [l, u]. This op-
eration only happens at φ-nodes, because we evaluate con-
straints in topological order. The map I and the abstract eval-



j1[⊥, ⊥]

jt[⊥, ⊥]

j2[⊥, ⊥]i1[⊥, ⊥]

it[⊥, ⊥]

i2[⊥, ⊥]

[-∞, ft(J1)-1] [ft(I1), +∞]

−1+1

ϕ ϕ[0, 0] [0, 99]

j1[−∞, 99]

jt[−∞, 99]

j2[−∞, 98]i1[0, +∞]

it[0, +∞]

i2[1, +∞]

[-∞, ft(J1)-1] [ft(I1), +∞]

−1+1

ϕ ϕ[0, 0] [0, 99]

j1[-1, 99]

jt[0, 99]

j2[−1, 98]i1[0, 99]

it[0, 98]

i2[1, 99]

[-∞, 98] [0, +∞]

−1+1

ϕ ϕ[0, 0] [0, 99]

(a)

(b)

(c)

(d)

(i0) (j0)

j1[-∞, 99]

jt[-∞, 99]

j2[− ∞, 98]i1[0, +∞]

it[0, +∞]

i2[1, +∞]

[-∞, 98] [0, +∞]

−1+1

ϕ ϕ[0, 0] [0, 99]

Figure 4. Four snapshots of the last SCC of Figure 3. (a)
After removing control dependence edges. (b) After running
the growth analysis. (c) After fixing the intersections bound
to futures. (d) After running the narrowing analysis.

uation function e are determined as in Figure 1. We have
an implementation of e for each operation that the target
programming language provides. Our current LLVM imple-
mentation has 18 different instances of e, including signed
and unsigned addition, subtraction, multiplication and divi-
sion, plus truncation, the bitwise integer operators and φ-
functions.

If we use the widening operator above, then the abstract
state of any constraint variable can only change three times,
e.g., [⊥,⊥]→ [c1, c2]→ [c1,∞]→ [−∞,∞], or [⊥,⊥]→
[c1, c2] → [−∞, c2] → [−∞,∞]. Therefore, we determine
the growth behavior of each constraint variable in a strong
component in linear time on the number of constraints in
that component. Figure 4(b) shows the abstract state of the
variables in the largest SCC of the graph in Figure 3. As we
see in the figure, this step of our algorithm has been able to
determine that variables i1, i2 and it can only increase, and
that variables j1, j2 and jt can only decrease.
Future resolution: the next phase of the algorithm to deter-
mine intervals inside a strong component consists in replac-

ing futures by actual bounds, a task that we accomplish by
using the rules below:

Y = X u [l, ft(V ) + c] I[V ]↑ = u

Y = X u [l, u+ c]
u, c ∈ Z ∪ {−∞,∞}

Y = X u [ft(V ) + c, u] I[V ]↓ = l

Y = X u [l + c, u]
l, c ∈ Z ∪ {−∞,∞}

To correctly replace a future ft(V ) that limits a constraint
variable V ′, we need to have already applied the growth
analysis onto V . Had we considered only data dependence
edges, then it would be possible that V ′’s strong component
would be analyzed before V ’s. However, because of control
dependence edges, this case cannot happen. The control
dependence edges ensure that any topological ordering of
the constraint graph either places V before V ′, or places
these nodes in the same strongly connected component. For
instance, in Figure 3, variables j1 and it are in the same SCC
only because of the control dependence edges. Figure 4(c)
shows the result of resolving futures in our running example.
The information that we acquire from the growth analysis
is essential in this phase. For instance, the growth analysis
has found out that the value stored in variable i1 can only
increase. Given that this variable is assigned the initial value
zero, we can replace ft(I1) with this value.
Narrowing: the last step that we apply on the strongly
connected component is the narrowing phase. In this step
we use values extracted from conditional tests to restrict the
bounds of the constraint variables. We use the narrowing
operator firstly proposed by Cousot and Cousot [8], which
we show below:

I[Y ] =

8>>><>>>:
if I[Y ]↓ = −∞ and e(Y )↓ > −∞ then [e(Y )↓, I[Y ]↑]

elif I[Y ]↑ =∞ and e(Y )↑ <∞ then [I[Y ]↓, e(Y )↑]

elif I[Y ]↓ > e(Y )↓ then [e(Y )↓, I[Y ]↑]

elif I[Y ]↑ < e(Y )↑ then [I[Y ]↓, e(Y )↑]

Figure 4(d) shows the result of our narrowing operator
in our running example. Ranges improve due to the two
conditional tests in the program. Firstly, we have that I[It] =
I[I1]u[−∞, 98], which gives us that I[It] = [0, 98]. We also
have that I[Jt] = I[J1]u[0,∞], giving I[Jt] = [0, 99]. From
these new intervals, we can narrow the ranges bound to the
other constraint variables.

