
jQuery Fundamentals
Rebecca Murphey [http://www.rebeccamurphey.com]

http://www.rebeccamurphey.com
http://www.rebeccamurphey.com

jQuery Fundamentals
Rebecca Murphey [http://www.rebeccamurphey.com]
Copyright © 2010

Licensed by Rebecca Murphey under the Creative Commons Attribution-Share Alike 3.0 United States license [http://creativecommons.org/licenses/
by-sa/3.0/us/]. You are free to copy, distribute, transmit, and remix this work, provided you attribute the work to Rebecca Murphey as the original
author and reference the GitHub repository for the work [http://github.com/rmurphey/jqfundamentals]. If you alter, transform, or build upon this
work, you may distribute the resulting work only under the same, similar or a compatible license. Any of the above conditions can be waived if you
get permission from the copyright holder. For any reuse or distribution, you must make clear to others the license terms of this work. The best way
to do this is with a link to the license [http://creativecommons.org/licenses/by-sa/3.0/us/].

http://www.rebeccamurphey.com
http://www.rebeccamurphey.com
http://creativecommons.org/licenses/by-sa/3.0/us/
http://creativecommons.org/licenses/by-sa/3.0/us/
http://creativecommons.org/licenses/by-sa/3.0/us/
http://github.com/rmurphey/jqfundamentals
http://github.com/rmurphey/jqfundamentals
http://creativecommons.org/licenses/by-sa/3.0/us/
http://creativecommons.org/licenses/by-sa/3.0/us/

iii

Table of Contents
1. Welcome ... 1

Getting the Code .. 1
Software ... 1
Adding JavaScript to Your Page ... 1
JavaScript Debugging .. 2
Exercises ... 2
Conventions used in this book .. 2
Reference Material .. 3

2. JavaScript Basics .. 4
Overview .. 4
Syntax Basics .. 4
Operators .. 4

Basic Operators .. 4
Operations on Numbers & Strings ... 5
Logical Operators ... 5
Comparison Operators ... 6

Conditional Code .. 6
Truthy and Falsy Things .. 7
Conditional Variable Assignment with The Ternary Operator 7
Switch Statements .. 8

Loops ... 9
Reserved Words ... 9
Arrays ... 11
Objects .. 12
Functions ... 12

Using Functions .. 13
Self-Executing Anonymous Functions .. 13
Functions as Arguments ... 13

Testing Type .. 14
Scope .. 15
Closures .. 16

3. jQuery Basics ... 18
$(document).ready() .. 18
Selecting Elements .. 18

Does My Selection Contain Any Elements? ... 19
Saving Selections .. 20
Refining & Filtering Selections ... 20
Form-Related Selectors .. 20

Working with Selections .. 21
Chaining .. 21
Getters & Setters .. 22

CSS, Styling, & Dimensions ... 22
Using CSS Classes for Styling .. 23
Dimensions .. 23

Attributes .. 23
Traversing ... 24
Manipulating Elements .. 25

Getting and Setting Information about Elements ... 25
Moving, Copying, and Removing Elements ... 25
Creating New Elements ... 27
Manipulating Attributes ... 28

jQuery Fundamentals

iv

Exercises ... 28
Selecting ... 28
Traversing ... 29
Manipulating .. 29

4. jQuery Core ... 30
$ vs $() .. 30
Utility Methods .. 30
Data Methods ... 31
Feature & Browser Detection .. 32
Avoiding Conflicts with Other Libraries ... 32

5. Events ... 33
Overview ... 33
Connecting Events to Elements ... 33

Connecting Events to Run Only Once .. 33
Disconnecting Events .. 34
Namespacing Events ... 34

Inside the Event Handling Function ... 34
Triggering Event Handlers .. 35
Increasing Performance with Event Delegation ... 35

Unbinding Delegated Events ... 36
Event Helpers .. 36

$.fn.hover .. 36
$.fn.toggle .. 37

Exercises ... 37
Create an Input Hint .. 37
Add Tabbed Navigation ... 37

6. Effects ... 39
Overview ... 39
Built-in Effects ... 39

Changing the Duration of Built-in Effects ... 39
Doing Something when an Effect is Done ... 40

