CONTINUOUS STATE DYNAMIC PROGRAMMING VIA
NONEXPANSIVE APPROXIMATION

JOHN STACHURSKI

ABSTRACT. This paper studies fitted value iteration for contin-
uous state numerical dynamic programming using nonexpansive
function approximators. A number of approximation schemes are
discussed. The main contribution is to provide error bounds for
approximate optimal policies generated by the value iteration al-
gorithm. Journal of Economic Literature Classifications: C61, C63

1. INTRODUCTION

In dynamic programming, Bellman’s principle of optimality per-
mits computation of optimal policies from the relevant value func-
tion, denoted below by v*. When no analytical representation of v*
is available an approximation can be obtained numerically through
value iteration, which involves iterating the Bellman operator T on
some initial function v.! Under mild assumptions T is supremum-
norm contracting, and the resulting sequence (T"v)$’_; converges
geometrically to v*.

If the state space is infinite, one cannot in general implement the
functions Tv, T?v,...,T"v on a computer. One feasible alternative
is discretization, where the state space is replaced with a finite grid,
and the original model with a “similar” model which evolves on

Date: August 3, 2007.

Key words and phrases. Numerical dynamic programming, nonexpansive
approximation.

This paper has benefitted from the comments of an anonymous referee, finan-
cial support from Australian Research Council Grant DP0557625 and the Mu-
rata Science Foundation, and from helpful discussions with Takashi Kamihigashi,
Kazuo Nishimura, Kevin Reffett and Rabee Tourkey.

IFor background see the excellent survey of Rust (1996).
1

2 JOHN STACHURSKI

this grid. A second is fitted value iteration, a standard algorithm for
which is

initialize v;
repeat
evaluate T at finite set of grid points {x;};

setv = w;

1
2
3
4 use the values to construct an approximation w € .% of Tv;
5
6 until a suitable stopping rule is satisfied ;

7

compute an approximate optimal policy using v in place of v*;

Here .# is a class of functions with finite parametric representa-
tion. The map v — w is in effect an approximate Bellman operator
T, and fitted value iteration is equivalent to iteration with T in place
of T2

Popular architectures for constructing the approximation w of Tv
in line 4 include Chebychev polynomials, cubic splines and neural
nets. These architectures are popular because they are often able to
accurately represent Tv with relatively few grid points. However, it
should be recalled that the ultimate objective is not to minimize the
distance between w and Tv. Rather it is to minimize some measure
of distance between the optimal policy and the approximate opti-
mal policy computed from T"v. In particular, attention must be paid
to whether or not the approximation scheme interacts well with the
iteration scheme needed to compute the fixed point v*. A scheme

2 Aside from discretization and fitted value iteration, numerous alternative tech-
niques have been proposed for numerical dynamic programming. They include
a variety of perturbation and projection methods which act directly on the Euler
equation. A comparison of alternative methods for the stochastic optimal growth
model is available in Aruoba, Fernandez-Villaverde and Rubio-Ramirez (2006).
Our study treats a general dynamic programming problem where Euler equations
do not necessarily exist.

NONEXPANSIVE APPROXIMATION 3

which represents the function Tv well at each iteration may in fact
still lead to poor dynamic properties for the sequence (7"v).?
At issue is the lack of compatibility between the sup-norm con-

o
n=1

v*—and the potentially expansive properties of the approximation

traction property of T—which drives convergence of (T"v)$_; to
operator. To clarify this point, let us decompose T into the action
of two operators L and T: First T is applied to v—in practice Tv is
evaluated only at finitely many points—and then an approximation
operator L sends the result intow = Tv € .#. Thus, T = Lo T. As T
is a contraction, T=LoTis contracting whenever L is, but L is not
generally contracting.

In the present paper we pursue a suggestion of Gordon (1995),
restricting attention to approximation architectures such that L is
nonexpansive with respect to the sup-norm; from which it follows
that the composition T := Lo T is a contraction mapping. We ex-
ploit the contractiveness of T to obtain a general set of error bounds
for approximate optimal policies which apply to any nonexpansive
approximation architecture. Our focus is on structures suitable for
economic applica’cions.4

We pay special attention to the case where L sends functions into
piecewise constant functions—a kind of nonexpansive approxima-
tor. Iteration with L o T provides an algorithm that can be thought
of as combining aspects of discretization and fitted value iteration.
Compared to the common practice of one-off discretization onto a fi-
nite grid, the algorithm is simple to program, preserves and exploits

3As approximation errors are compounded at each iteration, limy,_c T"v may
deviate substantially from lim,_... T"v = v*; in fact the sequence may fail to con-
verge at all. See, for example, Tsitsiklis and Van Roy (1996, Section 4), which gives
an example of divergence under least-squares approximation.

4Following Gordon (1995), Drummond (1996) investigated adding penalties
to the derivatives of function approximators in order to prevent sup-norm ex-
pansiveness (overshooting). Guestrin et al. (2001) study nonexpansive approxi-
mations in factored Markov Decision Processes. See also Tsitsiklis and Van Roy
(1996), who provided error bounds for optimal policies when the state and action
spaces are finite.

4 JOHN STACHURSKI

information about the model primitives between grid points, admits
the use of adaptive grids, and is always nonexpansive.

