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Abstract. Molecular property prediction is of great importance in Al
drug design due to its high experimental efficiency compared with biolog-
ical experiments. As graph neural networks have achieved great success
in many domains, some studies apply graph neural networks to molecular
property prediction and regard each molecule as a graph. A molecule’s
atom is regarded as a node of the graph, while its bond is regarded
as an edge of the graph. However, most existing methods simply apply
general graph neural networks without considering the domain knowl-
edge. As chemical information is highly related to molecular functions,
it is critical for accurate property prediction. Thus, we leverage chemical
information to learn molecular representation by integrating molecular
fingerprints, i.e., the presence or absence of particular chemical substruc-
tures. We compare our proposed method to several strong baselines, and
our proposed method significantly surpasses other methods. Up to now,
our method ranks first in the Open Graph Benchmark(OGB) leaderboard
for ogbg-molhiv.
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1 Introduction

The process of drug discovery is complex and full of challenges. Discovering a
new drug requires a significant number of biological experiments, which costs
hundreds of millions of dollars and tens of years. Molecular property prediction
is one of the most critical steps in drug discovery, and the improvement of the
prediction accuracy can greatly speed up the process of drug discovery.
Recently, many studies apply machine learning methods to molecular prop-
erty prediction due to its low experimental cost and high experimental efficiency.
Owning to the great success of graph neural networks (GNNs) in many domains,
such as recommender systems and social networks, some studies [13] exploit
GNNs for molecular property prediction, and each molecule is regarded as a
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graph. More concretely, a molecule’s atom is regarded as a node of the graph,
while the molecule’s bond is regarded as an edge of the graph. Graph neural net-
works provide accurate predictions by capturing the relations between the atoms
in the molecules. However, most of the existing studies directly copy the meth-
ods from other domains to molecular property prediction, ignoring the domain
knowledge.

Molecular property prediction is highly dependent on chemical information,
as the chemical information is always related to molecular functions. To this
end, we consider chemical information and combine it with graph neural net-
works. We design a molecular representation learning task by predicting molec-
ular fingerprints before predicting molecular properties. We adopt two molec-
ular fingerprints: 1) The Molecular ACCess System (MACCS) key [3], which
marks substructures of importance (such as functional groups) in determining
the macro-chemical properties of a molecule. 2) The extended-connectivity fin-
gerprint (ECFP) [12], which encodes the local structural information of each
atom.

We conducted extensive experiments on several datasets to demonstrate the
superiority of our proposed method. Up to now, our method ranks first in the
Open Graph Benchmark(OGB)! leaderboard for ogbg-molhiv.

Our contributions can be summarized as follows:

— We propose a novel molecular representation learning method that takes the
chemical information into consideration.

— Extensive experiments show that our proposed method surpasses several
strong baselines, and our method ranks first in the OGB leaderboard for
ogbg-molhiv.

2 Methodology

We propose a two-stage method. In the first stage, we learn the molecular chem-
ical representation by the graph neural network. In the second stage, we take
the molecular representation as input and apply the random forest to predict
the molecular property.

2.1 Representation Learning

Graph Neural Networks. A molecule can be regarded as a collection of atoms
and the chemical bonds between them, which is naturally suitable to be modelled
using graph neural networks (GNNs) [5,14]. A GNN treats molecules as a graph,
where nodes represent atoms and edges represent chemical bonds. By training
this GNN, we can obtain a representation vector hg for the entire graph and a
vector h, for every node v € G.

Modern GNNs follow a neighborhood aggregation approach, where we iter-
atively update the node’s representation by aggregating representations of its

! http://ogb.stanford.edu/
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neighbors. After k iterations of aggregation, a node’s representation captures
the structural information within its k-hop network neighborhood. Formally,
the k-th layer of a GNN is

") = AGGREGATE® ({ (hgk—U, h{k=D), ew) Lue N(v)}) (1)
(k) = COMBINE® (hSﬁ—”, ag“) (2)

where hS,’“) is the feature vector of node v at the k-th iteration. We initialize

hY = x,, and N (v) is a set of nodes adjacent to v.

Unlike Convolutional Neural Networks (CNNs), which are able to take ad-
vantage of stacking very deep layers, GCNs suffer from vanishing gradient,
over-smoothing, and over-fitting issues when going deeper. To encode the whole
molecular structure information, we utilize DeeperGCN[9], a GNN model that
can train very deep GCNs.

We use the SoftMax function, which has been studied in many machine
learning areas[8], as our aggregation function, which is described as:

P N exp (Bmy,,) 3
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where m,,,, € R is the given message set {m,,|u € N'(v)}. B is a continuous
variable called an inverse temperature.

