
December 8th 2021 — Quantstamp Verified

Quarry

This security assessment was prepared by Quantstamp, the leader in blockchain security

Executive Summary

Type Yield Farm Service on Solana

Auditors Poming Lee, Research Engineer

Jake Goh Si Yuan, Senior Security Researcher

Mohsen Ahmadvand, Senior Research Engineer

Timeline 2021-10-19 through 2021-12-08

Languages Rust

Methods Architecture Review, Unit Testing, Functional

Testing, Computer-Aided Verification, Manual

Review

Specification README.md

Documentation Quality Low

Test Quality Undetermined

Source Code
Repository Commit

quarry-private (only for certain
programs inside it)

5635f5b

quarry 805a7c4

Total Issues 15 (6 Resolved)

High Risk Issues 0 (0 Resolved)

Medium Risk Issues 0 (0 Resolved)

Low Risk Issues 4 (2 Resolved)

Informational Risk Issues 9 (3 Resolved)

Undetermined Risk Issues 2 (1 Resolved)

High Risk The issue puts a large number of users’
sensitive information at risk, or is
reasonably likely to lead to catastrophic
impact for client’s reputation or serious
financial implications for client and
users.

Medium Risk The issue puts a subset of users’
sensitive information at risk, would be
detrimental for the client’s reputation if
exploited, or is reasonably likely to lead
to moderate financial impact.

Low Risk The risk is relatively small and could not
be exploited on a recurring basis, or is a
risk that the client has indicated is low-
impact in view of the client’s business
circumstances.

Informational The issue does not post an immediate
risk, but is relevant to security best
practices or Defence in Depth.

Undetermined The impact of the issue is uncertain.

Unresolved Acknowledged the existence of the risk,
and decided to accept it without
engaging in special efforts to control it.

Acknowledged The issue remains in the code but is a
result of an intentional business or
design decision. As such, it is supposed
to be addressed outside the
programmatic means, such as: 1)
comments, documentation, README,
FAQ; 2) business processes; 3) analyses
showing that the issue shall have no
negative consequences in practice
(e.g., gas analysis, deployment
settings).

Resolved Adjusted program implementation,
requirements or constraints to eliminate
the risk.

Mitigated Implemented actions to minimize the
impact or likelihood of the risk.

https://github.com/QuarryProtocol/quarry-private/blob/master/README.md
https://github.com/QuarryProtocol/quarry-private/commit/5635f5bc77dc47dc892aadc619e01175cfc99ddf
https://github.com/QuarryProtocol/quarry-private/commit/5635f5bc77dc47dc892aadc619e01175cfc99ddf
https://github.com/QuarryProtocol/quarry-private/commit/5635f5bc77dc47dc892aadc619e01175cfc99ddf
https://github.com/QuarryProtocol/quarry/commit/805a7c41dbc81e77e309ade0c88ff89a275695a1
https://github.com/QuarryProtocol/quarry/commit/805a7c41dbc81e77e309ade0c88ff89a275695a1

Summary of Findings

During the audit, we found potential issues of various levels of severity: low-severity issues, undetermined-severity issues, as well as informational-severity issues. We also made

best practices recommendations.
15 4 2 9 5

The project provided no specifications, and the information contained in the README files provided are limited. The lack of documentation concerning the system specifications and the

underlying framework means that there could be many other issues that were not discovered. Lacking documentation also impairs any independent assessment in understanding the

underlying logic and checking whether the code adheres to what the system should actually be doing, a prerequisite for gaining user trust and widespread adoption.

The coverage report cannot be obtained at this moment due to tests that interact with the Solana blockchain. It is highly recommended to solve this issue whenever it is possible and to

have code coverage to at least 80%, in order to avoid functional bugs that are not necessarily security issues.

Disclaimer:

1. Readers should be aware that Quantstamp was requested and had audited , , programs, not the whole
system.

quarry-miner quarry-mint-wrapper quarry-merge-mine

2. This project utilized Solana blockchain, SPL programs, Anchor framework, vipers library, and many more existing infrastructures. All the dependencies and external
infrastructures are not part of this audit.

during this reaudit, the admin team has brought some of the status of findings either into fixed or acknowledged. For the others, the admin team decided not to fix

them because in their opinion they are not necessary.

