

- Confidential, 14 pages -

Corporate Design

2016

Polymesh Baseline Security Assurance
Threat model and hacking assessment report

V2.0, March 26, 2021

Stephan Zeisberg stephan@srlabs.de

Mostafa Sattari mostafa@srlabs.de

Vincent Ulitzsch vincent@srlabs.de

Abstract. This study describes the results of a thorough,
independent baseline security assurance audit of the Polymesh
blockchain platform performed by Security Research Labs. In the
course of this study, Polymath provided full access to relevant
documentation and supported the research team effectively.

The protection of Polymesh was independently verified to assure
that existing hacking risks are understood and minimized.

The research team identified several issues ranging from low to
critical risk were identified by the examiners and Polymath
addressed them quickly. Most of the issues are no longer present
in the latest development version of Polymesh.

To further improve the security of the Polymesh network, we
recommend best practices around handling numeric bounds and
dependency patching as well as leveraging continuous fuzz-testing
during development. In addition, we recommend to only use
custom cryptography schemes when absolutely necessary.

Polymath-baseline_assurance_polymesh-online.docx Confidential, Page 2 of 14

Das Logo Horizontal

— Pos / Neg

3

Content

1 Motivation and scope .. 3
2 Methodology ... 4
3 Threat modeling and attacks .. 5
4 Findings summary .. 6
4.1 Detailed findings ... 7
4.1.1 Exponential complexity of weight calculation allows for DoS attack 7
4.1.2 Investor can generate multiple scope claims using an erroneous hash . 8
4.1.3 Multiple arithmetic over/underflows ... 8
4.1.4 No tipping mechanism may be used to delay time-critical transactions 9
4.1.5 No deposit for on-chain stored parameters can lead to storage clutter
 10
4.1.6 Proofs may be replayed for different claim types 10
4.1.7 Risks through FIFO transaction processing scheme 10
5 Evolution suggestion .. 11
6 References ... 12

Polymath-baseline_assurance_polymesh-online.docx Confidential, Page 3 of 14

Das Logo Horizontal

— Pos / Neg

3

1 Motivation and scope

This review assesses the Polymesh blockchain system’s existing protections against
a variety of likely hacking scenarios and points out the most relevant weaknesses,
all with the goal of improving the protection capabilities of the blockchain system.

Data stored on future Polymesh nodes poses an attractive theft target. Threats that
could compromise systems using Polymesh go far beyond the theft of value tokens.
Notable hacking scenarios include the potential to undermine trust in the blockchain
system by ‘short-selling’, ‘double-spending’, or artificially driving up the value of
supply by ‘locking up’ tokens.

This report details the baseline security assurance results with the aim of creating
transparency in three steps:

Threat Model. The threat model is considered in terms of hacking incentives, i.e. the
motivations to achieve the goals of breaching the integrity, confidentiality, or
availability of nodes in future Polymesh systems. For each hacking incentive, we
postulate hacking scenarios, by which these goals could be reached. The threat
model provides guidance for the design, implementation, and security testing of
Polymesh.

Security design coverage check. Next, the Polymesh design was reviewed for
coverage against relevant hacking scenarios. For each scenario, the following two
aspects were investigated:

a. Coverage. Is each potential security vulnerability sufficiently covered?

b. Underlying assumptions. Which assumptions must hold true for the design
to effectively reach the desired security goal?

Implementation baseline check. As a third step, the current Polymesh
implementation was tested for openings whereby any of the defined hacking
scenarios could be executed.

Polymesh is built upon Substrate, a blockchain development framework. Both
Polymesh and Substrate are written in Rust, a memory safe programming language.
Mainly, Substrate works with three technologies: a WebAssembly (WASM) based
runtime, decentralized communication via libp2p, GRANDPA finality gadget and the
BABE block production engine.

The Polymesh runtime consists of multiple modules compiled into a WASM Binary
Large Object (blob) that is stored on-chain. Nodes execute the runtime code either
natively or will execute the on-chain WASM blob. These runtime modules (e.g. asset,
identity, balances) are implemented in the Polymesh source1 as well as in the
Substrate framework.

Polymath shared an overview containing the current state of the runtime modules
used by Polymesh and its audit priority. The priority and the in-scope components
are reflected in Table 1.

