
Web Security Attacker Framework

WS-Attacker
Documentation

Christian Mainka Juraj Somorovsky
Andreas Falkenberg

15th June 2015

WS-Attacker is a modular framework for Web Services penetration testing.
It is a free and easy to use software solution, which provides an all-in-one
security checking interface with only a few clicks.

Contents Contents

Contents

1 How to use WS-Attacker 3
1.1 Loading a WSDL . 3
1.2 Submitting a Test Request . 4
1.3 Attack Plugin Configuration . 4
1.4 Starting the Attacks . 5

2 Automatic Detection of XML Signature Wrapping Attacks 7
2.1 Short Technical Attack Description . 7
2.2 Using the XSW Plugin . 8

3 DoS Extension 11
3.1 General Design of the WS-Attacker DoS Extension 11
3.2 Walktrough example of a coercive Parsing Attack 16

3.2.1 Load the WSDL . 16
3.2.2 Submit a test request . 17
3.2.3 Select and configure the attack plugins 17
3.2.4 Start the attack . 19
3.2.5 View attack results . 20

4 How to Break XML Encryption 22
4.1 Adaptive Chosen-Ciphertext Attacks . 22
4.2 XML Signature as a Countermeasure . 23
4.3 Using the XML Encryption Plugin . 24

Appendix 26

2/ 28

How to use WS-Attacker

1 How to use WS-Attacker

This guide will use WS-Attacker for penetration testing on self-made Web Service. The
tool is based on the Paper Penetration Testing Tool for Web Services Security presented
on SERVICES 2012 (1). In general, you have to to four things:

1. Loading the WSDL and set up the request parameters.
2. Submitting a test request.
3. Configuring the attack plugins.
4. Starting the attacks.

1.1 Loading a WSDL

After starting WS-Attacker, the GUI appears and offers an input field to enter the
location of the WSDL, see Figure 1.

Figure 1: Loading the WSDL.

The custom service has two operations: HelloName and GoodbyeName. HelloName is
chosen as the operation to be tested. The table at the bottom gives a form based input
possibility for all request parameters and in this case, name is set to Hello.

3/ 28

1.2 Submitting a Test Request How to use WS-Attacker

1.2 Submitting a Test Request

Next step is to do a test request: Figure 2 shows the test request and the correspond-
ing response. The request contains a “HelloName” element as first body child and the
response holds the corresponding element “HelloNameResult”. This request is very im-
portant as attack plugins will use its response for comparing it with the responses of the
attack request. This allows to check, what has really changed due to attack modifica-
tions.

Figure 2: Submitting a test request.

1.3 Attack Plugin Configuration

The next step is to configure the plugins. In this case, the automatic mode is used for
SOAPAction Spoofing (Figure 3) and the WS-Addressing Spoofing plugin detects the
endpoint URL automatically (Figure 4), too – there is nothing to configure manually.
The tree on the left shares different views on the plugins. Active Plugins contains all
plugins which will be used for attacking the server, All Plugins contains all plugins
ordered by their category and Alphabetical Sorted shows all plugins in an alphabetical
order.

4/ 28

1.4 Starting the Attacks How to use WS-Attacker

Figure 3: Plugin configuration for SOAPAction Spoofing.

Figure 4: Plugin configuration for WS-Addressing Spoofing.

1.4 Starting the Attacks

The last step is to start the attack. Figure 5 shows the overview of a finished attack
run. Active plugins are displayed on the top, their results at the bottom. The slider in
the top part allows to filter the results by their level. The user can choose to see only
the most important results, or see even the request content at the tracing level.

5/ 28

1.4 Starting the Attacks How to use WS-Attacker

Figure 5: Penetration test on .NET finished.

The Web Service is vulnerable to SOAPAction Spoofing but resistant to WS-Addressing
Spoofing. This is indicated different aspects:

1. The vulnerable column values show YES for SOAPAction Spoofing and no for
WS-Addressing Spoofing.

2. The SOAPAction Spoofing plugin got the maximum rating – three of three points
in this case – and WS-Addressing Spoofing got zero points.