Custom Effects with $.fn.animate ... 40
Easing ... 41

Managing Effects .. 41
Exercises ... 41

Reveal Hidden Text .. 41
Create Dropdown Menus .. 42
Create a Slideshow ... 42

7. Ajax .. 43
Overview ... 43
Key Concepts ... 43

GET vs. Post ... 43
Data Types .. 43
A is for Asynchronous ... 44
Same-Origin Policy and JSONP .. 44
Ajax and Firebug .. 44

jQuery's Ajax-Related Methods ... 44
$.ajax .. 45
Convenience Methods .. 46
$.fn.load .. 48

Ajax and Forms .. 48
Working with JSONP .. 48
Ajax Events ... 49
Exercises ... 49

jQuery Fundamentals

v

Load External Content ... 49
Load Content Using JSON ... 50

8. Plugins .. 51
Finding & Evaluating Plugins ... 51
Writing Plugins .. 51
Exercises ... 52

Make a Table Sortable ... 52
Write a Table-Striping Plugin ... 52

1

Chapter 1. Welcome
jQuery is fast becoming a must-have skill for front-end developers. The purpose of this book is to provide
an overview of the jQuery JavaScript library; when you're done with the book, you should be able to
complete basic tasks using jQuery, and have a solid basis from which to continue your learning. This book
was designed as material to be used in a classroom setting, but you may find it useful for individual study.

This is a hands-on class. We will spend a bit of time covering a concept, and then you’ll have the chance
to work on an exercise related to the concept. Some of the exercises may seem trivial; others may be
downright daunting. In either case, there is no grade; the goal is simply to get you comfortable working
your way through problems you’ll commonly be called upon to solve using jQuery. Example solutions to
all of the exercises are included in the sample code.

Getting the Code
The code we’ll be using in this book is hosted in a repository on Github [http://github.com/rmurphey/
jqfundamentals]. You can download a .zip or .tar file of the code, then uncompress it to use it on your
server. If you’re git-inclined, you’re welcome to clone or fork the repository.

Software
You'll want to have the following tools to make the most of the class:

• The Firefox browser

• The Firebug extension for Firefox

• A plain text editor

• For the Ajax portions: A local server (such as MAMP or WAMP), or an FTP or SSH client to access
a remote server.

Adding JavaScript to Your Page
JavaScript can be included inline or by including an external file via a script tag. The order in which you
include JavaScript is important: dependencies must be included before the script that depends on them.

For the sake of page performance, JavaScript should be included as close to the end of your HTML as is
practical. Multiple JavaScript files should be combined for production use.

Example 1.1. An example of inline Javascript

<script>
console.log('hello');
</script>

Example 1.2. An example of including external JavaScript

<script src='/js/jquery.js'></script>

http://github.com/rmurphey/jqfundamentals
http://github.com/rmurphey/jqfundamentals
http://github.com/rmurphey/jqfundamentals

Welcome

2

JavaScript Debugging
A debugging tool is essential for JavaScript development. Firefox provides a debugger via the Firebug
extension; Safari and Chrome provide built-in consoles.

Each console offers:

• single- and multi-line editors for experimenting with JavaScript

• an inspector for looking at the generated source of your page

• a Network or Resources view, to examine network requests

When you are writing JavaScript code, you can use the following methods to send messages to the console:

• console.log() for sending general log messages

• console.dir() for logging a browseable object

• console.warn() for logging warnings

• console.error() for logging error messages

Other console methods are also available, though they may differ from one browser to another. The
consoles also provide the ability to set break points and watch expressions in your code for debugging
purposes.

Exercises
Most chapters in the book conclude with one or more exercises. For some exercises, you’ll be able to work
directly in Firebug; for others, you will need to include other scripts after the jQuery script tag as directed
in the individual exercises.

In some cases, you will need to consult the jQuery documentation in order to complete an exercise, as we
won’t have covered all of the relevant information in the book. This is by design; the jQuery library is
large, and learning to find answers in the documentation is an important part of the process.

Here are a few suggestions for tackling these problems:

• First, make sure you thoroughly understand the problem you're being asked to solve.

• Next, figure out which elements you'll need to access in order to solve the problem, and determine how
you'll get those elements. Use Firebug to verify that you're getting the elements you're after.

• Finally, figure out what you need to do with the elements to solve the problem. It can be helpful to write
comments explaining what you're going to do before you try to write the code to do it.

Do not be afraid to make mistakes! Do not try to make your code perfect on the first try! Making mistakes
and experimenting with solutions is part of learning the library, and you’ll be a better developer for it.
Examples of solutions for these exercises are located in the /solutions directory in the sample code.

