MATHEMATICAL GAME
MODELING AND OPTIMIZATION
Optimizing Player Decisions in Old School
Runescape

Palfore
December 12, 2020

Contents

Introduction

I General

1 Experience and Levels

II Combat
1 Overview
1.1 Autonomous Mechanics
1.1.1 Combat Skills, Combat Triangle and Attack Styles
1.1.2 Equipment Bonuses
1.1.3 Max Hits and Accuracy L.
1.1.4 Ticks and Attack Speed
115 Summary
1.2 Agency & Decisions Lo o
1.2.1 Actions
1.2.2 Machine Learning oL
1.2.3 Genetic Algorithm
2 Models
2.1 Crude Model e
2.1.1 Health after n attacks L.
2.1.2 Attacks until h health
2.2 Average
2.2.1 Average Damage
2.2.2 Attacksto kill
2.3 Recursive Model
2.3.1 Expected Damage per Hit
2.3.2 Health after n attacks o oL
2.3.3 Attacks until h health 0oL
2.4 Approximately Analytic Recursion
2.4.1 Health after n attacks
2.4.2 Attacks until h health 0oL
2.5 Health Regeneration
2.6 CompariSonso e

3 Markov Chain Solutions

3.1 Damage Distributions Lo oo
3.2 Recursive Equation Lo o
3.3 Solution

10
10
10
11
12
12
13
13
14
15
15

16
17
17
17
17
17
18
18
18
19
22
22
22
22
22
24

3.3.1 Imterior
3.3.2 Obtaining Power Series
3.3.3 Applying Boundary Conditions
3.4 Fight Outcomes L

4 Optimizing Player Equipment
4.1 The Projection Vector oo
4.2 Set Reduction

5 Optimizing Training Order
5.1 Dijkstra’s algorithm o oo

Appendices
A Justifying the Recursive Model Approximation

B Power Reduction in the Piecewise Recursive Model
B.1 Power Reduction
B.2 Simplifying

III Woodcutting

IV Firemaking

1 Wintertodt
1.1 Large groups
1.1.1 Withina Fight 0.
1.1.2 Across Fightso
1.1.3 Kill Count, Time to Level, and Reward Value
1.2 Future Work

V Mining

VI Quests

39
40

42
43
44

45

46

47
48
49
49
50
52

54

55

Introduction

Runescape (RS) is a popular Massively Multiplayer Online Role-Playing Game (MMORPG)
that was first publicly released on January 4’th, 2001 by the video game developer Jagex
Limited. Ranked as the 5’th most popular MMORPG in 2020 by several sources, this
game’s unique mechanisms and game play make it still successful nearly 20 years after
it’s incarnation [1, 2, 3]. On the 20th of November 2012, a total overhaul to the game’s
combat system - an integral part of gameplay - caused a great divide among it’s play-
ers. As a result, the game bifurcated into two versions: Runescape 3, and Old School
Runescape (OSRS). The latter was released on February 22, 2013 and reverted to the
old mechanics. The relative player counts over time can be found in Ref. [1]. OSRS
currently contains the majority of players. To limit the already-large scope, this text
will only focus on that version.

In typical role-playing fashion, the majority of game play centers around fighting
monsters and bosses, training skills, completing quests, playing mini-games, and col-
lecting items. This game is played over the course of months or years. In a few years,
there will even be some players who have played for decades. As the player base gained
a more comprehensive understanding of the game, their mentality has generally shifted
from one of discovery to one of efficiency. Many tools have been created with the goal
of improving player efficiency, optimizing game play, and maximizing success in difficult
challenges.

There are 23 skills that a player can train [5]. A player is rewarded experience for
certain actions related to a given skill. For example, cutting an Oak Tree yields 37.5
experience per log chopped. 83 Experience is required to go from level 1 to level 2,
while reaching the maximum level of 99 requires 13,034,431 total experience [6]. The
experience required to level up increases exponentially - hence the drive for efficiency [6].
There are several combat skills that directly influence a player’s fighting ability. Quests
are often completed for the special items, new training methods, and experience rewards
they provide. They have skill requirements and often make use of combat in defeating
difficult bosses. And so even in this basic overview, the complexity of the interactions
and relations between different actions a player can perform becomes apparent.

Quesk Poinks: 100

Free Quests

Figure 1: Some relevant interfaces/images that play a central role in game play. The skill panel
(left) shows the player’s levels in the 23 skills along with their total level (Image slightly modified from
Ref. [5]). The combat skills, attack, strength, defence, ranged, prayer, magic, and health (in the middle
column), are respectively outlined in red. The quest panel (middle) shows the player’s quests that are
completed, in progress, and not started (green, yellow, and red, respectively. Image from Ref. [7]). A
character that a player would control in a 3D world is shown on the right.

To understand player decisions and optimize them, we will be mathematically mod-
eling the in-game mechanics. A surprising variety of mathematical concepts and tech-
niques will be encountered. Additionally, algorithms derived from computer science are
required to solve some of these problems. This serves as an exciting field to explore,
with some very interesting results and visuals. Some of the details require high level
mathematical solutions/descriptions. With the interest of being digestible by a broad
audience with varying proficiencies, many arduous solutions are moved to the appendix
at the end of each part.

This text accompanies several additional resources:
1. Python open-source codebase, OSRSmath: https://github.com/Palfore/0SRSmath.

2. Video Series, Optimizing Runescape: https://wuw.youtube.com/watch?v=7N9UJX70Z5I1&
1list=PLm3INE_scU5s8NQWmwOfxKtA_6SVxD0c7&ab_channel=Palfore.

3. Discord Chatroom: https://discord.gg/4SXcKQh

https://github.com/Palfore/OSRSmath
https://www.youtube.com/watch?v=7N9UJX70Z5I&list=PLm3INE_scU5s8NQWmw0fxKtA_6SVxDOc7&ab_channel=Palfore
https://www.youtube.com/watch?v=7N9UJX70Z5I&list=PLm3INE_scU5s8NQWmw0fxKtA_6SVxDOc7&ab_channel=Palfore
https://discord.gg/4SXcKQh

Part 1

(General

Chapter 1

Experience and Levels

The experience required to reach a level L is given by,

- pl Z V+300 : 2l/7JJ (1.1)

1

9L/T _ 91/7
2 — —
g (L L + 600 5177 — 1) (1.2)
The level of a skill with E experience is defined as:
L(E). (1.3)

No analytic form has been found for this equation, however it can be straightforwardly
evaluated by numerically inverting Eq. (1.1).

Part 11

Combat

List of Combat Related Terms and Associated Values

1. Combat Class: One of [melee, ranged, magic]
2. Attack Type: One of [stab, slash, crush, ranged, magic]
3. Combat Style: The name of the attack.

(a) For the melee combat class: One of [punch, kick, chop, hack, smash,
block, pound, pummel, slash, lunge, jab, swipe, fend, spike, impale,
reap, flick, lash, deflect, bash, focus, scorch]

(b) For the ranged combat class: One of [accurate, rapid, longrange, short
fuse, medium fuse, long fuse, flare]

(c) For the magic combat class: One of [spell, spell (defensive), blaze,
accurate, longrange|. The latter two only apply to Powered staves.

4. Attack Style:

(a) For the melee combat class: One of [accurate, aggressive, defensive, controlled]
(b) For the ranged combat class: One of [accurate, rapid, longrange]

(c) For the magic combat class: One of [standard, defensive]
5. Attack Speed: The number of ticks between attacks. Integer between 1 and 15.

6. Attack Interval: The number of second between attacks. Real number between
0.6s and 9s.

7. Attribute: When referring to an opponent/monster, their attribute is one of
[Demon, Draconic, Fiery, Kalphite, Leafy, Penance, Shade, Undead, Vampyre, Xerician].
In addition, we expand this to also include properties like: [0n slayer task, In wilderness|.

Chapter 1

Overview

In this chapter, we will discuss the various factors involved in combat. We will con-
sider combat in two stages. The first considers an autonomous fight in which the player
performs no actions once the initial conditions of the fight have been specified. An-
alyzing this system will allow us to calculate quantities like the expected number of
attacks required to defeat an opponent, and the probability of winning a fight. The
second considers active player decisions that occur during combat. This will allow us to
investigate the effect of performing actions on the aforementioned quantities. Policies
may be defined to mathematically model a player’s decision. As an example, a player
may use a healing item any time throughout a fight. To handle this, we can consider
a specific policy whereby the player will use a healing item when health is below some
threshold. Investigating this threshold will give us insight into how players should use
healing mechanics.

It is interesting to note that although the descriptions of in-game mechanics likely
have no real-world connections (since they are somewhat arbitrarily decided by the
game’s developers), the mathematics that can be applied to the dynamic variables re-
sulting from these mechanics can actually be applied and generalized to real-world set-
tings. We will begin with a discussion of the most relevant mechanics, however there
is an additional large body of information that can be found on the Official Wiki that
provides a greater overview.

1.1 Autonomous Mechanics

1.1.1 Combat Skills, Combat Triangle and Attack Styles

Combat is built around the so-called Combat Triangle which describes the relation be-
tween the three classes of combat in the game [3]. A Melee fighter makes use of close
quarters combat, typically wielding swords, daggers, halberds, etc. A Ranged fighter
makes use of bow and arrow, crossbows, and thrown objects to deal damage at a dis-
tance. Finally, a Mage will make use of staves and magical spells to do damage, also at
a distance. The combat triangle refers to the notation that melee users are (generally)
weak to magic, which is weak to ranged, which is weak to melee, and is depicted in
Fig. 1.1.
Some skills provide benefits to all fighters, while others are specific to the style:

1. Attack, L,: Increases the accuracy of a melee attacker.

2. Strength Lg: Increases the maximum damage a melee attacker can do in a single
attack.

10

https://oldschool.runescape.wiki/w/Combat

3. Ranged L,: Increases the accuracy and maximum damage of a ranged attacker.

4. Magic L,,: Most spells have a constant damage (with more powerful spells being
unlocked at higher levels), also some scale with magic level. Accuracy however
is generally increased with higher magic. In addition, defence against magical
attacks is partially determined by the player’s magic level.

