
1

Realtime Problems: Exposing WebSocket Servers Hidden in

Plain Sight

By: Erik Elbieh
Security Consultant & Researcher, Palindrome Technologies

November 11, 2021

Abstract

HTTP is the protocol most often associated with web communications, but there is another protocol flying under
the radar: the WebSocket protocol. WebSockets offer better real-time communication abilities than HTTP
thanks to reduced communications overhead. WebSockets were standardized in 2011 in RFC 6455, but are now
widely adopted. WebSockets are often found in chat platforms, financial trading platforms, chatbots, real time
mapping applications, real time graphs, and even the Kubernetes and Docker APIs. Compared to the amount of
security research on HTTP, WebSockets have received very little attention in the security world. Numerous
hurdles have existed for anyone doing security research on WebSockets – discovering WebSocket-capable
endpoints, determining the server-side software, and testing if the server is vulnerable. This research attempts
to provide partial solutions to all three hurdles that have existed for WebSockets security research by providing
a tool suite named STEWS (Security Tool for Enumerating WebSockets), available at
https://github.com/PalindromeLabs/STEWS. The goal of this research is to draw attention to this
underappreciated yet ubiquitous protocol and open the door for many future investigations into WebSockets
security.

Introduction

The WebSocket protocol is primarily defined by RFC 6455, first standardized in 2011. In 2015, RFC 7692 defined
Compression Extensions for WebSockets, enabling more efficient transfer of payloads. WebSockets offer lower
overhead and latency than HTTP, making them an ideal solution for many real-time applications on the web.
While HTTP is designed around providing a client with resources stored by the server, the WebSocket protocol is
designed around providing a client with frequently updated data. A WebSockets server is often found at the
same port number as the primary HTTP server, but this is not always the case.

A WebSocket connection consists of a two-step process. The first step happens over HTTP and is called the
WebSocket handshake. A client sends a HTTP “Upgrade” request to the server with WebSocket-specific headers
such as “Sec-WebSocket-Version”, “Sec-WebSocket-Key”, and “Upgrade: websocket”. If the server does not
support WebSockets, it will return an error to the “Upgrade” request. But if the web server does support
WebSockets, a HTTP response will contain a 101 status code with WebSocket-specific headers such as “Sec-
WebSocket-Accept” and “Upgrade: websocket”. An example of this HTTP handshake is shown below.

https://github.com/PalindromeLabs/STEWS

2

Figure 1: Example WebSocket request sent from client

Figure 2: Example WebSocket response sent from server

An important point to mention is that this HTTP request is usually parsed by the WebSocket server, not the main
HTTP server. Because WebSocket servers have not been scrutinized as closely, it is possible that known HTTP
attacks could see additional mileage when applied to certain WebSocket server implementations.

The second step of the WebSocket connection happens after the client and server complete the handshake
process and agree to “upgrade” their HTTP connection. Once agreement has been reached, the client and server
switch to using the WebSocket protocol. The WebSocket protocol sits on top of the TCP layer of the networking
stack, at the same layer as HTTP. The structure of a WebSocket frame is seen below.

3

Figure 3: Structure of a WebSocket frame

WebSocket frames have some unique fields, such as the reserved bits (rsv), opcode field, and a mask value.
These fields are used to designate specific situations, such as a close connection frame or the use of an
extension. Overall, the low overhead of WebSocket frames provide a better solution for use cases that rely on
data that changes often or interactive real-time graphics. For this reason, WebSockets are frequently used for
chat bots, instant messaging, financial market quotes, cryptocurrency trading platforms, and real-time maps
displaying moving vehicles, among many other use cases. With users demanding more web-based solutions and
increased responsiveness, the usage of WebSockets is almost certain to increase in the coming years.

Past Work Survey

Several important efforts have been made around WebSockets security. In 2010, Adam Barth et al. found a
protocol-level proxy caching vulnerability which resulted in Firefox and Opera temporarily disabling WebSocket
support1. The mitigation to this issue was the masking of WebSocket payloads using a masking key, introducing
an element of randomness to WebSocket messages. This paper concludes by emphasizing the risk of providing
TCP sockets safely and highlights problems related to proxy handling of WebSockets.

A talk about WebSockets was presented at Black Hat USA 20122. This was among the first public mentions of
WebSocket fingerprinting, a core topic of this research work. Another topic touched on in this presentation is
the possibility of port scanning using WebSockets. This was observed in the wild in 2020 on ebay.com, a finding
which captured some media attention. The 2012 presentation also surveyed the Alexa top 600,000 websites for
WebSocket support using a web crawler, finding around 0.15% of website landing pages used WebSockets.
However, this survey was done in the early days of WebSockets with lower adoption rates when compared to
the use cases that exist in 2021.

1 http://www.adambarth.com/papers/2011/huang-chen-barth-rescorla-jackson.pdf
2 https://www.youtube.com/watch?v=-ALjHUqSz_Y

http://www.adambarth.com/papers/2011/huang-chen-barth-rescorla-jackson.pdf
https://www.youtube.com/watch?v=-ALjHUqSz_Y

4

The topic of proxy mishandling of WebSockets was expanded upon by Mikhail Egorov at Hacktivity 20193. This
talk introduced the idea of WebSocket smuggling, which enables reverse proxy bypassing because some reverse
proxies do not properly maintain the state of a WebSocket connection. Some reverse proxies will assume a
WebSocket connection is established after observing some portion of the HTTP “Upgrade” request, providing an
opportunity to send a follow-up HTTP request through the open TCP tunnel to the backend, bypassing reverse
proxy blacklists. Further research on the topic of proxy bypassing was done by Jake Miller4 and Sean Yeoh5, but
this follow-up research has focused mostly on using a HTTP/2 “Upgrade” request as an alternative to a
WebSockets “Upgrade” request.