Conventions used in this book
Methods that can be called on jQuery objects will be referred to as $.fn.methodName. Methods
that exist in the jQuery namespace but that cannot be called on jQuery objects will be referred to as

Welcome

3

$.methodName. If this doesn't mean much to you, don't worry — it should become clearer as you
progress through the book.

Example 1.3. Example of an example

// code examples will appear like this

Remarks will appear like this.

Note

Notes about a topic will appear like this.

Reference Material
There are any number of articles and blog posts out there that address some aspect of jQuery. Some are
phenomenal; some are downright wrong. When you read an article about jQuery, be sure it's talking about
the same version as you're using, and resist the urge to just copy and paste — take the time to understand
the code in the article.

Here are some excellent resources to use during your jQuery learning. The most important of all is the
jQuery source itself: it contains, in code form, complete documentation of the library. It is not a black box
— your understanding of the library will grow exponentially if you spend some time visiting it now and
again — and I highly recommend bookmarking it in your browser and referring to it often.

• The jQuery source [http://ajax.googleapis.com/ajax/libs/jquery/1/jquery.js]

• jQuery documentation [http://api.jquery.com]

• jQuery forum [http://forum.jquery.com/]

• Delicious bookmarks [http://delicious.com/rdmey/jquery-class]

• #jquery IRC channel on Freenode [http://docs.jquery.com/Discussion#Chat_.2F_IRC_Channel]

http://ajax.googleapis.com/ajax/libs/jquery/1/jquery.js
http://ajax.googleapis.com/ajax/libs/jquery/1/jquery.js
http://api.jquery.com
http://api.jquery.com
http://forum.jquery.com/
http://forum.jquery.com/
http://delicious.com/rdmey/jquery-class
http://delicious.com/rdmey/jquery-class
http://docs.jquery.com/Discussion#Chat_.2F_IRC_Channel
http://docs.jquery.com/Discussion#Chat_.2F_IRC_Channel

4

Chapter 2. JavaScript Basics

Overview
jQuery is built on top of JavaScript, a rich and expressive language in its own right. This section covers
the basic concepts of JavaScript, as well as some frequent pitfalls for people who have not used JavaScript
before. While it will be of particular value to people with no programming experience, even people who
have used other programming languages may benefit from learning about some of the peculiarities of
JavaScript.

If you’re interested in learning more about the JavaScript language, I highly recommend JavaScript: The
Good Parts by Douglas Crockford.

Syntax Basics
Understanding statements, variable naming, whitespace, and other basic JavaScript syntax.

Example 2.1. A simple variable declaration

var foo = 'hello world';

Example 2.2. Whitespace has no meaning outside of quotation marks

var foo = 'hello world';

Example 2.3. Parentheses indicate precedence

2 * 3 + 5; // returns 11; multiplication happens first
2 * (3 + 5); // returns 16; addition happens first

Example 2.4. Tabs enhance readability, but have no special meaning

var foo = function() {
 console.log('hello');
};

Operators

Basic Operators
Basic operators allow you to manipulate values.

Example 2.5. Concatenation

var foo = 'hello';
var bar = 'world';

console.log(foo + ' ' + bar); // 'hello world'

JavaScript Basics

5

Example 2.6. Multiplication and division

2 * 3;
2 / 3;

Example 2.7. Incrementing and decrementing

var i = 1;

var j = ++i; // pre-increment: j equals 2; i equals 2
var k = i++; // post-increment: k equals 2; i equals 3

Operations on Numbers & Strings
In JavaScript, numbers and strings will occasionally behave in ways you might not expect.

Example 2.8. Addition vs. concatenation

var foo = 1;
var bar = '2';

console.log(foo + bar); // 12. uh oh

Example 2.9. Forcing a string to act as a number

var foo = 1;
var bar = '2';

// coerce the string to a number
console.log(foo + parseInt(bar));

Logical Operators
Logical operators allow you to evaluate a series of comparators using AND and OR operations.

Example 2.10. Logical AND and OR operators

var foo = 1;
var bar = 0;
var baz = 2;

foo || bar; // returns 1, which is true
bar || foo; // returns 1, which is true

foo && bar; // returns 0, which is false
foo && baz; // returns 2, which is true
baz && foo; // returns 1, which is true

Though it may not be clear from Example 2.10, “Logical AND and OR operators”, the || operator returns
the value of the first truthy comparator, or false if no comparator is truthy. The && operator returns the
value of the last false comparator, or the value of the last comparator if all values are truthy. Essentially,
both operators return the first value that proves them true or false.

