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Abstract

This state-of-the-art report summarizes k-dimensional tree research and fur-

ther applications within computer science.
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1 Introduction

K-dimensional tree [1] (or k-d tree, where k is a random integer indicates the

dimensionality of the search space) has been established as one of the major so-

lutions to modelling multidimensional space. While k-d tree initially gained pop-

ularity as multidimensional data structure, it has emerged to play a role in other

fields (e.g. particle simulation and clustering). K-d tree is also a special case of

binary space partitioning tree.
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2 The Method

Given a low dimensional continuous space, the basic idea of k-d trees is attempting

to cut this space into halves and limiting the searching into one of the quadrants

to reduce the computational complexity.

To simplify the problem in order to provide insight into this artful but confus-

ing data structure, the sample dimensionality has been set into 2D. Consider this

training data set:

{(1,9),(2,3),(4,1),(3,7),(5,4),

(6,8),(7,2),(8,8),(7,9),(9,6)}

Now the axes have two attributes. The algorithm works like that we pick an

attribute and find the median, then we split the data set along that median. For

example, in this case, the median happens to be 6 at the first time split, so we

have the points in the upper line on the left side and the lower ones on the right.

Similarly, we do the same things to the second attributes, then we work out a

tree-like data structure. The pseudocode is followed:

Data: axis, median: integer
1 function kdtree(pointSet, depth)
2 begin
3 axis← depth mod k;
4 median← selected based on axis from pointSet;
5 newNode.location← median;
6 newNode.left← kdtree(points in pointSet before median, depth + 1);
7 newNode.right← kdtree(points in pointSet after median, depth + 1);
8 end

As a result, we are going to fracture the space into some little cubes and hy-
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percubes. When it comes to inserting, every time we get a new data point, we can

just walk down the tree until we end up in one of these hypercubes.

The Training Data
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Figure 1: Building a k-d tree from training data.

Apparently, k-d tree is an approximate technique that you may make mistakes

when implementing searching, but it allows you to quickly drill down to a bucket

that has roughly correct position.

3 Applications

3.1 Clustering

Since our tree-like data structure is modeled based on a multidimensional space,

intuitively, its main function will be implemented on space working. Clustering

is a well-known phenomenon in geometric data, and has application in machine

learning. To simplify the problem, we define the distance function in standardized

euclidean metric:
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d(p,q) = d(q, p) =
√
(q1− p1)2 +(q2− p2)2 + · · ·+(qn− pn)2

=

√
n

∑
i=1

(qi− pi)2

In a low dimensionality, the quickly drilling feature of k-d tree enables it as

a speeding up of k-means clustering [3] (Lloyd’s algorithm is more efficient for

higher dimension).
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Figure 2: One case in clustering.
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Figure 3: Another case in clustering.

3.2 Particle Simulation

In computer graphics, we compute the movement of fluid particles with the help

of multiple numerical methods which trying to solve the famous incompressible

Navier-Stokes equation [2]. It describes the motion of fluid substances as a result

of forces.

∂
−→v

∂ t
+(−→v ·

−→
∇ )−→v =

−
−→
∇ p

ρm
+

µ

ρm
∇

2−→v +

−→
f ext

ρm
(1)

4



∇v = 0 (2)

Though it seems extremely complex at first glance, we have two intuitive ap-

proach to make it: Lagrangian and Eulerian viewpoint, which is particle-based

and grid-based respectively.

When it comes to the Lagrangian viewpoint, Smoothed Particle Hydrodynam-

ics [4] (or SPH) has been considered as one of the major particle-based approach

to simulate fluid. However, a space-fitting data structure is in need to search the

neighbor particles in order to boost the kernel function used in SPH.

Since then, plentiful applications of particle-based fluid simulation, such as

Gasoline [5], have been done with the hierarchy data structure k-d tree in terms of

the quickness of searching, deleting and inserting.

Figure 4: A sample SPH particle system.

4 Connection to Combinatorics

After the brief introduction, we can find that k-d tree is an optimization of binary

search tree and a special case of binary space partitioning tree. In terms of com-
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puter science, k-d tree has been built as a branch of the search tree structure which

aims to reduce the complexity of searching, deleting, sorting and inserting. Sim-

ilarly, when it comes to combinatorics, k-d tree is a part of graph theory which is

one of the combinatorial concepts covered in our class. On one hand, k-d tree is

an extended branch of tree in graph theory. On the other hand, the space partition

is also a topic in combinatorics.

Furthermore, in our continuous space in real world, it is pretty intuitive to deal

with and judge the different part of space. However, to computer, which has no

sight and is able to process discrete data merely, modeling the presentative but

complicated problem into a batch of code or data somehow plays a vital role in

computer science. From my point of view, combinatorics is a specific science that

breaks up information into discrete state and designs algorithm to deal with them

in a mathematical view. As a result, k-d tree can be abstracted as an imaginary

hierarchy structure in abstract mathematics or even a clever pattern of designing

discrete data.

5 Conclusion

This report concludes the background, basic principles, thinking patterns, imple-

mentations, applications and mathematical connections of k-d tree. Based on the

coverage of combinatorial concepts during summer course and my independent

reflection, this report can be qualified for a k-d tree primer and a learning stimu-

lator for data structure and combinatorics. In the course of working out this re-

port, I gained experience of manipulating the LATEX typesetting and programming

language. Moreover, I gained an insight into combinatorics and data structure.
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during summer semester, Hua Wang, for his patient lectures and professional in-

struction.
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