2021-12-08 update:

ID Description Severity Status

QSP-1 Misuse of variable _mint_bump Low Fixed

QSP-2 Missing rewards whenever is calledset_rewards_share Low Acknowledged

QSP-3 Retroactive changes to mined amount with set_annual_rewards Low Acknowledged

QSP-4 Use of unreferenced magic number may cause future bricking of claim operation Low Fixed

QSP-5 MintWrapper can to same admintransfer_admin Informational Fixed

QSP-6 should be strictly greater than in the payroll logiccurrent_ts last_checkpoint_ts Informational Unresolved

QSP-7 's should also verify owner and mintNewRewarder Validate claim_fee_token_account Informational Fixed

QSP-8 Possible truncation and precision loss in the annual rewards rate calculation Informational Fixed

QSP-9 Privileged roles and ownership Informational Acknowledged

QSP-10 Quarry inherits Anchor vulnerabilities Informational Unresolved

QSP-11 should be the signerNewRewarder.authority Informational Acknowledged

QSP-12 is not checkedMergeMiner.owner Informational Acknowledged

QSP-13 Missing check to match andquarry.token_mint_key miner_vault.mint Undetermined Fixed

QSP-14 Graceful account closure Informational Acknowledged

QSP-15 does not explicitly call validate on the pool accountInitMergeMiner.validate Undetermined Acknowledged

Quantstamp Audit Breakdown

Quantstamp's objective was to evaluate the repository for security-related issues, code quality, and adherence to specification and best practices.

Possible issues we looked for included (but are not limited to):

Missing account-ownership check•

Missing account-signature check•

Missing account-type check•

Missing account-program-id check•

Unsafe external calls•

Integer overflow / underflow•

Number rounding errors•

Reentrancy and cross-function vulnerabilities•

Denial of service / logical oversights•

Access control•

Centralization of power•

Business logic contradicting the specification•

Code clones, functionality duplication•

Arbitrary token minting•

Methodology

The Quantstamp auditing process follows a routine series of steps:

1. Code review that includes the following
i. Review of the specifications, sources, and instructions provided to Quantstamp to make sure we understand the size, scope, and functionality of the smart

contract.

ii. Manual review of code, which is the process of reading source code line-by-line in an attempt to identify potential vulnerabilities.

iii. Comparison to specification, which is the process of checking whether the code does what the specifications, sources, and instructions provided to Quantstamp
describe.

2. Testing and automated analysis.

3. Best practices review, which is a review of the smart contracts to improve efficiency, effectiveness, clarify, maintainability, security, and control based on the
established industry and academic practices, recommendations, and research.

4. Specific, itemized, and actionable recommendations to help you take steps to secure your smart contracts.

Toolset

The notes below outline the setup and steps performed in the process of this audit.

Setup

Tool Setup:

v0.15.0• Rust Audit

Latest• Rust-Clippy

Steps taken to run the tools:

Rust Audit:

1. cargo install cargo-audit

2. cargo audit

Rust-Clippy:

1. rustup component add clippy

2. cargo clippy

Findings

QSP-1 Misuse of variable _mint_bump

Severity: Low Risk

FixedStatus:

File(s) affected: programs\quarry-merge-mine\src\lib.rs

On of the uses , but in the name of the input parameter is instead.Description: L136 programs\quarry-merge-mine\src\lib.rs bump mint_bump L34 _mint_bump

Please make sure if this is intended or it is indeed erroneous code.Recommendation:

QSP-2 Missing rewards whenever is calledset_rewards_share

Severity: Low Risk

https://github.com/RustSec/cargo-audit
https://github.com/rust-lang/rust-clippy

AcknowledgedStatus:

File(s) affected: programs\quarry-mine\src\lib.rs

The function sets the of the quarry to the time of execution. Since is a critical factor in the calculation of rewards

accrued, a change of to the existing time would mean that potential rewards accrued are disregarded and erased entirely. In detail, when is called,

is set to and it is done without performing . The amount of that should be accumulated in the

period is ignored and not added.

Description: set_rewards_share() last_update_ts last_update_ts
last_update_ts set_rewards_share()

quarry.last_update_ts now update_rewards_internal rewards_per_token_stored
now - quarry.last_update_ts

Run an update to the quarry before moving on the change. For instance, perform the full operation in function

instead of only updating .

Recommendation: update_rewards_internal() set_rewards_share()
quarry.last_update_ts

The admin team will call client side on all the quarries immediately after making changes to quarry rewards shares and/or annual reward rate client side. Can

refer to for more details.

Update: syncQuarryRewards
linkToCode

QSP-3 Retroactive changes to mined amount with set_annual_rewards

Severity: Low Risk

AcknowledgedStatus:

File(s) affected: programs/quarry-mine/src/lib.rs

All calculations deriving rewards use along with time staked to find out the mined amount. It is currently possible for to change

the through , without calling any of the respective quarry(s)' update function. This leads to a retroactive change to the mined amount,

depending on the change to

Description: annual_rewards_rate Rewarder.authority
annual_rewards_rate set_annual_rewards()

annual_rewards_rate

Consider documenting this effect, or trigger an update to all quarry(s) before affecting this change.Recommendation:

The admin team will call client side on all the quarries immediately after making changes to quarry rewards shares and/or annual reward rate client side. Can

refer to for more details.