A third contribution of this paper is to investigate the expansive-
ness of shape-preserving function approximators. Previously, Judd
and Solnick (1994) highlighted the computational advantages of such
approximators, where the “shapes” of greatest interest are mono-
tonicity and convexity (or concavity). We show that a certain class
of shape-preserving quasi-interpolants popular in computer aided
design are also nonexpansive.

Within the economic literature, a number of studies have been
made of approximation architectures which turn out to be nonex-
pansive. Judd and Solnick (1994) noted that a class of spline inter-
polants preserve the contraction property of T, and exploited this
fact in their discussion of errors. Santos and Vigo-Aguiar (1998) con-
sidered a finite element method using piecewise affine functions.
They also observed that their approximation scheme preserves the
contraction property of T, and these ideas were subsequently ex-
tended by Griien and Semmler (2004). Rust (1997) studies a random
discretized Bellman operator which is a probability one contraction.
The present paper unifies and generalize some of these ideas.

Section 2 formulates the dynamic programming problem. Sec-
tion 3 discusses nonexpansive approximation schemes. Section 4
states results, Section 5 looks at applications, and Section 6 gives
proofs.

2. FORMULATION OF THE PROBLEM

If (U,d) is a metric space, then #(U) denotes the Borel subsets of
U and b#(U) is the bounded Borel measurable functions from U to
R. For f € bA(U), let ||f]| := sup,; |f(x)| denote the supremum
norm. A map M: bA(U) — b#(U) is called nonexpansive if

(1) |IMw — Mw'| < |lw—-w'| Vw o' €bz(U)
and a contraction of modulus p if there exists a p € [0, 1) with

(2) Mw — Mw'|| < pllw — o' Vw,w' € bB(U
0

NONEXPANSIVE APPROXIMATION 5

Let M; and M, map bA(U) to itself. Note that if M; is a contraction
of modulus p and M is nonexpansive, then M, o M; is a contraction
of modulus p. (In much of what follows we write the composition
Mj o M more simply as MyM;, and similarly for other composi-
tions.)

Consider an infinite horizon stochastic dynamic programming prob-
lem with state space S, action space A (both Borel subsets of finite-
dimensional Euclidean space) and a correspondence I' mapping S
into #(A), with T'(x) interpreted as the set of feasible actions at state
x. Given S, A and T, define

grl:=={(x,u) € Sx A :uecl(x)}

This collection of points (the graph of I') is called the set of all feasible
state/action pairs. A “reward function” rsends grI'into R, p € (0,1)
is a discount factor, and M(x, u; dy) is a distribution over S for each
feasible state/action pair (x, u) € grI'. Here M(x, u; dy) should be be
interpreted as the conditional distribution of X;, 1 when the current
state X; = x and the current action U; = u.> For example, suppose
the future state is determined according to

3) Xip1 = F(Xp, Uy, Wii1) Wi '~ G(dz)
Then M(x, u; dy) is the distribution of F(x,u, W) when W ~ G, and,
for arbitrary integrable w: S — R,

(4) [wyMxudy) = [wlF(xu,2)Gd)

The system evolves as follows. At the start of time, the agent ob-
serves Xg = xp9 € S, where x(is some fixed initial condition, and
then chooses action Uy € T'(Xy) C A. After choosing Uy, the agent
receives reward r(Xo, Up). The next state Xj is now drawn according
to distribution M(Xy, Up; dy) and the process repeats.

Let I'T denote the set of all measurable functions 77: S — A with
nt(x) € T'(x) for all x € S. We refer to IT as the set of feasible policies.

5By a distribution on S is meant a probability measure on (S, #(S)). In addition,
(x,u) — M(x, u; B) is required to be measurable, VB € #(S).

6 JOHN STACHURSKI

Each 7t € IT and initial condition xy € S defines a Markov process

(Xt)1>0, where X is set equal to xg, and then X; 1 ~ M(X;, (X}); dy).
Let P be the joint distribution on sequence space (5%, @%°_; %(S))

induced by (X;);>0, and let E} be the expectation operator corre-

sponding to P}°. Define amap I1 x S 3 (71, x) — v:(x9) € Rby

(5) vn(x0) := Ex [ioptr(xt,ﬂ(?(t))

Thus v, (xp) is the value of following the policy 77 when starting at
initial condition xg. The value function v*: S — R is

(6) v*(x0) 1= sup vx(xp) (xp €5)

ell

Existence of v* as a well defined function follows from the existence
of suprema for bounded subsets of R (see Assumption 2.1 below). A
policy * € Il is called optimal if it attains the supremum in (6) for
every xo € S (equivalently, v+ = v* on S).

Assumption 2.1. The map r is continuous and bounded on grT,
while I' is continuous, nonempty and compact valued. Further,

) (x,u) = [w(y)M(x,u3dy)

is continuous as a map from grI' to R whenever w is bounded and
continuous on S.

The continuity assumption in (7) is a version of the so-called Feller
proper’cy.6 In the case of the transition rule in (3) and (4), continuity of
(7) holds whenever (x, u) — F(x,u,z) is continuous for all z. Under

Assumption 2.1 the following optimality result obtains.”