The combination of widening, futures and narrowing,
plus use of strong components gives us, in this example, a
very precise solution. We emphasize that finding this tight
solution was only possible because of the topological order-
ing of the constraint graph in Figure 3. Upon meeting the
constraint graph’s last SCC, shown in Figure 4, we had al-
ready determined that the interval [0, 0] is bound to i0 and
that the interval [0, 99] is bound to j0, as we show in Fig-
ure 4(a). Had we applied the widening operator onto the
whole graph, then we would have found out that variable j1
is bound to [−∞,+∞]. This imprecision happens because,



on one hand j1’s interval is influenced by kt’s, which is up-
per bounded by +∞. On the other hand j1 is part of a de-
creasing cycle of dependences formed by variables jt and j2
in addition to itself. Therefore, if we had applied the widen-
ing phase over the entire program followed by a global nar-
rowing phase, then we would not be able to recover some of
widening’s precision loss. However, because in this example
we only analyze j’s SCC after we have analyzed k’s, k only
contribute the constant range [0, 99] to j0.

2.3 Live Range Splitting Strategies
A dense dataflow analysis associates information, i.e., a
point in a lattice, with each pair formed by a variable plus
a program point. If this information is invariant along every
program point where the variable is alive, then we can asso-
ciate the information with the variable itself. In this case, we
say that the dataflow analysis is sparse [7]. A dense dataflow
analysis can be transformed into a sparse one via a suitable
intermediate representation. A compiler builds this interme-
diate representation by splitting the live ranges of variables
at the program points where the information associated with
these variables might change. To split the live range of a
variable v, at a program point p, we insert a copy v′ = v at
p, and rename every use of v that is dominated by p. In this
paper we have experimented with two different live range
splitting alternatives.

The first strategy is the Extended Static Single Assignment
(e-SSA) form, proposed by Bodik et al. [2]. We build the
e-SSA representation by splitting live ranges at definition
sites – hence it subsumes the SSA form – and at conditional
tests. The program in Figure 2(b) is in e-SSA form. Let
(v < c)? be a conditional test, and let lt and lf be labels
in the program, such that lt is the target of the test if the
condition is true, and lf is the target when the condition is
false. We split the live range of v at any of these points if at
least one of two conditions is true: (i) lf or lt dominate any
use of v; (ii) there exists a use of v at the dominance frontier
of lf or lt. For the notions of dominance and dominance-
frontier, see Aho et al. [1, p.656]. To split the live range of v
at lf we insert at this program point a copy vf = vu[c,+∞],
where vf is a fresh name. We then rename every use of v
that is dominated by lf to vf . Dually, if we must split at lt,
then we create at this point a copy vt = v u [−∞, c − 1],
and rename variables accordingly. If the conditional uses
two variables, e.g., (v1 < v2)?, then we create intersections
bound to futures. We insert, at lf , v1f = v1 u [ft(v2),+∞],
and v2f = v2 u [−∞, ft(v1)]. Similarly, at lt we insert
v1v = v1u[−∞, ft(v2)−1] and v2v = v2u[ft(v1)+1,+∞].
A variable v can never be associated with a future bound to
itself, e.g., ft(v). This invariant holds because whenever the
e-SSA conversion associates a variable u with ft(v), then u
is a fresh name created to split the live range of v.