1 https://github.com/PolymathNetwork/Polymesh

Polymath-baseline_assurance_polymesh-online.docx Confidential, Page 4 of 14

Das Logo Horizontal

— Pos / Neg

3

Repository Priority Component(s)

Polymesh High Bridge, Asset, Identity, Multisig, Polymesh
Improvement Proposals, Settlement, Runtime,
Cryptography2

Medium Balances, Committee, Common, Compliance Manager,
Corporate Actions, Group, Permissions, Portfolio,
Staking, Security Token Offering, Transaction Payment,
Treasury, Utility, Weights

Low Smart Contract, Confidential, Primitives, Protocol Fees,
Statistics, Im-Online, RPC, Node RPC, Primitives Derive

Table 1. In-scope Polymesh components with audit priority

2 Methodology

To be able to effectively review the Polymesh codebase, a threat-model driven code
review strategy was employed. For each identified threat, hypothetical attacks that
can be used to realize the threat were developed and mapped to their respective
threat category as outlined in chapter 3.

Prioritizing by risk, the codebase was assessed for present protections against the
respective threats and attacks as well as the vulnerabilities that make these attacks
possible. For each threat, the auditor:

1. Identified the relevant parts of the codebase, for example, the relevant
pallets.

2. Identified viable strategies for the code review. Manual code audits, fuzz-
testing, and manual tests were performed where appropriate.

3. Ensured the code did not contain any vulnerabilities that could be used to
execute the respective attacks, otherwise, ensure sufficient protection
measures against specific attacks were present.

4. Immediately reported any vulnerability that was discovered to the
development team along with suggestions around mitigations.

During the audit, we carried out a hybrid strategy utilizing a combination of code
review and dynamic tests (e.g. fuzz-testing) to assess the security of the Polymesh
codebase.

While fuzz-testing and dynamic tests establish a baseline assurance, the main focus
of this audit was a manual code review of the Polymesh codebase to identify logic
bugs, design flaws, and best practice deviations. We used the v1_mainnet3 branch of
the Polymesh repository as the basis for the review. The approach of the review was
to trace the intended functionality of the runtime modules in scope and to assess
whether an attacker can bypass/misuse/abuse these components or trigger

2 The cryptography resides in a separate repository:
(https://github.com/PolymathNetwork/cryptography)
3 Commit: d7bfeecbebfe927725ebeb2a531610d59de19b96

Polymath-baseline_assurance_polymesh-online.docx Confidential, Page 5 of 14

Das Logo Horizontal

— Pos / Neg

3

unexpected behavior on the blockchain due to logic bugs or missing checks. Since
the Polymesh codebase is entirely open source, it is realistic that a malicious actor
would analyze the source code while preparing an attack.

Fuzz-testing is a technique to identify issues in code that handles untrusted input,
which in Polymesh’s case is mostly the functions implementing the extrinsics. (Note
that the network part is handled by Substrate, which was not in scope for this review,
but is built with a strong emphasis on security and where fuzz-testing is also used).
Fuzz-testing works by taking some valid input for a method under test, applying a
semi-random mutation to it, and then invoking the method under test again with this
semi-valid input. Through repeating this process, fuzz-testing can unearth inputs that
would cause a crash or other undefined behavior (e.g., integer overflows) in the
method under test. The fuzz-testing methods written for this assessment utilized the
test runtime Genesis configuration as well as mocked externalities to execute the
fuzz-test effectively against the extrinsics in scope.

3 Threat modeling and attacks

The goal of the threat model framework is to be able to determine specific areas of
risk in Polymesh’s blockchain system. Familiarity with these risk areas can provide
guidance for the design of the implementation stack, the actual implementation of
the stack, as well as the security testing. This section introduces how risk is defined
and provides an overview of the identified threat scenarios. The Hacking Value,
categorized into low, medium, and high, takes into account the incentive of an
attacker, as well as the effort required by an attacker to successfully execute the
attack. The hacking value is calculated as:

𝐻𝑎𝑐𝑘𝑖𝑛𝑔	𝑉𝑎𝑙𝑢𝑒 = 	
𝐼𝑛𝑐𝑒𝑛𝑡𝑖𝑣𝑒
𝐸𝑓𝑓𝑜𝑟𝑡

While incentive describes what an attacker might gain from preforming an attack
successfully, effort estimates the complexity of this same attack. The degrees of
incentive and effort are defined as follows:

Incentive:

• Low: Attacks offer the hacker little to no gain from executing the threat.