JavaScript Basics

6

Be sure to consult the section called “Truthy and Falsy Things” for more details on which values evaluate
to true and which evaluate to false.

Note

You'll sometimes see developers use these logical operators for flow control instead of using if
statements. For example:

// do something with foo if foo is truthy
foo && doSomething(foo);

// set bar to baz if baz is truthy;
// otherwise, set it to the return
// value of createBar()
var bar = baz || createBar();

This style is quite elegant and pleasantly terse; that said, it can be really hard to read, especially for
beginners. I bring it up here so you'll recognize it in code you read, but I don't recommend using
it until you're extremely comfortable with what it means and how you can expect it to behave.

Comparison Operators

Comparison operators allow you to test whether values are equivalent or whether values are identical.

Example 2.11. Comparison operators

var foo = 1;
var bar = 0;
var baz = '1';
var bim = 2;

foo == bar; // returns false
foo != bar; // returns true
foo == baz; // returns true; careful!

foo === baz; // returns false
foo !== baz; // returns true
foo === parseInt(baz); // returns true

foo > bim; // returns false
bim > baz; // returns true
foo <= baz; // returns true

Conditional Code
Sometimes you only want to run a block of code under certain conditions. Flow control — via if, else
if, and else blocks — lets you run code only under certain conditions.

JavaScript Basics

7

Example 2.12. Flow control

var foo = true;
var bar = false;

if (bar) {
 // this code will never run
 console.log('hello!');
}

if (bar) {
 // this code won't run
} else if (foo) {
 // this code will run
} else {
 // this code would run if foo and bar were both false
}

Note

While curly braces aren't strictly required around single-line if statements, using them
consistently, even when they aren't strictly required, makes for vastly more readable code.

Be mindful not to define functions with the same name multiple times within separate if/else blocks,
as doing so may not have the expected result.

Truthy and Falsy Things
In order to use flow control successfully, it's important to understand which kinds of values are "truthy"
and which kinds of values are "falsy." Sometimes, values that seem like they should evaluate one way
actually evaluate another.

Example 2.13. Values that evaluate to true

'0';
'any string';
[]; // an empty array
{}; // an empty object
1; // any non-zero number

Example 2.14. Values that evaluate to false

0;
''; // an empty string
NaN; // JavaScript's "not-a-number" variable
null;
undefined; // be careful -- undefined can be redefined!

Conditional Variable Assignment with The Ternary
Operator

Sometimes you want to set a variable to a value depending on some condition. You could use an if/else
statement, but in many cases the ternary operator is more convenient. [Definition: The ternary operator
tests a condition; if the condition is true, it returns a certain value, otherwise it returns a different value.]

JavaScript Basics

8

Example 2.15. The ternary operator

// set foo to 1 if bar is true;
// otherwise, set foo to 0
var foo = bar ? 1 : 0;

While the ternary operator can be used without assigning the return value to a variable, this is generally
discouraged.

Switch Statements
Rather than using a series of if/else if/else blocks, sometimes it can be useful to use a switch statement
instead. [Definition: Switch statements look at the value of a variable or expression, and run different
blocks of code depending on the value.]

Example 2.16. A switch statement

switch (foo) {

 case 'bar':
 alert('the value was bar -- yay!');
 break;

 case 'baz':
 alert('boo baz :(');
 break;

 default:
 alert('everything else is just ok');
 break;

}

Switch statements have somewhat fallen out of favor in JavaScript, because often the same behavior can
be accomplished by creating an obect that has more potential for reuse, testing, etc. For example:

var stuffToDo = {
 'bar' : function() {
 alert('the value was bar -- yay!');
 },

 'baz' : function() {
 alert('boo baz :(');
 },

 'default' : function() {
 alert('everything else is just ok');
 }
};

if (stuffToDo[foo]) {
 stuffToDo[foo]();
} else {
 stuffToDo['default']();

JavaScript Basics

9

}

We'll look at objects in greater depth later in this chapter.

Loops
Loops let you run a block of code a certain number of times.

Example 2.17. Loops

// logs 'try 1', 'try 2', ..., 'try 5'
for (var i=0; i<5; i++) {
 console.log('try ' + i);
}

Note that in Example 2.17, “Loops” we use the keyword var before the variable name i. This "scopes"
the variable i to the loop block. We'll discuss scope in depth later in this chapter.