5. Defence Lg: Decreases the probability that the opponent will have a sucessful
attack.

6. Prayer L,: Acts as a depleteable resource that can boost combat skills.

7. Hitpoints Lj: Increases the amount of damage a player can receive before they
lose a fight.

The set of all combat levels is denoted {L}.

Every weapon has a set of attack styles that allow a player to change which combat
skill they train. In addition, the attack style may provide a small bonus to combat.
Prayer is the only skill that cannot be trained directly through combat. Hitpoints is
another exception in that a proportion of the experience awarded to the skill associated
with the player’s attack style is given to hitpoints.

1.1.2 Equipment Bonuses

Let’s begin discussing a fighter’s equipment by defining an item, Z. Equipable items can
be worn in one of 11 slots. We let Z°'°" represent the item in a given slot, where

slot € {head, cape, neck, ammo, weapon, torso, shield, legs, hands, feet, ring}. (1.1)

Each item has some associated equipment bonuses. Most of these are constant, however
some bonuses are conditional. The constant bonuses can be represented as a vector:

Fslot

I: o= (Astaba Aslash; Acrusha Amagiw Aranged7 12)
Dstabu Dslash7 Dcrushu Dmagica Dranged7 (13
S’waS’r‘,Smapaw?r)' 1

There are many terms to define, so we will explain them here. A, D, and S refers
to the attack, defensive, and strength bonuses, respectively. The attack and defence
bonuses are associated with the different attack types, while the strength bonuses are
associated with the combat class [SEE LIST OF TERMS]. The first three attack and
defence bonuses listed are associated with melee combat, the last two are associated with
magic, and ranged, respectively. There is a strength bonus associated with each combat
class. In the order above we have: melee/warrior, ranged, then magic. The prayer
bonus, P affects how long bonuses from the prayer skill can last without recharging. w
is the weight of the item. Finally, if the item is a weapon, r is the attack rate given by
r =1/s, where s is the weapon attack speed. If it is not a weapon, r = 0. Note that we
use the rate since every other bonuses improves fighter ability. This allows us to use a
basic comparison operator (at the cost of using real numbers instead of integers).

The total constant equipment bonuses that a fighter has, F. is given as the sum over
all the slots,

E.= Y T (1.5)

slote{slots}

The in-game interface indicating these values is shown in Fig. 1.1. There are a number
of conditional effects that may not appear in this interface.

11

The conditional bonuses can be further divided into special/attribute bonuses and
equipment set bonuses. Monsters may have a particular weakness due to their so-called
attribute. For example, a Iron dragon would be dragonic, and dragonbane weapons
would provide an accuracy and damage multiplier. In this sense, we can consider these
bonuses to be dependent on information that the item itself does not know, and so we
represent these special bonuses as an operator Z,. When acting on a fighter’s environ-
ment £, these bonuses become concrete:

E, =1, (1.6)

Set effects are also similar except that they are conditional on equipment the player is
wearing. For this reason, (and the fact that there are other special cases), we group all
these effects into the special bonus operator, fs from above. The total bonuses from all
the player’s items can be represented as:

E=E.UE, (1.7)
= > IuZle, (1.8)

slot € {slots}

The definition of environment is intentionally vague, as there are a myriad of con-
ditions, essentially limited only by developer imagination and infrastructure. Some of
these conditions/dependencies include: attacker & opponent equipment & levels, at-
tack style (which implies combat class), whether a particular Diary is completed, the
attribute of the opponent, and so on. The elements and details of E, are also purpose-
fully vague, as there is an additional caveat that makes these a bit trickier to handle both
mathematically but more-so programatically. Unlike the constant bonuses, which can
be added together, special bonuses are generally multiplicative but also make use of in-
termediate flooring. This makes the special bonus operator non-commutative, since the
order does effect the rounding.! This means that a vector representing special bonuses
would essentially have as many elements as the number of special items! So it is often
easier to work on each bonus type with different methods. For this reason, special effects
and constant bonuses are treated independent, making the union above more symbolic
than practical.

1.1.3 Max Hits and Accuracy

Due to the large complexity and number of exceptions in the game, defining mathemat-
ical formulas for max hit and accuracy is very difficult/tedious. Instead, programming
is the language for this. If you want to learn more about how max hits and accuracies
are calculated see Ref. [9]. You can also view a python translation of that code in the
combat directory of the codebase accompanying this document.

1.1.4 Ticks and Attack Speed

At a fundamental level the entire game operates on a tick-based system. FEvery 0.6
seconds (called a tick) the game updates. This discretizes the possible game states,
and typically means we will be dealing with sums in place of integrals, and recursive
equations in place of differential equations.

Once an attacker begins combat with an opponent, the fight continues until either is
defeated, or one runs away. The attacks occur at an interval associated with the weapon.
Different weapons have different Attack Speeds, typically between 3-9 game ticks (1.8s

IThe specific ordering of the flooring operations is taken from ref. [bitter-dps calc]. Although, this
author is unsure if that ordering is arbitrary, but we assume not. [Reference max hit section?]

12

Equip Your Character...

Attack bonus

B
Defence bonus

Other bonuses

Figure 1.1: The attack styles (left), equipment slots and associated equipment bonuses (middle)
along with a depiction of the combat triangle (right). The attack styles for the Dragon Claws are
Chop, Slash, Lunge, Block and give experience specifically to Attack, Strength, shared, and Defence,
respectively. Shared means experience is split equally. In the equipment panel, the player is not wearing
any equipment which results in 0 bonuses for all attributes. Starting with the bottom left of the combat
triangle, a mage has advantage over the melee equipment typically worn by a melee fighter, a melee
warrior has an advantage over the equipment typically worn by a ranged fighter, and ditto for ranged
to mage.

- 5.4s). The attacker’s attack speed Als, is the number of ticks between attacks. On
each attack, the player’s accuracy will determine the probability of a successful hit. On
a successful hit, a number between 0 and the player’s maximum hit will be uniformly
sampled as the damage the player does.

A notable consequence of this tick-based system is that a series of precise player
actions known as tick-manipulation allows players to perform multiple actions in a single
tick, or to take advantage of mechanisms like tick-eating, allowing a player to survive
otherwise fatal attacks.

1.1.5 Summary

A fighter has some combat skill levels and will (typically) equip some armour and a
weapon. They will select an attack style, which selects the skill they will receive expe-
rience in, and which equipment bonuses plays a roll in the accuracy calculation. The
problem then reduces to considering an accuracy and maximum hit. Once a fight be-
gins, an attack occurs every couple of ticks. If the attack is successful, a uniform integer
between 0 and their max hit is delivered to the opponent, reducing their current hit
points. Once a fighter’s health reaches 0, the fight is over.

1.2 Agency & Decisions

The autonomous mechanics allow us to predict the outcome of a fight given that neither
the player nor the opponent can alter the game state. To describe more advanced
combat, like fighting bosses, players, or high-level monsters, we must consider the ability
of a fighter to perform actions. In the simplest incarnation, a fighter can be represented
as a vector containing five values:

F = (H,m,a,w,t), (1.9)

where H is the fighter’s current health, m is the max hit, a is the accuracy, w is the
weapon attack speed, and t is the tick counter. The tick counter in this context is
the number of ticks until the player can attack again. This ignores mechanics like
poison and attacks with non-standard damage distributions but acts as a good base.
More complex interactions would require increasing the number of considerations. For

13

a fight that involves two combatants F 1 and ﬁg, the game state can be represented as a
concatenation of the two fighters:

G=F aF,. (1.10)

1.2.1 Actions

In general, we consider a model M (this may be a computation algorithm, or a human
brain) that aims to maximize certain objectives, like the probability of winning a fight.
On each game tick, this model would consider the game state and produce a set of

actions to perform, X
MG = D. (1.11)

To provide a concrete representation of this decision vector, we consider that each el-
ement corresponds to an action. The value of an element could be taken to be the
confidence in performing that action. A natural representation would be letting each
confidence be a real number € [—1, 1], where values above 0 would result in that action
being performed. These confidences are converted to actions through a sort of look up
operator, /l,

AD = 4. (1.12)

which act on the game state to generate the next state.
0G, = Gri1, (1.13)

where now a subscript n is used to denote the turn number.
There are several different actions that are possible, and several may occur on the
same game tick.

1. Attack: A, — if Ff =0: F} — F*, Fff — D(F, F®),
2. Tick-Down: Ty — if F{ #0: Ff — Ff —1,

where D is the damage distribution function.
As an example, if both fighters decide to attack, then the game state would change
as follows:
T\ T A AyGy = Gryr. (1.14)

We will make the assumption that all actions are processed on the previous game state,
i.e. the ordering of actions doesn’t matter since they all act directly on G,,:

A1 ASG, = AA\G,,. (1.15)

If we consider that the game state after n turns depends on the models of both
fighters, then a reasonable objective for the first fighter is:

arg minn | F2H(G7AZI1’M2) = O7F1H(G7A3[1’M2) >0V M. (1.16)
My

In other words, the player is trying to find the model (decision-making scheme) that
minimizes the number of turns for the second fighter’s health to reach 0 while they
stay alive, for an arbitrary opponent model. What I think is amazing is that, this is
the equation that every single player is trying to solve heuristically when they battle.
They almost certainly don’t think about it, but they are, in essence, trying to solve this
mathematical problem.

