IKPy

An Inverse Kinematics toolbox

Outline

An inverse kinematics toolbox
IKPy functionnalities
Using IKPy

R N

Live Demo

Inverse Kinematics

Inverse Kinematics (1K)

* What you have : A robot where you can choose
each motor’sangle

* What you want to do : move the end effector
to this position

e How to do it : Find a combination of motor

angles Eruo Esvecton

(Bausn)

Desired functionnalities

e Compatibility :
e Poppy Humanoid, Torso,
* Baxter
* Human
* Everything else...

* Modularity
* Plotting tools
* Easy to use and setup

* Fast enough

IKPy at a glance

Optimized computations

e Almost based on C structures

* Fast Forward-Kinematics
* Symbolic geometrical computations

* Possibility to control the computation precision
* Tradeoff between precision and speed

* Average computationtime: 7 ms—50 ms
 Special optimisations :

* Multicore? (Work in progress)
* Dynamic IK

Simple AP]

e 2 objects :
e Link ~¥= A motor
* Chain = Ordered list of Links

Simple API (2)

e 2 functions :

Forward Kinematics %
e Chain.forward_kinematics g

e Chain.inverse_kinematics - inverse Kinematics -

» Additional features :
* Active links
* Smoothness control (very related to precision control)

URDF Import

 URDF : XML describing a Robot (as graph)
* Used by ROS, Poppy
* Compatible with 3D editors

* Extract a chain from every URDF topology

* Extreme precision : No limitation at the
Software level

3D Plotting of the robot

* Method plot() : Matplotlib 3D view
e Standalone use

1.0°7]

Using [KPy

A lightweight library

* Easy to install : Pip or Conda

pip install ikpy

* No compilation required

* Compatibility with most systems :
* Python 2/3

* Dependencies : Scipy / Numpy, Sympy
* Fast enough for Embedded systems

Developer API

* APl to customize IKPy behavior :

* New representations
* URDF
* DH parameters

* New Inverse Kinematics methods

* New constraints : effort, speed
* New solvers

class OriginLink(Link):
"""The link at the origin of the robot"""
def init (self):
Link. init (self, name="Base link™)
self. length =1

def get rotation axis(self):
return [0, @0, 0, 1]

def get transformation matrix(self, theta):

return np.eye(4)

Last features (1)

GitHub

* Open source
* Online documentation

Welcome to IKPy's documentation!

Here you can find the documentation of the Inverse Kinematics API.
If you search getting started guides and tutorials, go to the Github repository.

e ikpy package
O ikpy.chain module
O ikpy.link module
O ikpy.inverse_kinematics module
O ikpy.geometry utils module

O ikpy.URDF_utils module

Chain

I— a St | e a t u r e S The chain is the main object of IKpy. It provides the Inverse Kinematics and Forward Kinematics methods, as long as

other helper methds (URDF import, plotting...)

Chain structure

Achain is basically a list of wink objects. Each link has a position and an orientation, that are stored in its transformation

L]
[) I u t O r I a I S a n d n Ot e bo O kS matrix (for more details, go to the links section of the doc). Moreover, each link represents a motor (currently revolute with

one degree of freedom), that moves the next links.

Lets consider the 2D robot below :

The first link (called the "Origin” link) is the origin of the frame, at position (0, 0, 0). The lastlink is the end effector ofthe
chain. Being the lastlink, its degree of freedom is purely virtual and has no interest : this link cant move anything. It's just
here to have a position.

Example : Pypot Integration

 Fully integrated with Pypot

* Chains = attributes of creatures
* Ex of Torso : torso.right_arm / torso.left_arm

* IK = goto() method

Demo

Live Demo

* Poppy torso : right hand must follow left hand.
* |[KPy features : Demo on Ergolr.