Theorem 2.1. The value function v* is continuous, and is the unique func-
tion in b%(S) which satisfies

8 v (x)= sup) {r(x,u) +p/v*(y)M(x,u;dy)} (x €85)

uel(x

6See, for example, Stokey, Lucas and Prescott (1989, Chapter 8).
7See, for example, Herndndez-Lerma and Lasserre (1999, Section 8.5).

NONEXPANSIVE APPROXIMATION 7

If t* is an element of 11 and

9) o' (x) = r(x, 7(x)) +P/v*(y)M(x/ m(x);dy) (x€5)

then 7v* is optimal. At least one such optimal policy t* € 11 exists. Con-
versely, if T* is an optimal policy then it satisfies (9).

Two kinds of contraction mappings are used to study the optimal-
ity results. First, let T: bB(S) — bA(S) be defined for all T € T1

by
Trw(x) = r(x, 7(x —|—p/ (x);dy) (x€5)

Further, let T: b%(S) — b#(S) be defined by

Tw(x) = sup {r(x,u) +p/w(y)M(x, u;dy)} (x €85)
uel(x)

The second operator T is usually called the Bellman operator. In view

of Theorem 2.1, v* is the unique fixed point of T in b%(S).

It is well-known that for every m € II, the operator T, is a con-
traction on (bA(S), || - ||) of modulus p. The unique fixed point of T
in bA(S) is v,, where the definition of v is given in (5). In addition,
T is monotone on b%(S), in the sense that if w,w’ € b#(S) and
w < @, then Tyw < Trw'8 Similarly, the Bellman operator is also a
contraction of modulus p; and monotone on b%(S).”

3. THE APPROXIMATION OPERATOR

To carry out fitted value iteration we use an approximation oper-
ator L which maps b%(S) into a collection of functions .# C bA(S).
In general, L constructs an approximation Lv € .Z# to v € b#(S)
according to a sample {v(x;)}¥_; of evaluations of v on grid points
{xl _, C S. As discussed in the introduction, we focus on archi-
tectures with the property that L is nonexpansive with respect to the

8Inequalities such as w < w’ are pointwise inequalities on S.
9These results are standard. See, for example, Puterman (1994), Stokey, Lucas
and Prescott (1989) or Herndandez-Lerma and Lasserre (1999).

8 JOHN STACHURSKI

sup norm:
(10) ||Lv — Lw|| < |jv—w|| Vo,w e bA(S)

In this section we discuss examples of approximation operators with
the nonexpansive property. The discussion is largely expository, al-
though the observation that Schoenberg’s variation diminishing op-
erator is nonexpansive appears to be new.

Example 3.1. (Piecewise constant approximation) An elementary
approximation architecture is provided by piecewise constant ap-
proximation. Suppose that {x;}X_, is a sequence of grid points in S,
and that {]i}i.‘zl is a partition of S with x; € J; foreach i, [, N], =@
whenm # n,and S = Uf-‘zlji. For any functionv: S — R, set

Lo(x) = v(x;) Vxe]

Thus Lo takes only finitely many values. Moreover, L is nonexpan-
sive. To see this, pick any w,v € b#(S) and any x € S. Without loss
of generality, suppose that x € J;,. Then

[Lw(x) = Lo(x)| = |w(xm) — o(xm)| < sup jw(x;) — o(x;)]|

a1 o lLw—=Lof| < sup [w(x;) —o(x)| < [w -2

1<i<k
Iteration with T = LT provides an implementation of discretization
for dynamic programs that has several theoretical and practical ad-
vantages over traditional discretization. The ideas are discussed in
detail in Section 5, and applied to Samuelson’s (1971) commodity
pricing model.

Example 3.2. (Kernel averagers) Kernel-based approximators have
attracted much attention in recent years, partly because they pos-
sess good properties in high-dimensional state spaces. One of these
methods is the kernel averager, which can be represented by an ex-
pression of the form

_ X Ki(xi — x)o(x)
Y K (x — x)

(12) Lo(x)

NONEXPANSIVE APPROXIMATION 9

Here the kernel K, is a nonnegative mapping from S — IR such as
the radial basis function e~ I'l’, The value of the kernel decays to
zero as x diverges from x;. Thus, Lv(x) is a convex combination of
the observations v(x1),...,v(x;) with larger weight being given to
those observations v(x;) for which x; is close to x.1°

The operator L in (12) is easily seen to be nonexpansive on b%4(S):
Pickany x € S, and let A(x,1) := Kj,(x; — x)/ 2;‘21 Kj,(xj — x). Using

Ei'{:1 A(x,i) =1, we have

K
|[Lw(x) — Lo(x)| = |) Alx, i) (w(x:) — v(x:))

1

1= 7

A, i)[w(xi) —o(xi)| < sup |w(x;) —ov(x;)|

<
] 1<i<k

1

I
[y

Since x is arbitrary the claim in the lemma holds.

Example 3.3. (Continuous piecewise linear interpolation) A com-
mon form of approximation in dynamic programming is piecewise
linear (piecewise affine) spline interpolation.!! To describe a gen-
eral set up, let {x;}} | be a finite subset of S C R? with the prop-
erty that the convex hull of {x;}¥ | equals S, and let .7 be a trian-
gularization of S relative to the nodes {x;}¥ ;. In other words, 7
is a partition of S into a finite collection of non-overlapping, non-
degenerate simplexes, where, for each A € 7, the set of vertices
{gi}?;rf C {x; §:1'12

Each x € A can be represented uniquely by its barycentric coordi-
nates relative to A:

d+1 d+1
x =Y Ax,i)g;, where A(x,i)>0and) A(x,i)=1
i—1 i—1

10The smoothing parameter & controls the weight assigned to more distant
observations.

