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S.1 Details of multi-task learning model based on GNN

We first introduce the MTL model for docking score prediction in detail (Figure S1).

Figure S1: The MTL model for virtual screening with graph neural networks. The weights of the
graph convolutional layers are shared across all the tasks. For each task, the output embedding
of the graph convolutional layers goes into task-specific fully connected layers to get the final
prediction.

S.1.1 Input molecular features

In a chemical library, the compounds are usually represented by SMILES (Simplified Molecular
Input Line Entry System)1. Recently, modeling the molecules as graphs has shown a great success
in many problems related to drug discovery, including molecular property prediction, drug-target
interaction prediction, and molecule design2–5. Thus we convert the SMILES codes to molecular
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graphs with the package RDKit6, such that a compound is a graph with the nodes being the atoms
and the edges being the chemical bonds. RDKit is also used to generate features for the molecular
graph, including seven atom features and two bond features. All the features are discrete values
and encoded as one-hot vectors with different lengths, as shown in Table S1.

Table S1: Input features for the molecular graph

atomic type 119 bits one hot
formal charge 16 bits one hot

Atom degree 11 bits one hot
feature chirality tag 4 bits one hot

number of hydrogens 9 bits one hot
aromaticity 2 bits one hot
hybridization 5 bits one hot

Bond bond direction, 7 bits one hot
feature bond type 4 bits one hot

is in ring 2 bits one hot

S.1.2 Parameter sharing module

With the input of molecular graph data, the parameter-sharing part of our MTL model Gφ is based
on the Graph Isomorphism Network (GIN), which has been shown to achieve the state-of-the-art
performance in drug-target affinity prediction5,7. As shown in Table S1, the features generated by
RDKit are all one-hot vectors, which are denoted as fv,i (i = 1, . . . , 7) and fe,j (j = 1, 2, 3) for node
v and edge e. In order to input the features to GNNs, we first use embedding operations to map
the one-hot vectors into d-dimensional real vectors:

h0v =
7∑
i=1

NodeEmbeddingi(fv,i),

hke =

3∑
j=1

EdgeEmbeddingkj (fe,j) k = 0, 1, . . . ,K − 1,

where K is the total number of GNN layers. In the k-th layer, GIN updates the node representations
by

hkv = σ

gk
 ∑
u∈N (v)∪{v}

hk−1u +
∑

e=(v,u):u∈N (v)∪{v}

hk−1e

 ,

where N (v) is the set of nodes adjacent to node v, σ(·) is the ReLU activation function, and gk(·) is
a two-layer perceptron with 2d hidden neurons followed by batch normalization8. Since the docking
score prediction is a graph-level regression task, the graph representation is obtained by averaging
the node embeddings of the last GIN layer:

z = MEANv(h
K
v ).
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S.1.3 Task-specific module

The output of the GIN layers gives a vector representation of the compounds, which contains shared
knowledge across all the tasks. These vector representations are then fed into the task-specific neural
networks to make predictions for each task. Here, we apply a two-layer fully connected (FC) neural
network on top of the graph representation z to obtain the final prediction for each task.

S.2 Experiment details

S.2.1 Datasets

The first docking dataset was obtained from the work of Deep docking9, which contained 12 targets
(PDB id: 1ERR, 1T7R, 2ZV2, 4AG8, 4F8H, 4R06, 4YAY, 5EK0, 5L2S, 5MZJ, 6D6T, 6IIU), and
each target was docked with 3 million compounds randomly sampled from ZINC15 by the program
FRED10. The second dataset was obtained from the work of Lyu et al.11, in which 99 million lead-
like compounds were docked against the target AmpC (AmpC β-lactamase) using DOCK3.7.212.
These two datasets allow us to test the performance of MTL for virtual screening in a large scale
and across different docking softwares. To further test the ability of MTL in drug discovery, we also
collect an experimental drug-target affinity dataset (the half-maximal inhibitory concentrations of
the ligands on their protein targets, i.e., IC50) with eight targets from the ChEMBL database13.
ChEMBL uses the pChEMBL value as the measurement of the ligand-target affinity, which is
defined as:

pChEMBL = − log(IC50). (S1)

For example, an IC50 measurement of 10 uM would have a pChEMBL value of 5. We use this
pChEMBL value as the ground truth in our experiment. When a ligand-target pair has multiple
pChEMBL values, we take the average of all the pChEMBL values. The details of the drug-target
affinity dataset are summarized in TABLE S2.