The second intermediate representation consists in split-
ting live ranges at (i) definition sites – it subsumes SSA, (ii)
at conditional tests – it subsumes e-SSA, and at some use

v = •
(v > 0)?

u = v + 10 u = •

• = u
• = v

v = •
(v > 0)?

u0 = v + 10 u1 = •

u2 = ϕ(u0, u1)
• = u2
• = v

v0 = •
(v0 > 0)?

v1 = v0 ∩ [-∞, 0]
u0 = v1 + 10

v2 = v0 ∩ [1, ∞]
u1 = •

u2 = ϕ(u0, u1)
v3 = ϕ(v1, v2)
• = u2
• = v2

v0 = •
(v0 > 0)?

v1 = v0 ∩ [-∞, 0]
u0 = v1 + 10
v4 = v1

v2 = v0 ∩ [1, ∞]
u1 = •

u2 = ϕ(u0, u1)
v3 = ϕ(v4, v2)
• = u2
• = v2

(a) (b)

(c) (d)

Figure 5. (a) Example program. (b) SSA form [10]. (c) e-
SSA form [2]. (d) u-SSA form.

sites. This representation, which we henceforth call u-SSA,
is only valid if we assume that integer overflows cannot hap-
pen. We can provide this guarantee by using our dynamic
instrumentation to terminate a program in face of an over-
flow. The rationale behind u-SSA is as follows: we know
that past an instruction such as v = u + c, c ∈ Z at a pro-
gram point p, variable u must be less than MaxInt − c. If
that were not the case, then an overflow would have hap-
pened and the program would have terminated. Therefore,
we split the live range of u past its use point p, producing
the sequence v = u + c;u′ = u, and renaming every use of
u that is dominated by p to u′. We then associate u′ with the
constraint I[U ′] v I[U ] u [−∞,MaxInt − c].

Figure 5 compares the u-SSA form with the SSA and e-
SSA intermediate program representations. We use the no-
tation v = • to denote a definition of variable v, and • = v
to denote a use of it. Figure 5(b) shows the example pro-
gram converted to the SSA format. Different definitions of
variable u have been renamed, and a φ-function joins these
definitions into a single name. The SSA form sparsifies a
dataflow analysis that only extracts information from the
definition sites of variables, such as constant propagation.
Figure 5(c) shows the same program in e-SSA form. This
time we have renamed variable v right after the conditional
test where this variable is used. The e-SSA form serves
dataflow analyses that acquire information from definition
sites and conditional tests. Examples of these analyses in-
clude array bounds checking elimination [2] and traditional
implementations of range analyses [15, 23]. Finally, Fig-
ure 5(d) shows our example in u-SSA form. The live range
of variable v1 has been divided right after its use. This rep-
resentation assists analyses that learn information from the



Instruction Dynamic Check

x = o1 +s o2 (o1 > 0 ∧ o2 > 0 ∧ x < 0) ∨
(o1 < 0 ∧ o2 < 0 ∧ x > 0)

x = o1 +u o2 x < o1 ∨ x < o2

x = o1 −s o2 (o1 < 0 ∨ o2 > 0 ∨ x > 0) ∨
(o1 > 0 ∨ o2 < 0 ∨ x < 0)

x = o1 −u o2 o1 < o2

x = o1 ×u/s o2 x 6= 0⇒ x÷ o1 6= o2

x = o1 M n (o1 > 0 ∧ x < o1) ∨ (o1 < 0 ∧ n 6= 0)

x = ↓n o1 cast(x, type(o1)) 6= o1

Figure 6. Overflow checks. We use ↓n for the operation
that truncates to n bits. The subscript s indicates a signed
instruction; the subscript u indicate an unsigned operation.

way that variables are used, and propagate this information
forwardly.

3. The Dynamic Instrumentation Library
We have implemented our instrumentation library as a
LLVM transformation pass; thus, we work at the level of
the compiler’s intermediate representation 1. This is in con-
trast to previous work, which either transforms the source
code [11], or the machine dependent code [4]. We work at
the intermediate representation level to be able to couple our
library with static analyses, such as the algorithm that we
described in Section 2. Our instrumentation works by iden-
tifying the instructions that may lead to an overflow, and in-
serting assertions after those instructions. The LLVM IR has
five instructions that may lead to an overflow: ADD, SUB,
MUL, TRUNC (also bit-casts) and SHL (left shift). Figure 6
shows the dynamic tests that we perform to detect overflows.