14

1.2.2 Machine Learning

For humans, these decisions making skills can be incredibly quick and precise [cite high-
level tri-briding or something]. The ingenious ways that players have been able to take
advantage of the game mechanics to develop a wide range of interesting behavior is
really fascinating. The intricacies and reactions involved result in numerous interesting
approaches to combat:

1. Pures:
2. 1-Iteming
Hybriding

-~ W

Tri-bridding

o

Dwh Pure
Tick-Eating

Poison

® N>

Kiting

In addition, there have been many technical feats that take advantage of intricate me-
chanics to win impressive challenges under heavy restrictions:

1. The succession of Combat Level [59, 40, 25, 13, 9, 4,] and ultimately 3 (the lowest
possible) Fire Capes.

2. No-iteming Corp

To study these solutions, and to gain insight into the decisions that players make,
we aim to make use of machine learning techniques to solve this complex problem.
Assuming that the networks will be able to find similar solutions to these problems as
the humans, it would be fascinating to formally describe what the players are processing
and what features they consider when they react in certain ways. Without delving into
the details, we will be employing feed-forward neural networks as the model which will
be optimized to solve this problem. This will required the use of reinforcement learning
techniques since exact solutions (the optimal set of decisions in a fight) is not known for
any cases and would not be able to be generated in general. [the optimiZatino of this
ishard |

1.2.3 Genetic Algorithm

15

Chapter 2

Models

This chapter presents an assortment of approaches that have been used to attempt to
model combat. Ultimately, these are all approximations. Thankfully, an exact solution
can be found through a Markov Chain analysis, which will be presented in the next
chapter. The models here vary in how they handle overkill and they will be presented
roughly in order of increasing complexity. They operate under the following assumptions:

1. A successful attack is uniformly distributed between [0, M] (noting there are M +1
integers in this range).

2. An attack is successful with the probability a € [0, 1], which is the attacker’s
accuracy.

3. The defender starts at a health hg.
4. Attacks occur every T4 seconds.
5. No special attacks, or weapon switches are considered.

6. The first attack occurs at time, ¢ = 0 or attack number n = 0 depending on
context.

7. If health regeneration is considered, it occurs every 7)., and heals one health. The
first regeneration will occur as a uniform random variable at t ~ U[0, T}].

There are two relevant quantities that will be calculated for each model: time to health,
and health after time.
There are some basic results we can already state:

1. The number of attack attempts is simply a times the number of successful attacks.
2. The time taken for n attacks is simply nTy4.

Only the last model will discuss health regeneration, and it will take a non-regeneration
model as input so it applies generally. Finally, a comparison between the different models
will be performed.

16

2.1 Crude Model

2.1.1 Health after n attacks

This model does not consider overkill and as a result is very straight forward. The
average damage per successful attack is,

1 &
<D>:M+1;z (2.1)
1

MLM;"{; (2.2)

(2.3)

M'ii

After each attack, the health will lower by this amount, recursively this allows us to
state:

hpt1 = hyp — (D), ho = Initial Health. (2.4)
In this case the health after n successful attacks is:
M
M
hn = h’O — ’]’L? . (2.6)

2.1.2 Attacks until 4 health

This equation can be inverted to give the number of turns to a given health,

2

Both of these can be calculated in O(1) time.

2.2 Average

2.2.1 Average Damage

Nukelawe presents a derivation that gives the average damage per hit over the opponent’s
life to be. This means a contribution from the overkill region and a contribution from
the normal region. This averaging acts as an approximation since adds each hit in the
overkill region, however in reality only a couple hits during a fight would occur here.
With this, the average damage on a hit is given by:

(DM = }% (;(M +ho+1) — %(Qy + 1)) , (2.8)

where y = min(hg, M). Since this is an average over the length of a fight, it means that
we cannot determine the health after a given number of terms for this model.

17

https://imgur.com/aykEahg

2.2.2 Attacks to kill

Since we know the average damage over the whole fight, we can calculate the number
of attacks to kill simply by,

ho

") (2.9)
_ h3(M +1) 6
= z(y +1) (BM +3ho+3—4y —2)) (2.10)
— 6hg(M + 1)

" y(y +1) (3]\2/+3h0 —dy+1)) (2.11)

This can be calculated in O(1) time.

2.3 Recursive Model

2.3.1 Expected Damage per Hit

The Crude model made the assumption that the player can always hit up to their max
hit. This is not the case if the opponent has less health, A than the maximum hit.

h+1 M—h

0 h M

Considering this, we could hit every integer below h each with a probability of 1/(M+1),
and we could hit exactly h (since we’re considering hits capped by h) with a probability
of (M — h)/(M + 1). Averaging the expectations gives,

h
1 . M—h
(Dyh<mr = M*HEH s (2.12)
1 hh+1) M-—h
= 2.1
Myio2 o Tarrit (2.13)
h2M —h+1
= 2.14
2 M+1 ()
h M—h
_2(1+M+1> (2.15)
h h+1
=—12- 2.1
> (2= 3r5) 210
Overall then, our expected damage on a successful hit is:
D 1M ifh>M 517
=5 n(2-4y) ifh<M (@17)

This is plotted in Fig. 2.1. The Nukelawe model averages over these contributions
for the overall (i.e. not piecewise) expected hit, assuming each starting health is equally

18

Average Damage

0 0

Figure 2.1: The average damage of an attack with a maximum hit of M on an opponent with h health.
The black line is the piecewise boundary.

likely. This isn’t totally accurate, regardless, it is good to check that our equations agree
under this assumption:

<D overall = D>h<M+ h>M> (218)
! + > (D (2.19)
h h<M h>M .

h<M h>M
1 ' n n+1
=— S (2- 2.2
(2 Ferie-at) ew
n=M+1 n=1
yiy+1) (1 1
= BT (S 1) - ~(2y+1 2.21
S (2< Fhot 1) Ley), (221)

where y = min(M, hg). The last step is actually quite tricky and involved to show. For
that reason it can be found in Appendix B. This agrees with Nukelawe’s findings.

2.3.2 Health after n attacks

Despite the above being an “average”, it is not the average damage expected per hit
over the life time of an opponent since certain healths are much more likely to appear
than others. As an example, suppose there is an opponent with 100 health fighting an
attacker with a max hit of 30. On the first hit, the most likely health is 85. This means
that unlike the above calculation, each hit is not equally likely. Particularly, this over
estimates the contribution in the overkill region, since (depending on the circumstances)
let’s say 1 or 2 hits is expected per kill. Those 1 or 2 hits are more likely to occur at
specific h values, but the average sums across all h equally. In the non-overkill region,
this has no impact due to it being constant. The proper treatment is to use the piecewise

19

damage expectation in the recursive definition:

1{M if by, > M

2 hn(Q—gg—ﬂ) if by, < M.

Pyt = b — (2.22)

This however is too cumbersome to handle at once. Since the health is a decreasing
monotonic function, we can consider it in two parts. While h is above or equal to M
the solution to the above is the same as the Crude model’s,

M
hn = ho = n—-. (2.23)

The solution to the other is a bit more complex. After a certain number of iterations
the health will drop below M and the second case above will kick in. We’ll say this
occurs after L iterations (noting that this average quantity can be a non-integer),

M
M > hy — L? (2.24)
2
—(hg—M)< L 2.2
= (ho — M) < (2.25)
ho
L=2(—-1). 2.2
= < i > (2.26)
Now the expected health that the second condition starts at is given by,
ho M
=hy—2(——-1]— 2.2
) =to-2 (55 -1) 3 (227)
=M. (2.28)

Thus the second case is expected to starts on iteration L with an initial health of M.
For simplicity, we will define m = n — L. Returning to our recursive function,

hm hp + 1
hm+1_hm_2<2_ M—I—l) (2.29)

hop b + 1
—hm—hm—ﬁ-? M1 (2.30)

h2 + h,

=_m ™ 2.31
2(M +1) (2.31)
hm1 = Y(hiy + i), (2.32)

where v = 1/2(M + 1). This type of recurrence relation is called a Quadratic Map, and
unfortunately it has no closed form solution in general. For the sake of completeness,
we will call the solution to Eq. 2.32 f(m; M, fy). At this point we'’re left with,

hg — %nM elseif n < L

2.33
fln—L;M,M) otherwise. ()

h(n; hg, M) = {

In general, we are more interested in the number of iterations that is required to kill

an opponent which is the inverse of this function, n = h=1(h; hg, M). However, since the

recurrence relation cannot be solved analytically, we cannot obtain a general expression

for this. We could numerically compute this result. However remember that we are

dealing with expectation values or averages. This means it is totally possible for the

inverted function to say “The opponents health will be 18 in 4.5 iterations, on average”.

This is a problem because our recursive equation can only increment the iteration by

one (and we can only start at fy)! In the next section, we will look at an approximation
that will allow us to handle non-integer expectations.

20

http://mathworld.wolfram.com/QuadraticMap.html

Approximate Solution

Despite not being able to find a closed-form solution for Eq. 2.32, we can look for
approximate solutions. Although it’s rare, there are a few quadratic recurrence relations
that do have solutions. There are two relevant cases, ones where a constant term is
introduced, or ones where the linear term is removed. Since increasing n (and therefore
iterations) results in smaller and smaller h,, it suggests that adding constant terms will
heavily skew the results in this region. Removing the linear term is still not ideal since
its contribution increases relative to the quadratic term, in the low h,, limit (when this
recursive case is required). However this should be less significant and we’ll find that it
does pretty well! If this justification does not satisfy you, please check out Appendix A.
With this approximation, our recursive relation becomes,

Byt = Yh2,. (2.34)

Starting with hg = M, and looking at a few terms reveals,

hy =~y M? (2.35)
hy = y'h3 (2.36)
=142 M (22 (2.37)
hs =~y'h3 (2.38)
— 717274M(2~2-2) (239)
= iy = im0 22" (2.40)
=~ (2.41)
1 m

= ;(VM)Q (2.42)

1/1 2
hm—,y<2—’Y> (2.43)

This equation is not only a closed form expression, but it can also be inverted!

log,(logs_ (Vhm)) = m. (2.44)

This equation asymptotically reaches 0, but the opponent dying occurs when h,, drops
below 1 yielding an average kill on iteration,

logy(log _, (7)) = m. (2.45)

How can we make use of this approximation to improve our more accurate calcula-
tion? Remember that we are trying to solve the issue of non-integer iterations. Instead
of beginning on iteration 0 for the iterative procedure, we can start m at any real num-
ber in (0, 1), and iterate upwards on that. For example to get the health at iteration
4.87, we could use our analytic approximation to calculate 0.87 (which uses one approx-
imation), then iterate 4 times using the correct equation to get to the final result. So
this defines our new best approximation,

ho — $nM ifn<L
n—1L
h(n; ho, M) = { L (5 —)° ifn—L<1 (2.46)
n—1L
f (n — L;M,% (% — 7)2) otherwise
1 ho
where, ~y ST+ 1) an (M)

21

2.3.3 Attacks until h health

To solve for when the opponents health drops below one, n = h~1(1), we must use a
numerical root finding algorithm to solve for the zero of (1 — h(n)). It is possible that
h=1(1/2) is more representative of death than h=!(1). However, empirically, using 1 is
in better agreement with simulation.