Update: syncQuarryRewards
linkToCode

QSP-4 Use of unreferenced magic number may cause future bricking of claim operation

Severity: Low Risk

FixedStatus:

File(s) affected: programs/quarry-mine/src/rewarder.rs

There is a validation of on . This assumes that , which is

typically set only once when the rewarder is created, is always less than the magical . This may not be the case, and future updates may inadvertently set it larger or equal to

and therefore halt the function of the rewarder.

Description: require!(max_claim_fee_kbps < 10_000 * 1_000, InvalidMaxClaimFee); L63 max_claim_fee_kbps
10_000 * 1_000

10_000 * 1_000

Reference the constant (i.e.,) set for and together.Recommendation: DEFAULT_CLAIM_FEE_KBPS max_claim_fee_kbps 10_000 * 1_000

QSP-5 MintWrapper can to same admintransfer_admin

Severity: Informational

FixedStatus:

File(s) affected: programs/quarry-mint-wrapper/src/lib.rs

It is possible for the mint wrapper admin to execute , which would theoretically set up the next admin to afterwards. Both functions emit

events at the end of successful execution. Currently, it is possible for the admin to to itself, which would emit nonsensical events thereafter.

Description: transfer_admin() accept_admin()
transfer_admin()

Validate that the pending admin is not the current admin when .Recommendation: transfer_admin()

QSP-6 should be strictly greater than in the payroll logiccurrent_ts last_checkpoint_ts

Severity: Informational

UnresolvedStatus:

File(s) affected: programs/quarry-mine/src/payroll.rs:L91, programs/quarry-mine/src/payroll.rs:L131

ForDescription:

require!(current_ts >= self.last_checkpoint_ts, InvalidTimestamp);

and later in the reward calculation is becomes apparent that having yields rendering the operation useless:current_ts=last_checkpoint_ts compute_time_worked=0

/// Gets the latest time rewards were being distributed.
pub fn last_time_reward_applicable(&self, current_ts: i64) -> i64 {

cmp::min(current_ts, self.famine_ts)
}

/// Calculates the amount of seconds the [Payroll] should have applied rewards for.
fn compute_time_worked(&self, current_ts: i64) -> Option<i64> {

Some(cmp::max(
0,
self.last_time_reward_applicable(current_ts)

.checked_sub(self.last_checkpoint_ts)?,
))

}

Consider changing the checks to strictly greater than, see:Recommendation: require!(current_ts > self.last_checkpoint_ts, InvalidTimestamp);

QSP-7 's should also verify owner and mintNewRewarder Validate claim_fee_token_account

https://github.com/QuarryProtocol/quarry/blob/c26614f7ed5b763e76dd3e1e88a88c1a37343f08/src/wrappers/mine/rewarder.ts#L125-L135
https://github.com/QuarryProtocol/quarry/blob/c26614f7ed5b763e76dd3e1e88a88c1a37343f08/src/wrappers/mine/rewarder.ts#L125-L135

Severity: Informational

FixedStatus:

File(s) affected: programs/quarry-mine/src/account_validators.rs

After 's it is expected to have the following checks as well:Description: claim_fee_token_account assert_ata!

assert_ata!(
self.claim_fee_token_account,
self.rewarder,
self.rewards_token_mint

);
//Missing checks
assert_keys!(self.claim_fee_token_account.owner, self.rewarder, "fee account owner");
assert_keys!(self.claim_fee_token_account.mint, self.rewards_token_mint, "fee account mint");
//End missing checks

This is how this is done for ():CreateMiner programs/quarry-mine/src/account_validators.rs:L133-L135

assert_ata!(self.miner_vault, self.miner, self.token_mint, "miner vault");
assert_keys!(self.miner_vault.owner, self.miner, "miner vault owner");
assert_keys!(self.miner_vault.mint, self.token_mint, "miner vault mint");

Consider adding the missing checks.Recommendation:

QSP-8 Possible truncation and precision loss in the annual rewards rate calculation

Severity: Informational

FixedStatus:

File(s) affected: programs/quarry-mine/src/rewarder.rs:L21, programs/quarry-mine/src/rewarder.rs:L67

Possible truncations on casts to :Description: u64

1.
(self.annual_rewards_rate as u128)

.checked_mul(quarry_rewards_share as u128)?

.checked_div(self.total_rewards_shares as u128)?