In addition to these efforts, a vulnerability specific to WebSockets, Cross-site WebSockets Hijacking (CSWSH),
has been perhaps the most common vulnerability found in WebSockets implementations, resulting for the fact
that the same-origin policy does not apply to WebSockets6. Many bug bounties for CSWSH have been disclosed
on sites such as HackerOne, and PortSwigger’s Web Security Academy includes a lab for this vulnerability. Other
common WebSocket weaknesses include insecure authentication mechanisms and sensitive data leaks, both of
which often result from custom implementation errors. Weaknesses in protocols built on top of WebSockets are
also a common target, where IDOR, SQL injection, and other common web vulnerabilities can exist. The
websocket-fuzzer tool by Andres Riacho7 is designed to fuzz JSON over WebSockets, which is a common data
format for APIs that communicate over WebSockets.

Figure 4: Timeline of related WebSocket research

Despite these past efforts, very little investigation has been done into the security of the WebSocket servers
themselves. In fact, the author was only able to find 12 published CVEs for WebSocket server projects over the
last decade (see Appendix A). Existing tools lack the support for customized WebSocket tests to be performed,
meaning custom tooling must be developed to send low-level WebSocket frames. Even Wireshark lacks full
support for certain less common WebSocket frames. While Burp Suite supports the replay of custom WebSocket
packets and creation of new WebSocket connections, Burp Suite does not support WebSockets in Burp Suite
extensions and currently only allows for data payload values to be modified8. Discussions around adding
WebSocket support for nmap have occurred9, but no visible action has occurred on this topic in the last 5+ years.
Newer tools such as nuclei have also shown interest in WebSocket support, but it is unclear if, when, or how this
feature will be introduced10.

3 https://github.com/0ang3el/websocket-smuggle
4 https://labs.bishopfox.com/tech-blog/h2c-smuggling-request-smuggling-via-http/2-cleartext-h2c
5 https://blog.assetnote.io/2021/03/18/h2c-smuggling/
6 https://christian-schneider.net/CrossSiteWebSocketHijacking.html
7 https://github.com/andresriancho/websocket-fuzzer
8 https://forum.portswigger.net/thread/websockets-api-support-c8e1660b9f0ab
9 https://seclists.org/nmap-dev/2015/q1/134
10 https://github.com/projectdiscovery/nuclei/issues/539

https://github.com/0ang3el/websocket-smuggle
https://labs.bishopfox.com/tech-blog/h2c-smuggling-request-smuggling-via-http/2-cleartext-h2c
https://blog.assetnote.io/2021/03/18/h2c-smuggling/
https://christian-schneider.net/CrossSiteWebSocketHijacking.html
https://github.com/andresriancho/websocket-fuzzer
https://forum.portswigger.net/thread/websockets-api-support-c8e1660b9f0ab
https://seclists.org/nmap-dev/2015/q1/134
https://github.com/projectdiscovery/nuclei/issues/539

5

In summary, while WebSockets have not been completely neglected by the security community, no go-to
customizable tool for security testing of WebSockets exists. The past security work hardly mentions the names
of any popular WebSocket servers, let alone analyzes them. Additional obstacles include discovering WebSocket
servers, understanding how to identify the WebSocket server, testing the WebSocket server for vulnerabilities,
and creating a local development environment where the WebSocket servers can be thoroughly tested for
vulnerabilities. This paper aims to resolve all of these difficulties in WebSocket server security research.
Simultaneous with this paper’s publication, the STEWS (Security Tool for Enumerating WebSockets) tool suite
will be released to the public. A development playground with WebSocket server examples from popular
WebSocket server libraries will also be released, to allow for testing in a lab environment. Lastly, an “Awesome
WebSocket Security” GitHub repo will be published, providing a go-to reference summarizing WebSocket
security research to date.

WebSockets Discovery

As described in the introduction, the WebSocket connection process consists of 2 main steps: the HTTP
handshake followed by the WebSocket protocol communication. Normally this process is initiated inside of a
web browser using JavaScript. There are several ways in which a WebSocket server can be identified. All
methods considered will be outlined to demonstrate the alternative options and demonstrate why ZGrab2 was
chosen as the best scalable option for this research.

1. If website traffic is passed through a web proxy such as Burp Suite or OWASP ZAP, a filter for HTTP
responses with a status code of 101 with specific WebSocket response headers (such as “Upgrade:
websocket”) can identify WebSocket responses. However, browsing with a web proxy is slow, especially
when done manually.

2. One approach to automating the web browsing process is to use a web crawler. These tools can visit and
load many webpages without needing user interaction. However, the web crawler must run the
webpage JavaScript in order to initiate WebSocket connection and observe a 101 response. Although
this process could be automated, loading full webpages and running the associated JavaScript can be
time consuming.

3. Similar to the previous approach, it is possible to use a web crawler to visit webpages, but rather than
running JavaScript and waiting for a 101 HTTP response status code, the crawler can search the
JavaScript files for keywords that identify a WebSocket connection attempt. Simply searching files for
keywords can be faster than running JavaScript, but an additional step would be needed to identify the
exact URL where the WebSocket server endpoint is located.

4. Perhaps the lowest effort approach to discovering WebSockets is to brute force a WebSocket
connection request to a large number of URLs. While many URLs will not support WebSockets, the
benefit to this method is that only the HTTP status code is needed to identify the endpoint as a
WebSocket-supporting server, so only the HTTP header needs to be examined, not the HTTP body or
linked JavaScript files. As will be shown, what this method may lack in precision, it makes up for with
speed and ease of use.