The time complexity can be approximated using Eq. 2.44:

O = logy(log _ (vh)) (2.47)
x log (W) (2.48)
o) v
— loglog (7};) ~loglog(2) (2.50)
~ loglog (;n> (2.51)

2
~ log log (hm> . (2.52)
m

Here, is used to signal a multiplicative factor was ignored, and ~ is used to signal an
additive factor was ignored. In the first line the change of base formula was used, and
the factor log(2) was ignored. In the second line, 1/2 — v & 1/2 was used. This leaves
us with O(loglog(2m/h)) evaluations required, which is practically constant. However,
the number of evaluations for the numerical inversion depends on the implementation.
In practice, at most 30 evaluations are required.

2.4 Approximately Analytic Recursion

2.4.1 Health after n attacks

We can simplify the Recursive model by extending the approximation to all n > L:

ho — %nM if n < L
h(TL, h07 M) = 1 /1 gn—L . (253)
5 (5 — 7) otherwise.

2.4.2 Attacks until h health

This is useful because it can be inverted analytically:

(ho — h) % if h > M

. 2.54
log,(log1_,(vh)) otherwise (2:54)

n(h; ho, M) = {

These can be evaluated in O(1) time.

2.5 Health Regeneration

This is a method that considers health regeneration as piecewise averages. We start
with one of our models which can give the health of the opponent after n total attacks,

22

1
2
3
4
5

h(n;a, M, hg) (without regeneration). Based on the weapon attack interval, T4, we
can convert to seconds through ¢ = nT4. This leaves us with h(t/Ta;a, M, hg). These
equations cannot solve health regeneration since the health no longer decreases mono-
tonically, and as a result the cases cannot be separated. Let’s roll with this restriction
and solve the problem within a window where the opponent does not heal. First we
will make the assumption that the first regeneration occurs at ¢ = Tg, which is the
time between regenerations. We will later remove this restriction by averaging the first
regeneration over t € [1,Tg]. To reduce clutter, let’s remove some explicit parameters
and redefine h as h(t, hg). The health just before the opponent heals is

hy = h(Tr, ho), (2.55)

which is the health after T seconds starting from some initial health hg. Immediately
after, the opponent will heal by +1 health,

hy = h(TR, ho) + 1. (256)

Iterating again:
he = h(Tg,h1) + 1 (2.57)
= h(Tr,h(Tr, ho) + 1) + 1. (2.58)

Letting, f(z) = h(Tg,x) to, again, reduce clutter and iterating again yields,

hs = f(hs) + 1 (2.59)
= f(f(h1) +1) +1 (2.60)
= F(f(f(ho) + 1) +1) + 1. (2.61)

In general this gives us an iterated function,
h = g°™ (ho), (2.62)

where m is the number of regeneration periods, and g(x) = f(z) + 1. As an example of
the function composition, for m = 2 the above expands to:

9% (x) = (g0 9)(z) = g(g(x)) (2.63)
= f(f(x)+ 1)+ 1 (2.64)

This is great but this process doesn’t continue indefinitely since the opponent will even-
tually die. There is a health, h* after which, the opponent will not be able to heal.
Starting at a health of zero, we can determine how much health the player had Tx
seconds ago,

h* = h(—Tg, ho = 0) (2.65)

Let’s summarize. The opponent starts at hg health. They will not heal after h*. The
time taken to die is equal to the number of healing cycles until they drop below h*. Plus
the time it takes to get from that remaining health (not necessarily h*) to 0. Pseudocode
for this is given below, where health_after and time_to_kill are both non-regen
functions. Parameters like accuracy and max hit are omitted.

def time_to_kill_regen (h_0):
h = ho

t =20

h* = health_after(—Tgr, 0)

while h > h*:

23

6 h = health_after (Tg, h) + 1

(t += TR
8| return t + time_to_kill (h)

Now consider the initial condition. We assumed that the first regeneration occurred
at Tr. However, it is a discrete (due to game ticks) uniform random variable distributed
between t, ~ U[1,Tg]. If a tick occurs every 7 seconds, then there are Tr/7T game ticks
before a heal.

hy = h(t,, ho) (2.66)

ho = h(TR, h(t,.7 ho) + 1) (267)

hs = h(Tr, M(Tg, h(t,, ho) + 1) + 1) (2.68)

hy = (ho (x +1))°" " (Tg, h(t,, ho)) (2.69)
Tr/T

(hn) = Tr Z (ho (x4 1)°" " (Tr, h(it, ho)) (2.70)

Now this has to be numerically inverted to give the time to kill.

2.6 Comparisons

We will only be comparing “turns to kill” since “turns to a given health” is only pos-
sible with some models. In addition, since the health regeneration case adds additional
complexities for expectedly minor improvements, it also won’t be considered here.

The combat is actually simple to simulate, however because it is a stochastic process
that converges slowly getting high precision results is difficult this way. Regardless it
can be done over the course of hours or days depending on the desired precision level.
Our models can then be compared to these numerically simulated fights as is done in
Fig. (2.3). Regardless of the model, the turns to kill grows quickly when the max hit
is low compared to the initial health of the opponent as shown in Fig. 2.2. By visual
inspection, the time appears to scale roughly linearly with the health of the opponent,
and exponentially with decreasing max hits.

Looking closer at the graphs, the deviations between different models becomes more
apparent. We can investigate this further by comparing the error between the models’
predictions and the simulation. Figure 2.3 shows a wide variation in performance across
these models. Most notably, the crude model performs the worst overall. Both the
average and recursive methods have high error peaks, but otherwise do quite well. The
Markov Chain model performs essentially perfectly, with it’s approximation not falling
far behind. Some statistics about the models are shown in Table 2.1. Notably, the
Markov Chain model has a significantly lower average error, standard deviation, and
maximum error than all other models.

Model \ Average Standard Deviation Maximum Minimum
Crude 18.14 18.54 98.20 1.75e-04
Average 10.29 17.92 73.00 8.85e-06
MarkovChain 0.06 0.06 0.62 7.35e-07
MarkovChainApprox 1.56 4.82 32.73 7.35e-07

Table 2.1: Error statistics for various models.

Finally, one more interesting comparison to make is seeing which models perform
best in which regions. Figure 2.4 shows a heatmap depicting which models perform the

24

Turns to kill
Turns to kill

100 200 ho

Figure 2.2: The number of successful turns to kill an opponent that has hg health, given that the
attacker’s max hit is M. The MarkovChain (hot colors) and Crude (cool colors) methods are shown.
However, due to the scale of the left plot they are indistinguishable. The right plot shows a smaller
region which allows for a comparison.

best in which regions. There are several interesting trends that emerge (although their
explanations are unknown but likely arbitrary). The comparison between all the models
are done in three stages: first the crude, average, and recursive model are compared,
then the Markov Chain Approximation is added, and finally all 5 models are compared.
This is done since the Markov Chain models dominate, which would prevent us some
seeing how the simpler models relate. The Crude model only makes an appearance when
M = 1 since overkill plays no role here and all models agree. The arbitrary ordering
of evaluations places the Crude model first (but all models are equally valid here). In
the first plot, we see that Average dominates the majority of the domain. However
this is slightly mis-leading as the improvement over the Recursive model here is small,
whereas in the region where the Recursive model dominates the improvement is substan-
tial. Perhaps a better visualization would interpolate the colors depending on relative
improvement. Regardless, in the next plot the Markov Chain Approximation quickly
dominates essentially the whole domain. Finally, the last plot shows a battle between
both Markov Chain models. However, there are a few details to note here. First there
is a “cut-out” region at low max hits for which the Markov Chain model could not be
evaluated due to numerical overflow in its current implementation. Second, it is strange
that the approximation performs similarly well throughout and shares roughly equal do-
main (although this may be due to simply being such similar estimates). What makes
this even more strange though is that a pattern emerges, in which the approximation
seems to dominate at angles in the domain i.e. lines with slopes that are multiples of
ho/M. There is no current explanation for this.

25

= Recursive

Crude

Average

= MarkovChain

= MarkovChainApprox

100

80

T
\\\\\\\\\\\\\\\\\ \

i
AR \\\
R

i

60

AMAN \\ \

NN ARARRERARE Y

Percent Error \§&§§“&“\\‘ t\‘u\
40 ’“ﬁﬁ‘ﬁ‘“‘&

20

60)
wax W

Init:
Nitia| Health 250 100

Figure 2.3: A comparison between different models. The percent relative error with respect to the
simulations are shown.

250
200
150
(=]
Ry
100
50
0
0 60 80
M
Crude Average Recursive MCApprox MC

Figure 2.4: The model which agrees best with simulation, for different initial healths, and maximum
hits. The final plot shows a comparison which includes all models. Since the MarkovChain (MC)
models have very low errors, they occlude the other details. So, the other plots only include a subset of
models. The leftmost only shows Crude, Average, and Recursive. The middle plot additionally includes
MarkovChainApprox (MCApprox). Several interesting trends are discussed in the main body.

26

Chapter 3

Markov Chain Solutions

3.1 Damage Distributions

Under standard conditions, an attacker’s damage distribution, given by {¢;} is a uniform
distribution from 1 to their max hit with some additional weighting on 0 due to accuracy.
This can be generalized to arbitrary probability distributions, allowing consideration of
special equipment (like Keras, Verac’s, etc.) as well as combining distributions in the
case of multiple opponents/attacks. To describe this, we define the following terms:

¢; is the probability of doing 7 damage (3.1)
o is the probability of doing zero damage (3.2)
¢y = 1 — ¢g is the probability of doing damage (3.3)
m is the largest non-zero probability from ¢; (3.4)

No healing allowed. (3.5)

3.2 Recursive Equation

In one attack, the opponent can be brought to a given health ¢, from their initial health
h according to the transition probability, [10]

7TM{P(X:h—z) if i >0 36)

P(X > h) if i =0.

