
PRESENTED BY:
Erik Elbieh, Security Consultant & Researcher
Palindrome Technologies

We’re not in HTTP anymore:
Investigating WebSocket
Server Security

We’re not in HTTP anymore: Investigating WebSocket
Server Security

Talk Summary

1. How WebSockets Work

2. Summary of WebSockets Research

3. New STEWS tool(s)

2

We’re not in HTTP anymore: Investigating WebSocket
Server Security

● Security Researcher and Consultant at Palindrome Technologies
○ Pen testing telecom systems, web apps, Kubernetes, and more

● Previously a Security Engineer at General Motors
○ Secured vehicle modules, Bluetooth specialist

● OSCP certified since 2019
● Graduated from Columbia University and Bard College at Simon’s Rock
● More at erikelbieh.com

Erik Elbieh’s Brief Bio

3

https://www.palindrometech.com/
https://erikelbieh.com

We’re not in HTTP anymore: Investigating WebSocket
Server Security

Part 1: How WebSockets Work

4

We’re not in HTTP anymore: Investigating WebSocket
Server Security

WebSocket Protocol History

● Created in 2010-2011 (RFC6455)

● Provides a low-overhead web protocol for real-time communications

● WebSocket servers are often distinct from HTTP servers

5

We’re not in HTTP anymore: Investigating WebSocket
Server Security

WebSocket vs. HTTP

Source: https://developerinsider.co/difference-between-http-and-http-2-0-websocket/
6

We’re not in HTTP anymore: Investigating WebSocket
Server Security

WebSocket vs. HTTP

● WebSockets don’t use the request/response approach that HTTP
does. WebSockets remain open until closed. This allows webpage
updates to happen without refreshing the webpage (alternative to
XHR, etc.)
○ Note: Proxies are usually built for the request/response

approach HTTP uses and can have WebSockets vulnerabilities
● HTTP has headers (AKA overhead) with every request/response,

but after a WebSocket is started, there is no similar header. Lower
overhead is good for frequent back-and-forth real time
communication.

7

We’re not in HTTP anymore: Investigating WebSocket
Server Security

WebSocket Stack

8

Any Protocol

(socket-io, engine-io, STOMP,

WAMP, MQTT, etc.)

TCP/IP

WebSocket
(!= HTTP)

WebSocket Frame

We’re not in HTTP anymore: Investigating WebSocket
Server Security

WebSockets Higher-Level Protocols

● Some protocols are (or can be) implemented on top of WebSockets:
○ Socket.io
○ Engine.io
○ STOMP
○ WAMP
○ MQTT

9

We’re not in HTTP anymore: Investigating WebSocket
Server Security

WebSocket Example: Phase 1

Key Point: WebSockets use HTTP to “kickstart” the WebSocket protocol

Step 1: HTTP request from browser

(Note the many uses of the word “WebSocket”)

Step 2: HTTP response from server

“101 Switching Protocols” is a ‘rare’ HTTP status
code that often indicates a WebSocket was started

10

We’re not in HTTP anymore: Investigating WebSocket
Server Security

WebSocket Example: Phase 2

Not much to see because the WebSocket
Protocol focuses on minimizing overhead.
Chat application example shown below

11

We’re not in HTTP anymore: Investigating WebSocket
Server Security

WebSockets in the Wild

Use cases include:
● Chat bots, especially customer service
● Slack, Discord, and other chat platforms
● Maps tracking real-time movement
● Live finance data websites
● Cryptocurrency websites
● Smart TV remote control!?
● Kubernetes/Docker API!?

12

We’re not in HTTP anymore: Investigating WebSocket
Server Security

Try This at Home Kids!

13

We’re not in HTTP anymore: Investigating WebSocket
Server Security

Try This at Home Kids!

1. Open web browser developer tools (Control+Shift+I in
Firefox or Chrome) and visit the Network tab

2. Click “WS” to filter for only WebSockets traffic
3. Visit a webpage with WebSockets, such as:

a. Finance: https://finance.yahoo.com/
b. Sports: https://www.livescore.in/
c. Chat: https://support.zoom.us
d. Live maps: https://www.marinetraffic.com

4. Observe initial WebSocket request and response
Note: Web proxy tools like Burp Suite and OWASP ZAP
store WebSocket traffic in a separate tab from HTTP traffic 14

https://finance.yahoo.com/
https://www.livescore.in/
https://support.zoom.us/
https://www.marinetraffic.com/