.to_u64()

2.
let max_claim_fee = unwrap_int!((amount_claimable as u128)

.checked_mul(max_claim_fee_kbps.into())

.and_then(|f| f.checked_div((10_000 * 1_000) as u128))

.and_then(|f| f.to_u64()));

Please make sure that this level of truncation is intended.Recommendation:

Fixed by increasing the precisions.Update:

QSP-9 Privileged roles and ownership

Severity: Informational

AcknowledgedStatus:

The programs deployed are not immutable until they are marked as "final" (i.e., not upgradeable) on the Solana blockchain by the admin team.Description:

This centralization of power needs to be made clear to the users, especially depending on the level of privilege the contract allows to the owner.Recommendation:

The admin team stated that a DAO that works on upgrading programs is planned.Update:

QSP-10 Quarry inherits Anchor vulnerabilities

Severity: Informational

UnresolvedStatus:

Anchor is a new and constantly evolving framework that was not audited. Quarry will inherit potential vulnerabilities in Anchor. This audit is strictly limited to Quarry.Description:

The risk should be taken into consideration. Consider having a pure freeze functionality, possibly without relying on Anchor.Recommendation:

QSP-11 should be the signerNewRewarder.authority

Severity: Informational

AcknowledgedStatus:

File(s) affected: programs/quarry-mine/src/lib.rs:L60-L61

In the instruction the authority is set to an arbitrary account. The validation only verifies the signature of the account.Description: new_rewarder base

rewarder.authority = ctx.accounts.authority.key();

In the 's there is a require statement that checks if the base is signer and not the authorityNewRewarder Validate programs/quarry-mine/src/account_validators.rs:L22

require!(self.base.is_signer, Unauthorized);

Authority's account is also defined as unchecked:

pub struct NewRewarder<'info> {
...
/// Initial authority of the rewarder.
pub authority: UncheckedAccount<'info>,
...

Not having the authority to sign the transaction can potentially lead to a faulty rewarder with locked authority.

Consider forcing the authority to be the signer of the transaction.Recommendation:

The admin team decided not to check it in order to keep it flexible for future works.Update:

QSP-12 is not checkedMergeMiner.owner

Severity: Informational

AcknowledgedStatus:

File(s) affected: programs/quarry-merge-mine/src/processor/init.rs:L35

is marked as unchecked but set as the owner of newly created merge-miners. Unchecked accounts may cause crashes in programs.Description: MergeMiner.owner
programs/quarry-merge-mine/src/lib.rs:L159

pub struct InitMergeMiner<'info> {
...
/// Owner of the [MergeMiner].
pub owner: UncheckedAccount<'info>,

...

programs/quarry-merge-mine/src/processor/init.rs:35

pub fn init_merge_miner(ctx: Context<InitMergeMiner>, bump: u8) -> ProgramResult {
...
mm.owner = ctx.accounts.owner.key();

Consider checking the owner account for correctness.Recommendation:

The admin team decided not to check it in order to keep it flexible for future works.Update:

QSP-13 Missing check to match andquarry.token_mint_key miner_vault.mint

Severity: Undetermined

FixedStatus:

File(s) affected: programs\quarry-mine\src\account_validators.rs

On in , the function does not check if equals to . Although

enforces that check to the transaction so this risk factor might not be easily exploited, this factor could still be leveraged by an attacker to introduce other more complex attacks

that at this moment are still hard to think of.

Description: L135 programs\quarry-mine\src\account_validators.rs quarry.token_mint_key miner_vault.mint
UserStake

Add the mentioned check to the code.Recommendation:

QSP-14 Graceful account closure

Severity: Informational

AcknowledgedStatus:

The implemented programs do not gracefully close subject-to-rent (unless exempted) accounts when they are no longer needed. This leads to having funds locked into PDAs even

after they expire:

Description:

• In the program three accounts, viz. , , and , have the attribute and thus are checked

by Anchor to see whether they meet the rent exemption minimum lamports.

quarry-mine NewRewarder.rewarder CreateQuarry.quarry CreateMiner.miner init

• In the program two accounts, namely and have the attribute.quarry-mint-wrapper NewMinter.minter NewWrapper.mint_wrapper init

• program has three accounts, namely , , , marked with the attribute.quarry-mine-merge NewPool.pool NewPool.replica_mint InitMergeMiner.mm init

A graceful account deletion includes sending the rent-exemption lamports to an arbitrary account.

Confirm whether the listed accounts need not to be closed at any point. Consider adding logic for closing accounts. Reference: Anchor offers attributes for closing accounts

upon instruction execution: .

Recommendation:

#[account(close = <target>)]

The admin team stated that there is no need to close any account at this moment.Update:

QSP-15 does not explicitly call validate on the pool accountInitMergeMiner.validate

Severity: Undetermined

AcknowledgedStatus:

File(s) affected: programs/quarry-merge-mine/src/account_validators.rs:L44-L48

Description:

pub struct InitMergeMiner<'info> {
/// [MergePool] of the underlying LP token.
pub pool: Account<'info, MergePool>,
...

}
...
impl<'info> Validate<'info> for InitMergeMiner<'info> {

fn validate(&self) -> ProgramResult {

Ok(())
}

}

Please make sure if this is intended.Recommendation:

The admin team stated that there are no checks required to be added for this request at this moment.Update:

Automated Analyses

Rust Audit

No findings.

Rust-Clippy

No findings.