27

The probability they are killed in L turns can be given by the sum of the probabilities
the opponent was brought to ¢, then killed in L — 1 turns:

Py = Zﬁh,iPz',Lq (3.7)
i=0
h—1 9]
= mp0Poz 1 + TP+ Z ThibiL—1+ Z Th,ils, -1 (3.8)
i=1 i=h+1
=cobPpr—1+ Zﬂ'h,ipi,L—l + Z s (3.9)
i—1 i
h—1
Py =coPpr—1+ Z ch—iPi -1 (3.10)
i=max(h—m,1)
(3.11)

where in the second line, the ¢ = 0, h terms are explicitly considered, and the remaining
sum is split in two. In the third line, 7 ; would correspond to healing which we are
taking to be zero. In the final line, we get the lower bound by considering that

1<i<h-1 = mp,;=cp_;if 1 <h—i<m otherwise 0, (3.12)
— 1<h—dand h—i<m (3.13)
i<h—land h—m <. (3.14)

Since the first condition is already met, we have that ¢ > h — m, but ¢ also cannot be
below 1, hence i > max(h —m, 1).

3.3 Solution

The recursive equation to solve is:

Punp = coPnp-1+ Z ch-iPipr—1, L>2,h>1 (3.15)
ic€ly

(3.16)

where Ij, is the set of integers satisfying h — 1 > ¢ > max(h — m,1). The boundary
conditions are given by:

m
P = Z ¢; (P of doing more than h damage) (3.17)
i=h

=60(m —h) i ¢ (3.18)
i=h

P = c+c£71 (P of missing L — 1 times, then hitting any damage (3.19)
P 1 = c; (P of doing any damage) (3.20)

28

Using a generating function:

gz, y) =Y > Pury'z" (3.21)
h=1L=1
(oo}
Puay"z + Z Ph,Lyh$L> (3.22)
h=1 L=2

I
NE
Tj P

h1Y x-f—zzph ryat (3.23)

||P”18

h=1L=2
P S P S (py . zph,Lyth> (524
h=2 L=2 h=2
fzypnﬂzphly +zmyz S Pyt (3.25)
L=2 h=2
—a:yP11—|—xZPh1y —|—yZP1La: +ZZPhLyx (3.26)
L=2 h=

These are the boundaries of a grid (corner + top + left) plus a sum over the interior.

3.3.1 Interior

Let’s first tackle the interior:

co oo co oo
Z Z Ph,LthjL — Z Z (COPh,L—l + Z Ch—iP@L_l) th’L (327)

L=2h=2 L=2h=2 i€lp
= Z Z CoPh’L,fyhl’L + Z Z Z Ch,iPi’Lflyhl‘L (328)
L=2h=2 L=2h=21i€ly,
I(z,y) = G(z,y) + R(z,y). (3:29)

Let us also tackle this individually, starting with the G term:

z,y) = Z Z coPur—1y"a" = co Z Z Py zt ! (3.30)
L=2h=2 L=1h=2
= cox Z Z P ry"zt (3.31)
L=1h=2

= coT Z (Z P, Ly zt — P ryx) (3.32)
= cox i i Lyth — cozy Z PLLZ‘L (3.33)
L=1h=1

L=1

= coxg(z,y) — coxy Z Py a2t (3.34)
L=1

(3.35)

For R, we will first need a term that tells us whether h is in the set I, i.e. does h
satisfy h — 1 >= max(m — h,1)? You will actually see that we need the more general

29

h —1>=max(m —h+mn,1). We will call this condition d;, , which is 1 if satisfied and
0 otherwise. Empirically, this can be expressed as:

0 ifh=1
rh=140 ifn>m (3.36)
1 otherwise

Since h >= 2,

1 ifn<
noo— g = nn=m (3.37)
’ 0 otherwise

Now solving R(x,y) = .70 > peo D ses Ch—iPiL—1y"z! gives:

oo oo h—1
R(z,y) = Z Z Z ch—iPy L1y " (3.38)

L=2 h=2j=max(h—m,1)

0o o0 h—1
=z Z Z Z ch,iPi)LyhacL (3.39)

L=1 h=2i=max(h—m,1)

co o h
Ty Z Z Z ch_iPi,Lyha:L (3.40)

L=1 h=1i=max(h—m+1,1)

oo oo h—1
=zxy Z Z coPh’LJ}n + Z ch—iPi 1 yh:cL (3.41)
L=1h=1 i=max(h—m-+1,1)

0o o0 oo 00 h—1
= coxy Z Z thL:er(S,ln + zy Z Z Z ch_,-Pi,Lyth (3.42)
L=1h=1 L=1h=1i=max(h—m+1,1)

(3.43)

This part is outdated/incomplete, each y should have a ¢. Notice that the h = 1 term

30

in the second set of sums yields 0.

0o oo h—1
= coxyg(x,y)oh + 2y Y > > ch-iPipyz" (3.44)
L=1h=2 i*max(h—m-&-l,l)
= coryg(x,y)or + xy* Z Z Z ch—iP;pyla" (3.45)
L=1 h=1i=max(h—m+2,1)
0o o h
= cozyg(z,y)oi + xy? Z Z Z choiPip | yat (3.46)
L=1h=1 \i=max(h—m+2,1)
0o o h
= coryg(e,y)0h +2y* Y > | Pordl, + >, A (3.47)
L=1h=1 i=max(h—m+2,1)

o0 o0
= coryg(x, y)é}b + zy Z Z L5 + cypxy? Z Z Z ch_iP,-,Lyth
L_

=1h=1 L=1 h=1i=max(h—m+2,1)
(3.48)

h
= cozyg(z,y)oi + xy’g(z,y)02%, + xy Z Z Z chiPypy"at (3.49)
L=1 h=1i=max(h—m+2,1)

(3.50)

These series continues until the ‘engine’ producing terms has no more. The number of
terms in this series is given by the maximum n that is non-zero:

arg maxd,, = m, (3.51)
and so,
R(z,y) = zg(z,y) Y i’ (3.52)
i=1

Now let’s combine everything:

g(z,y) =zyPri1 +x Z Puay" +y Z Py pz" + cozg(a,y) — coxy Z Py pat + zg(x,y) Z iy’

h=2 L=2 L=1 i=1
(3.53)
=xybPy +x Z Puay + (y Z Py pa® — cozy Z Pl,LiﬂL) +2g(z,y) Z ciy'
h=2 L=2 =1 =0
(3.54)
o oo (o) m)
=z Z Py +y Pyt —c Z P1,LIL+1> +zg(z,y) Z iy’ (3.55)
h=1 —2 =1 =0

= $ZPh,1yh +y

(>
L=
(Z PLLCCL —Cp Z Pl’L1$L> + acg(m, y) Z Ciyi (356)

=0

:xZPh,lyh—i-yZ (P1 P —coP1 - 1):E +zg(x,y) chy (3.57)
L=2

31

Here, we will make a simplifying assumption that
Py ot =coPip 1, L>2 (3.58)

which is the condition that [killing an opponent] in L turns is done by missing once
then killing them in L — 1 turns. This does not hold if healing is allowed. Under this
assumption we are left with:

[ee] m
glx,y) =2y Puay" +ag(z,y)) iy’ (3.59)
h=1 =0
9(z,y) — 29(z,9) > ey’ =x > Pury” (3.60)
=0 h=1
9(z,y) [1 —xzciyi] = xZPthh (3.61)
=0 h=1

xz ZhOOZI Ph’lyh

T,y) = 7 - 3.62
9(z,y) = 1 Y (3.62)
To simplify, let’s define:
T(z) = Z Py = Z thy" (3.63)
h=1 h=1
B(y) =) ey, (3.64)
i=0
Now g(x,y) can be written as,
__*T(y)
3.3.2 Obtaining Power Series
Let us start with:
1 oo
— = Bfy)* 3.66
L) (369
(3.67)
We need to workout B¥(y):
k
B*(y) = | > ey’ (3.68)
j=0
km)
= Z by, (3.69)
j=0

where df is the j’th element of the k’th convolution of ¢, which doesn’t have an analytic
form. In practice the numpy function numpy.polynomial.polynomial.polypow can be

32

used to compute this. Then,

oo [km
=2 |2y
=0

=0

>~

ll

=0

oo [km
> |2y |
_j:()

(—

k—1)m
S diy
j=0

Multiplying by T'(y) re-obtains our generating function:

i

k=1

~ (k—=1)m

g(z,y) = 1—T§/()y)x =T(y) Z jZO df_ly]xk

m oo
Sy
i=1 k=1 ;=0
m oo (k—1)m
SIS
k=1 | =1
This identity (visual proof omitted):
N M N+M min(p,N)
DD iy =3 X |V
i=1 j=0 p=1 |j=max(l,p—M)

with N - m, M — (k—1)m,a;; — tidjf_l can be used to obtain:

oo km min(p,m)

CRIEDID > tidy—; | ¥

k=1p=1 | j=max(1l,p—(k—1)m) i

oo Lm [min(h,m)

35 01 I SR P

L=1p=1 [j=max(1,h—mL+m)

[SSINe) min(h,m)
=> > |0(Lm—h) > tidi ;| y'a*
L=1p=1 j=max(l,h—mL+m)

where 0(x) is the Heaviside function. Extracting out P, 1, we get,

min(h,m)
Ph. = 0(Lm — h) > tydy =]
j=max(1,h+m—mL)

33

(3.70)

(3.71)

(3.72)

(3.73)

(3.74)

(3.75)

(3.76)

(3.77)

(3.78)

(3.79)

(3.80)

(3.81)

(3.82)

And so we end with:

min(h,m)
o Pup=0(Lm—h) > Pjady”] (3.83)

j=max(1,h+m—mL)

This describes the probability that an opponent with h health is killing on the L’th
attack, given some boundary conditions (assuming there is no healing).
3.3.3 Applying Boundary Conditions

Those boundary conditions depend on the damage distribution. For an arbitrary distri-
bution characterized by ¢;, i € [1,m],

Pii=> a (3.84)
i=j

which gives,

min(h,m)

Py = 60(Lm — h) > > edy). (3.85)

j=max(1l,h+m—mL) 1=j

The above work has determined the probability of defeating an opponent after L
attacks. However, more applications open up if the probability of bringing an opponent
from h health to f health after L attacks is known. This is given as

Pl (3.86)

for which the solution has not yet been determined. To carry this out, the derivation in
this chapter needs to be modified.