We’re not in HTTP anymore: Investigating WebSocket
Server Security

Finding WebSockets

15

Burp Suite

Firefox

We’re not in HTTP anymore: Investigating WebSocket
Server Security

Part 2: Summary of WebSockets Research

16

We’re not in HTTP anymore: Investigating WebSocket
Server Security

Highlights of Prior WebSockets Security Research

● 2011: Firefox 4 temporarily removes WebSocket support due
to protocol issue

● 2016: CORS, a HTTP CSRF mitigation, doesn’t apply to
WebSockets -> Cross Site WebSocket Hijacking (CSWSH)

● 2019: Proxies that don’t properly handle WebSockets can lead
to WebSocket Smuggling

17

We’re not in HTTP anymore: Investigating WebSocket
Server Security

Port Scanning with WebSockets

18

Related slide deck:
https://datatracker.ietf.org/meet
ing/96/materials/slides-96-saag-
1

https://datatracker.ietf.org/meeting/96/materials/slides-96-saag-1
https://datatracker.ietf.org/meeting/96/materials/slides-96-saag-1
https://datatracker.ietf.org/meeting/96/materials/slides-96-saag-1

We’re not in HTTP anymore: Investigating WebSocket
Server Security

Timeline of Prior Related Research

This talk

2010 2016 20212011 2012 2019

Semi-related
h2 smuggling

Cross-site WebSocket
Hijacking blog post

Black Hat
Talk

New
Paper

WS is
born

Egorov
Talk

19

We’re not in HTTP anymore: Investigating WebSocket
Server Security

Takeaways from Past Research

● Large scale security testing of WebSockets “in the wild” hasn’t
been publicly done before

● Research has been focused on the protocol level and proxy
(mis)handling - but what about the server implementations?

● HTTP gets all the attention

20

We’re not in HTTP anymore: Investigating WebSocket
Server Security

HTTP Servers Market share

21
Source: https://news.netcraft.com/archives/2021/10/15/october-2021-web-server-survey.html

We’re not in HTTP anymore: Investigating WebSocket
Server Security

WebSocket Servers Market share

22

?

We’re not in HTTP anymore: Investigating WebSocket
Server Security

Common WebSocket Server Implementations

23

We’re not in HTTP anymore: Investigating WebSocket
Server Security

Part 3: New STEWS tool(s)

24

We’re not in HTTP anymore: Investigating WebSocket
Server Security

Who doesn’t like free stuff?

Released today, fresh out of the oven!
1. STEWS repository: https://github.com/PalindromeLabs/STEWS

a. Includes whitepaper and this slide deck
2. WebSockets Playground:

https://github.com/PalindromeLabs/WebSocket-Playground
3. WebSockets Security Awesome:

https://github.com/PalindromeLabs/awesome-websockets-security

25

https://github.com/PalindromeLabs/STEWS
https://github.com/PalindromeLabs/WebSocket-Playground
https://github.com/PalindromeLabs/awesome-websockets-security

We’re not in HTTP anymore: Investigating WebSocket
Server Security

Top Tools Lack WebSocket Custom Test Support

1. nmap: https://seclists.org/nmap-dev/2015/q1/134
2. Burp Suite (supports WebSockets, but not for extensions):

https://forum.portswigger.net/thread/websockets-api-support-c8e1
660b9f0ab

3. nuclei: https://github.com/projectdiscovery/nuclei/issues/539

26

https://seclists.org/nmap-dev/2015/q1/134
https://forum.portswigger.net/thread/websockets-api-support-c8e1660b9f0ab
https://forum.portswigger.net/thread/websockets-api-support-c8e1660b9f0ab
https://github.com/projectdiscovery/nuclei/issues/539

We’re not in HTTP anymore: Investigating WebSocket
Server Security

STEWS

STEWS = Security Testing and Enumeration of WebSockets

Performs 3 key steps in WebSockets security testing:
1. Discovery
2. Fingerprinting
3. Vulnerability Detection