The instrumentation that we insert is mostly straightfor-
ward. We discuss in the rest of this section a few interesting
cases. When dealing with an unsigned SUB instruction, e.g,
x = o1 −u o2, then a single check is enough to detect
the bad behavior: o1 < o2. If o2 is greater than o1, then we
assume that it is a bug to try to represent a negative num-
ber in unsigned arithmetics. Regarding multiplication, e.g.,
x = o1 × o2, if o1 = 0, then this operation can never cause
an overflow. This test is necessary, because we check integer
overflows in multiplication via the inverse operation, e.g., in-
teger division. Thus, the test prevents a division by zero from
happening. The TRUNC instruction, e.g., x = ↓n o1 assigns
to x the n least significant bits of o1. The dynamic check,

1 http://llvm.org/docs/LangRef.html

ADD SUB MUL SHL TRUNC

signed 12 12 6 8 3

unsigned 4 2 6 2 3

Figure 7. Number of instructions used in each check.

in this case, consists in expanding x to the datatype of o1
and comparing the expanded value with o1. The LLVM IR
provides instructions to perform these type expansions. Note
that our instrumentation catches any truncation that might
result in data loss, even if this loss is benign. To make the
dynamic checks more liberal, we give users the possibility
of disabling tests over truncations.

Practical Considerations. Our instrumentation library in-
serts new instructions into the target program. Although the
dynamic check depends on the instruction that is instru-
mented, the general modus operandi is the same. Dynamic
tests check for overflows after they happen. The code that we
insert to detect the overflow diverts the program flow in case
such an event takes place. Figure 8 shows an actual control
flow graph, before and after the instrumentation. Clearly the
instrumented program will be larger than the original code.
Figure 7 shows how many LLVM instructions are necessary
to instrument each arithmetic operation. These numbers do
not include the instructions necessary to handle the overflow
itself, e.g., block %11 in Figure 8, as this code is not in the
program’s main path. Nevertheless, as we show empirically,
this growth is small when compared to the total size of our
benchmarks, because most of the instructions in these pro-
grams do not demand instrumentation. Furthermore, none
of the instructions used to instrument integer arithmetics ac-
cess memory. Therefore, the overall slowdown that the in-
strumentation causes is usually small, and the experiments
in Section 4.2 confirm this observation.

Which actions are performed once the overflow is de-
tected depends on the user, who has the option to overwrite
the handle overflow function in Figure 8. Our library
gives the user three options to handle overflows. First option:
no-op. This option allows us to verify the slowdown pro-
duced by the new instructions. Second option: logging. This
is the standard option, and it preserves the behavior of the
instrumented program. Whenever an overflow is detected,
we print Overflow detected in FileName.cpp, line
X. in the standard error stream. Third option: abort. This op-
tion terminates the program once an overflow is detected.
Thus, it disallows undefined behavior due to integer over-
flows, and gives us the opportunity to use the u-SSA form to
get extra precision.

Using the static analysis to avoid some overflow checks.
Our library can, optionally, use the range analysis to avoid
having to insert some overflow checks into the instrumented
program. We give the user the possibility of calling the
range analysis with either the e-SSA or the u-SSA live range



entry:
  %add = add nsw i32 %x, %y
  %0 = icmp sge i32 %x, 0
  %1 = icmp sge i32 %y, 0
  %2 = and i1 %0, %1
  %3 = icmp slt i32 %add, 0
  %4 = and i1 %2, %3
  %5 = icmp slt i32 %x, 0
  %6 = icmp slt i32 %y, 0
  %7 = and i1 %5, %6
  %8 = icmp sge i32 %add, 0
  %9 = and i1 %7, %8
  %10 = or i1 %4, %9
  br i1 %10, label %11, label %12

%11:
  call void %handle_overflow(...)
  br label %12

%12:
  ret i32 %add

entry:
  %add = add nsw i32 %x, %y
  ret i32 %add

(b)

(c)

int foo(int x, int y) {
  return x + y;
}

(a)

Figure 8. (a) A simple C function. (b) The same function
converted to the LLVM intermediate representation. (c) The
instrumented code. The boldface lines were part of the orig-
inal program.

splitting strategies. Our static analysis classifies variables
into four categories, depending on their bounds:

• Safe: a variable is safe if its bounds are fully contained
inside its declared type. For instance, if x is declared as
an unsigned 8-bits integer, then x is safe if its bounds are
within the interval [0, 255].