The COMBINE step can be a concatenation operation followed by a linear
mapping. In this work, we use the sum function. Thus, the AGGREGATE and
COMBINE steps are integrated as follows:
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To further improve the performance, we also integrate the APPNP[6] algo-
rithm into our model. Specifically, we regard the output of the deeperGCN as
the input of the APPNP layer. APPNP utilizes the relationship between graph
convolutional networks (GCN) and PageRank[11] to derive an improved propa-
gation scheme based on personalized PageRank. More precisely, APPNP achieves
linear computational complexity by approximating topic-sensitive PageRank via
power iteration. The formulas can be calculated as:
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Here, ML € RV¥*P is the node representations produced by the DeeperGCN.

A is the adjacency matrix with added self-loops and normalization.
GNN aggregates node representations from the final iteration to obtain the
representation zg of the entire graph. The grpah pooling function (denoted as
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POOL) can be descripted as:
g=POOL (¥, veq). (6)

POOL is a graph pooling function, such as summation or a more sophisticated
graph-level pooling function.

Therefore, given a set of graphs G = {G1, Ga, ..., Gg}, we first obtain the
node representations of each graph by AGGREGATE and COMBINE steps, and
then use POOL function to obtain the graph representation {g1, g2, ...,9g}. In
this work, we use mean function for POOL function.

Chemical Information. As chemical information is highly related to molec-
ular functions, we design a molecular representation learning task by predicting
molecular fingerprints. More concretely, we leverage two types of widely used fin-
gerprints: the MACCS Fingerprint and ECFP Fingerprint. Both are generated
by the popular open-source cheminformatics package RDKit?.

The labeling of molecular substructures in MACCS can be considered as a
fusion of chemical expert knowledge. MACCS has a total of 166 bits, each of
which is marked with a special molecular substructure. For example, the 154th
position in MACCS is 1 means that the molecule contains the carbonyl group
(C=0). This functional group is susceptible to corrosion by nucleophiles and can
undergo nucleophilic addition reactions under certain conditions. By learning
the MACCS, our model can establish the correlation between compounds and
biologically active substances, therefore obtain a molecular representation with
more chemical information.

ECFP is another widely used molecular fingerprint, which is generated by a
variant of the Morgan algorithm[10]. The idea of ECFP is to encode the local
environmental information of each atom in the molecule. Different flavors of
ECFPs may be generated by selecting different maximum diameters of atom
neighborhood and/or different lengths of output. In our model, the diameter
is set to 4 and length to 2048. Compared with MACCS, ECFP more focuses
on the local topology of a molecule and can represent the presence of non-
predefined substructures. By concatenating these two fingerprints, we try to
achieve a balance between making our model more chemistry-specific and more
topology-specific.

2.2 Molecular Property Prediction

Random forest [4] is a tree-based machine learning method, widely used in many
fields due to its effectiveness and efficiency. We apply the random forest as a
classifier and take the representation learned by the graph neural network to
predict the molecular property.

2 https://www.rdkit.org/
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3 Experiments

3.1 Experimental Settings

In this work, the main GNN model applied to learn the molecular representation
is DeeperGCN[9] and APPNP[6]. We select the following hyper-parameters in
our experiments: 7 layers DeeperGCN, 256-dimensional hidden size and average
graph pooling for POOL function. We use alpha=0.2 and k_hop=>5 for APPNP
layer.

In the first training stage, Adam optimizer with a learning rate of 0.001 is
adopted and we train our model for 50 epochs.

In the second training stage, we use a random forest classifier to predict the
molecular property by taking the molecular representation as input. We run 10
experiments with different random seeds for each property prediction task.

3.2 Baseline Methods

We compare our models above with a number of state-of-the-art baselines for
graph property prediction.

— Random Forest[4].Random forest is a tree-based classifier. The essence is
to build multiple trees in randomly selected subspaces of the feature space.

— DGN[1]. Directional Graph Network exploits vector flows over graphs and
asymmetric aggregation functions.

— DeeperGCN[9]4+FLAG[7]. DeeperGCN defines differentiable generalized
aggregation functions to unify different message aggregation operations. Free
Large-scale Adversarial Augmentation on Graphs(FLAG) iteratively aug-
ments node features with gradient-based adversarial perturbations.

— PNAJ2]. PNA combines multiple aggregators with degree-scalers.

3.3 Experimental Results

We compare our proposed method with several strong baselines, as shown in Ta-
ble 1. Our proposed method outperforms other methods as it learns the molecular
representation from the chemical information.

Table 1. Performance on dataset Hiv

Method Test AUC Valid AUC

Ours 0.8232 + 0.0047 0.8331 + 0.0054
Random Forest[4] 0.8060 + 0.0010 0.8420 + 0.0030
DGN[1] 0.7970 + 0.0091 0.8470 + 0.0047
DeeperGCN+FLAG[9, 7] 0.7942 + 0.0120 0.8425 + 0.0061

PNAJ2] 0.7905 £ 0.0132 0.8519 + 0.0099
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Conclusion

We propose a two-stage method to address the problem of molecular property
prediction. In the first stage, we integrate chemical information with a graph
neural network and learn the molecular representation. In the second stage,
we apply the random forest to predict the molecular property by taking the
molecular representation as input. This method achieves excellent performance
in the dataset Hiv.
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