3.4 Fight Outcomes

To determine the outcome of a fight, we have to consider how the attacker and defender’s
attacks interplay. Let’s define the first tick in a fight as ¢ = 0. Then, the attacker may
have some initial delay, A1, while attacking every w; ticks. Then, the attacker makes
an attack on the following ticks:

T = {wli + Aq |0 <1< Tlmax}. (387)

where T/2* is introduced as a cut-off where P1(t) < eVt > T2 to avoid summing to
infinity. Similarly, for the defender:

Ty = {wi+ Az |0 < i < TP} (3.88)

Then the probability of winning can be given by:

Pyin=Y_ > PP} (3.89)

teT, TeT
T>t

(3.90)

34

Chapter 4
Optimizing Player Equipment

In Section 1.1.2 we discussed the basic formulation of equipment bonuses. In this chap-
ter, we will be interested in optimizing the player’s choice of equipment to maximize
some metric. Some examples of these metrics would be combat experience per hour,
number of kills per hour, probability of winning, and so. Since the goal of the player
may vary heavily, we aim to produce a general framework that can maximize arbitrary
objective functions.

There are a large number of items that a player can equip in each slot, typically
ranging from 10-100 considerations. Exhaustively considering each possible combination
of equipment would result in roughly 10'° to 100'° possible sets. It is obvious then, that
brute force would not work. We aim to reduce the number of possible equipments
loadouts, £ that we must consider. A loadout is simply the set of equipment that a
fighter is wearing:

L = {I4ot | slot € slots}. (4.1)

To do this, we will reduce redundant equipment choices for each slot such that we end
with a set of possibly optimal loadouts. The only way to determine which of those is
the actual optimal solution, £* is to numerically evaluate the value of the objective, f,
for each possibly optimal loadout. This defines our optimization problem as:

L* < argmin f(L). (4.2)
Le{L}

So we will begin by reducing the size of the set {L}.

4.1 The Projection Vector

Different optimization problems require different information about the player’s equip-
ment. For example, when straightforwardly optimizing pure damage output (typically
measured in kills per hour), the defensive bonuses of the player are irrelevant. By
contrast, trying to maximize the probability of killing an opponent would require con-
sideration of those defensive bonuses. Furthermore, a fighter only attacks with one
attack style at a time. So clearly, not all bonuses are required for every optimization.
For this reason, we introduce a projection vector, p, that will select the bonuses that
matter. Recall that our bonuses are divided into two groups: constant bonuses, and
special bonuses. In Section 1.1.2, we discussed how we treat special bonuses differently.
So we will ignore them for now, and focus on the constant bonuses, fﬁl‘)t. To select
out the desired bonuses, we make p’ the same length as fﬁlOt so that each element in p’

35

corresponds to an equipment bonus. We can do so-called one-hot encoding, where we
set elements to either 0 or 1 depending on whether the corresponding equipment bonus
should be considered.

An element-wise multiplication (also known as a Hadamard product) of these two
vectors, f;l‘jt ©® p contains the bonuses of the item that we want, and 0’s for bonuses
we don’t want to consider. To compare different items we need to define a comparison
operator, C(-,-) such that:

1if 3i e [1,n] | (59 © 5); > (slot@@l

| (4.3)
0 otherwise,

C(Isl?t,ISIOt,ﬁ) _ {

where n is the number of bonuses for an item can have, and (-); represents the i’th
bonus. By simply comparing the individual item bonuses, this term indicates whether
some item, Iblot provides some advantage over another, Ibl"t. If a given item doesn’t
provide some advantage over any other item then it doesn’ t need to be included in the
set of equipment to consider. Note that C/(Z35°, 755;) = 0.

c,1

4.2 Set Reduction

With this, we can reduce the set of possible items in given slot, {Ibl‘“} bt where Ngjor
is the number of possible items in that slot. We can define the followmg matrix,

AP = AT = C(T350 T3t), (4.4)
that is also one-hot encoded with 1’s representing that the item in column ¢ provides
some advantage over the item in row j, for our optimization problem.

These individual item comparisons aren’t too important, instead we care if an item
may provide some advantage over any other in the set. So, an item shouldn’t be con-
sidered if the comparison yields 0 when compared against all other items:

N

Z C(T3, T3) = 0 (4.5)
— ZAP =0 (4.6)
—1- A? =0 (4.7)

where 1 is a Ngot-dimensional vector containing ones, and Af is the 7’th column in AP
Then the reduced set of items for a given slot is then:

(T34 5} Moo = (T390 |1 AT #0, 1< 5 < Naot}, (4.8)

where N0t is the number of items left in this reduced set. The possibly optimal loadout
set can be constructed as a “n-ary” Cartesian product:

(L9 = {(Z",... ™8| T € {T]'°%; p ey slot € {slots}} (4.9)

As mentioned earlier, the choice of p'depends on the problem at hand. However, only
one attack style is generally considered and so often p can be chosen to only consider
one attack style.! A natural formulation would be to iterate over each attack style. We

1If the fighter switches weapons, or has multiple attacks, considering more than one attack style
would then be required.

36

can, for example, use psap to denote a projection vector which has stab as the only
non-zero attack bonus. Then, the total set of considerations is the union of the specific
attack style sets:

{L;9) = U &) (4.10)

ac{attack styles}
This makes our optimization:

L « argmin f(L), (4.11)
Le{Lp}

which has reduced a search space containing billions of possibilities to one containing
(empirically) less than 1,000.

37

Chapter 5

Optimizing Training Order

5.1 Dijkstra’s algorithm

38

Appendices

39

Appendix A

Justifying the Recursive
Model Approximation

We begin with Eq. (2.34) which we will restate here with h,, — ,:

Tn T, +1
ntl =Ty — — | 2 — . Al
Tt = e T (M—|—1) (A1)

This formulation looks similar to Newtons method for finding the root of f(z), which is
given as

Tntl = T — f/(xn) .
After some algebra we find that,

F(wn) =2 (1 — ya,). (A.3)
This can be easily solved for f(x) since this is a separable equation:
d d
f = (A.4)
a(l - w)
d
/ A / (A5)
(1 —~x)
n(f)=Inlz| —lnjyz - 1|+ C (A.6)
f(fC) = ¢“la||lyz — 1] (A.7)
The error, € in the next iteration of Newtons method is given as,
1
o | f(r)
n - 5 A8
En+1 €n Qf/(’f‘) ()
where 7 is the root we desire. In this case the root we want is,
lim z, =0 (A.9)
n—oo
since this corresponds to the health reaching zero. The ratio becomes,
f(r)
= A.lO
FralRt? (10

40

which simplifies the error equation to,
€nt1 = YEn. (A.11)

This is exactly the same recursive equation we had before! Except that now we have
error in health instead of health. So how does this connect? Since we already know the
root value (which is 0), the error becomes the upper bound on the health. This means
that if we have an error of, for example, 1 that the health must be below that. So, by
solving € = h we can find the number of iterations required to reach below that health.
This solution is already given earlier but in the context of error we have,

1/1 2
- - A.12
‘n ol <2 7) ()

n = log,logi . (ve). (A.13)

This has done two things: justify the use exclusion of the h,, term in the original
recursive equation (instead of excluding h2,), and provided a second interpretation of
the meaning of h = 1. The error comes from a Taylor series, but interestingly all higher
order terms die off so this is actually exact. This suggests that for higher precision, the
assumption that € is small is violated and the Taylor series formulation no longer holds.

41

Appendix B

Power Reduction in the
Piecewise Recursive Model

The average damage described in Section 2.3 can be expanded to give,

1
<D>overa11 = hio (

ho

>

n=M+1

M “n
2“!‘;2(2

n+1
M+1

)

1 (M Y 1< n+1l
_im<2(h0_y)+7;n_2nz_:lnM+l>
1 1 Y
_ _ _ 2
= o (Mho My +y(y+1) EE n;(n +n)>
1 yy+1) yn+1)(2y+1)
= — (Mhy— M 1) — -
2h0< 0o~ My+yly+1) 2(M + 1) 6(M + 1)
-t MQhOfM2y+My2+yM+MhofMyfyS*y
2ho(M + 1) 3
_ yly+1) <M(M+1)ho (y—M)M_y—l)
ho(M +1) \ 2y(y +1) 2(y +1) 6
_ yly+1) <M(M—|—1)h0 (y—M)M y+1_1(2y+1))
ho(M +1) \ 2y(y +1) 2(y + 1) 2 3

where y = min(M, hg). In the second line, we used:

a+1

-

b—a
0

a
0

ifb>a
else

ifb>a
else

= b — min(a,b)

42

)

To finish, let’s focus on,

MM+1)hy (y—M)M y+1

B.11
2y(y + 1) 2(y+1) 2 ()
1
=—— _|M(M+1h — MM 1)2 B.12
2y(yH)[(M + 1)ho +yly — M)M +y(y +1)?] (B.12)
1
=—— |\ M?hg+ Mhgy + My? — M? 34292) B.13
2y(y+1)[o+ Mho + My y+y+y+y} (B.13)

This is a hard equation to simplify since the M’s and hy’s are implicitly embedded in
the y’s, but if you play with it long enough you can “discover” a way to simplify it - a
form power reduction that relies on getting rid of as many y’s as possible.