3. The results show, that the server has executed the operation defined in the SOAP-
Action Header, which is the most critical security issue.

6/ 28

Automatic Detection of XML Signature Wrapping Attacks

2 Automatic Detection of XML Signature Wrapping
Attacks

XML Signature Wrapping (XSW) is a Web Service specific attack allows to modify
signed XML messages. It was firstly published in 2005 by McIntosh and Austel (2).
The basic idea of this attack is to trick out the reference mechanism which detects the
signed parts of an XML message and thus let it use a different message part than the
application logic uses.

The impact of this attack can be seen in (3) where the authors uses an XSW attack
to attack the Amazon EC21 and Eucalyptus2 SOAP interfaces. They only need to
eavesdrop a single SOAP message and afterwards, they are able to start, stop and
download the victims cloud instance.

In 2012, the authors applied the attack technique to Single Sign-On scenarios and suc-
cessfully attacked 11 out of 14 SAML frameworks, including Shiboleth and IBM Dat-
aPower (4).

The WS-Attacker XSW Plugin and Library is mainly based on a Master Thesis by
Christian Mainka1.

2.1 Short Technical Attack Description

The most frequently used scenario for XML Signature is to refer the signed parts of
an XML message by an ID attribute. This method is easy to understand for humans
and simple to implement for developers. However, it has the big disadvantage that the
signature itself only protects the content of the signed elements but not its location within
the document. Thus, the signed element can be moved to another location – vertically
and horizontally in the Document structure – without invalidating the signature.

Figure 6 gives an example for constructing an XSW message which still bypasses the
signature verification process but changes the payload used by the application logic.

The original message has a signed Body element which is referenced by the ID attribute
#body. The attack message on the right has a new Wrapper element placed as a child of
the Header element. Its child is a copy of the original signed Body element. Note that
the ID attribute still has the value #body. The original Content element is replaced
by a new AttackerContent element and the ID attribute of its ancestor Body element
is changed to new-body, so that the signature verification logic will not use it. There
might also be other attack scenarios in which the attribute value remains the same as in
the Wrapper element or it removed completely. The success of this attack depends on
the implemented application- and verification logic.

1http://nds.rub.de/media/nds/arbeiten/2012/07/24/ws-attacker-ma.pdf

7/ 28

http://nds.rub.de/media/nds/arbeiten/2012/07/24/ws-attacker-ma.pdf

2.2 Using the XSW Plugin Automatic Detection of XML Signature Wrapping Attacks

soap:Envelope

soap:Header

wsse:Security

ds:Signature

ds:SignedInfo

ds:Reference

soap:Body

ns1:Operation

ns1:Content

URI=”#body”

wsu:Id=”body”

soap:Envelope

soap:Header

wsse:Security

ds:Signature

ds:SignedInfo

ds:Reference

atk:Wrapper

soap:Body

ns1:Operation

ns1:Content

soap:Body

ns1:Operation

atk:AttackerContent

URI=”#body”

wsu:Id=”body”

wsu:Id=”new-body”

copy to

Figure 6: Creating an XSW message for an ID referencing based XML Signature. The
original signed message is shown on the left side. The XSW message on the
right side is constructed by copying the signed element to a Wrapper element
and modifying the signed content to the attackers’ needs.

The main problem why this attack works is that the signature verification- and the
application logic use different methods for detecting their elements. The signature ver-
ification logic looks for an element which has the attribute wsu:Id="body" and uses it
to compute the digest value. The application logic, in contrast, does not care about
the attribute wsu:Id="body" – it just uses the first child element of the Body element
in the SOAP message. Obviously, these referencing methods are not equivalent, as the
example attack message shows.

This is just the very basic example of one possible XSW techniques. More complicated
attack variants can be found in (5), (6) and the Master Thesis mentioned before.

2.2 Using the XSW Plugin

This section will explain how to use the XSW plugin by an example attack on Apache
Axis2 which uses the Rampart Security Module. For attacking the server, it is started
with the policy example 02 distributed with Rampart.