Reserved Words
JavaScript has a number of “reserved words,” or words that have special meaning in the language. You
should avoid using these words in your code except when using them with their intended meaning.

• break

• case

• catch

• continue

• default

• delete

• do

• else

• finally

• for

• function

• if

• in

• instanceof

• new

• return

JavaScript Basics

10

• switch

• this

• throw

• try

• typeof

• var

• void

• while

• with

• abstract

• boolean

• byte

• char

• class

• const

• debugger

• double

• enum

• export

• extends

• final

• float

• goto

• implements

• import

• int

• interface

• long

• native

JavaScript Basics

11

• package

• private

• protected

• public

• short

• static

• super

• synchronized

• throws

• transient

• volatile

Arrays
Arrays are zero-indexed lists of values. They are a handy way to store a set of related items of the same type
(such as strings), though in reality, an array can include multiple types of items, including other arrays.

Example 2.18. A simple array

var myArray = ['hello', 'world'];

Example 2.19. Accessing array items by index

var myArray = ['hello', 'world', 'foo', 'bar'];
console.log(myArray[3]); // logs 'bar'

Example 2.20. Testing the size of an array

var myArray = ['hello', 'world'];
console.log(myArray.length); // logs 2

Example 2.21. Changing the value of an array item

var myArray = ['hello', 'world'];
myArray[1] = 'changed';

While it's possible to change the value of an array item as shown in Example 2.21, “Changing the value
of an array item”, it's generally not advised.

Example 2.22. Adding elements to an array

var myArray = ['hello', 'world'];
myArray.push('new');

JavaScript Basics

12

Example 2.23. Working with arrays

var myArray = ['h', 'e', 'l', 'l', 'o'];
var myString = myArray.join(''); // 'hello'
var mySplit = myString.split(''); // ['h', 'e', 'l', 'l', 'o']

Objects
Objects contain one or more key-value pairs. The key portion can be any string; if the string contains
spaces or is a reserved word, then it must be quoted. The value portion can be any type of value: a number,
a string, an array, a function, or even another object.

[Definition: When one of these values is a function, it’s called a method of the object.] Otherwise, they
are called properties.

As it turns out, nearly everything in JavaScript is an object — arrays, functions, numbers, even strings —
and they all have properties and methods.

Example 2.24. Creating an "object literal"

var myObject = {
 sayHello : function() {
 console.log('hello');
 },

 myName : 'Rebecca'
};

myObject.sayHello(); // logs 'hello'
console.log(myObject.myName); // logs 'Rebecca'

Object literals can be extremely useful for code organization; for more information, read Using Objects to
Organize Your Code [http://blog.rebeccamurphey.com/2009/10/15/using-objects-to-organize-your-code/]
by Rebecca Murphey.

Functions
Functions contain blocks of code that need to be executed repeatedly. Functions can take zero or more
arguments, and can optionally return a value.

Functions can be created in a variety of ways:

Example 2.25. Function Declaration

function foo() { /* do something */ }

Example 2.26. Named Function Expression

var foo = function() { /* do something */ }

I prefer the named function expression method of setting a function's name, for some rather in-depth and
technical reasons [http://yura.thinkweb2.com/named-function-expressions/]. You are likely to see both
methods used in others' JavaScript code.

http://blog.rebeccamurphey.com/2009/10/15/using-objects-to-organize-your-code/
http://blog.rebeccamurphey.com/2009/10/15/using-objects-to-organize-your-code/
http://blog.rebeccamurphey.com/2009/10/15/using-objects-to-organize-your-code/
http://yura.thinkweb2.com/named-function-expressions/
http://yura.thinkweb2.com/named-function-expressions/
http://yura.thinkweb2.com/named-function-expressions/

JavaScript Basics

13

Using Functions

Example 2.27. A simple function

var greet = function(person, greeting) {
 var text = greeting + ', ' + person;
 console.log(text);
};

greet('Rebecca', 'Hello');

Example 2.28. A function that returns a value

var greet = function(person, greeting) {
 var text = greeting + ', ' + person;
 return text;
};

console.log(greet('Rebecca','hello'));

Example 2.29. A function that returns another function

var greet = function(person, greeting) {
 var text = greeting + ', ' + person;
 return function() { console.log(text); };
};

var greeting = greet('Rebecca', 'Hello');
greeting();

Self-Executing Anonymous Functions
A common pattern in JavaScript is the self-executing anonymous function. This pattern creates a function
expression and then immediately executes the function. This pattern is extremely useful for cases where
you want to avoid polluting the global namespace with your code -- no variables declared inside of the
function are visible outside of it.