B.1 Power Reduction

I’d like to preface the next part by saying the final result can easily be determined by
plugging in m as the min, and hg as the min and combining the result. In this instance
it works out nicely, but we will focus on general machinery to solve these problems
assuming the solution was not so nice. Our goal here is to pull the m’s and hg’s out of y.
To do this, let’s see if there is a way to construct y? from the other variables, specifically
only using y'. We know that if M < hg, we need a term like M2, and in the opposite
case, we need a term like h3,

y? ~ M? or h3. (B.14)

Based on this, we should be able to use min to switch between these two. So if we
write the first term using y, we’d have something like My, which is true when M is the
minimum. If it isn’t the minimum, there should be a second term which cancels the now
Mhg term plus the required h3 term:

y? =My +ho(y — M) (1) (B.15)

Using the same logic, we can inductively deduce,

Y= My" 4 3y — M) = My" + by — M. | (B.16)

(and as an identity for the math people, with v = min(a, b)):

”y"“ =ay"+b"(y—a) =ay" + by — ab” ‘ (B.17)

In fact, this holds for max as well, or any similar piece-wise function. Writing this as a
recursive sequence by letting g(n) = 4" yields,

g(n+1) = ag(n) +b"(9(1) — a), (B.18)

Under the initial condition g(1) = v, WolframAlpha gives the general solution as,

g(n) =a™ + (v —a) “Z — Zn (B.19)
gln)=a"+ (y—a) z_: a" Y, (B.20)
i=0

43

https://www.wolframalpha.com/input/?i=g%28n%2B1%29%3Da*g%28n%29%2Bb%5En%28C-a%29

where the second line uses the difference of powers formula. This could have been solved
by hand, but we’ve had enough fun with recursion in the other sections! This yields,

g(1) = (B.21)
9(2) = a*+ (y —a)(a+b) (B.22)
=a*+ay—a®+by—ab (B.23)
=ay+b(y—a) (B.24)

3 3
3 B a’—b
9B)=a’+(y—a)——

(B.25)

— a® + (v —a)(a? + ab+ ?) (B.26)

= a® + va® + yab + yb* — a® — a®b — ab? (B.27)

= ~va® + yab + b — a®b — ab®. ()

These agree with the original iterative equation. Okay, so this is a bit overkill since at

most y> appears, so having general powers isn’t too helpful. Nonetheless, we can now
reduce the powers of y in the original equation, and see how that simplifies things.

B.2 Simplifying
We can now reduce the bracketed term in Eq. B.13:

M?ho+ Mho + My? — M%y +y® + 2y +y (

= M?hg + Mhg + M2y + hoyM — hoM? — M?y + yM?* + yMhg + yhi+ (
— M?hg — hiM 4 2My + 2hoy — 2hoM +y (B.31

= (—=M?y +yM? + M?y + yMhg + yh + 2My + 2hoy + y + hoyM) + (

(M?ho + Mho — hoM? + —M?hg — hgM — 2hoM) (

= (2My + 2hoy + y + 2yMho + My + yhg) + (—=M?hg — h{M — hoM) (
Having eliminated the “hidden” variables, let’s try to re-group into powers of y:
=y + (My+ hoy + y + 2yMho + My + yh3) + (= M>ho — h§M) (B.35)
= 2y® +y + 2yMho + M?y + yh§ + —M?ho — hiM + Mhq (B.36)
=y’M +y+y* +y°ho +y*> + Mhy (B.37)
=y(yM+yho+y+M+ho+1) ()
=y(y+1)(M+ho+1) (B.39)

Putting this into the corresponding term in Eq. B.7 gives

1

_— 1 h 1) = h 1 B.40
2y(y+1)y<y+) (M +ho+1) =5 (M +ho +1) (B.40)
and so finally we arrive at,
yly+1) [1 1
D)overal = ——— 2~ = (M +ho+1)— =2y +1)| | B.41
(D)overanl ho(M + 1) 2(+ho + 1) 3(y+) ()

44

Part 111

Woodcutting

45

Part 1V

Firemaking

46

Chapter 1

Wintertodt

Wintertodt is a skilling boss that is primarily fought (in a manner similar to a minigame
moreso than combat) for firemaking experience and resources, either solo or as part of a
(large) group. Experience is gained from actions during the fight, with a bonus awarded
for players that have contributed enough. The bonus provides experience and supply
crates which contain valuable resources.

The objective of the fight is to defeat the Wintertodt. This boss takes damage over
time while any of the four braziers in the room are lit. Actions that the player performs
are centered on maintaining and feeding these braziers. Feeding the braziers provides
the majority of the firemaking experience. They are occasionally extinguished (by the
cold wind), and broken (by the flame’s heat). Additionally the Pyromancer associated
with each brazier may need healing before a player can relight an extinguished brazier.
In a group fight, the maintenance actions can be performed by others. To feed the
braziers, players will chop Bruma roots and optionally fletch them into kindling. This
provides more experience and points when burned, but requires more time to process.
Several of these actions are shown in Fig. 1.1.

Most of these actions award the player with points and provide experience in some
skill. The experience scales linearly with the respective skill level, with the proportion-
ality constant, M, determined by the action. If the player reaches a threshold of 500
points, they gain bonus experience and a supply crate at the end of a fight. A summary
of these actions can be found below in Table. 1.1.

Table 1.1: Actions and the associated skills, XP multipliers, and points awarded.

Action Skill XP Multiplier (M) Points
Lighting braziers @ 6.0x 25
Chopping Root , 0.3x -
Burning Root @ 3.0x 10
Burning Kindling &8 3.8x 25
Repairing Brazier @ 4.0x 25
Healing Pyromancer - 0.1x 30
Creating Potion & - -
Picking Bruma Herb 6 - -
Win with 500+ Points & 100x -

There are several problems that would be interesting to solve. The mechanics to
model and important problems vary depending on whether the boss is fought in a large

47

NS NS SRy
SR
=

=,

—

s
MR
g)

\J
“““

Suetiut

Figure 1.1: A player performing several actions during a Wintertodt fight. From top-left to bottom-
right the player is: lighting a brazier, chopping tree roots, burning roots/kindling, and fletching roots
into kindling. Actions that are not shown including creating potions, healing the Pyromancer, and
fixing/repairing the brazier.

group or solo. For solo fights, the optimal strategy (i.e. which actions to perform when)
could be investigated. For large groups, we can ignore the emergent behavior of the
players by making certain assumptions. For example, the root chopping rate can be
ignored if we assume that the player always reaches a target number of points. We
will tackle the latter since group fights are (empirically) more common. The quantities
of interest are the number of kills required to obtain a certain level, the number of
crates/value/resources obtained after a certain number of kills, and the time required
for a kill. We will only be concerned with firemaking experience for now.

1.1 Large groups

We will be attempting to determine the number of games required to get to a desired
firemaking level. Since the game play is relatively involved, we will apply a constraint to
the player’s actions to make it more manageable. We will limit the actions to: burning,
fletching, and cutting (so ignoring: healing, relighting, and repairing). Although this
isn’t exactly how players would play, relighting is the only action that provides firemak-
ing experience, and all ignored actions can be performed by other players. Furthermore,
all those actions are infrequent in comparison to burning and so these shouldn’t be too
significant.

Let Moot = 3, Mindiing = 3.8, and Mponus = 100 be the XP multiplier for burning
a root, burning a kindling, and obtaining 5004 points, respectively. We also have
that P,oot = 10 points are given for burning a root, and Piindiing = 25 are given for
burning kindling. Since the player may level up during a fight (and thereby change
their experience rate), we consider this problem in two stages: within a fight and across
fights. Finally, we will need to make use of the level equation, £ from Chapter 1, that
tells us what level a skill is, given its experience.

48

1.1.1 Within a Fight

Since a player may level up over the course of a fight, we need to consider the experience
gained on a per action basis. We will label the total player’s firemaking experience after
a actions are performed as E,. The firemaking actions during a fight come from burning
either roots or kindling. To be general, let’s define an indicator function 47, . that is
1 if the n’th action performed by the player matches the subscripted value, and is zero
otherwise. For example, 6, , = 1 if the n’th action was burning a root. Then, the value

of the XP multiplier for the n’th firemaking action can be defined as:
Cn = Oroot Mroot + 51?ind1inngindling~ (1~1)
Starting with Ey experience, the experience after a actions during a kill is governed by:
Eni1=FE, +c,L(Ey) (1.2)

This equation may have a solution except that £ has no analytic form, and so this
must be evaluated iteratively. Practically, we can introduce player policies or strategies,
that model how a player acts, by labeling the coefficients as c2°l®, A policy essentially
generates the sequence of player actions, for example: an Only Burning Roots (OBR)
policy could be defined as:

OBR _—
Cp =

. (1.3)
0 otherwise.

{Mroot lf n S T/Proot
Regarding notation, the labeling EP°% may now be used to denote the experience
gained according to some policy. More advanced policies can also be defined. A rea-
sonable strategy to maximize experience while reaching the point threshold would be
to burn kindling until the player obtains 500 points followed by burning logs until they
reach some target number of points, 7. We can call this the Kindle Till Bonus (KTB)
policy, which could be defined as:

Miindiing if 7 < 500/ Pyindiing

KTB _ . Piindlin
cBTB = & Moot if n < pf— — S50/ Pindling | (1.4)
0 otherwise.

The first bound is the number of kindling needed to reach 500 points. The second
bound is the number of points remaining, divided by the points per root which gives the
number of roots left.

1.1.2 Across Fights

We now have the ability to calculate the firemaking experience gained during a fight.
We can take this further to calculate the firemaking experience gained across fights.
The experience that a player has after k kills can be denoted as £*. There are two
contributions for this: one is the experience that a player gains during a fight, the other
is the bonus experience gained after a kill. And so,

£ = 84 By 0T~ 500) Vs £(E"), 0s)

where N (T'; policy) is the number of actions to perform given the target and policy, and 6
is the Heaviside step function. This equation can, again, only be evaluated numerically.

49

1.1.3 Kill Count, Time to Level, and Reward Value

Equation (1.5) can be used to calculate the experience gained after a certain amount of
kills. Programmatically inverting this yields the kills needed to obtain a certain amount
of experience. The Kkills needed to reach the highest firemaking level for different policies
is compared in Fig. 1.2. The only-burning-roots, and only-burning-kindling policies act
as upper and lower bounds for the number of kills required, regardless of which policy
the player obeys. This is because the former gives the maximum experience per kill,
while the latter gives the least. It’s important to note that in practice, it is more difficult
to obtain the desired target points (T") through roots alone. See Section 1.2 for possible
future work.