• Medium: Attacks offer the hacker considerable gains from executing the
threat.

• High: Attacks offer the hacker high gains by executing this threat.

Effort:

• Low: Attacks are easy to execute. They require neither elaborate technical
knowledge nor considerable amounts of resources.

• Medium: Attacks are somewhat difficult to execute. They might require
bypassing countermeasures, the use of expensive resources or a
considerable amount of technical knowledge.

Polymath-baseline_assurance_polymesh-online.docx Confidential, Page 6 of 14

Das Logo Horizontal

— Pos / Neg

3

• High: Attacks are difficult to execute. The attacks might require in-depth
technical knowledge, vast amounts of expensive resources, bypassing
countermeasures, or any combination of these factors.

After applying the framework to the Polymesh system, different threat scenarios
were identified. Table 2 provides a high-level overview of the threat model with
identified example threat scenarios and attacks, as well as their respective hacking
value and effort.

Security
promise

Hacking
value Example threat scenarios Hacking

effort Example attack ideas

Confiden-
tiality

High - Compromise ownership privacy
(asset linkage)
- Linking confidential identities to
real entities

High - Exploit a bug in the
cryptography
implementation/design

Integrity High - Governance Capture (e.g.
interfering with approving and
executing any PIP)
- Front running
- Abuse the bridge to mint tokens
- Invest in assets with different
identities without linking them

Medium - Storing malicious
runtime code on-chain
- Exploit logic bug in
bridge implementation to
mint tokens
- Exploit a bug in the
cryptography
implementation/design

Availability High - Validate malicious blocks to
double spend tokens via adding
malicious validators to the
validator pool
- Locking account to freeze
access

Medium - DoS validator nodes
- Halt block production
by spamming
computationally
expensive/wrongly
weighted transactions
- Transaction spamming
- Exploit logic bug to
crash nodes

Table 2. Threat scenario overview. The threats for Polymesh’s blockchain were
classified using the CIA security triad model, mapping threats to the areas: (1)
Confidentiality, (2) Integrity, and (3) Availability.

4 Findings summary

We identified 12 issues - summarized in Table 3 - during our analysis of the runtime
modules in scope in the Polymesh codebase that enable the attacks outlined above.
In addition, we also reported some minor bugs and best practice deviations. In
summary, one critical severity, 1 high severity, 8 medium severity issues and 2 low
severity issues were found. Most of the vulnerabilities were already mitigated by the
Polymath team, as detailed in this document. Polymath decided to accept the risk
posed by the FIFO transaction scheme as explained in detail in chapter 4.1.7.

Issue description Severity Refere
nce

Remediation

Exponential complexity of weight calculation functions in
vote_or_propose call allows for DoS attack, potentially
stalling the blockchain

Critical [1] Polymesh#861

Polymath-baseline_assurance_polymesh-online.docx Confidential, Page 7 of 14

Das Logo Horizontal

— Pos / Neg

3

Investor can generate multiple scope claims via incorrect
computation of SHA(SCOPE_DID,
INVESTOR_UNIQUE_DID)

High [2] Polymesh#962
cryptography#121

Integer underflow when validating CUSIP identifiers Medium [3] Polymesh#867

Integer underflow when validating a LEI identifier Medium [4] Polymesh#867

Integer overflow when validating a ISIN identifier Medium [5] Polymesh#867

Missing tipping mechanism and basing the transaction
priority solely on the fee enable an attacker to delay
time-critical transactions

Medium [6] Polymesh#893
Polymesh#918

Integer overflow in weight calculation for fn instantiate() Medium [7] Polymesh#890

Integer overflow when creating a fundraiser Medium [8] Polymesh#889

Deposit for an extrinsic in propose extrinsic in
pallets/pips/src/lib.rs does not take into account the
length of the url parameter that is stored on-chain

Medium [9] Polymesh#959

Integer underflow via
remove_multisig_signers_via_creator

Low [10] Polymesh#887

Proofs may be replayed for different claim types Low [11] Not fixed4

The FIFO transaction schemes enables an attacker to
delay "normal" extrinsics and introduces the risk of
missing updates because of forking Substrate

none [12] Risk accepted

Table 3. Overview of identified issues

4.1 Detailed findings

4.1.1 Exponential complexity of weight calculation allows for DoS attack

The weight calculation function of the vote_or_propose extrinsic in
pallets/committee/src/lib.rs has exponential complexity because they perform two
calls to the get_dispatch_info() function [1]. An attacker can abuse the exponential
complexity of O(2^n) to craft a nested extrinsic (that is still below the
MAX_EXTRINSIC_DEPTH of 256), for which the weight computation is not feasible in
limited time and thus cause a validator to miss its slot and fail at block production,
potentially halting block production.