5. A hybrid approach, using a combination of the above options, would provide a balance of precision and
speed. For instance, if only a single domain is in scope of testing, a web crawler may be a good approach
in some situations, but it might also be beneficial to brute force common endpoints for WebSocket
servers in case the web crawler does not gain full coverage of the domain. The brute forcing process
could use the known paths information gathered from the web crawler to perform a more targeted
brute force scan for WebSockets endpoints.

6

Since this research effort was interested in larger scale discovery of WebSockets, option 4 provided a highly
parallelizable approach. However, the tooling for this approach was not available in a prepared package, since
WebSockets have not been a prime candidate for security research so far. Several types of tools were
considered for this task. Port scanners such as masscan operate at the TCP layer and analyze individual IP
addresses. However, since the first handshake portion of a WebSocket connection occurs over HTTP, using a tool
such as masscan would require implementing support for HTTP for this specific use case, since the HTTP
protocol sits on the layer above TCP. A tool such as Turbo Intruder, a Burp Suite extension, supports high speed
HTTP requests but is designed to send many requests to a single host. However, the Turbo Intruder README
suggests using ZGrab to send a single request to many hosts11.

ZGrab2 is used by Censys to map the internet. The ZGrab2 project has supported the HTTP protocol for some
time, but only in the last few months did a pending pull request appear in the ZGrab2 project implementing
support for custom HTTP headers. At the time of writing, the PR has not been merged into the project, but it
works quite well. Some additional modifications to ZGrab2 was needed in order to send the proper headers
needed for a WebSocket request, such as including an “Origin” header value matching the host being tested.
The code for this WebSocket-oriented fork of ZGrab2 is available at https://github.com/PalindromeLabs/zgrab2.
Below is an example from the STEWS-discovery tool to test for WebSocket endpoints. It relies on the custom
Palindrome Technologies ZGrab2 fork and uses a text file of URLs named “known-endpoints.txt”:

cat ./known-endpoints.txt | shuf | /opt/zgrab2 http --custom-headers-

names='Upgrade,Sec-WebSocket-Key,Sec-WebSocket-Version,Connection' --custom-

headers-values='websocket,dXP3jD9Ipw0B2EmWrMDTEw==,13,Upgrade' --remove-

accept-header --dynamic-origin --use-https --port 443 --max-redirects 10 --

retry-https --cipher-suite portable -t 10 | jq

'.data.http.result.response.status_code,.domain' | grep -A 1 -E --line-

buffered '^101' | tee -a STEWS-discovery-output.txt

And example of the output of the STEWS-discovery tool is shown below.

Figure 5: Example of STEWS-discovery tool output

11 https://github.com/PortSwigger/turbo-intruder

https://github.com/PalindromeLabs/zgrab2
https://github.com/PortSwigger/turbo-intruder

7

Testing with ZGrab2 in this manner allowed testing of hundreds of endpoints per second, or thousands of
endpoints per second if DNS lookups were performed beforehand with a tool like massdns or zdns. Other
attempted approaches, such as combining curl (a simple bash HTTP client) with xargs (a bash parallel process
utility) only resulted in a handful of requests per second. However, this scanning method does not come without
drawback.

The first drawback was that ZGrab2, like masscan, was originally designed to operate at the TCP layer, so DNS
lookups for large datasets can be a bottleneck. This issue was possible to resolve using massdns, a tool that
parallelizes the DNS lookup of domain names using multiple DNS resolvers. While using massdns turns the
discovery process into a two-step process (first performing the DNS lookups, then running ZGrab2), this
additional step improves the overall results in situations where ZGrab2 overwhelms the DNS server it is using.

A second drawback was that ZGrab only tests the URLs provided to it. This means that if only the top-level
domain is known, ZGrab2 does not automatically check for a WebSocket endpoint at example.com/ws, or
ws.example.com. Instead, these “high probability” URLs must be generated by the user performing testing. For
high precision situations where a single domain must be tested in depth, it is preferable to use a crawler or a list
of known URLs for the domain, such as the URLs stored by Wayback Machine. However, for the internet-scale
testing discussed here, it is sufficient to use wordlists of common URL paths for brute forcing, and this drawback
was known when deciding to use this approach. While most existing wordlists contain general HTTP paths, a
short custom wordlist was developed by analyzing known WebSocket endpoint URLs. This short wordlist can be
seen in the results of Table 1.

A third drawback is that ZGrab2 is still a work in progress, with recent PRs from the last year adding important
features. Like masscan, running a highly parallelized scan does not always provide perfect results. Running the
same scan with the same wordlist several times can result in a slightly different number of WebSocket servers
being discovered (roughly a 1% difference).

An important question for domain-level internet-scale testing is where to get a list of domains. Tools such as
Shodan and Censys scan all possible IPv4 addresses, but because a single IP address can host multiple domains,
the same technique cannot be used in this situation. While a quick search shows that lists of the top few million
websites are easily available, it is possible to get a list of all .com domains registered domains by requesting the
.com zone file. These zone files are effectively a superset of all domains known to all DNS servers. Access to
these zone files must be requested, which can take some time to be approved. To avoid approval delays, the list
of the top 10 million domains was deemed sufficient for this paper’s testing purposes.

Using a short wordlist of common WebSocket URL paths, the ZGrab2-based discovery method was applied on a
set of roughly 3 million top domains, with the discovery results found in Table 1. Note that the total number of
servers discovered does not necessarily refer to unique domains, as some domains answered a WebSockets
request from any path at the domain. These results are the first known study of WebSocket server discovery
using a brute force handshake request approach.