Hsee, for example, Santos and Vigo-Aguiar (1998) and Munos and Moore
(1999).

125 simplex is called non-degenerate if it has positive measure in R¥.

10 JOHN STACHURSKI
For v € b#(S) we define the interpolation operator L by

d+1

Lo(x) = Y A(x,i)o(g;)

i=1

Direct calculations show that if v, w € b%(S), then at x we have

[Lw(x) —Lo(x)| < sup |w(Z;) —o(Z)] < [lw—7]
1<i<d+1

Since x is arbitrary, L is clearly nonexpansive.

Example 3.4. (Schoenberg’s variation diminishing operator) In a
well-known study, Judd and Solnick (1994) emphasize the advan-
tages of fitted value iteration with shape-preserving approximators;
the shapes of greatest interest are monotonicity and convexity, and
approximators which preserve them not only incorporate known
structure from the target function in approximation, they also allow
monotonicity and convexity to be exploited in the optimization step
of the value iteration algorithm.'?

Judd and Solnick discuss several univariate shape-preserving ar-
chitectures, including (nonsmooth) univariate piecewise linear inter-
polants and (smooth) Schumaker splines. Here we describe a further
class of smooth, shape-preserving univariate approximators known
as Schoenberg variation diminishing splines.

To construct the operator we set S = [2,b] C R, and in place of a
standard grid we use for each d € IN a d + 1-regular knot sequence

(t;)51, which satisfies

Here d is the order of the spline, so that, for example, d = 3 corre-
sponds to a cubic spline. The Schoenberg splines are built using k

13Monotonicity is exploited as follows: In monotone programs the optimal ac-
tion is often increasing in the state, in which case one need not search for optimal
actions in that subset of the action space which is dominated by the optimal action
at a lower state. The importance of convexity in optimization needs no illustration
here.

NONEXPANSIVE APPROXIMATION 11

basis functions which are known as B-splines. The latter are defined
recursively by

Bi,O = l[ti/fi+1)’ i= 1,. . .,k
and then,i =1,...,k,

x—t;
Bjg(x) := l

tivai1 — X
Big-1(x) + —————Biy14-1(x)
tiva —ti tivda+1 — ti+1

where in the definition we are using the convention that 0/0 = 0.
For fixed d the basis functions By 4, . .., By 4 are linearly independent
and satisfy 25‘:1 B; 4 = 1s. Their span is often denoted by S:

k
S;:= {ZaiBi/ﬂl : (al,...,Dék) S]Rk}
i=1

Clearly S; C b#(S). Setting t7 := (ti11 + -+ tiyq)/d, Schoen-
berg’s variation diminishing operator is given by

k
L:b#B(S) 20— Y v(t{)Biy €Sy
It is well-known that L preserves monotonicity and convexity (con-

cavity) in 0.1 Ttis easy to see that L is also nonexpansive on b4(S).
To check this, pick any v, w € b#(S), and let x € S.

| Lw(x) —o(t;)]

| A

0 < Lo
L bt

) sup |w(t]) —o(t])]
1<j<k

Using Zi-‘zl B; s(x) =1, we have

[Lw(x) — Lo(x)| < sup [w(t}) —o(t])] < [lo —w]]
1<j<k

Since x is arbitrary the proof is done.

l45ee, for example, Lyche and Merken (2002, Chapter 5).

12 JOHN STACHURSKI
4. RESULTS

In this section we develop error bounds for fitted value iteration
with nonexpansive approximation. The error associated with policy
7T is
(13) E(7) := sup {vz (x) — o (x)} = sup {07 (x) —0r(x)}

X€S X€S
where 7% is the optimal policy. The value of E(7r) gives the cost
of using 7t rather than the optimal policy 77* in terms of total re-
ward. Policies with small E-error are consistent with the incentives
of agents in the model."

Algorithm 1: FVI algorithm

1 initialize vy € % and setn =0;

2 repeat

3 setn=n+1;

4 | evaluate Tv,_1 ata finite set of grid points {x;}X_;

5 compute the approximation LTv,_; from these values;
6 setv, = LTv,_1;

7 | sete, = |vn —v,_1];

8 until e, falls below some tolerance ;

9 solve for a v,-greedy policy 7 ;

—
(=]

return 7t and e,

Consider Algorithm 1. In the algorithm, L is any nonexpansive
approximation operator sending b%(S) into .# C b#(S). For v €
b#A(S) the notation v-greedy means that 7t satisfies

(14) 7(x) € argmax,cr(y) {r(x,u) +p/v(y)M(x, u;dy)}

for all x € S. Observe that the algorithm terminates in finite time for
any strictly positive tolerance, as the nonexpansiveness of L implies

15An alternative measure is Euler residuals, as discussed in Judd (1992) and
Santos (2000). Since not all dynamic programs satisfy Euler equations the measure
(13) is more general. (For alternative treatments of policy errors using geometric
measures see Santos and Vigo-Aguiar, 1998, or Maldonado and Svaiter, 2001.)