The same problem existed in other extrinsics in Substrate as well. To mitigate
exponential complexity in other extrinsics, we suggest updating the Substrate
version Polymesh is using to a version that includes PR 7849 [13], which fixes the
respective problems in Substrate. Polymesh mitigated this issue in Polymesh#861 by
forking the sudo pallet of Substrate repository, accepting the risks that forking
Substrate will impose on their code base (refer to [12]).

4 The current version of Polymesh is not vulnerable (more info at
https://github.com/PolymathNetwork/polymesh-audit/issues/12#issuecomment-
799464721).

Polymath-baseline_assurance_polymesh-online.docx Confidential, Page 8 of 14

Das Logo Horizontal

— Pos / Neg

3

4.1.2 Investor can generate multiple scope claims using an erroneous hash

The add_investor_uniqueness_claim extrinsic in pallets/identity/src/lib.rs accepts a
SCOPE_ID via the InvestorUniqueness claim, which is calculated by the investor with
the following formula:

SCOPE_ID = p_hash(SCOPE_DID, INVESTOR_UNIQUE_ID,
SHA(SCOPE_DID, INVESTOR_UNIQUE_ID)).

The assumption is that this will always lead to the same SCOPE_ID for the same
investor (INVESTOR_UNIQUE_ID) even if the investor is using different identities.
However, an investor could just generate and submit two scope claims for the same
Ticker by replacing SHA(SCOPE_DID, INVESTOR_UNIQUE_DID) with a random value.
Nobody without access to INVESTOR_UNIQUE_DID can detect that the hash has not
been calculated correctly. The two claims will have different SCOPE_IDs and would
therefore be accepted by the chain. Nobody without access to
INVESTOR_UNIQUE_DID can see that the hash has been replaced with some random
data.

A malicious investor could invest into an asset with two DIDs without linking them,
and, as a result, the asset issuer would assume incorrect information about the
number of investors in their asset [2]. In order to mitigate this issue Polymath
introduced a new approach in the confidential identity implementation (called PIUS
v2) which is planned to replace the previous version before main-net launch.

4.1.3 Multiple arithmetic over/underflows

We identified multiple arithmetic overflows and underflows during the course of our
audit which could lead to various medium-severity vulnerabilities such as
unexpected behaviors or the crash of any node compiled in debug mode or with
overflow checks enabled. [3]

Three of these over/underflows are inside asset_identifier.rs and can lead to
undefined behavior [3], [4], [5]. For example, on nodes that are compiled without
overflow checks, this could lead to an invalid CUSIP id being marked as valid, which
does not pose a security issue in itself. However, integer over/underflow can be
considered undefined behavior. As such, the behavior in the case of an integer
overflow might be non-deterministic (and depend on the compiler version in use, for
example), and, in the worst case, this difference in behavior could lead to a chain
split. Right now, it seems like all Rust compiler versions implement a wrap-around
for integer over/underflows, but this might change in the future.

Another integer overflow is inside the instantiate extrinsic in contracts/src/lib.rs
and may lead to the weight calculation’s wrapping around and thus an
underestimate of the weight of the extrinsic [7]. In the worst-case, a validator will
still include an extrinsic with very high computation time in a block (because the
overflow causes an underestimate of the weight) and the block will timeout. This
could lead to a DoS of the whole chain with considerably low-cost requirements for
the attacker.

An overflow inside create_fundraiser in sto/src/lib.rs causes the variable
offering_ammount to wrap around and thus underestimate the amount to be locked
for a fundraiser creator's account [8]. Subsequently, all the instructions created for
this fundraiser (using invest extrinsic) may fail to execute due to insufficient funds.