8

Table 1: ZGrab2-based WebSocket server discovery on port 443 across 3 million domain names

URL Number of WebSocket servers found

domain.com 2281

domain.com/ws 1991

domain.com/ws/v1 1605

domain.com/ws/v2 1606

domain.com/socket.io/?EIO=3&transport=websocket 1389

domain.com/stream 448

domain.com/feed 452

www.domain.com 1582

ws.domain.com 891

stream.domain.com 574

Total 12819

WebSocket Fingerprinting

Fingerprinting any backend web application increases an attacker’s knowledge of the system and provides
crucial information for the next steps of an attack. With information about the backend application, a persistent
adversary can either use a known vulnerability, or if the application is an open-source project (which is the case
for all WebSocket servers examined in this paper), attempt to find a new vulnerability. The basic knowledge of
what software is running on the backend can inform an adversary about the preferred programming language,
potential software stack, and/or development lifecycle of the backend system. The fingerprinting process can be
broken down into three steps:

1. Finding identifying features between different WebSocket server implementations
2. Creating a database of known WebSocket server fingerprints
3. Creating a tool to collect fingerprints from a WebSocket server and attempt to match it to the database

of known WebSocket server fingerprints

A WebSocket connection involves two steps: the HTTP protocol handshake and the subsequent WebSockets
protocol communication. Both the HTTP and WebSockets portions of a WebSocket connection can be used for
fingerprinting. In some cases one of the protocols can provide higher signal-to-noise information. For example, if
authentication is handled during the HTTP WebSocket handshake, it may not be possible to access the
WebSockets protocol communication for fingerprinting without proper credentials. In a different scenario, if a
reverse proxy limits the HTTP response that is returned to the client, it might be more useful to rely on the
WebSockets protocol communication for fingerprinting. Both approaches were used in this research. The first
step in fingerprinting is to understand the identifying features of different WebSocket servers.

The HTTP WebSocket handshake was examined for identifying features first. Since HTTP is a common protocol,
there are existing tools that perform fingerprinting using HTTP responses. Perhaps the most popular
fingerprinting tool, nmap, uses a variety of fingerprinting methods in HTTP scripts. Among these methods are
sending requests to special URL paths, identifying specific response headers or payloads using keywords, and
sending specially crafted HTTP requests (with specific headers and body content). wafw00f, a popular web
application firewall (WAF) fingerprinting tool, relies primarily on HTTP response header values and HTTP
response body text to identify servers12.

12 https://github.com/EnableSecurity/wafw00f

https://github.com/EnableSecurity/wafw00f

9

Given the limited nature of the WebSocket handshake process, not all of the fingerprinting techniques in nmap
or wafw00f can be borrowed for the WebSocket handshake. When examining possible options for modifying the
HTTP GET request from the client, sending custom headers is the easiest configurable data field. Since the
WebSocket handshake request is a GET request, sending body data is not an option. For fingerprinting the HTTP
101 server response, the response generally has no HTTP body meaning only HTTP headers from the server
response can be used for WebSocket fingerprinting. In cases where the WebSocket server deployment was not
hardened, it is often possible to find a HTTP header in a WebSocket handshake response that identifies the
WebSocket server and version number. However, this is the only the most basic fingerprinting scenario, and this
identifying header is often removed in secured production deployments. WebSocket fingerprinting can use
several special WebSocket headers in the WebSocket server response not available to wafw00f or other
standard HTTP fingerprinting tools.

For starters, the accepted values for the “Sec-WebSocket-Version” header can help identify a server. Most
servers only allow for version 13, but some allow for a version header of 8, and some servers accept other
values. Additionally, a server’s response to specific malformed version values, such as “13\\” or “13\n”, is
another indicator. For example, the Java Spring framework WebSockets server accepts a connection with a
version of "13\r", while most other servers do not. Similarly, the npm ws WebSocket server accepts a version
number of 8, while most WebSocket servers only allow a version of 13. Note that if the WebSocket server is
behind a reverse proxy, some reverse proxies handle the “\n” and “\r” characters differently, impacting the
fingerprint that can be acquired.

Two other unique headers in WebSocket handshake requests can allow for additional identification. The
WebSocket protocol contains a “Sec-WebSocket-Protocol” header and a “Sec-WebSocket-Extensions” header.
Both of these headers allow a client and server to agree upon using specific protocols or extensions to
communicate. While some WebSocket servers use custom subprotocol or extension values, there is a list of
official reserved values specified13. When a WebSocket server supports one of these subprotocols or extensions,
the server usually replies with a response header repeating the supported subprotocol or extension. Therefore,
by sending subprotocol or extension values one at a time, we can learn what subprotocols and extensions the
WebSocket servers supports. One example of this being useful for fingerprinting is that uWebSockets and the
npm ws WebSocket servers always repeat back the same “Sec-WebSocket-Protocol” header value provided by
the user, rather than only repeating back the header for supported subprotocol values. Most other
implementations do not include the “Sec-WebSocket-Protocol” header if they do not support the subprotocol
value provided by the client. Similarly, support for WebSocket Compression “Sec-WebSocket-Extensions” values
is not found in all WebSocket servers, since the WebSocket Compression RFC was introduced more recently in
2015. If a WebSocket server does support “Sec-WebSocket-Extensions” values, as in the case of uWebSockets, it
will respond with supported values in the “Sec-WebSocket-Extensions” header of the HTTP response.