The first steps are similar to the common usage of WS-Attacker. You need to load the
WSDL and choose the operation to attack. Afterwards you need a signed SOAP message
to continue. Creating/Getting such messages can be a real challenge. One example to
create such a message is to use SoapUI2. However, this tool is only capable for creating ID

2http://www.soapui.org/

8/ 28

http://www.soapui.org/

2.2 Using the XSW Plugin Automatic Detection of XML Signature Wrapping Attacks

based XML Signatures. Another example is using Wireshark4 and eavesdrop a message
created by some client. For this scenario, the message created by the Rampart example
client is eavesdropped.

Next is to configure the plugin. Figure 7 shows the configuration window.

Figure 7: Configuration of the XSW plugin within the WS-Attacker framework.

. It is possible to change the SOAPAction parameter. This can be useful if the
attacker wants to invoke a different operation to the one he chose after loading the
WSDL.

. If the abort checkbox is on, the attack will stop after the first successful attack.
Otherwise, it will go on with further XSW messages. This can be usefull to detect
more than one attack message.

. The Schema Validation can be optionally turned off. This might be useful if
the server does not care on any XML Schema. However, the attack will be much
slower as more XSW attack messages can be used.

. An optional Search String can be specified. This means, that each response,
which is not a SOAP Fault, will be searched for this string. The attack is then

9/ 28

2.2 Using the XSW Plugin Automatic Detection of XML Signature Wrapping Attacks

only successful if the string is contained. This is useful to detect if the correct
payload is used (in some cases, the original payload can be executed instead of the
new one).

. A view button can be used to create and view all XSW messages without sending
them to the server. If the WS-Attacker user knows the ID of the successful message
(shown in log), he can use this button to re-create the message.

. The dropdown box must be used to set the payload. Note that the plugin is not
configured if there is no payload set by the user.

After configuring the plugin, the attacks can be started as usual. An example result
window can be seen in Figure 8.

Figure 8: Results of the XSW plugin.

10/ 28

DoS Extension

3 How to Use the DoS Extension of the WS-Attacker

This guide shows how to use the DoS attack plugins of the WS-Attacker. The DoS attack
plugins are based on the paper A New Approach towards DoS Penetration Testing on
Web Services presented on ICWS 2013 (7).

3.1 General Design of the WS-Attacker DoS Extension

The design of the automated Web service DoS attack tool is shown in Figure 9 using a
UML-based activity diagram to describe the high level program flow. This newly created
design is especially tailored towards solving the problems caused by using the blackbox
approach when measuring the attack success.

For each Web service specific DoS attack, the following nine parameters have to be set
up:

. M = number of sequential (un)tampered requests per thread

. N = number of parallel threads

. T = milliseconds between continuous untampered testprobe requests

. K = milliseconds between each (un)tampered request

. X = seconds between receiving last untampered request and sending first untam-
pered request

. S = seconds between receiving last tampered request and finalization (end) of the
attack

. L = number of network stability test requests

. R = milliseconds between each network stability test request

. Message = the string will be used to create a tampered request.
By default, this variable holds the original SOAP request of the targeted Web
service.
The string value can be set to an arbitrary value. No valid XML is required.
If set by the attack developer, the string can hold a payload placeholder. This
allows a tester to place the payload to the position required for the attack to work.

11/ 28

3.1 General Design of the WS-Attacker DoS Extension DoS Extension

Furthermore, the following two boolean values have to be set:

. Boolean attackStop
If true, the attack will finalize automatically after S seconds. Otherwise, the attack
will run until the user finalizes the attack manually.

. Boolean performNetworkStabilityTest
If true, network stability test will get performed. Otherwise, it will get skipped.

The program flow when executing a single attack is shown in Figure 9.

12/ 28

3.1 General Design of the WS-Attacker DoS Extension DoS Extension

F
ig
ur
e
9:

A
rc
hi
te
ct
ur
e
of

an
au

to
m
at
ed

W
eb

se
rv
ic
e
sp
ec
ifi
c
D
oS

at
ta
ck

to
ol

13/ 28

3.1 General Design of the WS-Attacker DoS Extension DoS Extension

The steps in Figure 9 are as follows:

1. Test network stability
When the program is started, a network stability test will get performed (only
when enabled by the user). The outcome will tell the tester whether or not a
penetration test is feasible under the given network delays. The result has just
informative character. A negative result of the network stability test will not stop
the program.