• Suspicious: we say that a variable is suspicious if its
bounds go beyond the interval of its declared type, but
the intersection between these two ranges is non-empty.
For instance, the same variable x would be suspicious if
I[x] = [0, 257], as I[x]↑ > uint8↑.

• Uncertain: we classify a variable as uncertain if at least
one of its limits is unbounded. Our variable x would be
uncertain if I[x] = [0,∞]. We distinguish suspicious
from uncertain variables because we speculate that ac-
tual overflows are more common among elements in the
former category.

• Buggy: a variable is buggy if the intersection between its
inferred range and the range of its declared type is empty.
This is a definitive case of an overflow. Continuing with
our example, x would be buggy if, for instance, I[x] =
[257,∞], given that [257,∞] u [0, 255] = ∅.
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Figure 9. Correlation between program size (number of var
nodes in constraint graphs) and analysis runtime (ms). Each
point represents a benchmark. Coefficient of determination
= 0.967.

Independent on the arithmetic instruction that is being ana-
lyzed, the instrumentation library performs the same test: if
the result x of an arithmetic instruction such as x = o1+s o2
is safe, then the overflow check is not necessary, otherwise
it must be created.

4. Experimental Results
We have implemented our range analysis algorithm in
LLVM 3.0, and have run experiments on a Intel quad core
CPU with a 2.40GHz clock, and 3.6GB of RAM. Each
core has a 4,096KB L1 cache. We have used Linux Ubuntu
10.04.4. Our implementation of range analysis has 3,958
lines of commented C++ code, our e/u-SSA conversion
module has 672 lines, and our instrumentation pass has 762
lines. We have analyzed 428 C programs that constitute the
LLVM test suite plus the integer benchmarks in SPEC CPU
2006. Together, these programs contain 4.76 million assem-
bly instructions. This section has two main goals. First, we
want to show that our range analysis is fast and precise.
Second, we want to demonstrate the effectiveness of our
framework to detect integer overflows.

4.1 Static Range Analysis
Time and Memory Complexity: Figure 9 compares the
time to run our range analysis with the size of the input pro-
grams. We show data for the 100 largest benchmarks in our
test suite, considering the number of variable nodes in the
constraint graph. We perform function inlining before run-
ning our analysis. Each point in the X line corresponds to a
benchmark. We analyze the smallest benchmark in this set,
Prolangs-C/deriv2, which has 1,131 variable nodes in
the constraint graph, in 20ms. We take 9.91 sec to analyze
our largest benchmark, 403.gcc, which, after function in-
lining, has 1,419,456 assembly instructions, and a constraint
graph with 679,652 variable nodes. For this data set, the co-
efficient of determination (R2) is 0.967, which provides very
strong evidence about the linear asymptotic complexity of
our implementation.

The experiments also reveal that the memory consump-
tion of our implementation grows linearly with the program
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Figure 10. Comparison between program size (number of
var nodes in constraint graphs) and memory consumption
(KB). Coefficient of determination = 0.994.

size. Figure 10 plots these two quantities. The linear correla-
tion, in this case, is even stronger than that found in Figure 9:
the coefficient of determination is 0.994. The figure only
shows our 100 largest benchmarks. Again, SPEC 403.gcc
is the largest benchmark, requiring 265,588KB to run. Mem-
ory includes stack, heap and the executable program code.

Precision: Our implementation of range analysis offers
a good tradeoff between precision and runtime. Lakhdar
et al.’s relational analysis [16], for instance, takes about
25 minutes to go over a program with almost 900 basic
blocks. We analyze programs of similar size in less than one
second. We do not claim our approach is as precise as such
algorithms, even though we are able to find exact bounds
to 4/5 of the examples presented in [16]. On the contrary,
we present a compromise between precision and speed that
scales to very large programs. Nevertheless, our results are
not trivial. We have implemented a dynamic profiler that
measures, for each variable, its upper and lower limits, given
an execution of the target program. Figure 11 compares our
results with those measured dynamically for the Stanford
benchmark, which is publicly available in the LLVM test
suite. We chose Stanford because these benchmarks do not
read data from external files; hence, imprecisions are due
exclusively to library functions that we cannot analyze.