Table S2: Details of the drug-target affinity dataset collected from ChEMBL

ChEMBL ID Target name Data points

203 Epidermal growth factor receptor erbB1 6414

279 Fetal liver kinase 1 7777

267 Tyrosine-protein kinase SRC 2775

325 Histone deacetylase 1 4473

333 Matrix metalloproteinase-2 2673

2842 Serine/threonine-protein kinase mTOR 3662

2971 Tyrosine-protein kinase JAK2 4855

4005 PI3-kinase p110-alpha subunit 4459

S.2.2 Evaluation metrics

The performance of the machine learning approaches for docking score prediction is evaluated by
the virtual hit ratio. We define the top-k compounds as the virtual hits. For the first dataset of 3
million compounds, k is set to be 3,000 or 30,000. For the larger dataset of 99 million compounds,
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k is 10,000 or 100,000. The predicted virtual hits are taken as the top 2%, 3% or 5% compounds
of the predictions. The hit ratio is calculated as the recall:

recall =
TP

TP + FN
,

where TP (true positives) are the correctly predicted virtual hits, and FN (false negatives) are the
virtual hits discarded by the prediction incorrectly.

The performance of the drug-target affinity prediction is measured by the mean-square error
(MSE) and concordance index (CI). The CI is defined as

CI =

∑
k,l 1ỹk>ỹl · 1yk>yl∑

k,l 1yk>yl
,

where ỹk and yk are the predicted and true value of the k-th sample respectively, and 1yk>yl = 1 if
yk > yl, else 0.

S.2.3 Model training details

The embedding dimension for the features d is 256. The number of GIN layers is eight. The number
of hidden neurons in the task-specific FC layers is also 256. The model is trained with the ADAM
optimizer with a learning rate 0.001 and batch size 12814. During training, we apply dropout after
the ReLU for all GNN layers and the task-specific FC layers15. The dropout rate is set to be
0.2. 20% of the training data are used for validation to avoid over-fitting. The model is trained
for at least 100 epochs until the validation loss is larger than the training loss for more than 50
consecutive epochs. The epoch with the smallest validation loss is chosen as the final model. For
active learning, the final prediction is the average of the five models in the ensemble.

S.3 Additional results

S.3.1 MTL for virtual screening

As a summary of the prediction performance, TABLE S3 gives the Pearson correlation between the
real and predicted docking scores for the 12 targets in the first dataset.

S.3.2 MTL trained model contains common reusable knowledge

We have shown that MTL helps learn a good representation of the chemical compounds, which
indicates that the model is able to capture common knowledge across all the tasks. We examine
if the knowledge learned by MTL can be reused for a new task by transferring the MTL trained
model to a new target and checking if it can improve the prediction performance. We test this idea
using the first docking dataset with 12 targets. Similarly, one target is taken as the new target.
An MTL model is first trained with the data of the other 11 targets. The weights of the MTL
trained GIN layers are used as the initialization to train a single-task model of the new target. We
first train the FC layers for 20 epochs and then train the whole neural network. From Figure S2,
it is clear to see that transfer learning based on the MTL model achieves better recall values than
single-task machine learning and active learning. Figure S2 also reports that when the data size of
the other tasks increases from 100k to 2m, the performances of MTL and MTL initialized transfer
learning become better.
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Table S3: Pearson correlation of single-task machine learning (ML), active learning (AL) and MTL
with different new target sizes. MTL is jointly trained with 2 million data from other targets.

Target size=1k Target size=2k Target size=5k Target size=10k
ML AL MTL ML AL MTL ML AL MTL ML AL MTL

1ERR 0.562 0.566 0.630 0.605 0.610 0.662 0.617 0.635 0.710 0.627 0.645 0.732
1T7R 0.800 0.790 0.844 0.823 0.826 0.859 0.851 0.852 0.882 0.859 0.854 0.879
2ZV2 0.531 0.545 0.618 0.581 0.582 0.646 0.588 0.606 0.680 0.608 0.610 0.696
4AG8 0.671 0.685 0.751 0.718 0.737 0.771 0.758 0.769 0.790 0.770 0.777 0.812
4F8H 0.566 0.596 0.658 0.636 0.628 0.689 0.650 0.668 0.721 0.667 0.694 0.747
4R06 0.493 0.543 0.597 0.548 0.585 0.639 0.610 0.602 0.680 0.603 0.596 0.697
4YAY 0.528 0.553 0.550 0.568 0.580 0.589 0.585 0.590 0.639 0.595 0.601 0.669
5EK0 0.492 0.496 0.564 0.525 0.532 0.587 0.564 0.560 0.650 0.570 0.580 0.680
5L2S 0.474 0.496 0.579 0.519 0.516 0.620 0.562 0.563 0.655 0.586 0.527 0.679
5MZJ 0.663 0.677 0.743 0.704 0.704 0.762 0.725 0.744 0.778 0.733 0.744 0.798
6D6T 0.498 0.534 0.616 0.587 0.590 0.655 0.611 0.620 0.694 0.610 0.623 0.715
6IIU 0.585 0.609 0.670 0.639 0.648 0.708 0.669 0.679 0.747 0.694 0.667 0.764
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Figure S2: Bar plots of the recall of top 3k virtual hit for the target 2ZVS at top 2% predicted
values of different ML approaches. The training size for the new target is 10k. MTL and transfer
learning include the results of 4 different training sizes for the other targets. The error bars are
obtained from three independent runs.
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