2. Perform attack
After the network stability test, the program flow splits into two branches.
2.1. Branch 1: Perform attack including error correction

This branch performs the actual attack. However, errors might occur. There-
fore, branch 1 is split into three substeps.
2.1.1. Branch 1 - step 1:

Open N threads in parallel and send M untampered requests per thread.
Each thread induces a delay of K seconds between each request. The
delay timer starts as soon as the the client tries to send the request. It is
not waited until a response is returned. Otherwise, reproducible results
would not be possible.

2.1.2. Branch 1 - step 2:
Wait for X seconds.

2.1.3. Branch 1 - step 3:
Open N threads in parallel and send M tampered requests per thread.
Each thread induces a delay of K seconds between each request.

2.2. Branch 2: Simulate regular user who uses the Web service while attack is
running
Branch 2 continuously sends untampered requests to the Web service with
a delay of T seconds between each request. This process continues until
the attack is finalized. The attack finalization can be triggered by the user
if the boolean attackStop is set to false. Otherwise, the attack will stop
automatically after S seconds.

3. Attack results
Branch 1 and branch 2 are finished. All logged data is grouped and analyzed by
the program. Each logged request will get assigned to an discrete interval. By
default the interval length is one second. The attack results will be presented in
the attack report. Options for saving the results are also presented.

This software design was newly created; incorporating the goal of creating a fully auto-
mated Web service specific DoS attack tool using the blackbox approach. The design
meets the following requirements:

Automated Crafting and Sending of Attack Messages for Chosen DoS Attack

All requests are created by the DoS attack tool. Based on the chosen attack parameters,
the requests get sent automatically for the defined number of times.

14/ 28

3.1 General Design of the WS-Attacker DoS Extension DoS Extension

Fitness for Various Load Scenarios

By setting up the parameters

1. M = number of sequential (un)tampered requests per thread
2. N = number parallel threads
3. K = milliseconds between each (un)tampered request

the penetration tester is able to define arbitrary load scenarios.

Fitness for Various Test Scenarios

The design shown in Figure 9 allows for testing of two distinct test scenarios.

1. Test for vulnerability.
A vulnerability test can be conducted by running an attack with very few requests.
Ideally, one thread with one request is enough to decide whether or not the target
is vulnerable to the chosen Dos attack.

2. Test for attack effect on third party users.
A test that checks if third party users are affected can be achieved by increasing
the duration of the attack and the load per interval. There is no default option
provided for this test scenario. The hardware performance of the tested system
can vary heavily. Therefore, a tester has to manually vary the parameters and
rerun the test until the desired result is achieved on a vulnerable system.

Elimination of Errors

Elimination of the errors takes place in branch 1 of the activity diagram. Step 1.1 and
step 1.3 both cause the same load on the network:

. The time pattern in which the messages are sent is equal.

. The message size of untampered and tampered requests is equal, due to message
padding.

The only difference between these steps is that step 1.1 sends untampered requests and
step 1.3 sends tampered requests. When using this pattern, any significant difference
in roundtrip time between tampered and untampered requests must be caused by the
attack payload.

Exclusion of Subattacks

Some attacks are composed of different subattacks. However, a tester might want to test
for only one of the subattacks. In this case, the tampered request has to hold the payload
of the entire attack. The untampered request has to hold the payload of the subattacks
the tester doesn’t want to test for. When calculating the attack success metric, only the
impact of the subattack that is not included in the untampered request is considered.

15/ 28

3.2 Walktrough example of a coercive Parsing Attack DoS Extension

3.2 Walktrough example of a coercive Parsing Attack

In the following a full attack walkthrough of a coercive parsing DoS vulnerability test
is given. Information on the coercive parsing attack can be found here: http://
ws-attacks.org/index.php/Coercive_Parsing The general steps required to perform
a DoS vulnerability test are as follows:

1. Load the WSDL.
2. Submit a test request.
3. Select and configure the “coercive parsing” attack plugin.
4. Start the attack.
5. View attack results.