We have classified the bounds estimated by the static
analysis into four categories. The first category, called 1,
contains tight bounds: during program execution, the vari-
able has been assigned an upper, or lower limit, that equals
the limit inferred statically. The second category, called n,
contains the bounds that are within twice the value inferred
statically. For instance, if the range analysis estimates that
a variable v is in the range [0, 100], and during the execu-
tion the dynamic profiler finds that its maximum value is 51,
then v falls into this category. The third category, n2, con-
tains variables whose actual value is within a quadratic fac-
tor of the estimated value. In our example, v’s upper bound
would have to be at most 10 for it to be in this category. Fi-
nally, the fourth category contains variables whose estimated
value lays outside a quadratic factor of the actual value. We
call this category imprecise, and it contains mostly the limits
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Figure 11. (Upper) Comparison between static range anal-
ysis and dynamic profiler for upper bounds. (Lower) Com-
parison between static range analysis and dynamic profiler
for lower bounds.

that our static analysis has marked as either +∞ or −∞. As
we see in Figure 11, 54.11% of the lower limits that we have
estimated statically are exact. Similarly, 51.99% of our up-
per bounds are also tight. The figure also shows that, on av-
erage, 37.39% of our lower limits are imprecise, and 35.40%
of our upper limits are imprecise. This result is on par with
those obtained by more costly analysis, such as Stephenson
et al.’s [24].

4.2 The Instrumentation Library
We have executed the instrumented programs of the integer
benchmarks of SPEC 2006 CPU to probe the overhead im-
posed by our instrumentation. These programs have been ex-
ecuted with their “test” input sets. We have not been able to
run the binary that LLVM produces for SPEC’s gcc in our
environment, even without any of our transformations, due
to an incompatible ctype.h header. In addition, we have not
been able to collect the statistics about the overflows that oc-
curred in SPEC’s bzip2, because the log file was too large.
We verified more than 3,000,000,000 overflows in this pro-
gram. Figure 12 shows the percentage of instructions that
we instrument, without the intervention of the range anal-
ysis. The number of instrumented instructions is relatively
low, compared to the total number of instructions, because



we only instrument six different LLVM bitcodes, in a set of
57 opcodes, not counting intrinsics. Figure 12 also shows
how many instructions have caused overflows. On the av-
erage, 4.90% of the instrumented sites have caused integer
overflows.

Benchmark #I #II #II/#I #O
470.lbm 13,724 1,142 8.32% 0
433.milc 44,236 1,602 3.62% 11
444.namd 100,276 3,234 3.23% 12
447.dealII 1,381,408 36,157 2.62% 50
450.soplex 136,367 3,158 2.32% 13
464.h264ref 271,627 13,846 5.10% 167
473.astar 19,243 857 4.45% 0
458.sjeng 54,051 2,504 4.63% 68
429.mcf 4,725 165 3,49% 8
471.omnetpp 203,201 1,972 0.97% 2
403.gcc 1,419,456 18,669 1.32% N/A
445.gobmk 308,475 14,129 4.58% 4
462.libquantum 16,297 928 5.69% 7
401.bzip2 38,831 2,158 5.56% N/A
456.hmmer 114,136 4,001 3.51% 0
Total (Average) 275,070 6,968 3.96%

Figure 12. Instrumentation without support of range analy-
sis. #I: number of LLVM bitcode instructions in the original
program. #II: number of instructions that have been instru-
mented. #O: number of instructions that actually overflowed
in the dynamic tests.

Figure 13 shows how many checks our range analy-
sis avoids. Some results are expressive: the range analy-
sis avoids 1,138 out of 1,142 checks in 470.lbm. In other
benchmarks, such as in 429.mcf, we have been able to avoid
only 1 out of 165 tests. In general we fare better in programs
that bound input sizes via conditional tests, as lbm does. Us-
ing u-SSA, instead of e-SSA, adds a negligible improvement
onto our results. We speculate that this improvement is small
because variables tend to be used a small number of times.
Benoit et al. [3] have demonstrated that the vast majority of
all the program variables are used less than five times in the
program code. The u-SSA form only helps to avoid checks
upon variables that are used more than once.