With the first half of the WebSocket connection accounted for (the HTTP protocol portion), we can examine
fingerprinting options in the second half of the WebSocket connection, using the WebSocket protocol. Since no
public tools have attempted this task before, there are no prior examples to reference. Nevertheless, there are
several important parts of the WebSocket frame that can be used to differentiate WebSocket servers. Both the
reserved (rsv) bits and opcode fields are handled quite differently in different implementations. One finding
from this research, which resulted from fuzzing the values of these fields, is that many WebSocket server
implementations return verbose error messages to the user. These error messages are unique, for the most
part, and can greatly aid in identifying the WebSocket server. For example, the PHP Ratchet WebSocket library

13 https://www.iana.org/assignments/websocket/websocket.xml#subprotocol-name

https://www.iana.org/assignments/websocket/websocket.xml#subprotocol-name

10

returns the message “Ratchet detected the first frame of a message was a continue” when a WebSocket frame
with an opcode value of 0 (the “continue” opcode value) was sent to the server. For the same “continue”
opcode value, the Java-WebSocket WebSocket server returns an error message of “WebSocket frame was sent
with an unrecognized opCode of [0]”. Because this is the first time that error messages across WebSocket server
implementations have been compared, it is unlikely that the verbosity or uniqueness of these WebSocket error
messages have been considered problematic in the past. An example of one particular test case, test case 200,
from STEWS-fingerprint.py tool is shown in Table 2 below. Test case 200 sets the 1st and 2nd reserved bits to 0
while setting the 3rd reserved bit to 1.

Table 2: STEWS-fingerprint.py test case 200 (set reserved bit 3) server results

WebSocket Server Implementation STEWS-fingerprint.py Test Case 200 Response

npm ws No error message

faye One or more reserved bits are on: reserved1 = 0, reserved2 = 0,
reserved3 = 1

Gorilla unexpected reserved bits 0x10

uWebSockets No error message

Java Spring Boot The client frame set the reserved bits to [1] for a message with opCode
[2] which was not supported by this endpoint

Python websockets No error message

Ratchet Ratchet detected an invalid reserve code

Tornado No error message

The STEWS-fingerprint.py tool, which is published alongside this paper, provides a fingerprinting
implementation to identify WebSocket servers. It breaks down the type of fingerprinting tests into 7 categories,
as follows:

• 100-series tests: opcode tests (WebSocket protocol)

• 200-series tests: rsv bit tests (WebSocket protocol)

• 300-series tests: version tests (HTTP protocol)

• 400-series tests: extensions tests (HTTP protocol)

• 500-series tests: subprotocol tests (HTTP protocol)

• 600-series tests: long payload tests (WebSocket protocol)

• 700-series tests: hybi and similar tests (WebSocket protocol)

An example of the output from the STEWS-fingerprint tool is shown below.

11

Figure 6: Example of STEWS-fingerprint tool output

The above tests were found to highlight differences in responses between WebSocket server implementations
to help identify the implementation. Other variations in client requests, such as specific masking key values in
the WebSocket protocol, did not yield different responses between different WebSocket server
implementations. While the STEWS-fingerprint.py tool is the first to enable WebSocket server fingerprinting, it
still has areas to be improved. At the time of release, the STEWS fingerprinting tool has support for many of the
most common WebSocket servers fingerprint identifiers, but more server fingerprints and test cases should be
added to enhance the usability and accuracy of the tool. Additionally, the latest versions of the WebSocket
servers were the focus for extracting server fingerprint identifiers, and it is possible that older versions of the
same servers do not have the same identifying characteristics.

WebSockets Vulnerability Testing

The final step in most security assessments or attacks is the vulnerability detection or exploitation phase. The
first release of the STEWS tool suite only contains vulnerability identification capabilities for public CVEs taken
from Appendix A. Readers interested in investigating further can find some additional WebSocket server
vulnerabilities without CVE identifiers outlined in old GitHub issues.

Some of the vulnerabilities seen in Appendix A are difficult to identify directly without triggering the issues on
the server, such as the large message DoS CVEs (CVE-2018-21035, CVE-2016-10544, and CVE-2016-10542). Due
to this, when testing for these CVEs against a WebSocket server, a warning message is provided to the user to
warn them of the server-side impact it may have. These vulnerabilities could be identified in a benign manner
using other fingerprinting identifiers. For example, opcode error messages and “Sec-WebSocket-Version” values
have changed in some WebSocket libraries over time, and while these do not map exactly to the versions
vulnerable to the CVEs, they may be the best option available other than attempting an exploit against the
server.

The RegEx DoS CVEs, CVE-2020-7662 and CVE-2020-7663, are an easier vulnerability to check for because this
type of DoS allows for “analog” variability in the length of the regex input value, rather than a “digital” positive

12

or negative input value. By submitting multiple “Sec-WebSocket-Extensions” values of different but reasonable
lengths, it is possible to observe a difference in response time from the server in vulnerable versions.

A couple of the vulnerabilities in Appendix A, namely CVE-2020-27813 (Gorilla integer overflow) and the weak
PRNG for the socket.io socket IDs (CVE-2017-16031) were not deemed straightforward to test for when no
visibility exists into the target server. Similarly, the two recent socket.io vulnerabilities related to WebSocket file
uploads are relevant for only a small fraction of WebSocket server endpoints, so the check for the vulnerability
was not prioritized for the initial release of this tool.

Lastly, one vulnerability not found in Appendix A that STEWS supports and is easy to test for (in the simplest
case) is CSWSH. If a server initiates a WebSocket connection both with a matching “Origin” header value and
without an “Origin” header, the server is vulnerable to CSWSH. Even in cases where the “Origin” header value is
checked, it may be possible to bypass this check by, for instance, testing for an unescaped period in a regex
check. While a couple simple “Origin” header validation bypass checks are included in the STEWS tool suite,
validation bypasses should either be tested manually or using a more advanced automated method.