The steps needed to run any other DoS attack plugin are similar. Only in step 3 slight
differences can occur, since the attack specific parameters might vary based on the chosen
attack.

3.2.1 Load the WSDL

After starting WS-Attacker, the GUI appears and offers an input field to enter the
location of the WSDL, see Figure 10.

Figure 10: Loading the WSDL.

In this testcase the WSDL file http://127.0.0.1:8080/axis2/services/Version?
wsdl is loaded. All other parameters are left at their default values. For more information
on the other parameters please refer to the general WS-Attacker documentation.

16/ 28

http://ws-attacks.org/index.php/Coercive_Parsing
http://ws-attacks.org/index.php/Coercive_Parsing
http://127.0.0.1:8080/axis2/services/Version?wsdl
http://127.0.0.1:8080/axis2/services/Version?wsdl

3.2 Walktrough example of a coercive Parsing Attack DoS Extension

3.2.2 Submit a test request

Next step is to do a test request: Figure 11 shows the test request and the corresponding
response. The test request is very important. It is used as the baseline request for all
further testing. Based on this test request, all attack payloads will be build later on.

Figure 11: Submitting a test request.

3.2.3 Select and configure the attack plugins

Next the attack plugin is selected and configured. In this scenario, only the coercive
parsing DoS attack is chosen. As soon as the plugin is selected, the attack options will
show up on the right side (Figure 12).

17/ 28

3.2 Walktrough example of a coercive Parsing Attack DoS Extension

Figure 12: Selected attack plugin “coercive parsing”

In general the DoS attack plugin can be left at its default parameters. Any vulnerable
Web Service should be clearly marked as vulnerbale with the default parameters.

The plugin offers the following attack specific options:

. Number of nested elements
The default number is at 75000. This means 75000 XML elments will be nested
within each other.

. Element name (will be placed between < and >)
The default element name is ”x“.

The following DoS attack extension specific parameters can be left unchanged:

. Number parallel attack threads

. Number requests per thread

. Milliseconds between every testprobe request

. Milliseconds between every attack request

. Seconds server recovery time

. Auto stop switch

. seconds auto stop

. Network stability test

. Perform network stability test with defined number of requests

18/ 28

3.2 Walktrough example of a coercive Parsing Attack DoS Extension

. Ms between each Network Stability Testrequest

. Message

3.2.4 Start the attack

The last step is to start the attack. Just switch to the Ättack Overview-̈tab and press
the start button. See Figure 13.

Figure 13: Starting the attack.

While the attack is running

Figure 14: Attack is running

19/ 28

3.2 Walktrough example of a coercive Parsing Attack DoS Extension

3.2.5 View attack results

Once the attack is finished, the status column should turn green. The column ”Rating“
and ”vulnerable“ already give a rough hint of the attack success. As shown in Figure 15,
the tested Web Service is rated as 100% vulnerbale.

Figure 15: Penetration test finished

In Order to see a detailed attack description, just right click the coercive parsing attack
row. A sub menu will show that lets you choose the ”View Attack Results“ option. The
final attack result are presented in Figure 16.

20/ 28

3.2 Walktrough example of a coercive Parsing Attack DoS Extension

Figure 16: View attack result details

As shown in Figure 16, the tested Web Service is clearly vulnerable. The ”attack
roundtrip time ratio“ is at 7813. This means that on average, the response time of
a tampered request is 7813 times longer than a regular untampered request under the
same load scenario.

The attack results with all details (including all payload requests) can be saved as Txt-
File and Jpg-File by clicking the button ”Export Results + Request Details“. A new
instance of Firefox should pop up that provides links to the result files.

21/ 28

How to Break XML Encryption

4 How to Break XML Encryption

XML Encryption is a W3C standard used for encryption of XML documents (8). It is
typically used in Web Services applications or for encryption of SAML tokens in Single
Sign-On scenarios.