NONEXPANSIVE APPROXIMATION 13

that T := LT is a contraction mapping of modulus p, and hence ¢, <
o"[or = wol| — 0.

Below we adopt the convention that N always denotes the number
of iterations after which the FVI algorithm terminates. It follows that
the policy 7 returned by the algorithm is vy-greedy.'®

Combining ideas found in Puterman (1994), Judd and Solnick (1994),
Gordon (1995), Rust (1996) and Santos and Vigo-Aguiar (1998), one
can establish the following result:

Theorem 4.1. If the FVI algorithm terminates after N iterations, then for
every x € S we have

v*(x) —vr(x) < x (pen + [|ILToy — Ton||)

2
I—p

The two sources of error in this bound are ey, the deviation of vy
from vy_1 under the supremum norm, and || LTvy — Toy||, which
measures the ability of L to approximate the function Tvy. The latter
is not directly observable, and requires further analysis to bound.
Below we give some indications of how this can be done.

The following remarks highlight some key points of the theorem.

Remark 4.1. The bound in Theorem 4.1 should be compared to the
bound v*(x) — v, (x) < 2pen/ (1 — p) given by Puterman (1994, The-
orem 6.3.1) for the finite state case, where no approximation is used
and value iteration can be carried out exactly. In the present case, if
there is no approximation error (i.e., if LToy = Tvy), then the bound
in Theorem 4.1 reduces to Puterman’s bound. This suggests that our
bound is relatively tight.

Remark 4.2. It may seem that the error e, in the FVI algorithm will
be difficult to evaluate accurately. However, both v, and v,,_ lie in

1o, general lines 9 and 10 of the algorithm cannot be implemented exactly.
Hence it may be preferable to return the approximate value function vy and eval-
uate optimal actions by solving the maximization in (14) as required. In practice,
however, computing a good approximation to 7 by evaluating the right hand side
of (14) at many points in S takes very little computational effort relative to the FVI
algorithm itself, as only one function (i.e., 77 itself) need be approximated.

14 JOHN STACHURSKI

the simple parametric class .#. As a result, evaluation of the error is
typically straightforward.

Now we turn to the second theorem of the paper. Suppose for
some reason that the term ||LTvy — Toy|| in Theorem 4.1 is difficult
to evaluate or bound efficiently. In that case it may be easier to assess

the approximation error |Lv* — v*||. The next result gives a bound
using ||Lv* — v*|| instead of ||LTvy — Toy||, albeit at the cost of a

larger constant term:

Theorem 4.2. If the FVI algorithm terminates after N iterations, then for
every x € S we have

0" (x) = ox(x) < 5 % (pen + [[Lo™ — 07

2
(1-p)

The proofs of Theorems 4.1 and 4.2 are given in Section 6.

5. REPEATED PARTIAL DISCRETIZATION

Let us consider the FVI algorithm in more detail for the case where
L uses piecewise constant approximation (see Section 3). For reasons
that become clear below, we refer to this case as repeated partial dis-
cretization (RPD). The following RPD algorithm is closely related to
standard discretization, where a continuous state model is replaced
by a similar model evolving on a finite grid. At the same time, RPD
possesses several important advantages. One is that, since the ap-
proximation operator is nonexpansive, the error bounds developed
above all apply. We show how, in many cases, bounds are easily
derived from a term automatically generated by the FVI algorithm.

A second advantage is that the reward function r and the law of
motion are never themselves discretized—and nor need they be, as
these are primitives which presumably can be implemented with-
out discretization. Thus, RPD does not discard the information con-
tained in the values of these functions between the grid points.

Finally, in RPD it is possible to adjust the location and size of the
grid at each iteration. A number of algorithms use variable grids
for discretized dynamic programming, which allows one to place
relatively many grid points near the areas of greatest curvature (i.e.,

NONEXPANSIVE APPROXIMATION 15

the areas where approximation is most difficult) at each iteration. We
do not discuss variable grid methods further in this paper.

In what follows we discuss RPD in some detail and give direct
error bounds. The method is then applied to a model of stochastic
speculative prices due to Samuelson (1971).

To begin, let S be a subset of R? with the usual partial order.””
Suppose that S can be written as the union of finitely many disjoint
rectangles {J;}%_,, where

Ji = [xiyi) =[xl y) x - [xd y)
Let € be the set of functions from S to R which are constant on
each J;. For w € b#(S), define the operator L: b#(S) — € by
Lw(x) = w(x;) when x € J;. Below we use the shorthand notation
step [al, el ak] to mean the piecewise constant function on S given
by the vector (a3, ..., ax), in the sense that step[ay, ..., ax] = a; on J;.
In this notation, Lw = step[w(x1), ..., w(xg)].

5.1. The RPD Algorithm. Consider Algorithm 2, which is a special-
ized version of the FVI algorithm corresponding to piecewise con-
stant approximation.'® In many situations Algorithm 2 (henceforth,
the RPD algorithm) lends itself to simple implementation and yields
an error bound which is completely specified by observables. The
details are in Proposition 5.1.