27

We’re not in HTTP anymore: Investigating WebSocket
Server Security

1. WebSockets Discovery

Why WebSocket endpoint discovery is difficult:
1. WebSockets use HTTP to start a connection, but observing HTTP

alone does not indicate a WebSocket
2. Websites often start WebSockets using JavaScript, so WebSocket

endpoints aren’t always found parsing HTML
a. Sometimes the main website is not linked to the WebSocket

because the WebSocket endpoint is a standalone API
3. WebSockets may only exist at one specific URL path and at one

specific port of the endpoint

28

We’re not in HTTP anymore: Investigating WebSocket
Server Security

1. WebSockets Discovery

Approaches to discovering WebSockets:
1. Finding WebSockets on a specific website

a. Spider website HTML and search for WebSocket keywords
in source code (downsides: false positives)

b. Spider website and load all JavaScript and watch for HTTP
101 responses (downsides: loading all JS is slow)

2. Finding WebSockets on any website
a. Use wordlist of common WebSocket endpoints and brute

force a large list of websites (downsides: only testing wordlist
endpoints)

29

We’re not in HTTP anymore: Investigating WebSocket
Server Security

1. WebSockets Discovery

Approaches to discovering WebSockets:
1. Finding WebSockets on a specific website

a. Spider website HTML and search for WebSocket keywords
in source code (downsides: false positives)

b. Spider website and load all JavaScript and watch for HTTP
101 responses (downsides: loading all JS is slow)

2. Finding WebSockets on any website
a. Use wordlist of common WebSocket endpoints and brute

force a large list of websites (downsides: only testing wordlist
endpoints)

30
Good for finding many WebSocket endpoints quickly

We’re not in HTTP anymore: Investigating WebSocket
Server Security

1. WebSockets Discovery

Difficulties in scalable WebSocket endpoint discovery:
1. Tools like masscan and zmap are fast at endpoint detection

a. ...However, they work at the TCP/IP layer and we need to operate at
the HTTP/WebSocket layer

2. Burp Suite’s Turbo Intruder is fast at the HTTP layer
a. ...However, Turbo Intruder documentation states “it's designed for

sending lots of requests to a single host”, not testing many hosts
3. ZGrab2 is a fast application-layer scanner

a. ...However, requires some tweaks to support WebSocket requests

31

https://github.com/robertdavidgraham/masscan
https://github.com/zmap/zmap
https://github.com/PortSwigger/turbo-intruder
https://github.com/zmap/zgrab2

We’re not in HTTP anymore: Investigating WebSocket
Server Security

1. WebSockets Discovery

Acquiring large lists of URLs
1. Googling “Top million URLs”:

https://www.letmegooglethat.com/?q=top+million+urls
2. Zone Files: https://czds.icann.org/home

a. Zone Files are what DNS servers use for lookups
b. Downside is that many URLs in zone file aren’t active

32

https://www.letmegooglethat.com/?q=top+million+urls
https://czds.icann.org/home

We’re not in HTTP anymore: Investigating WebSocket
Server Security

1. WebSockets Discovery

Other difficulties:
● Large number of DNS lookups can be a bottleneck

○ Many DNS servers have rate limit
○ Using multiple DNS servers can help solution
○ zgrab2 allows DNS lookup beforehand (using zdns, massdns, etc.)

● Obtaining wordlist of probable WebSocket paths to brute force requires
manual effort
○ Found known WebSocket endpoints through random browsing, bug

bounty reports, reading GitHub WebSocket repository issues

33

We’re not in HTTP anymore: Investigating WebSocket
Server Security

1. WebSockets Discovery

34

From ~3 million domains

We’re not in HTTP anymore: Investigating WebSocket
Server Security

STEWS Discovery Demo

35

http://www.youtube.com/watch?v=COKcLGEsKmE

We’re not in HTTP anymore: Investigating WebSocket
Server Security

2. WebSockets Fingerprinting

The challenge: to find implementation-level differences between
WebSocket server implementations in order to identify them

“In theory there is no difference between theory and practice – in
practice there is”

36

We’re not in HTTP anymore: Investigating WebSocket
Server Security

2. WebSockets Fingerprinting

A few of the most popular WebSocket servers include:
● uWebSockets (C++)
● Gorilla (Go)
● ws (JavaScript)
● websockets (Python)
● Spring Boot (Java)

But there’s dozens of WebSocket server implementations

37

We’re not in HTTP anymore: Investigating WebSocket
Server Security

2. WebSockets Fingerprinting

Differences from other fingerprinting tools:
● HTTP fingerprinters only handle 1 protocol, whereas WebSockets

use HTTP to negotiate the switch to WebSockets, meaning
STEWS fingerprinting handles 2 protocols

● Tools like nmap query specific URL paths to gain information, but
WebSocket servers usually only listen at a specific URL path