To get some concrete numbers for the kills required, we can use the upper and lower
bounds. Assuming 5 minute games (see Section 1.2 for a discussion), leveling from 50
to 99 takes:

1. For 500 Point Games:

e 591 - 839 (roots only - kindling only) kills
e 49.25 - 69.92 hours

2. For 750 Point Games:

e 455 - 690 kills
e 37.92 - 57.50 hours

3. For 1000 Point Games:

e 369 - 586 kills
e 30.75 - 48.83 hours

This author reached 99 after 546 kills. Several different playstyles could yield that: 500
points through roots only, 1000 points using kindling only, or 750 points using roughly
equal amounts of each - which is anecdotally most similar.

In this time, the player will be accumulating supply crates as rewards. Each crate
gives a certain number of rolls on a reward table. The number of rolls given from a
crate depends on the points earned in the game, p, according to:

in(1 500,28) if p > 500
Rolls — { M1 +#/500,28) ifp =5 (1.6)
otherwise,
where fractional values denote probabilities. Reference [11] provides a (manual) calcula-

tor that be used to calculate the value of each roll, and therefore crate. The total value
earned after a given number of kills can be calculated as:

Total Value = Kills x Rolls x Roll Value. (L.7)

Based on Fig. 1.3 (bearing in the small number of evaluation points), the value earned
increases roughly linearly until about base 70s, after which there are diminishing returns.
The value increases exactly linearly as a function of the points earned, since this is simply
multiplicative.

Reference [12] provides a case study: with base 1’s (except for 46-64 woodcutting)
they obtained 5.5 million gp in 702 kills with 500-800 (estimated) point games, in
~T2 hours (which includes initial training and collecting food). It is difficult to discern
agreement with the value earned here since prices have since increased/changed since
2016, and the variance in value is unknown. Despite this, the current estimates according

50

3000

=== Policy=Roots
== Policy=Kindling

2500 1))) .
=== Policy=Kindling Till Bonus

N
o
o
o

1500

=
o
o
o

500

Kills Required for 50-99 fm

0 250 500 750 1000 1250 1500 1750 2000
Points per Kill

Figure 1.2: A comparison of the kills required to max the firemaking skill at wintertodt for different
policies. Before reaching the point threshold, the kindling and kindling-till-bonus policies are equal.
Failing to reach the threshold (every game) drastically increases the number of points required, implying
that reaching this threshold is essential for players to maximize experience rates. On the other side
of the scale, having a very large number of points gives diminishing returns. The roots and kindling
policies act as lower and upper bounds for the number of kills, as discussed in the main text.

51

N
o

2 mmmm Base=1 mmmm Base=40 === Base=75 mmmm Base=99
S5
=
—'10 —g
s ===
Y .
8 5 J ﬂ
o | . : ® : : .
500 600 700 800 900 1000
Points per Kill
— 20
2 mmmm Points=500 === Points=750 === Points=1000
915 |
= _— m—
= = —
:‘ 10 1 - =0
=
o
a O]
0 20 40 60 80 100

Base level

Figure 1.3: The profit a player should expect to gain from 50-99 firemaking, based on their base level,
points earned per kill, and only burning roots. The upper panel shows the profit for different base
levels. The lower panel shows the profit for different points earned.

to Fig. 1.3 are still around 5 million gp. 702 kills implies closer to 600-700 points mostly
using kindling. 5 minute games implies about 58 hours and suggests about 10-15h of
preparation, which is reasonable. All in all, these estimates seem to agree with this
example.

1.2 Future Work

These are possible future avenues to consider:

e Include Action Rates: By including woodcutting, fletching, and burning rates, the
action sequence that a player performs could be modeled and optimized (for points
or experience). However, the woodcutting rate for Bruma roots is not given.

e Food Needed: During the fights the player takes damage that scales with their
firemaking and hitpoints level. Some of the attacks are avoidable. Reference [13]
provides a solid overview of the damage at Wintertodt. However, attack speed-
s/frequencies don’t seem known. If this was known, the total amount of damage
taken could be calculated. By accounting for natural regeneration, the amount of
food required could be known in advance. This is important since many players
train firemaking at Wintertodt right from the start (due to the rewards) and need
to collect some preliminary food.

e Programmatic Crate Value: More advanced value calculations could be performed
if determining crate value could be automated, although it doesn’t seem like these
equations are given. The wiki team can likely provide insight here. This would
also allow the variance and confidence intervals to be determined.

52

e Real Game Duration Data: A stationary recording of wintertodt gameplay could
be generated and analyzed to better approximate the distribution of game times.
The mean and variance (as a function of player count, which could be approximated
by world count) could be used for better estimates.

e Large Scale Statistics: The highscores could be analyzed to gain insight into player
behaviour. There would have to be some selection criteria to assume a player
hasn’t gain much experience apart from at Wintertodt. There are standard skills
expected for accounts that rush this boss that could be used (although it might
be a biased sample). The kill count and total experience can be used to determine
the average points per game, and average time spent.

53

Part V

Mining

54

Part VI

Quests

55

Bibliography

[1]

2]

[10]

[11]

[12]

10 most played mmorpgs of 2020. https://bestreamer.com/gaming/
most-played-mmorpg-2019/2/. Retrieved October 02, 2020.

Top 6 most popular mmorpgs sorted by population (2020). https://
altarofgaming.com/all-mmos-sorted-by-population-2018/. Retrieved Octo-
ber 02, 2020.

Ranking the 15 best mmorpgs of all time. https://www.thegamer.com/
best-mmorpgs-ever-wow-runescape/. Retrieved October 02, 2020.

Misplacedme. Relative player counts in runescape. https://www.misplaceditems.
com/rs_tools/graph/.

Wiki. Skills. https://oldschool.runescape.wiki/w/Skills.
Wiki. Experience. https://oldschool.runescape.wiki/w/Experience.
Wiki. Quests. https://oldschool.runescape.wiki/w/Quests.

Wiki. Combat triangle. https://oldschool.runescape.wiki/w/Combat_
triangle.

Dps calculator by bitterkoekje. https://docs.google.com/spreadsheets/d/
1wzy1VxNWEAACOFQyDAdpiFggAfn5UBRGPp2CisAHZWS/edit#gid=158500257.

Nukelawe. Markov chain analysis of overkill and natural regeneration in osrs com-
bat. https://github.com/Nukelawe/osrs-markov/blob/master/main.pdf.

Wiki. Calculator:wintertodt supply crate. https://oldschool.runescape.wiki/
w/Calculator:Wintertodt_supply_crate. Retrieved November 04, 2020.

HereticAcinonyx. Loot from 50-99 fm at wintertodt post-nerf (level 1 skills). https:
//imgur.com/r/2007scape/WKrov.

OSRSBox. Analysis of wintertodt damage at 10 hitpoints. https://www.osrsbox.
com/blog/2020/07/04/analysing-wintertodt-damage-at-10-hitpoints/.

56

https://bestreamer.com/gaming/most-played-mmorpg-2019/2/
https://bestreamer.com/gaming/most-played-mmorpg-2019/2/
https://altarofgaming.com/all-mmos-sorted-by-population-2018/
https://altarofgaming.com/all-mmos-sorted-by-population-2018/
https://www.thegamer.com/best-mmorpgs-ever-wow-runescape/
https://www.thegamer.com/best-mmorpgs-ever-wow-runescape/
https://www.misplaceditems.com/rs_tools/graph/
https://www.misplaceditems.com/rs_tools/graph/
https://oldschool.runescape.wiki/w/Skills
https://oldschool.runescape.wiki/w/Experience
https://oldschool.runescape.wiki/w/Quests
https://oldschool.runescape.wiki/w/Combat_triangle
https://oldschool.runescape.wiki/w/Combat_triangle
https://docs.google.com/spreadsheets/d/1wzy1VxNWEAAc0FQyDAdpiFggAfn5U6RGPp2CisAHZW8/edit#gid=158500257
https://docs.google.com/spreadsheets/d/1wzy1VxNWEAAc0FQyDAdpiFggAfn5U6RGPp2CisAHZW8/edit#gid=158500257
https://github.com/Nukelawe/osrs-markov/blob/master/main.pdf
https://oldschool.runescape.wiki/w/Calculator:Wintertodt_supply_crate
https://oldschool.runescape.wiki/w/Calculator:Wintertodt_supply_crate
https://imgur.com/r/2007scape/WKrov
https://imgur.com/r/2007scape/WKrov
https://www.osrsbox.com/blog/2020/07/04/analysing-wintertodt-damage-at-10-hitpoints/
https://www.osrsbox.com/blog/2020/07/04/analysing-wintertodt-damage-at-10-hitpoints/

	Introduction
	I General
	Experience and Levels

	II Combat
	Overview
	Autonomous Mechanics
	Combat Skills, Combat Triangle and Attack Styles
	Equipment Bonuses
	Max Hits and Accuracy
	Ticks and Attack Speed
	Summary

	Agency & Decisions
	Actions
	Machine Learning
	Genetic Algorithm

	Models
	Crude Model
	Health after attacks
	Attacks until health

	Average
	Average Damage
	Attacks to kill

	Recursive Model
	Expected Damage per Hit
	Health after attacks
	Attacks until health

	Approximately Analytic Recursion
	Health after attacks
	Attacks until health

	Health Regeneration
	Comparisons

	Markov Chain Solutions
	Damage Distributions
	Recursive Equation
	Solution
	Interior
	Obtaining Power Series
	Applying Boundary Conditions

	Fight Outcomes

	Optimizing Player Equipment
	The Projection Vector
	Set Reduction

	Optimizing Training Order
	Dijkstra's algorithm

	Appendices
	Justifying the Recursive Model Approximation
	Power Reduction in the Piecewise Recursive Model
	Power Reduction
	Simplifying

	III Woodcutting
	IV Firemaking
	Wintertodt
	Large groups
	Within a Fight
	Across Fights
	Kill Count, Time to Level, and Reward Value

	Future Work

	V Mining
	VI Quests