Proposition 5.1. Let 71, R and ey be as returned by the RPD algorithm,
which is assumed to terminate after N iterations. If T preserves monotonic-
ity, then

2
1=p

whenever the initial condition vy is monotone increasing.™

v (x) —vq(x) < X (pen + R) (x €5)

etx = (xf);-i:1 andy = (yj)le. Say that x < yif x/ </ for all ;.

180ne apparent difference is that the FVI algorithm defines e, as ||v, — v,,_1],
while Algorithm 2 defines e, = max;<j< [vn(x;) — v,_1(x;)|. But since v; € ¢ for
all j it should be clear that these two definitions are equivalent.

preservation of monotonicity means that Tw is increasing whenever w ¢
b2(S) is increasing.

16 JOHN STACHURSKI

Algorithm 2: RPD algorithm

initialize vy € ¥ and setn =0;

repeat

setn=n+1;

foriin1tok do evaluate Tv,_1(x;) ;

setv, = LTv,_1;

1
2
3
4
5 set LTv,_1 = step[Tv,—1(x1),..., Toa—1(x¢)] ;
6
7 | seten = maxi<i<k |0n(xi) — Op—1(x1)];

8 until e, falls below some tolerance ;

9 solve for a v,-greedy policy 7 ;

10 set R = maxq<;<k | Tvn(yi) — Toa(x;)l;

11 return 77, R and e,

Remark 5.1. The condition that T preserves monotonicity holds in
many applications. For example, suppose as in (3) that the law of
motion is given by X;11 = F(X, Uy, Wit1), where W; 5 G(dz). If
x — F(x,u,z) is increasing for all fixed u and z, and, moreover, x —
r(x,u) is increasing for all u, then T preserves monotonicity. These
kinds of results are well-known and further details are omitted.

Remark 5.2. In the RPD algorithm, note that evaluation of R needs
no further optimization, as 7t and vy are available, 7t is vy-greedy,
and

Ton(x) = r(x, 7t(x)) +P/vw(y)M(x, n(x);dy) (x€S5)

5.2. Application. To further illustrate the ideas, we now apply the
RPD algorithm to Samuelson’s (1971) theory of price equilibrium
in a commodity market with speculative investment.?’ The model
has recently been the basis of active empirical study of commod-
ity prices. We follow Chambers and Bailey (1996) and Deaton and
Laroque (1996) in considering a commodity price model with corre-
lated supply shocks.

20Code for the following is available on request from the author.

17

NONEXPANSIVE APPROXIMATION

policy surface

FIGURE 1. Optimal investment policy.

Briefly, the model describes intertemporal equilibrium in a single

and speculative demand g;.

(Ct))/

“harvest” h; plus Ag;_1, where A < 1is a

commodity market with consumption demand c; determined by in-
=P

verse demand function P (p;

Supply s; consists of the

“shrinkage” parameter and g;_; is carryover from the last period.

o is correlated. We assume in particular

i)

(

The harvest process

that

(1—0)Win

:th—l—

hiq

1 is an independent shock process with identical cumu-

o
=

where (W)

) is a parameter.

1

4

and 0 € (0
Equilibrium prices are determined by arbitrage conditions. Samuel-

lative distribution function G,

demonstrated that these restrictions correspond

son (1971) famously

to the first order conditions of a dynamic programming problem

(1+7)~! and period utility function U(c)

with discount factor p :

!

c
0

0p'U(ct)] subject

(e e]
t=

P(x)dx. The program in question is max E [}

18 JOHN STACHURSKI

to restrictions
Ct+qt =St Sip1 = Age + M1, S0, ho given

In the framework of Section 2, the control is g and two-dimensional
state is x = (s, h1). The law of motion is

s’ Ag+6h+(1—6)z
7 h/ 4 -
(s qz)H(h/) (Oh+(1—0)z)
where a prime denotes next period’s value. If (W;)$2, takes values
in [Z, Z], then the same is true of (1;)> ;. The state space can be set as

S:=[52/(1- M) x [2,2]

and the feasible correspondence as I'(s,1) = [0,s]. In particular,
(s,h) € Sand g € T'(s,h) implies (s',h') € S with probability one.
The reward function is U (s — g).!

We set U(c) = ¢*, and let W = a + bV, where V is beta(5,5). The
parameters are set to p = 09, A = 07,0 = 03, « = 02,4 = 1
and b = 2. Asaresult, Z = 1and Z = 3. The RPD algorithm was
initialized with v(s, h) = U(sy) on Ji;.

To study the RPD algorithm, the policy function and the error
bound were computed for different grid sizes after N = 40 itera-
tions. Figure 1 gives the approximate optimal policy when the grid

size is 960. Table 1 shows the error bound

o (pey + B)

from Proposition 5.1 for different grid sizes (column 2). To put the
errors in context, we used this upper bound on the absolute error
to compute a lower bound on the fraction of total value v*(x) ob-
tained by the approximate optimal policy. (The method is outlined
in the appendix.) The results are shown in column 3. The bounds
guarantee that the approximate optimal policy obtains over 95% of
available value for a grid size of 1800 and 40 iterations.

2lThe graph grTis all (s, h,q) with (s,h) € Sand 0 < g <s.