Polymath-baseline_assurance_polymesh-online.docx Confidential, Page 9 of 14

Das Logo Horizontal

— Pos / Neg

3

This overflow also allows an attacker to create unlimited number of fundraisers.
Furthermore, since their tokens are not properly locked, they may use this
vulnerability to unlock their balances that have been locked for other purposes using
a combination of this extrinsic and the invest extrinsic which will unlock the tokens
from their account.

We also identified an integer underflow inside in pallets/multisig/src/lib.rs via
remove_multisig_signers_via_creator which could lead to (partial) DoS of the
multisig account in the following ways [10]:

• Proposals could become non-rejectable, because a guarding check in
unsafe_reject will always fail.

• After triggering the underflow, if remove_multisign_signer is called, signers
could be removed in a way that in the end there are fewer signers in the
multisig than the minimum amount needed for a consensus to execute a
proposal, making it impossible to approve/reject proposals.

• By calling change_sigs_required, one could set the number of signatures
required for a consensus much higher than the number of actual members
in the multisig. This way, there will not ever be a consensus reached to
approve/reject a proposal.

We propose using saturating or checked arithmetic functions to mitigate these type
of arithmetic over/underflows. Polymath fixed all these overflows in series of PRs
(refer to Table 3).

4.1.4 No tipping mechanism may be used to delay time-critical transactions

The current transaction-payment implementation in Polymesh makes the following
design-decisions:

• It disables the tipping mechanism. Thus, there is no possibility for users to
increase the priority of their transaction with a tip.

• It bases the transaction priority solely on the transaction fee, as opposed to
some ratio of the weight and length.

These design decisions open up the possibility for a DoS Attack [6]. The missing
tipping mechanism and the current transaction priority mechanism allow an attacker
to block important calls abusing sudo_unchecked_weight calls (or other as-much-
weight-as-you-want extrinsics).

We suggest addressing the issues in the following way:

1. Change the transaction priority to the following formula:

𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦 = 	
𝑓𝑒𝑒

max	(𝑤𝑒𝑖𝑔ℎ𝑡
𝑀𝑎𝑥𝑖𝑚𝑢𝑚𝐵𝑙𝑜𝑐𝑘𝑊𝑒𝑖𝑔ℎ𝑡 ,

𝑙𝑒𝑛
𝑀𝑎𝑥𝑖𝑚𝑢𝑚𝐵𝑙𝑜𝑐𝑘𝐿𝑒𝑛𝑔𝑡ℎ)

This will de-prioritize extrinsics that take a large chunk of the
MaximumBlockWeight or MaximumBlockLength and will give higher priority to
legitimate transaction that are likely to not take huge chunks of either the
MaximumBlockWeight or the MaximumBlockLength. Note that Substrate has

Polymath-baseline_assurance_polymesh-online.docx Confidential, Page 10 of 14

Das Logo Horizontal

— Pos / Neg

3

also moved to this formula, see the function fn get_priority in
Substrate/frame/transaction-payment/src/lib.rs.

2. Enable the tipping mechanism.

By enabling the tipping mechanism, a potential attack that is, blocking important
calls by filling up the transaction queue, can be remediated via outbidding an
attacker.

This issue was mitigated by Polymath via a series of PRs Polymesh (893, 918) and
Polymath’s Substrate fork. These changes include re-enabling the tipping
mechanism for operational extrinsics and marking governing council and CDD
provider callable extrinsics as Operational. Additionally, all normal transactions
now have the same priority and are processed according to their insertion_id.

4.1.5 No deposit for on-chain stored parameters can lead to storage clutter

The propose extrinsic in pallets/pips/src/lib.rs takes parameters url and description,
which are byte Vectors of arbitrary length. The deposit that is charged by the user
for a proposal does not take into account the length of these byte vectors, which is
stored on chain. This would allow an attacker to fill up storage very cheaply and
clutter the blockchain storage [9].

A similar issue also exists in the contracts pallet. The extrinsic put_code accepts a
parameter of type TemplateMetadata which contains a url and a description both of
which are essentially a vec<u8> and no limits are enforced on the length of these
parameters.

As a mitigation we suggested to charge a deposit that scales with the length of the
url and description vectors.

Polymath mitigated this issue by limiting the strings, vectors, BTrees, etc to a fixed
length which is currently configured as 2048.