Adherence to Best Practices

1. [fixed] : : should also set as zero.programs\quarry-merge-mine\src\processor\init.rs L43 primary_balance

2. [acknowledge] is not really used anywhere in the code, please make sure if this is intended.This quarry.token_mint_decimals

3. [fixed] is named in the staking logic: ; for the sake of consistency use as the argument namerewarder lord programs/quarry-mine/src/quarry.rs:L68~L72 rewarder

4. [fixed] : : to increase code consistency, consider performing
within the in the validation sequence instead.

programs\quarry-mine\src\lib.rs L125 assert_keys!(ctx.accounts.authority, next_authority,

"pending authority"); account_validators.rs

5. [acknowledge] In , why do force an unpause? The authority should be transferable despite the
pause status. An authority handover process may entail pausing the program followed with a call. also requires an
unpaused status. This would block the authority until the decides to resume the program. Please make sure if this limitation to the 's power
is intended. If this is intended, please add this information into the specification. It is suggested to clarify which instructions are pausable and the reasoning behind
those decisions.

programs/quarry-mine set_pause_authority transfer_authority

transfer_authority set_pause_authority

pause_authority authority

Test Results

Test Suite Results

All tests passed.

==== unit tests ====

Run cargo test --lib
Compiling quarry-mint-wrapper v1.10.6 (/home/runner/work/quarry/quarry/programs/quarry-mint-wrapper)
Compiling quarry-redeemer v1.10.6 (/home/runner/work/quarry/quarry/programs/quarry-redeemer)
Compiling quarry-mine v1.10.6 (/home/runner/work/quarry/quarry/programs/quarry-mine)
Compiling quarry-merge-mine v1.10.6 (/home/runner/work/quarry/quarry/programs/quarry-merge-mine)
Compiling quarry-registry v1.10.6 (/home/runner/work/quarry/quarry/programs/quarry-registry)
Compiling quarry-operator v1.10.6 (/home/runner/work/quarry/quarry/programs/quarry-operator)
Finished test [unoptimized + debuginfo] target(s) in 12.44s
Running unittests (target/debug/deps/quarry_merge_mine-855543320c032d4a)

running 1 test
Running unittests (target/debug/deps/quarry_mine-52be9af31276fbff)

test test_id ... ok

test result: ok. 1 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out; finished in 0.00s

running 15 tests
test addresses::fee_to::test_id ... ok
test addresses::fee_setter::test_id ... ok
test payroll::tests::test_rewards_earned_when_zero_tokens_deposited ... ok
test payroll::tests::test_sanity_check ... ok
test payroll::tests::test_sanity_check_off_by_one_case ... ok
test payroll::tests::test_accumulated_precision_errors_epsilon ... ok
test payroll::tests::test_wpt_with_zero_annual_rewards_rate ... ok
test payroll::tests::test_wpt_when_famine ... ok
test quarry::tests::test_lifecycle_one_miner ... ok
test rewarder::tests::test_compute_quarry_annual_rewards_rate ... ok
test quarry::tests::test_lifecycle_two_miners ... ok
test rewarder::tests::test_compute_quarry_rewards_rate_with_multiple_quarries_fixed ... ok
test rewarder::tests::test_compute_rewards_rate_when_total_rewards_shares_is_zero ... ok
test test_id ... ok
test rewarder::tests::test_compute_quarry_rewards_rate_with_multiple_quarries ... ok

test result: ok. 15 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out; finished in 23.60s

Running unittests (target/debug/deps/quarry_mint_wrapper-3582b07899406538)

running 1 test
test test_id ... ok

test result: ok. 1 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out; finished in 0.00s

Running unittests (target/debug/deps/quarry_operator-68a41d455aa3892a)

running 1 test
test test_id ... ok

test result: ok. 1 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out; finished in 0.00s

Running unittests (target/debug/deps/quarry_redeemer-f1a2808be2871a26)

running 1 test
test test_id ... ok

test result: ok. 1 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out; finished in 0.00s

Running unittests (target/debug/deps/quarry_registry-5e4fd2604669fc30)

running 1 test
test test_id ... ok

test result: ok. 1 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out; finished in 0.00s

==== integration tests ====

Run nix shell .#ci --command yarn test:e2e
warning: Git tree '/home/runner/work/quarry/quarry' is dirty

Famine
✔ Stake and claim after famine (6084ms)