Ideas for Future Work

Another area for improvement in future work is to perform internet-scale WebSocket scanning from multiple
geographic origins, because scanning from a single geographic origin can overlook and miss some hosts. Areas
for future work include building a better wordlist of common WebSocket URL patterns and investigating ports
other than 443 for WebSocket servers.

Because most prior internet-scale scanning efforts have identified servers based on IP address, and because
ZGrab2 support for custom HTTP headers is a very recent development, the approach used for this research can
be used for other future research efforts outside of WebSockets security, such as the discovery of servers
supporting HTTP/2 upgrade requests.

This research paves the way for substantial future WebSockets security work in multiple directions. Some of the
ideas considered for future work by this author include, but are not limited to:

a) Create a more extensive list of common WebSocket URL paths and ports other than 443 for WebSockets
discovery

b) Analyze dataset of publicly accessible WebSockets servers (most common implementations, etc.)
c) Implement WebSocket discovery combining crawling with JavaScript file keyword analysis
d) Expand WebSocket fingerprinting for more servers and version-specific identifiers
e) Analyze impact of different reverse proxies on WebSocket fingerprints
f) Research WebSocket Compression Extensions support (RFC 7692) and implementation errors
g) Research implementation vulnerabilities in WebSocket subprotocols (STOMP, WAMP, MQTT)
h) Research lower-level buffer and socket handling by different WebSocket servers
i) Improve WebSocket proxy bypass (AKA smuggling) methods and attacks
j) Research feasibility of request splitting and other HTTP vulnerabilities in WebSocket HTTP handshake

request
k) Research server multithreading issues with large numbers of malicious client connections
l) Research custom non-browser WebSocket client implementation vulnerabilities
m) Fuzzing of WebSocket servers using invalid WebSocket frames

13

n) Using ZGrab2 HTTP domain-level scanning for other security topics (HTTP/2 research, etc.)

Conclusion

WebSockets are an integral part of many modern websites. In the last decade, the WebSockets protocol has
found many use cases for low-latency use cases. While WebSocket servers have lurked in the shadows and
remained mostly hidden to security researchers in the past, the tools and methods provided by this research
enable easier access to the security testing of the WebSockets protocol. This paper illustrates how WebSockets
can be discovered through highly parallelized brute force method, how specific WebSockets servers can be
identified by fingerprinting methods, and how a WebSocket server can be checked for known vulnerabilities.
Many topics within WebSockets security remain open and unexplored, providing green pastures for future
exploration. By making it easier to find, compare, and test WebSocket servers, the security community can look
forward to an exciting new frontier of exploration with the WebSocket protocol.

Appendix A: Related WebSockets Research Repositories

https://github.com/PalindromeLabs/awesome-websockets-security: A collection of CVEs, research, and
reference materials related to WebSocket security.

https://github.com/PalindromeLabs/WebSocket-Playground: A script to jumpstart nearly a dozen WebSockets
servers simultaneously, for testing and comparison purposes.

https://github.com/PalindromeLabs/STEWS: Security Tool for Enumerating WebSockets. Provides methods to
discovery, fingerprint, and vulnerability scan WebSockets endpoints.

https://github.com/PalindromeLabs/zgrab2: Fork of ZGrab2 with support for rapidly testing WebSockets support
of endpoints.

Appendix B: WebSocket Server CVEs

Table 3: List of WebSocket server CVEs

CVE ID Vulnerable package Related
writeup

Vulnerability summary

CVE-2021-
42340

Tomcat Apache
mailing list

DoS memory leak

CVE-2020-
36406

uWebSockets Google OSS-
Fuzz

Stack buffer overflow

CVE-2021-
33880

Python websockets

HTTP basic auth timing attack

CVE-2021-
32640

ws GitHub
Advisory

Regex backtracking Denial of Service

CVE-2020-
24807

socket.io-file Auxilium
Security

File type restriction bypass

CVE-2020-
15779

socket.io-file Auxilium
Security

Path traversal

https://github.com/PalindromeLabs/awesome-websockets-security
https://github.com/PalindromeLabs/WebSocket-Playground
https://github.com/PalindromeLabs/STEWS
https://github.com/PalindromeLabs/zgrab2
https://nvd.nist.gov/vuln/detail/CVE-2021-42340
https://nvd.nist.gov/vuln/detail/CVE-2021-42340
https://github.com/uNetworking/uWebSockets
https://lists.apache.org/thread.html/r83a35be60f06aca2065f188ee542b9099695d57ced2e70e0885f905c%40%3Cannounce.tomcat.apache.org%3E
https://lists.apache.org/thread.html/r83a35be60f06aca2065f188ee542b9099695d57ced2e70e0885f905c%40%3Cannounce.tomcat.apache.org%3E
https://nvd.nist.gov/vuln/detail/CVE-2020-36406
https://nvd.nist.gov/vuln/detail/CVE-2020-36406
https://github.com/uNetworking/uWebSockets
https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=25381
https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=25381
https://nvd.nist.gov/vuln/detail/CVE-2021-33880
https://nvd.nist.gov/vuln/detail/CVE-2021-33880
https://github.com/aaugustin/websockets
https://nvd.nist.gov/vuln/detail/CVE-2021-32640
https://nvd.nist.gov/vuln/detail/CVE-2021-32640
https://github.com/websockets/ws
https://github.com/websockets/ws/security/advisories/GHSA-6fc8-4gx4-v693
https://github.com/websockets/ws/security/advisories/GHSA-6fc8-4gx4-v693
https://nvd.nist.gov/vuln/detail/CVE-2020-24807
https://nvd.nist.gov/vuln/detail/CVE-2020-24807
https://github.com/rico345100/socket.io-file
https://blog.auxiliumcybersec.com/?p=2646
https://blog.auxiliumcybersec.com/?p=2646
https://nvd.nist.gov/vuln/detail/CVE-2020-15779
https://nvd.nist.gov/vuln/detail/CVE-2020-15779
https://github.com/rico345100/socket.io-file
https://blog.auxiliumcybersec.com/?p=2586
https://blog.auxiliumcybersec.com/?p=2586

