
Quark Container
- Secure Container Runtime

--Next Generation Container Infrastructure

Quark - KVM based Secure Container from scratch
 Secure + High Performance + Low Cost + Kubernetes Compatible

 Secure Container

● Hypervisor based security
isolation

● Dedicate OS Kernel per
Container

● Design for Cloud native
workload

● Low memory footprint
● Fast start up
● High performance
● Support OCI interface

 Hypervisor virtual network

● Design for Cloud native workload
● Network virtualization in

hypervisor
● Http stack in hypervisor
● High performance
● Interoperate with VM network and

container network
● Support CNI interface

 Container Orchestration

● Extension of Kubernetes
● Multi-tenant support
● Schedule both VM and Container
● Compatible operation interface as

Kubernetes

Existing Secure Container

1. Open Source
2. Acquired by Ant Finance
3. Hypervisor: Optimized Qumu
4. OS Kernel: Optimized Linux Kernel

1. From Google
2. User for GCP Cloud function
3. Hypervisor: reimplementation
4. OS Kernel: reimplementation
5. Use golang and legacy design from

ptrace

1. Firecracker: From AWS
2. Used for AWS Lambda
3. Hypervisor: Firecracker
4. OS Kernel: Normal Linux Kernel

Quark Container Kata gVisor Firecracker

Memory Overhead 12 MB 180MB 20 ~ 30 MB 5MB Hypervisor + 100+MB
Linux Kernel

Optimization potential Very High Low High Medium

Kubernetes
compatible

Yes Yes Yes No

Performance High Low Medium to High Medium

Pain Point: Containerized Application on VM
1. Docker container is not secure: VM isolation is must in multi-tenant environment
2. Virtual machine overhead

a. Memory: 100MB ~ 300MB memory overhead per VM
b. File IO: 10~20% throughput decrease
c. Network IO: VM network + container network leads to 5~10% throughput

decrease
3. Management: VM management (e.g. OpenStack) + Container orchestration (E.g. K8s)

a. Extra management layer overhead
b. Decrease resource utilization
c. Increase IT operation cost

4. Can’t meet cloud native resource management model
a. Autoscale
b. Service migration
c. Cloud functionBare Metal Machine

HyperVisor

Virtual Machine

Virtual Machine

App

Container

App

Container
...

Linux Kernel

Container Infrastructure

Bare Metal Machine

HyperVisor

Virtual Machine
Virtual Machine

App App...

Bare Metal Machine

HyperVisor

Virtual Machine
Virtual Machine

App
Container

App
Container...

Virtual Machine Virtual Machine + Container

1. Security/Resource isolation: VM based
isolation

2. Network: VM based VPC
3. Container: Running over VM

Container Infrastructure V1: Virtual Machine
Central Easy to migrate from Legacy workload Running containerized workload on

existing infrastructure

1. High overhead
a. Memory
b. IO
c. Network

2. Difficult to support auto scale

Not suitable for Cloud native application

Bare Metal Machine

HyperVisor

App
Container

App
Container...

Container Infrastructure V2: Security Container Central

1. High computation density: 2MB overload per container
2. Low latency auto scale: 50 ~ 100ms boot up overhead
3. Low overhead container runtime: 5% ~ 10%

a. Network
b. IO
c. Computation

4. High security

1. Designed for running as Linux
application

2. Design for containerized workload:
Limited System Call

3. High performance, Low cost
4. Embedded Container interface

Bare Metal Machine

Linux Kernel

Hypervisor OS -- Reimplement OS hosted on Linux Hypervisor for containerized workload

● Reimplemented Linux compatible OS
running in Hypervisor

● Running as Linux application
● No need to support physical device

KVM

Quark Visor

App

Quark Kernel

Quark Visor

App

Quark Kernel
Syscall Syscall

Quark Network Quark Network

Quark Kernel

● HyperVisor only support Quark Kernel
● Optimized for Linux Syscall interface
● High secure, Low cost and High

performance
● Kubernetes Container interface (OCI)

Quark Visor

● Underlay TCP network stack running as
Linux application

● Virtual Private Network
● High performance and low latency

Quark Network

1. Design running all kind of hardware
2. Design for all kind of workload,

complex full system call
3. High cost to run on Hypervisor
4. Extra layer for Container supportVS

Hypervisor OS Linux VM

Quark Container

Quark Architecture

Linux Kernel

QVisor Qumu

Linux/Windows/etc Guest KernelQKernel

Linux Container Application Linux/Windows/etc Application

HyperVisor

Guest
Kernel

Guest
Application

Quark Linux Virtual Machine

Quark Architecture

Quark Container

Linux Kernel

QVisor

QKernel

Linux Container Application

Quark

QLib
(share
memory
Queue)

Guest System Call

Host System Call

io-uring Call

QCall

Guest Space

Host Space

...VCPUs

QCall
Thread