4.1.6 Proofs may be replayed for different claim types

The function evaluate_claim in primitives/src/valid_proof_of_investor.rs will
generate a message based on the claim. However, the message does not contain any
indication of the claim type being used [11]. Therefore, the same proof may be used
to verify different claims, e.g. Scope::Ticker(x) and Scope::Identity(x) with the same
parameter (byte array) x.

Our suggestion is that different claim types have a different role in the protocol and
should be signed/verified with a different SigningContext to avoid any ambiguity on
the meaning of the signature. However, since the current version of Polymesh does
not use claim types other than InvestorUniqueness, it is not vulnerable. Polymesh
will add a SigningContext for different claims types when they will be introduced in
the future.

4.1.7 Risks through FIFO transaction processing scheme

We also have the following concerns regarding the proposed scheme of processing
normal transactions in a FIFO order introduced in PR [15]:

Polymath-baseline_assurance_polymesh-online.docx Confidential, Page 11 of 14

Das Logo Horizontal

— Pos / Neg

3

Forking Substrate introduces a security risk. Forking the Substrate codebase comes
with two inherent risks:

1. Since there are no security advisories for Substrate and security vulnerabilities
are fixed via "silent patches", Polymath would need to port all changes from
Substrate to Polymath's fork of Substrate should Polymath choose to fork
Substrate.

2. Moreover, modifying parts of the Substrate codebase itself could introduce new,
unforeseen, security vulnerabilities. The different modules in Substrate have
complex interactions/dependencies with each other, with lots of intricacies.
Modifying code in one module could have subtle side-effects in other modules,
which could easily result in a security vulnerability.

FIFO provides only partial protection against front running. If transactions are
processed by the FIFO principle, an attacker can just broadcast more transactions at
a high frequency, which makes it very likely that the attacker will block the
transaction slots for other people. Also note that the order of transactions is in no
way finalized before the transactions make it to the blockchain. An attacker who is
well connected in the gossip network could monitor pending transactions and quickly
broadcast front running transactions for these transactions in an aggressive way
(broadcasting to many validators in parallel). In such cases, a significant portion of
legitimate validators would see the front running transaction before seeing the
original transaction. It will also give participants in the network that have a short
latency when communicating to the validator an advantage, comparable to "High
Frequency Trading" situations in the traditional financial sector.

Only enabling tipping for operational extrinsics could an allow an attacker to
potentially stall the chain for normal extrinsics. If the transaction priority is set to a
fixed value for all normal extrinsics, but tipping remains enabled for operational
extrinsics, this introduces the possibility for an attacker to stall the chain for an
extended period of time, abusing the higher priority of operational extrinsics. Note
that, as of now, operational extrinsics do have an inherently higher priority than
normal extrinsics, which could aggravate this problem, depending on how exactly
the FIFO scheme is implemented.

5 Evolution suggestion

Polymesh understands that security is an integral part of the Polymesh development
process, ensuring the product and its users are well protected. Parts of that process
towards a security-mature product are conducting thorough, regular reviews of
Polymesh’s critical codebase that help to harden the codebase and train developers
to cultivate a security mindset.

Moving forward, we suggest taking the following measures to harden Polymesh’s
codebase against potential security vulnerabilities introduced in future
development.

Reconsider the FIFO transaction priority scheme. During this audit, Polymath
decided to opt for a FIFO scheme to prioritize transactions to minimize the possibility
of front running. As laid out earlier in this report, this scheme introduces several
security risks, including the ability for an attacker to delay “normal” extrinsics’ being
included on-chain and the need to fork Substrate. To minimize risk, we recommend

Polymath-baseline_assurance_polymesh-online.docx Confidential, Page 12 of 14

Das Logo Horizontal

— Pos / Neg

3

moving away from this scheme towards a transaction priority system that introduces
tipping for “normal” extrinsics and does not require a Substrate fork.

Fork as little Substrate code as possible. Polymesh requires various
design/implementation changes to the way Substrate is implemented, concerning
various Substrate-modules and – in the case of the transaction priority scheme –
even the core Substrate codebase. To implement the behavior desired by Polymath,
Polymesh includes multiple modules forked from Substrate. Polymath plans to fork
Substrate as a whole to introduce further changes. Forking modules and Substrate
itself introduces considerable security risk, as patches for security fixes need to be
ported to the forked codebase. Porting patches is a complex, intricate process, which
could introduce new vulnerabilities into Polymesh. This issue is aggravated by the
fact that Parity does not publish security advisories, so Polymesh would need to port
every change made to Substrate in order to not miss any security fixes.