NONEXPANSIVE APPROXIMATION 19

grid size | error bound | value obtained

500 0.765 > 93.1%
960 0.623 > 94.4%
1800 0.479 > 95.6%
5000 0.451 > 95.9%

TABLE 1. Error bounds by grid size, 40 iterations

6. PROOFS

Let us now address the proof of Theorem 4.1. Since the initial
condition x will vary according to the problem, we construct a bound
on the deviation v*(x) — v;(x) which is uniform over x € S. In
practice, this is done by bounding the sup-norm error |[v* — v,||.
Using the triangle inequality, the sup-norm error is broken down as

(15) [o* = ozl < [lo* —on |l + llon — x|

where vy € bA(S) and N are as in Theorem 4.1. First we bound the
tirst term on the right hand side of (15):

Claim 6.1. We have (1 — p)||v* —vn|| < pen + ||[LTon — Ton]||-
Proof. By the triangle inequality and the contraction property of T,
lo* —on[l < [o" = Ton| +[[Ton —on|]

< pllo" —onll + [Tox —on]

(16) s (T=p)lo" —onll < [[Ton —on|]
Moreover,
|Ton —on|| < |Ton — ona |l + [[on1 — ow||
< llons1 = Tonl| + pllon — on-l
= |[LTon — Ton| + pen
Putting this together with (16) gives the bound in Claim 6.1. O

Next consider the second term on the right hand side of (15).

20 JOHN STACHURSKI

Claim 6.2. We have (1 — p)||lony — vx| < pen + ||[LTony — Ton]|.
Proof. By the triangle inequality,

(17) lon = ozl < flox = Ton|| + || Ton — val|

Consider the second term in the right hand side of (17). From the
definition of the Bellman operator T we have

Ton(x) = Jmax {r(xfu) +P/UN(]/)M(x/“;d]/)}

One the other hand, by the definition of the operator T,
Tron(x) = r(x, (x +p/vN n(x);dy)

Since 7t is vn-greedy, Tvy and T,vy are equal. Moreover, we know
that T is a contraction of modulus p, and v, is the unique fixed
point. Hence

ITon — vzl = [|[Taon — Trvr || < pllon — oA
Substituting this into (17) we get

lon = vl < [lon = Ton|| +pllon — v|

(18) S (I=p)llon o]l < flox = Ton||
Finally, we have already shown in the proof of Claim 6.1 that
Ton —onll < [|[LTon — Ton|| + pen
Substituting this into (18) gives the bound that we are seeking. [
Proof of Theorem 4.1. From (15) and Claims 6.1 and 6.2 we get
(1= p)llo" — vzl < 2(pen + [[LToy — Toy]))
The bound in Theorem 4.1 follows immediately. O]

Next we turn to the proof of Theorem 4.2. The proof is based on
the following two estimates:

Claim 6.3. If 7t is vy-Qreedy, then we have
(19) (1 =p)[|v" = vzl < 2[on — o7

NONEXPANSIVE APPROXIMATION 21

Proof. We have

(20) [0 — vz < [[o* —on| + [[on — vzl
On the other hand,
(21) lon — vzl < [lon — Ton || + | Ton — vx|

Consider the first term on the right hand side of (21). Observe that
for any w € bA(S) we have

|w = Tw|| < [|w -0 + [[v* — Tw|
< lw—ov*| +pllo" —wl| = (1 +p)lw -7
Substituting in v for w, we obtain
(22) lon — Ton|| < (14 p)[lon — 07|

Now consider the second term on the right hand side of (21). It
has already been observed that for this particular policy 7w we have
Ton = TN, SO

|Ton — vzl = |Tron — vr|| = [[Tron — Troz|| < pllon — x|l
Substituting this bound and (22) into (21), we obtain

lon = vl < (1 +p)llon — 07| + pllon — vx

1+ .
lon = ozl < T2 llon — o7
This inequality and (20) together give
lo* = vxll < l[o* —onll + T llon — o7
P
Simple algebra now gives (19). [

Claim 6.4. For every n € IN we have
(1 =p)[[v" = oul| < [[o" = Lo*|| +pllon — vl
Proof. Let o be the fixed point of T. By the triangle inequality,

(23) [0% = onl] < [Jo" = 3] +]2 — val]

22 JOHN STACHURSKI

Regarding the first term on the right hand side of (23), we have

lo* =8l < [[o* — To*|| + [|To" — 9|

= |[v* — Lo*|| + [|[To* — To|| < |o* — Lo*|| +pl|v* — 9
(24) s (A =p)llot =9 < [[v* — Lo
Regarding the second term in the sum (23), we have

19 = wall < [0 = T" oo || + || T"Top — T"og

< p[lo = vull + pllon — vnl

(25) s (T=p)lI0 —oall < pllon — vnl
Combining (23), (24) and (25) gives the bound we are seeking. 0

Proof of Theorem 4.2. Pick any x € S, and suppose that the value iter-
ation algorithm terminates after N steps. By Claim 6.3 we have

0" (x) — oz (x) < lon — o7

1—p
Applying Claim 6.4, this becomes
2 * *
2 (pllon — on-1ll + [0 — Lo
o)
The claim in Theorem 4.2 now follows from the definition of ey. [l

Proof of Proposition 5.1. The proof is almost trivial. Since the RPD al-
gorithm is a special case of the FVI algorithm, Theorem 4.1 gives

2
v*(x) — vr(x) < - X (pen + ||LTony — Tonl||) (x €89)
where N is the number of iterations after which the RPD algorithm
terminates. Thus we need only show that ||[Lw — w| < R, where
w := Toy. In doing so, notice that w is monotone increasing, as the
initial condition vg has this property, and T preserves monotonic-
22
ity.