14

CVE ID Vulnerable package Related
writeup

Vulnerability summary

CVE-2020-
27813

Gorilla Auxilium
Security

Integer overflow

CVE-2020-
11050

Java WebSocket GitHub
advisory

SSL hostname validation not performed

CVE-2020-
15134

faye-websocket GitHub
advisory

Lack of TLS certificate validation

CVE-2020-
15133

faye-websocket GitHub
advisory

Lack of TLS certificate validation

CVE-2020-
7663

Ruby websocket-extensions Writeup Regex backtracking Denial of Service

CVE-2020-
7662

npm websocket-extensions Writeup Regex backtracking Denial of Service

CVE-2018-
1000518

Python websockets

DoS via memory exhaustion when
decompressing compressed data

CVE-2018-
21035

Qt WebSockets Bug report Denial of service due large limit on
message and frame size

CVE-2017-
16031

socket.io GitHub Issue Socket IDs use predictable random
numbers

CVE-2016-
10544

uWebSockets npm advisory Denial of service due to large limit on
message size

CVE-2016-
10542

NodeJS ws npm advisory Denial of service due to large limit on
message size

None draft-hixie-
thewebsocketprotocol-76

Writeup

Appendix C: Default Max Payload Sizes

Table 4: Default maximum WebSocket message payload size for different WebSocket servers

Server Max payload
(bits)

Link to evidence

Faye 67108863 https://github.com/faye/websocket-driver-node#driver-api
https://github.com/faye/websocket-driver-
node/commit/f15b331a3459d30800a8b9781da5e2a7b3982160

Npm ws 104857600 https://github.com/websockets/ws/blob/114de9e33668075f0af8
8dc440f1ebd813161e72/lib/websocket-server.js#L30

Gorilla No limit! https://github.com/gorilla/websocket/search?q=maxMessageSiz
e

uWebSockets 16777216 https://github.com/uNetworking/uWebSockets/blob/9d8e37d8a
44ddbd3916ceaac1db9a70a025b04d0/misc/main.cpp#L37

Python
websockets

1048576 https://github.com/aaugustin/websockets/blob/3dd672332308b
94221f4acabfae15d519459e5a9/src/websockets/connection.py#
L69

https://nvd.nist.gov/vuln/detail/CVE-2020-27813
https://nvd.nist.gov/vuln/detail/CVE-2020-27813
https://github.com/gorilla/websocket
https://blog.auxiliumcybersec.com/?p=2586
https://blog.auxiliumcybersec.com/?p=2586
https://nvd.nist.gov/vuln/detail/CVE-2020-11050
https://nvd.nist.gov/vuln/detail/CVE-2020-11050
https://tootallnate.github.io/Java-WebSocket/
https://github.com/TooTallNate/Java-WebSocket/security/advisories/GHSA-gw55-jm4h-x339
https://github.com/TooTallNate/Java-WebSocket/security/advisories/GHSA-gw55-jm4h-x339
https://nvd.nist.gov/vuln/detail/CVE-2020-15134
https://nvd.nist.gov/vuln/detail/CVE-2020-15134
https://github.com/faye/faye-websocket-ruby
https://github.com/faye/faye/security/advisories/GHSA-3q49-h8f9-9fr9
https://github.com/faye/faye/security/advisories/GHSA-3q49-h8f9-9fr9
https://nvd.nist.gov/vuln/detail/CVE-2020-15133
https://nvd.nist.gov/vuln/detail/CVE-2020-15133
https://github.com/faye/faye-websocket-ruby
https://github.com/faye/faye-websocket-ruby/security/advisories/GHSA-2v5c-755p-p4gv
https://github.com/faye/faye-websocket-ruby/security/advisories/GHSA-2v5c-755p-p4gv
https://nvd.nist.gov/vuln/detail/CVE-2020-7663
https://nvd.nist.gov/vuln/detail/CVE-2020-7663
https://rubygems.org/gems/websocket-extensions
https://blog.jcoglan.com/2020/06/02/redos-vulnerability-in-websocket-extensions/
https://nvd.nist.gov/vuln/detail/CVE-2020-7662
https://nvd.nist.gov/vuln/detail/CVE-2020-7662
https://rubygems.org/gems/websocket-extensions
https://snyk.io/blog/regular-expression-denial-of-service-in-websocket-extensions/
https://nvd.nist.gov/vuln/detail/CVE-2018-1000518
https://nvd.nist.gov/vuln/detail/CVE-2018-1000518
https://github.com/aaugustin/websockets
https://nvd.nist.gov/vuln/detail/CVE-2018-21035
https://nvd.nist.gov/vuln/detail/CVE-2018-21035
https://doc.qt.io/qt-5/qtwebsockets-index.html
https://bugreports.qt.io/browse/QTBUG-70693
https://nvd.nist.gov/vuln/detail/CVE-2017-16031
https://nvd.nist.gov/vuln/detail/CVE-2017-16031
https://socket.io/
https://github.com/socketio/socket.io/issues/856
https://nvd.nist.gov/vuln/detail/CVE-2016-10544
https://nvd.nist.gov/vuln/detail/CVE-2016-10544
https://github.com/uNetworking/uWebSockets
https://www.npmjs.com/advisories/149
https://nvd.nist.gov/vuln/detail/CVE-2016-10542
https://nvd.nist.gov/vuln/detail/CVE-2016-10542
https://www.npmjs.com/package/ws
https://www.npmjs.com/advisories/120
https://tools.ietf.org/html/draft-hixie-thewebsocketprotocol-76
https://tools.ietf.org/html/draft-hixie-thewebsocketprotocol-76
https://webcache.googleusercontent.com/search?q=cache:oPoZu0vomjYJ:https://www.ietf.org/mail-archive/web/hybi/current/msg04744.html+&cd=1&hl=en&ct=clnk&gl=us
https://github.com/faye/websocket-driver-node#driver-api
https://github.com/faye/websocket-driver-node/commit/f15b331a3459d30800a8b9781da5e2a7b3982160
https://github.com/faye/websocket-driver-node/commit/f15b331a3459d30800a8b9781da5e2a7b3982160
https://github.com/websockets/ws/blob/114de9e33668075f0af88dc440f1ebd813161e72/lib/websocket-server.js#L30
https://github.com/websockets/ws/blob/114de9e33668075f0af88dc440f1ebd813161e72/lib/websocket-server.js#L30
https://github.com/gorilla/websocket/search?q=maxMessageSize
https://github.com/gorilla/websocket/search?q=maxMessageSize
https://github.com/uNetworking/uWebSockets/blob/9d8e37d8a44ddbd3916ceaac1db9a70a025b04d0/misc/main.cpp#L37
https://github.com/uNetworking/uWebSockets/blob/9d8e37d8a44ddbd3916ceaac1db9a70a025b04d0/misc/main.cpp#L37
https://github.com/aaugustin/websockets/blob/3dd672332308b94221f4acabfae15d519459e5a9/src/websockets/connection.py#L69
https://github.com/aaugustin/websockets/blob/3dd672332308b94221f4acabfae15d519459e5a9/src/websockets/connection.py#L69
https://github.com/aaugustin/websockets/blob/3dd672332308b94221f4acabfae15d519459e5a9/src/websockets/connection.py#L69