Program ATokenGPvbdGVxr1b2hvZbsiqW5xWH25efTNsLJA8knL invoke [1]
Program log: Transfer 2039280 lamports to the associated token account
Program 11111111111111111111111111111111 invoke [2]
Program 11111111111111111111111111111111 success
Program log: Allocate space for the associated token account
Program 11111111111111111111111111111111 invoke [2]
Program 11111111111111111111111111111111 success
Program log: Assign the associated token account to the SPL Token program
Program 11111111111111111111111111111111 invoke [2]
Program 11111111111111111111111111111111 success
Program log: Initialize the associated token account
Program TokenkegQfeZyiNwAJbNbGKPFXCWuBvf9Ss623VQ5DA invoke [2]
Program log: Instruction: InitializeAccount
Program TokenkegQfeZyiNwAJbNbGKPFXCWuBvf9Ss623VQ5DA consumed 3449 of 181475 compute units
Program TokenkegQfeZyiNwAJbNbGKPFXCWuBvf9Ss623VQ5DA success
Program ATokenGPvbdGVxr1b2hvZbsiqW5xWH25efTNsLJA8knL consumed 22634 of 200000 compute units
Program ATokenGPvbdGVxr1b2hvZbsiqW5xWH25efTNsLJA8knL success
Program QMNeHCGYnLVDn1icRAfQZpjPLBNkfGbSKRB83G5d8KB invoke [1]
Program QMWoBmAyJLAsA1Lh9ugMTw2gciTihncciphzdNzdZYV invoke [2]
Program TokenkegQfeZyiNwAJbNbGKPFXCWuBvf9Ss623VQ5DA invoke [3]
Program log: Instruction: MintTo
Program TokenkegQfeZyiNwAJbNbGKPFXCWuBvf9Ss623VQ5DA consumed 2883 of 166780 compute units
Program TokenkegQfeZyiNwAJbNbGKPFXCWuBvf9Ss623VQ5DA success
Program log: 0Q/jA6yPVSActO8N8y33mB8DSiNi69wCB/i3KKVS/3YA5XWOAh1QKRXlpR0X5UiRLiqgwiKjThGU2dWnHJRReXiyfIXy9JFpWwEAAAAAAAAuH8VFA1DabPpRgGIuurkPTo2mAvOCmRbE3tx46Te8Xw==
Program QMWoBmAyJLAsA1Lh9ugMTw2gciTihncciphzdNzdZYV consumed 15575 of 174270 compute units
Program QMWoBmAyJLAsA1Lh9ugMTw2gciTihncciphzdNzdZYV success
Program QMWoBmAyJLAsA1Lh9ugMTw2gciTihncciphzdNzdZYV invoke [2]
Program TokenkegQfeZyiNwAJbNbGKPFXCWuBvf9Ss623VQ5DA invoke [3]
Program log: Instruction: MintTo
Program TokenkegQfeZyiNwAJbNbGKPFXCWuBvf9Ss623VQ5DA consumed 2883 of 146338 compute units
Program TokenkegQfeZyiNwAJbNbGKPFXCWuBvf9Ss623VQ5DA success
Program log: 0Q/jA6yPVSActO8N8y33mB8DSiNi69wCB/i3KKVS/3YA5XWOAh1QKRXlpR0X5UiRLiqgwiKjThGU2dWnHJRReXiyfIXy9JFpAAAAAAAAAACpjGdsqcRkrtwEVYJhaKrx8BbFpQp5ld6i+iSzCn0H5g==
Program QMWoBmAyJLAsA1Lh9ugMTw2gciTihncciphzdNzdZYV consumed 15575 of 153828 compute units
Program QMWoBmAyJLAsA1Lh9ugMTw2gciTihncciphzdNzdZYV success
Program log: XQ9GqjCM1Ns7IonVJ/BFwFnJp4i1L1gCCm8/LU9cDrLEOqPc67anPfkZ9E3uOyqoLC0+UT2p6JAfi9BUpt3WdfD4v63EutyiRgjD8batxpuP6RE9XsM3cMjxeTr8fl+F/DWA81nf7UxbAQAAAAAAAAAAAAAAAAAAyoWpYQAAAAA=
Program QMNeHCGYnLVDn1icRAfQZpjPLBNkfGbSKRB83G5d8KB consumed 68175 of 200000 compute units

'11111111111111111111111111111111',
'11111111111111111111111111111111',
'11111111111111111111111111111111',
'11111111111111111111111111111111',
'11111111111111111111111111111111',
'11111111111111111111111111111111',
'11111111111111111111111111111111',
'11111111111111111111111111111111',
'11111111111111111111111111111111',
'11111111111111111111111111111111',
'11111111111111111111111111111111',
'11111111111111111111111111111111',
'11111111111111111111111111111111',
'11111111111111111111111111111111',
'11111111111111111111111111111111',
'11111111111111111111111111111111',
'11111111111111111111111111111111',
'11111111111111111111111111111111',
'11111111111111111111111111111111',
'11111111111111111111111111111111',
'11111111111111111111111111111111',
'11111111111111111111111111111111',
'11111111111111111111111111111111'

]
✔ create registry (1052ms)

40 passing (3m)

Code Coverage

Coverage reports cannot be obtained at this moment due to tests that interact with the Solana blockchain.

Appendix

File Signatures

The following are the SHA-256 hashes of the reviewed files. A file with a different SHA-256 hash has been modified, intentionally or otherwise, after the security review. You are cautioned that a
different SHA-256 hash could be (but is not necessarily) an indication of a changed condition or potential vulnerability that was not within the scope of the review.