Figure 14 shows how our range analysis classifies instruc-
tions. Out of all the 102,790 instructions that we have instru-
mented in SPEC, 3.92% are suspicious, 17.19% are safe,
and 78.89% are uncertain. This means that we found pre-
cise bounds to 3.92 + 17.19 = 21.11% of all the program
variables, and that 78.98% of them are bound to intervals
with at least one unknown limit. We had, at first, speculated
that overflows would be more common among suspicious in-
structions, as their bounds, inferred statically, go beyond the
limits of their declared types. However, our experiments did
not let us confirm this hypothesis. To check the correctness
of our approach, we have instrumented the safe instructions,
but have not observed any overflow caused by them.

Benchmark #II #E %(II, E) #U %(II, U)
lbm 1,142 4 99.65% 4 99.65%
milc 1,602 1,070 33.21% 1,065 33.52%
namd 3,234 2,900 10.33% 2,900 10.33%
dealII 36,157 29,870 17.39% 28,779 20.41%
soplex 3,158 2,927 7.31% 2,897 8.26%
h264ref 13,846 11,342 18.38% 11,301 18.08%
astar 857 808 5.72% 806 5.95%
sjeng 2,504 2,354 5.99% 2,190 12.54%
mcf 165 164 0.61% 164 0.61%
omnetpp 1,972 1,313 33.42% 1,313 33.42%
gcc 18,669 15,282 18.14% 15,110 19.06%
gobmk 14,129 12,563 11.08% 12,478 11.69%
libquantum 928 820 11.64% 817 11.96%
bzip2 2,158 1,966 8.90% 1,966 8.90%
hmmer 4,001 3,346 16.37% 3,304 17.42%
Total 104,522 86,688 85,135

Figure 13. Instrumentation library with support of static
range analysis. #II: number of instructions that have been
instrumented without range analysis. #E: number of instruc-
tions instrumented in the e-SSA form program. #U: number
of instructions instrumented in the u-SSA form program.

Bench #Sf #S #U #SO #SO/#S #UO #UO/#U
lbm 1138 0 4 0 0,00% 0 0,00%
milc 536 17 1048 0 0,00% 11 1,05%
namd 334 480 2420 0 0,00% 12 0,50%
dealII 6188 39 28740 0 0,00% 50 0,17%
soplex 229 16 2881 0 0,00% 13 0,45%
h264ref 2539 1195 10147 7 0,59% 160 1,58%
astar 48 11 795 0 0,00% 0 0,00%
sjeng 150 213 1977 0 0,00% 68 3,44%
mcf 1 0 164 0 0,00% 8 4,88%
omnetpp 659 25 1288 1 4,00% 1 0,07%
gcc 3365 1045 14065 N/A N/A N/A N/A
gobmk 1509 742 11736 0 0,00% 4 0,03%
libqtum 104 12 805 0 0,00% 7 0,87%
bzip2 192 40 1926 N/A N/A N/A N/A
hmmer 663 222 3082 0 0,00% 0 0,00%

Figure 14. How the range analysis classified arithmetic in-
structions in the u-SSA form programs. #Sf: safe. #S: suspi-
cious. #U: uncertain. #SO: number of suspicious instructions
that overflowed. #UO: number of uncertain instructions that
overflowed.

Figure 15 shows, for the entire LLVM test suite, the per-
centage of overflow checks that our range analysis, with the
e-SSA intermediate representation, could avoid. Each bar
refers to a specific benchmark in the test suite. We only
consider applications that had at least one instrumented in-
struction; the total number of benchmarks that meet this re-
quirement is 333. On the average, our range analysis avoids
24.93% of the overflow checks. Considering the benchmarks
in SPEC 2006 only, this number is 20.57%.

Figure 16 shows the impact of our instrumentation in
the runtime of the SPEC benchmarks. We ran each bench-
mark 20 times. The largest slowdown that we have observed,
11.83%, happened in h264ref, the benchmark that pre-
sented the largest number of distinct sites where overflows
happened dynamically. On the average, the instrumented
programs are 3.24% slower than the original benchmarks. If
we use the range analysis to eliminate overflow checks, this
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Figure 15. Percentage of overflow checks that our range
analysis removes. Each bar is a benchmark in the LLVM test
suite. Benchmarks have been ordered by the effectiveness of
the range analysis. On average, we have eliminated 24.93%
of the checks (geomean).
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Figure 16. Comparison between execution times with and
without pruning, normalized by the original program’s exe-
cution time.

slowdown falls to 1.73%. The range analysis, in this case,
reduces the instrumentation overhead by 46.60%. This im-
provement is larger than the percentage of overflow checks
that we avoid, e.g,. 20.57%. We believe that this difference
is due to the fact that we are able to eliminate checks on in-
duction variables, as our range analysis can rely on the loop
boundaries to achieve this end. We have not noticed any run-
time difference between programs converted to e-SSA form
or u-SSA form. Surprisingly, some of the instrumented pro-
grams run faster than the original code. This behavior has
also been observed by Dietz et al. [11].