4.1 Adaptive Chosen-Ciphertext Attacks

XML Encryption defines (among others) two cryptographic algorithms: RSA PKCS#1
v1.5 and AES/3DES in CBC (Cipher Block Chaining) mode of operation. These two
algorithms are vulnerable to so called adaptive chosen-ciphertext attacks, which has been
proven in many practical examples. Thus, it is not surprising that XML Encryption
applications were also found to be vulnerable to those attacks:

. In 2011, we presented a paper on How to Break XML Encryption (9), which showed
how to attack symmetric key encryption algorithms in CBC mode. The idea is very
similar to the typical padding oracle attacks, it is just a slightly more complicated,
since we use XML parsing errors as a side-channel. A very good summary on this
attack gives Matthew Green.3

. In 2012, we showed how to apply Bleichenbacher’s attack on the asymmetric en-
cryption algorithm (RSA PKCS#1) in XML Encryption (10). A summary on
Bleichenbacher’s attack is given on our blog.4

All you need to know for the WS-Attacker usage is that both attacks belong to the
family of adaptive chosen ciphertext attacks.

ReceiverReceiver

valid / invalid

valid / invalid

...

SenderSender

AttackerAttacker

CC

CC

C'C'

C''C''

m=dec(C)m=dec(C)

Figure 17: Adaptive chosen-ciphertext attack.

3http://blog.cryptographyengineering.com/2011/10/attack-of-week-xml-encryption.html
4http://web-in-security.blogspot.de/2014/08/old-attacks-on-new-tls-implementations.
html

22/ 28

http://blog.cryptographyengineering.com/2011/10/attack-of-week-xml-encryption.html
http://web-in-security.blogspot.de/2014/08/old-attacks-on-new-tls-implementations.html
http://web-in-security.blogspot.de/2014/08/old-attacks-on-new-tls-implementations.html

4.2 XML Signature as a Countermeasure How to Break XML Encryption

In an adaptive chosen-ciphertext scenario, the attacker (who eavesdrops an encrypted
message) uses the message receiver as an oracle. He sends to the oracle modified cipher-
texts and observes its response (it can contain a general error, a parsing failure, or just
a valid response text). Based on the responses, he learns the plaintext.

4.2 XML Signature as a Countermeasure and its Problems

The attacks are applicable only if the attacker can modify ciphertexts. Integrity of the
ciphertexts can be protected using different methods, for example by using XML Signa-
tures. However, this countermeasure brings several problems (11). The first problem is
XML Signature Wrapping, as described in 2. The second problem is an XML Encryption
Wrapping attack. For the description of this attack, consider Figure 18, which depicts
an encrypted and signed SOAP message.

soap:Envelope

soap:Header

wsse:Security

EncryptedKey

EncryptionMethod

KeyInfo

CipherData

CipherValue

ReferenceList

Reference

soap:Body

EncryptedData

EncryptionMethod

CipherData

CipherValue

URI=”#EncData”

Algorithm=”rsa-1 5”

Algorithm=”aes128-cbc”

wsu:Id=”EncData”

Symmetric decryption

Asymmetric decryption

Figure 18: Encrypted SOAP message protected by an XML Signature.

The XML Encryption Wrapping attack follows a similar principle as XML Signature
Wrapping and enforces the decryption logic to decrypt unauthenticated XML contents.
The attacker achieves this by defining new EncryptedData in the SOAP Header element,
see Figure 19.

As can be seen in the figure, the attacker does not move the original SOAP Body
element with its content. This enables the Web Service to verify and decrypt the original

23/ 28

4.3 Using the XML Encryption Plugin How to Break XML Encryption

SOAP Body. However, the Web Service additionally decrypts also a newly defined
EncryptedData element with Id="oracle", since the EncryptedKey element contains a
DataReference with URI="#oracle".

soap:Envelope

soap:Header

wsse:Security

Signature

Reference

EncryptedKey

DataReference

DataReference

EncryptedData

soap:Body

EncryptedData

URI=”#signed”

Id=”signed”

Verified and decrypted Body element

Id=”oracle”

Id=”original”

URI=”#oracle”

URI=”#original”

Decrypted Ciphertext

Figure 19: XML Encryption Wrapping attack applied on a signed and encrypted message
forces the recipient to process unverified EncryptedData.