Contracts

12bedb3c73c416fa4c2425cc04775394ace9407c8e942b73e30b5e3b5bb8217f ./programs/quarry-mint-wrapper/src/account_validators.rs

d05e2a14577ad9fa5ec2af26f21d929f371f62ff7dfe381738b76ccc2eed142a ./programs/quarry-mint-wrapper/src/lib.rs

1e184c3234cddcfd8abbf80ca17c361b814a6c64e25644e56ce0f677db1caf15 ./programs/quarry-mint-wrapper/src/macros.rs

22814946d6a99e05d92f87b430725b2d2299a405023b49c5e9d1aeff0280a89e ./programs/quarry-mine/src/account_validators.rs

2645a9b5a09a76f155ad8c87554909941ec0e4302e8eeac503187e07bfa253f1 ./programs/quarry-mine/src/addresses.rs

5b9ea750d7487c8b17c7837cfdb77737874b296ffc92fe522465da82adb44df7 ./programs/quarry-mine/src/lib.rs

d4e50bc49ae86140dfeac909dd94f689ac7b1a9754e1c82d09638a4ef1224d82 ./programs/quarry-mine/src/macros.rs

7c4b9b467dbce7e514cbd794b1712e3f1d5cca3d2d346ba74497ff2e5d39ea01 ./programs/quarry-mine/src/payroll.rs

d839f5b39458d965e0a398760d0a5ad95cf92f914509de940f6ed4558b33a2f7 ./programs/quarry-mine/src/quarry.rs

fc21ecd9c3e1d3316e43c833386f20606dd2f1c20c25215b0e6a7d643f1ab7e3 ./programs/quarry-mine/src/rewarder.rs

59687f821ec648764ffa065d695f09fc5ba2343f5abba61ee9669c65372511aa ./programs/quarry-merge-mine/src/account_conversions.rs

9b3677aa47c02d2e3534f32ff7b8d6f23c3e09ef29adec96736d2fd7532cdea1 ./programs/quarry-merge-mine/src/account_validators.rs

dce54b5da2249db1c9469a6d4af7d0a04f9f1a7aea4e22437f6c81e654e90e18 ./programs/quarry-merge-mine/src/events.rs

df25c32f00afc043b8ead9036815af35731d86a5c6e4fde5fe2907ec555e0bef ./programs/quarry-merge-mine/src/lib.rs

1bcfb5b0c9b11c30e45d3ad47f354f5fa48e6cae43a68ce6049c6167a8882a86 ./programs/quarry-merge-mine/src/macros.rs

04dc12d3acb838b5ce2e9b28b99c4e0c3e60f4d2ea3164606df386d390cdbe98 ./programs/quarry-merge-mine/src/mm_cpi.rs

1cdd6f0b230896c4e85fd33e285ec5ccb0f190d4e45b1efbfc38b4edfa651502 ./programs/quarry-merge-mine/src/state.rs

27695c662d5355458e77539b9803ed76514a871fd0bd6ac646901cfcf430988c ./programs/quarry-merge-mine/src/processor/claim.rs

967aeee12f354ffd5ae430b2eaaaee64882e7ffeabb7d320be8864845e2fef5a ./programs/quarry-merge-mine/src/processor/deposit.rs

5538fc7774b33af1c8995fe1f692a5deb713002477c16d424a0b1e3940132fc5 ./programs/quarry-merge-mine/src/processor/init.rs

08776f54e30d760055ef100dfdd6d933bf57b01a1e339e0931d62b5550bc8d4a ./programs/quarry-merge-mine/src/processor/mod.rs

f454f27aea8765c21f6ff67b8be736af526c4c0fb58435dcfb2329b7d1d56eb9 ./programs/quarry-merge-mine/src/processor/withdraw.rs

Tests

f055c0e86c68f336c0867a580b42e0677c2af12c1e543600ab7a26fe1c843a95 ./tests/famine.spec.ts

903823a50e2ff917569185430d829826466b2091e7cfbc6596c9eb81b0e1df92 ./tests/mine.spec.ts

aabe1e332a70c2903d076c02fe39f9c672c63acd6dc9b2cbe4a9eddd1f425b23 ./tests/mineRewards.spec.ts

d44994c985a73dfc6549fb84904f994d38695367cc3dcbc28cadc8357bfbd9e3 ./tests/mintWrapper.spec.ts

29e098510d3d2fb26dbaa733988929cbbfe81039e9efa4a605337a9853f8705e ./tests/operator.spec.ts

f63694f06f08d47491df8979b41b284566c8cc2c86788ac3d064b18bf6fb21db ./tests/quarryMergeMine.spec.ts

ae71d16ef5760f515697a8e75425bc11c3b4a945faeabb3ef3bd6b276600a1d6 ./tests/quarryRedeemer.spec.ts