5. Related Work
Dynamic Detection of Integer Overflows: Brumley et
al. [4] have developed a tool, RICH, to secure C programs
against integer overflows. The author’s approach consists in
instrumenting every integer operation that might cause an
overflow, underflow, or data loss. The main result of Brum-
ley et al. is the verification that guarding programs against
integer overflows does not compromise their performance
significantly: the average slowdown across four large appli-

cations is 5%. RICH, Brumley et al’s tool, uses specific fea-
tures of the x86 architecture to reduce the instrumentation
overhead. Chinchani et al. [6] follow a similar approach. In
this work, the authors describe each arithmetic operation for-
mally, and then use characteristics of the computer architec-
ture to detect overflows at runtime. Contrary to these previ-
ous works, we instrument programs at LLVM’s intermediate
representation level, which is machine independent. Never-
theless, the performance of the programs that we instrument
is on par with Brumley’s, even without the support of the
static range analysis. Furthermore, our range analysis could
eliminate approximately 45% of the tests that a naive im-
plementation of Brumley’s technique would insert; hence,
halving down the runtime overhead of instrumentation.

Dietz et al. [11] have implemented a tool, IOC, that in-
struments the source code of C/C++ programs to detect in-
teger overflows. They approach the problem of detecting in-
teger overflows from a software engineering point-of-view;
hence, performance is not a concern. The authors have used
IOC to carry out a study about the occurrences of overflows
in real-world programs, and have found that these events are
very common. It is possible to implement a dynamic analysis
without instrumenting the target program. In this case, devel-
opers must use some form of code emulation. Chen et al. [5],
for instance, uses a modified Valgrind [21] virtual machine
to detect integer overflows. The main drawback of emula-
tion is performance: Chen et al. report a 50x slowdown. We
differ from all this previous work because we focus on gen-
erating less instrumentation, an endeavor that we accomplish
via static analysis.

Static Detection of Integer Overflows: Zhang et al. [28]
have used static analysis to sanitize programs against integer
overflow based vulnerabilities. They instrument integer op-
erations in paths from a source to a sink. In Zhang et al.’s
context, sources are functions that read values from users,
and sinks are memory allocation operations. Thus, contrary
to our work, Zhang et al.’s only need to instrument about
10% of the integer operations in the program. However, they
do not use any form of range analysis to limit the number
of checks inserted in the transformed code. Wang et al. [26]
have implemented a tool, IntScope, that combines symbolic
execution and taint analysis to detect integer overflow vul-
nerabilities. The authors have been able to use this tool to
successfully identify many vulnerabilities in industrial qual-
ity software. Our work, and Wang et al.’s work are essen-
tially different: they use symbolic execution, whereas we
rely on range analysis. Contrary to us, they do not transform
the program to prevent or detect such event dynamically.
Still in the field of symbolic execution, Molnar et al. [20]
have implemented a tool, SmartFuzz, that analyzes Linux
x86 binaries to find integer overflow bugs. They prove the
existence of bugs by generating test cases for them.



6. Final Remarks
This paper has presented a static range analysis algorithm
that reduces the overhead necessary to secure programs
against integer overflows. This algorithm analyzes inter-
procedurally programs with half-a-million lines of code,
i.e., almost one million constraints, in ten seconds. We pro-
posed the notion of “future bounds” to handle comparisons
between variables, and tested different program represen-
tations to improve our precision. Although the overhead of
guarding programs against integer overflows is small, as pre-
vious work has demonstrated, we believe that our technique
is still important, as some of these programs will be executed
millions of times.
Software: Our implementation is publicly available at
http://code.google.com/p/range-analysis/.
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