There are few variations of this attack. It is for example also possible to define a
completely new EncryptedKey element with a DataReference URI="#oracle". This
is applicable to servers processing only one EncryptedData for each EncryptedKey ele-
ment.

4.3 Using the XML Encryption Plugin

A combination of complex cryptographic attacks with XML-specific countermeasures
makes it very hard to decide, whether a Web Service is vulnerable to these attacks or not.
The XML Encryption plugin allows one to automatically evaluate these attacks. During
the test, WS-Attacker sends to the server differently formatted ciphertexts, wrapped
using XML Encryption and XML Signature Wrapping techniques.

In the following, we show how to attack symmetric AES-CBC ciphertexts in Web Services
using XML Encryption. For the testing purposes, we configured an IBM Datapower Web
Service, which simply decrypts a ciphertext and responds with a test message in a case
the decryption was valid. Further prerequisite for the attack is a valid WSDL file (or a
valid Web Service endpoint) and a SOAP message containing encrypted content.

24/ 28

4.3 Using the XML Encryption Plugin How to Break XML Encryption

To execute the attack, we first start WS-Attacker and load the WSDL file. Afterwards,
we send a test request (our SOAP message containing the encrypted content) to the
Web Service. The test request initializes WS-Attacker and the contained plugins: WS-
Attacker automatically analyzes whether the message contains encrypted content and
whether it is possible to execute an attack on XML Encryption.

Figure 20: XML Encryption attack configuration.

After initializing WS-Attacker with the test request, we can move to Plugin configu-
ration. We choose XML Encryption attack, which contains the following configuration
(see Figure 20). Here are the relevant parts and their description:

. Elements: list of EncryptedKey elements contained in this message. In our case,
this message contains only one EncryptedKey element, but there are more compli-
cated scenarios, where messages include more ciphertexts. This option allows us
then to choose, which of the encrypted elements is going to be attacked.

. Attack: we can choose between CBC and PKCS#1 attack. Now, we work with
the CBC attacks.

. Wrapping attack: If the message contains an XML Signature to protect message
authenticity, we can automatically adapt Wrapping attacks to overcome the au-
thenticity check. In the tested message, there is no XML Signature so we use
NO_WRAP.

. String Compare: In order to apply oracle attacks, we have to map real server
responses to "oracle" responses. Real responses can however contain timestamps
and message ids, which can make the mapping complicated. String comparison
methods allow us to define thresholds for message similarities. This makes mapping

25/ 28

4.3 Using the XML Encryption Plugin How to Break XML Encryption

much easier. We typically use the default Dice-coefficient method with a threshold
0.9.

After setting the above options, we have to select the attack payload (the CBC cipher-
text) using the check box located on the right side.

Now, we are ready to configure the oracle in the Server Error Table configuration. Here,
we click on "New Messages", which sends a few hundreds of messages to the server.
Afterwards, we have to provide a mapping from real messages to oracle results. Since
we set the Dice-coefficient with a 0.9 threshold, we received only two messages. In
the next figure, you can see we configured the server response with an EncryptedData
element to be an INVALID oracle response. This is because IBM Datapower with our
configuration is not able to decrypt the request and just mirrors the request.5

Figure 21: Configuring XML Encryption server oracle with valid and invalid responses.

Finally, we configured WS-Attacker and we can start the attack. After few minutes and
about 4900 server queries, we can see that we could successfully decrypt 221 message
bytes (including the comments and namespaces).

5To configure your oracle correctly, you have to know the server behavior and decide, whether an error
comes from message parsing, message decryption, or from a different module.

26/ 28

Appendix

Figure 22: Result of the XML Encryption attack shows the decrypted content.

Appendix

References

[1] Christian Mainka, Juraj Somorovsky, and Jörg Schwenk. Penetration testing tool
for web services security. In SERVICES Workshop on Security and Privacy Engi-
neering, June 2012.