38

We’re not in HTTP anymore: Investigating WebSocket
Server Security

2. WebSockets Fingerprinting

To find WebSocket server identifying features, use a simple
deterministic fuzzer to test different features of the
WebSocket Server, such as:
● Supported WebSocket Protocol Version Numbers
● Reserved and opcode bit support
● Verbose error messages
● Default maximum data length

39

We’re not in HTTP anymore: Investigating WebSocket
Server Security

2. WebSockets Fingerprinting

Over 50 different STEWS fingerprinting test cases:

● 100-series tests: opcode tests (WebSocket protocol)
● 200-series tests: rsv bit tests (WebSocket protocol)
● 300-series tests: version tests (HTTP protocol)
● 400-series tests: extensions tests (HTTP protocol)
● 500-series tests: subprotocol tests (HTTP protocol)
● 600-series tests: long payload tests (WebSocket protocol)
● 700-series tests: hybi and similar tests (WebSocket protocol)

40

We’re not in HTTP anymore: Investigating WebSocket
Server Security

2. WebSockets Fingerprinting

41

We’re not in HTTP anymore: Investigating WebSocket
Server Security

STEWS Fingerprint Local Server Demo

42

http://www.youtube.com/watch?v=G0PPPInswIA

We’re not in HTTP anymore: Investigating WebSocket
Server Security

STEWS Fingerprint Public Server Demo

43

http://www.youtube.com/watch?v=q1Qy1v09K_c

We’re not in HTTP anymore: Investigating WebSocket
Server Security

3. WebSockets Vulnerability Detection

44

WebSocket servers have
a few CVEs…

A longer list of WebSocket
server CVEs found in
WebSocket Security
Awesome

https://github.com/PalindromeLabs/awesome-websockets-security
https://github.com/PalindromeLabs/awesome-websockets-security

We’re not in HTTP anymore: Investigating WebSocket
Server Security

3. WebSockets Vulnerability Detection

● Ideally the detection process of a CVE does not
involve exploiting it, but often there is no other way

● STEWS vuln-detect includes checks for a few CVEs,
though more should be added in the future:
○ CVE-2020-27813 (Gorilla DoS Integer Overflow)
○ CVE-2020-7662 & CVE-2020-7663 (faye

Sec-WebSocket-Extensions Regex DoS)
○ CVE-2021-32640 (ws Sec-Websocket-Protocol

Regex DoS)

45

We’re not in HTTP anymore: Investigating WebSocket
Server Security

STEWS Vuln Detect Demo

46

http://www.youtube.com/watch?v=DXQQJKMpMRk

We’re not in HTTP anymore: Investigating WebSocket
Server Security

Summary

Part 1: WebSockets work like HTTP, but less examined

Part 2: Minimal research done around WebSocket
security and popular tools lack support

Part 3: STEWS toolset provides off-the-shelf tooling for
discovery, fingerprinting, and vulnerability detection of
WebSocket servers

47

We’re not in HTTP anymore: Investigating WebSocket
Server Security

Ideas for Future Research

1. Security of WebSockets subprotocols
2. Security of WebSocket Compression (RFC 7692)
3. Fast JavaScript-based spidering to discover

WebSocket endpoints on single domain
4. Can other HTTP-type attacks be ported to

WebSocket servers?

Over a dozen additional ideas listed in whitepaper

48

We’re not in HTTP anymore: Investigating WebSocket
Server Security

Recommended Additional Resources

PortSwigger WebSocket mini-CTF exercises:
https://portswigger.net/web-security/websockets

Mikhail Egorov’s 2019 conference talk:
https://www.youtube.com/watch?v=gANzRo7UHt8

WebSocket Protocol RFC, RFC 6455:
https://datatracker.ietf.org/doc/html/rfc6455

WebSocket Protocol Compression RFC, RFC 7692:
https://datatracker.ietf.org/doc/html/rfc7692 49

https://portswigger.net/web-security/websockets
https://portswigger.net/web-security/websockets
https://www.youtube.com/watch?v=gANzRo7UHt8
https://www.youtube.com/watch?v=gANzRo7UHt8
https://datatracker.ietf.org/doc/html/rfc6455
https://datatracker.ietf.org/doc/html/rfc7692

We’re not in HTTP anymore: Investigating WebSocket
Server Security

Thank You!

Questions?

Email: erik.elbieh@palindrometech.com
Site: https://erikelbieh.com

50

mailto:erik.elbieh@palindrometech.com
https://erikelbieh.com

