Quark Container

- Secure Container Runtime

Quark - kvM based Secure Container from scratch
Secure + High Performance + Low Cost + Kubernetes Compatible

Secure Container Hypervisor virtual network

e Hypervisor based security e Design for Cloud native workload

isolation . @ Network virtualization in
e Dedicate OS Kernel per hypervisor
Container . @ Http stack in hypervisor
e Design for Cloud native e High performance
workload . @ Interoperate with VM network and
Low memory footprint container network

Fast start up . @ Support CNl interface
High performance :
Support OCl interface

Container Orchestration

Extension of Kubernetes
Multi-tenant support

Schedule both VM and Container
Compatible operation interface as
Kubernetes

Existing Secure Container

@ katacontainers

gVisor

1. From Google

1. Open Source 2. User for GCP Cloud function

2. Acquired by Ant Finance 3. Hypervisor: reimplementation 1. Firecracker: From AWS

3. Hypervisor: Optimized Qumu 4. OSKernel: reimplementation 2. Used for AWS Lambda

4. 0OS Kernel: Optimized Linux Kernel 5. Usegolangand legacy design from 3. Hypervisor: Firecracker

ptrace 4, OS Kernel: Normal Linux Kernel
Quark Container Kata gVisor Firecracker
Memory Overhead 12 MB 180MB 20 ~ 30 MB 5MB Hypervisor + 100+MB
Linux Kernel

Optimization potential Very High Low High Medium
Kubernetes Yes Yes Yes No
compatible
Performance High Low Medium to High Medium

Pain Point: Containerized Application on VM

Linux Kernel

HyperVisor

Bare Metal Machine

Docker container is not secure: VM isolation is must in multi-tenant environment
Virtual machine overhead

a. Memory: 100MB ~ 300MB memory overhead per VM

b. File 10: 10~20% throughput decrease

C. Network [0: VM network + container network leads to 5~10% throughput
decrease
Management: VM management (g openstack) + Container orchestration (.. ss)
a. Extra management layer overhead
b. Decrease resource utilization
C. Increase IT operation cost
Can’t meet cloud native resource management model
a. Autoscale
b. Service migration
C. Cloud function

Container Infrastructure

Container Infrastructure V2: Security Container Central

High computation density: 2MB overload per container
Low latency auto scale: 50 ~ 100ms boot up overhead

3. Low overhead container runtime: 5% ~ 10%
a. Network
b. 10
[Computation

4, High security

HyperVisor

Bare Metal Machine

Container Infrastructure V1: Virtual Machine

Central
1. Security/Resource isolation: VM based
isolation
Network: VM based VPC
3. Container: Running over VM

Not suitable for Cloud native application

1. High overhead
a. Memory
b. 10
c. Network

2. Difficult to support auto scale

Virtual Machine

Easy to migrate from Legacy workload

HyperVisor

Bare Metal Machine

Virtual Machine + Container

Running containerized workload on
existing infrastructure

HyperVisor

Bare Metal Machine

HyperVisor OS -- Reimplement OS hosted on Linux Hypervisor for containerized workload

Linux Kernel

Hypervisor OS Linux VM

-VS

Quark Architecture

Quark Linux Virtual Machine

Guest
Application

Quark Architecture

Quark

Guest System Call

Quark Container

VCPUs % %

Qcall g
Thread