15

Appendix D: WebSocket Server Implementations

Table 5: Popular WebSockets server implementations

Name Language Repository GitHub
Stars (as of
Nov 2021)

ws JS https://github.com/websockets/ws 17,200

Gorilla Go https://github.com/gorilla/websocket 15,700

uWebSockets C++ https://github.com/uNetworking/uWebSockets 13,300

Java-WebSocket Java https://github.com/TooTallNate/Java-WebSocket 8,500

Cowboy Erlang https://github.com/ninenines/cowboy 6,500

Ratchet PHP https://github.com/ratchetphp/Ratchet 5,600

warp Rust https://github.com/seanmonstar/warp 5,500

WebSocket++ C++ https://github.com/zaphoyd/websocketpp 5,100

websocket-sharp C# https://github.com/sta/websocket-sharp 4,400

ws Go https://github.com/gobwas/ws 4,200

websockets Python https://github.com/aaugustin/websockets 3,700

libwebsockets C https://github.com/warmcat/libwebsockets 3,200

References

1. http://www.adambarth.com/papers/2011/huang-chen-barth-rescorla-jackson.pdf
2. https://www.youtube.com/watch?v=-ALjHUqSz_Y
3. https://github.com/0ang3el/websocket-smuggle
4. https://labs.bishopfox.com/tech-blog/h2c-smuggling-request-smuggling-via-http/2-cleartext-h2c
5. https://blog.assetnote.io/2021/03/18/h2c-smuggling/
6. https://christian-schneider.net/CrossSiteWebSocketHijacking.html
7. https://github.com/andresriancho/websocket-fuzzer
8. https://forum.portswigger.net/thread/websockets-api-support-c8e1660b9f0ab
9. https://seclists.org/nmap-dev/2015/q1/134
10. https://github.com/projectdiscovery/nuclei/issues/539
11. https://github.com/PortSwigger/turbo-intruder
12. https://github.com/EnableSecurity/wafw00f
13. https://www.iana.org/assignments/websocket/websocket.xml#subprotocol-name

https://github.com/websockets/ws
https://github.com/gorilla/websocket
https://github.com/uNetworking/uWebSockets
https://github.com/ninenines/cowboy
https://github.com/ratchetphp/Ratchet
https://github.com/seanmonstar/warp
https://github.com/zaphoyd/websocketpp
https://github.com/sta/websocket-sharp
https://github.com/gobwas/ws
https://github.com/aaugustin/websockets
https://github.com/warmcat/libwebsockets
http://www.adambarth.com/papers/2011/huang-chen-barth-rescorla-jackson.pdf
https://www.youtube.com/watch?v=-ALjHUqSz_Y
https://github.com/0ang3el/websocket-smuggle
https://labs.bishopfox.com/tech-blog/h2c-smuggling-request-smuggling-via-http/2-cleartext-h2c
https://blog.assetnote.io/2021/03/18/h2c-smuggling/
https://christian-schneider.net/CrossSiteWebSocketHijacking.html
https://github.com/andresriancho/websocket-fuzzer
https://forum.portswigger.net/thread/websockets-api-support-c8e1660b9f0ab
https://seclists.org/nmap-dev/2015/q1/134
https://github.com/projectdiscovery/nuclei/issues/539
https://github.com/PortSwigger/turbo-intruder
https://github.com/EnableSecurity/wafw00f
https://www.iana.org/assignments/websocket/websocket.xml#subprotocol-name