To remove the need for forking Substrate, we recommend creating pull requests to
the Substrate code base that would make the Substrate codebase itself more
configurable so it can be used by Polymesh as-is.

Have any custom cryptography solutions peer-reviewed: For some of its
functionality, Polymesh relies on cryptography that is based on established
primitives (like the Discrete Logarithm assumption) but adds some custom logic on
top of it. It is generally considered hard to design secure cryptography solutions. For
that reason, we recommend to only resort to “custom” cryptography solutions when
absolutely necessary and always conduct a peer-review of the custom design before
including it in production code.

Enforce safe math functions by default and employ fuzz-testing to detect
arithmetic bugs early in the development process. In the spirit of defensive
programming, we recommend enforcing the use of safe-math functions, such as
saturating_add and checked_add throughout the whole codebase, even if there is
no immediate indication that a math operation could overflow. To further alleviate
the issue of integer overflows, we recommend employing fuzz-testing to identify
early on the in the development process any arithmetic or other bugs (such as
extrinsics that trigger a panic in the code). Ideally, Polymath would continuously fuzz
their code on each commit made to the codebase.

Remove or feature-guard debug code. The Polymesh codebase still has some debug
code included in the codebase. While the debug code is explicitly marked as such via
comments, it is not feature-guarded. To prevent that any debug code is still present
in production, we recommend to either completely remove the debug code or
feature guard it with a consistent build flag that is disabled by default.

6 References

[1] "Polymesh audit repository issues, Issue #5," [Online]. Available:
https://github.com/PolymathNetwork/polymesh-audit/issues/5.

Polymath-baseline_assurance_polymesh-online.docx Confidential, Page 13 of 14

Das Logo Horizontal

— Pos / Neg

3

[2] "Polymesh audit repository issues, Issue #11," [Online]. Available:
https://github.com/PolymathNetwork/polymesh-audit/issues/11.

[3] "Polymesh audit repository issues, Issue #1," [Online]. Available:
https://github.com/PolymathNetwork/polymesh-audit/issues/1.

[4] "Polymesh audit repository issues, Issue #2," [Online]. Available:
https://github.com/PolymathNetwork/polymesh-audit/issues/2.

[5] "Polymesh audit repository issues, Issue #3," [Online]. Available:
https://github.com/PolymathNetwork/polymesh-audit/issues/3.

[6] "Polymesh audit repository issues, Issue #4," [Online]. Available:
https://github.com/PolymathNetwork/polymesh-audit/issues/4.

[7] "Polymesh audit repository issues, Issue #6," [Online]. Available:
https://github.com/PolymathNetwork/polymesh-audit/issues/6.

[8] "Polymesh audit repository issues, Issue #7," [Online]. Available:
https://github.com/PolymathNetwork/polymesh-audit/issues/7.

[9] "Polymesh audit repository issues, Issue #10," [Online]. Available:
https://github.com/PolymathNetwork/polymesh-audit/issues/10.

[10] "Polymesh audit repository issues, Issue #8," [Online]. Available:
https://github.com/PolymathNetwork/polymesh-audit/issues/8.

[11] "Polymesh audit repository issues, Issue #12," [Online]. Available:
https://github.com/PolymathNetwork/polymesh-audit/issues/12.

[12] "Polymesh audit repository issues, Issue #9," [Online]. Available:
https://github.com/PolymathNetwork/polymesh-audit/issues/9.

[13] "Substrate PR #7849: Store dispatch info of calls locally in weight calculation,"
[Online]. Available: https://github.com/paritytech/substrate/pull/7849.

[14] "Polymesh PR #893: MESH-1518/Upgrade to Substrate's Polymath fork,"
[Online]. Available:
https://github.com/PolymathNetwork/Polymesh/pull/893.

[15] "Polymesh#861," [Online]. Available:
https://github.com/PolymathNetwork/Polymesh/pull/861.

[16] "Polymesh PR #918: Allow tipping for Operational TX from CDD/GC member,"
[Online]. Available:
https://github.com/PolymathNetwork/Polymesh/pull/918.

Polymath-baseline_assurance_polymesh-online.docx Confidential, Page 14 of 14

Das Logo Horizontal

— Pos / Neg

3