790135b5d0ae1339ea91321df9cbfd22be664596825b557c5adc9a712c11e4cc ./tests/quarryUtils.ts

4040866b1255f93d6fe4c5bb67b8aedccc751c58c0faddcd288097512efb21af ./tests/registry.spec.ts

c89ddfd239db1ab3f04924081fd69a9f212927054fc07c5e314a818710f6026f ./tests/utils.ts

1d3db80558916933c2a22ca98212a6e8a74bd75c96e4c75e35a20a72ae2b1e96 ./tests/workspace.ts

Changelog

2021-11-15 - Initial report•

2021-12-08 - final report•

About Quantstamp

Quantstamp is a Y Combinator-backed company that helps to secure blockchain platforms at scale using computer-aided reasoning tools, with a mission to help boost the

adoption of this exponentially growing technology.

With over 1000 Google scholar citations and numerous published papers, Quantstamp's team has decades of combined experience in formal verification, static analysis,

and software verification. Quantstamp has also developed a protocol to help smart contract developers and projects worldwide to perform cost-effective smart contract

security scans.

To date, Quantstamp has protected $5B in digital asset risk from hackers and assisted dozens of blockchain projects globally through its white glove security assessment

services. As an evangelist of the blockchain ecosystem, Quantstamp assists core infrastructure projects and leading community initiatives such as the Ethereum

Community Fund to expedite the adoption of blockchain technology.

Quantstamp's collaborations with leading academic institutions such as the National University of Singapore and MIT (Massachusetts Institute of Technology) reflect our

commitment to research, development, and enabling world-class blockchain security.

Timeliness of content

The content contained in the report is current as of the date appearing on the report and is subject to change without notice, unless indicated otherwise by Quantstamp;

however, Quantstamp does not guarantee or warrant the accuracy, timeliness, or completeness of any report you access using the internet or other means, and assumes

no obligation to update any information following publication.

Notice of confidentiality

This report, including the content, data, and underlying methodologies, are subject to the confidentiality and feedback provisions in your agreement with Quantstamp.

These materials are not to be disclosed, extracted, copied, or distributed except to the extent expressly authorized by Quantstamp.

Links to other websites

You may, through hypertext or other computer links, gain access to web sites operated by persons other than Quantstamp, Inc. (Quantstamp). Such hyperlinks are

provided for your reference and convenience only, and are the exclusive responsibility of such web sites' owners. You agree that Quantstamp are not responsible for the

content or operation of such web sites, and that Quantstamp shall have no liability to you or any other person or entity for the use of third-party web sites. Except as

described below, a hyperlink from this web site to another web site does not imply or mean that Quantstamp endorses the content on that web site or the operator or

operations of that site. You are solely responsible for determining the extent to which you may use any content at any other web sites to which you link from the report.

Quantstamp assumes no responsibility for the use of third-party software on the website and shall have no liability whatsoever to any person or entity for the accuracy or

completeness of any outcome generated by such software.

Disclaimer

This report is based on the scope of materials and documentation provided for a limited review at the time provided. Results may not be complete nor inclusive of all

vulnerabilities. The review and this report are provided on an as-is, where-is, and as-available basis. You agree that your access and/or use, including but not limited to any

associated services, products, protocols, platforms, content, and materials, will be at your sole risk. Blockchain technology remains under development and is subject to

unknown risks and flaws. The review does not extend to the compiler layer, or any other areas beyond the programming language, or other programming aspects that

could present security risks. A report does not indicate the endorsement of any particular project or team, nor guarantee its security. No third party should rely on the

reports in any way, including for the purpose of making any decisions to buy or sell a product, service or any other asset. To the fullest extent permitted by law, we disclaim

all warranties, expressed or implied, in connection with this report, its content, and the related services and products and your use thereof, including, without limitation, the

implied warranties of merchantability, fitness for a particular purpose, and non-infringement. We do not warrant, endorse, guarantee, or assume responsibility for any

product or service advertised or offered by a third party through the product, any open source or third-party software, code, libraries, materials, or information linked to,

called by, referenced by or accessible through the report, its content, and the related services and products, any hyperlinked websites, any websites or mobile applications

appearing on any advertising, and we will not be a party to or in any way be responsible for monitoring any transaction between you and any third-party providers of

products or services. As with the purchase or use of a product or service through any medium or in any environment, you should use your best judgment and exercise

caution where appropriate. FOR AVOIDANCE OF DOUBT, THE REPORT, ITS CONTENT, ACCESS, AND/OR USAGE THEREOF, INCLUDING ANY ASSOCIATED SERVICES OR

MATERIALS, SHALL NOT BE CONSIDERED OR RELIED UPON AS ANY FORM OF FINANCIAL, INVESTMENT, TAX, LEGAL, REGULATORY, OR OTHER ADVICE.

Quarry Audit