[2] Michael McIntosh and Paula Austel. XML signature element wrapping attacks and
countermeasures. In SWS ’05: Proceedings of the 2005 Workshop on Secure Web
Services, pages 20–27, New York, NY, USA, 2005. ACM Press.

[3] Juraj Somorovsky, Mario Heiderich, Meiko Jensen, Jörg Schwenk, Nils Gruschka,
and Luigi Lo Iacono. All Your Clouds are Belong to us – Security Analysis of
Cloud Management Interfaces. In The ACM Cloud Computing Security Workshop
(CCSW), October 2011.

[4] Juraj Somorovsky, Andreas Mayer, Jörg Schwenk, Marco Kampmann, and Meiko
Jensen. On breaking saml: Be whoever you want to be. In 21st USENIX Security
Symposium, Bellevue, WA, August 2012.

[5] Lijun Liao, Meiko Jensen, Florian Kohlar, and Nils Gruschka. On interoperability
failures in ws-security: The xml signature wrapping attack. Electronic Business
Interoperability: Concepts, Opportunities and Challenges, Information Science Ref-
erence, 2011.

27/ 28

Appendix

[6] M. Jensen and C. Meyer. Expressiveness considerations of xml signatures. In
Computer Software and Applications Conference Workshops (COMPSACW), 2011
IEEE 35th Annual, pages 392 –397, July 2011. doi: 10.1109/COMPSACW.2011.72.

[7] Andreas Falkenberg, Christian Mainka, Juraj Somorovsky, and Jörg Schwenk.
A New Approach towards DoS Penetration Testing on Web Services. In Web
Services (ICWS), 2013 IEEE 20th International Conference on, pages 491–498.
IEEE, 2013. URL http://dblp.uni-trier.de/db/conf/icws/icws2013.html#
FalkenbergMSS13.

[8] Donald Eastlake, Joseph Reagle, Frederick Hirsch, Thomas Roessler, Takeshi Ima-
mura, Blair Dillaway, Ed Simon, Kelvin Yiu, and Magnus Nyström. XML Encryp-
tion Syntax and Processing 1.1. W3C Recommendation, 2013. http://www.w3.
org/TR/xmlenc-core1.

[9] Tibor Jager and Juraj Somorovsky. How To Break XML Encryption. In The 18th
ACM Conference on Computer and Communications Security (CCS), October 2011.

[10] Tibor Jager, Sebastian Schinzel, and Juraj Somorovsky. Bleichenbacher’s attack
strikes again: breaking PKCS#1 v1.5 in XML Encryption. In Sara Foresti and Moti
Yung, editors, Computer Security - ESORICS 2012 - 17th European Symposium on
Research in Computer Security, Pisa, Italy, September 10-14, 2012. Proceedings,
LNCS. Springer, 2012.

[11] Juraj Somorovsky and Jörg Schwenk. Technical Analysis of Countermeasures
against Attack on XML Encryption – or – Just Another Motivation for Authenti-
cated Encryption. In SERVICES Workshop on Security and Privacy Engineering,
June 2012.

28/ 28

http://dblp.uni-trier.de/db/conf/icws/icws2013.html#FalkenbergMSS13
http://dblp.uni-trier.de/db/conf/icws/icws2013.html#FalkenbergMSS13
http://www.w3.org/TR/xmlenc-core1
http://www.w3.org/TR/xmlenc-core1

	How to use WS-Attacker
	Loading a WSDL
	Submitting a Test Request
	Attack Plugin Configuration
	Starting the Attacks

	Automatic Detection of XML Signature Wrapping Attacks
	Short Technical Attack Description
	Using the XSW Plugin

	DoS Extension
	General Design of the WS-Attacker DoS Extension
	Walktrough example of a coercive Parsing Attack
	Load the WSDL
	Submit a test request
	Select and configure the attack plugins
	Start the attack
	View attack results

	How to Break XML Encryption
	Adaptive Chosen-Ciphertext Attacks
	XML Signature as a Countermeasure
	Using the XML Encryption Plugin

	Appendix