22Clearly L automatically preserves monotonicity, and hence so does T.

NONEXPANSIVE APPROXIMATION 23

So suppose to the contrary that there is an x € S with |Lw(x) —
w(x)| > R. Without loss of generality, assume that x €], so that

R <|Lw(x) —w(x)| = |w(xm) — w(x)| = w(x) = w(xm)
where the last step is by monotonicity. On the other hand, we have

— < A 3| =

wyn) — () < max fw(y) — ()| = R
Putting these two inequalities together gives w(y,) < w(x;), which
contradicts monotonicity of w. [

Finally we discuss the technique used to obtain the lower bound
on the fraction of total value v*(x) obtained by the approximate op-
timal policy 7r, as shown in column 3 of Table 1. The fraction in
question is v (x)/v*(x). Regarding this fraction, observe that

vt (x) —vn(x) _ v7(x) — vn(x)
v*(x) - 0v*(%,2)
v*(x) — vx(x) 2 peny +R
G2 S1—p onEE)

<

where the first equation is by monotonicity of v* and the second fol-
lows from our choice of initial condition. The value can be com-
puted from the second column of Table 1 and the term vy (Z, Z). Now
note that

v*(x) — vn(x)
v* (x) v* (x) =1-F

REFERENCES

[1] Aruoba, S. B., J. Fernandez-Villaverde and J. F. Rubio-Ramirez (2006): “Com-
paring Solution Methods for Dynamic Equilibrium Economies, Journal of Eco-
nomic Dynamics and Control, 30 (12), 2477-2508.

[2] M.]J. Chambers and R.J. Bailey (1996): “A Theory of Commodity Price Fluctu-
ations,” Journal of Political Economy, 104(5), 924-957.

[3] Deaton, A. and G. Laroque (1996): “Comptetitive Storage and Commodity
Price Dynamics,” Journal of Political Economy, 104(5), 896-923.

[4] Drummond, C (1996): “Preventing Overshoot of Splines with Application to
reinforcement Learning,” Computer Science Dept. Ottawa TR-96-05.

24 JOHN STACHURSKI

[5] Gordon, G.J. (1995): “Stable Function Approximation in Dynamic Program-
ming,” Proceedings of the 12th International Conference on Machine Learn-
ing.

[6] Guestrin, C., D. Koller and R. Parr (2001): “Max-Norm Projections for Fac-
tored MDPs,” International Joint Conference on Artificial Intelligence, Vol. 1,
673-680.

[7] Hernandez-Lerma, O., and]J.B. Lasserre (1999): Further Topics in Discrete-Time
Markov Control Processes, Springer-Verlag, New York.

[8] Judd, K.L. (1992): “Projection Methods for Solving Aggregate Growth Mod-
els,” Journal of Economic Theory, 58 (2), 410-452.

[9] Judd, K.L. and A. Solnick (1994): “Numerical Dynamic Programming with
Shape-Preserving Splines,” unpublished manuscript.

[10] Lyche, T and K. Marken (2002): Spline Methods, mimeo, University of Oslo.

[11] Maldonado, W. L. and B. E. Svaiter (2001): “On the Accuracy of the Estimated
Policy Function using the Bellman Contraction Method,” Economics Bulletin,
(3) 15,1-8.

[12] Munos, R. and A. Moore (1999): “Variable Resolution Discretization in Opti-
mal Control,” Machine Learning, 1, 1-24.

[13] Puterman, M. (1994): Markov Decision Processes: Discrete Stochastic Dynamic
Programming, John Wiley & Sons, New York.

[14] Rust, J. (1996): “Numerical Dynamic Programming in Economics,” in H. Am-
man, D. Kendrick and J. Rust (eds.) Handbook of Computational Economics, El-
sevier, North Holland.

[15] Rust, J. (1997): “Using Randomization to Break the Curse of Dimensionality,”
Econometrica, 65 (3), 487-516.

[16] Samuelson, P.A. (1971): “Stochastic Speculative Price,” Proceedings of the Na-
tional Academy of Science, 68 (2), 335-337.

[17] Santos, M.S. and]. Vigo-Aguiar (1998): “Analysis of a Numerical Dynamic
Programming Algorithm Applied to Economic Models,” Econometrica, 66(2),
409-426.

[18] Santos, M.S. (2000): “Accuracy of Numerical Solutions Using the Euler Equa-
tion Residuals,” Econometrica, 68 (6), 1377-1402.

[19] Stokey, N. L., R. E. Lucas and E. C. Prescott (1989): Recursive Methods in Eco-
nomic Dynamics, Harvard University Press, Massachusetts.

[20] Tsitsiklis, J.N. and B. Van Roy (1996): “Feature-Based Methods for Large Scale
Dynamic Programming,” Machine Learning, 22, 59-94.

INSTITUTE OF ECONOMIC RESEARCH, KYOTO UNIVERSITY, YOSHIDA-HONMACHI,
SAKYO-KU, KYOTO 606-8501, JAPAN
E-mail address: john@kier.kyoto-u.ac.jp