Example 2.30. A self-executing anonymous function

(function(){
 var foo = 'Hello world';
})();

console.log(foo); // undefined!

Functions as Arguments
In JavaScript, functions are "first-class citizens" -- they can be assigned to variables or passed to other
functions as arguments. Passing functions as arguments is an extremely common idiom in jQuery.

JavaScript Basics

14

Example 2.31. Passing an anonymous function as an argument

var myFn = function(fn) {
 var result = fn();
 console.log(result);
};

myFn(function() { return 'hello world'; }); // logs 'hello world'

Example 2.32. Passing a named function as an argument

var myFn = function(fn) {
 var result = fn();
 console.log(result);
};

var myOtherFn = function() {
 return 'hello world';
};

myFn(myOtherFn); // logs 'hello world'

Testing Type
JavaScript offers a way to test the "type" of a variable. However, the result can be confusing -- for example,
the type of an Array is "object".

Example 2.33. Testing the type of various variables

var myFunction = function() {
 console.log('hello');
};

var myObject = {
 foo : 'bar'
};

var myArray = ['a', 'b', 'c'];

var myString = 'hello';

var myNumber = 3;

typeof(myFunction); // returns 'function'
typeof(myObject); // returns 'object'
typeof(myArray); // returns 'object' -- careful!
typeof(myString); // returns 'string';
typeof(myNumber); // returns 'number'

if (myArray.push && myArray.slice && myArray.join) {
 // probably an array
 // (this is called "duck typing")
}

JavaScript Basics

15

jQuery offers utility methods to help you determine whether

Scope
"Scope" refers to the variables that are available to a piece of code at a given time. A lack of understanding
of scope can lead to frustrating debugging experiences.

When a variable is declared inside of a function using the var keyword, it is only available to code inside
of that function -- code outside of that function cannot access the variable. On the other hand, functions
defined inside that function will have access to to the declared variable.

Furthermore, variables that are declared inside a function without the var keyword are not local to the
function -- JavaScript will traverse the scope chain all the way up to the window scope to find where the
variable was previously defined. If the variable wasn't previously defined, it will be defined in the global
scope, which can have extremely unexpected consequences;

Example 2.34. Functions have access to variables defined in the same scope

var foo = 'hello';

var sayHello = function() {
 console.log(foo);
};

sayHello(); // logs 'hello'
console.log(foo); // also logs 'hello'

Example 2.35. Code outside the scope in which a variable was defined does not have
access to the variable

var sayHello = function() {
 var foo = 'hello';
 console.log(foo);
};

sayHello(); // logs 'hello'
console.log(foo); // doesn't log anything

Example 2.36. Variables with the same name can exist in different scopes with
different values

var foo = 'world';

var sayHello = function() {
 var foo = 'hello';
 console.log(foo);
};

sayHello(); // logs 'hello'
console.log(foo); // logs 'world'

JavaScript Basics

16

Example 2.37. Functions can "see" changes in variable values after the function is
defined

var myFunction = function() {
 var foo = 'hello';

 var myFn = function() {
 console.log(foo);
 };

 foo = 'world';

 return myFn;
};

var f = myFunction();
f(); // logs 'world' -- uh oh

Example 2.38. Scope insanity

// a self-executing anonymous function
(function() {
 var baz = 1;
 var bim = function() { alert(baz); };
 bar = function() { alert(baz); };
})();

console.log(baz); // baz is not defined outside of the function

bar(); // bar is defined outside of the anonymous function
 // because it wasn't declared with var; furthermore,
 // because it was defined in the same scope as baz,
 // it has access to baz even though other code
 // outside of the function does not

bim(); // bim is not defined outside of the anonymous function,
 // so this will result in an error

Closures
Closures are an extension of the concept of scope — functions have access to variables that were available
in the scope where the function was created. If that’s confusing, don’t worry: closures are generally best
understood by example.

In Example 2.37, “Functions can "see" changes in variable values after the function is defined” we saw
how functions have access to changing variable values. The same sort of behavior exists with functions
defined within loops -- the function "sees" the change in the variable's value even after the function is
defined, resulting in all clicks alerting 4.

JavaScript Basics

17

Example 2.39. How to lock in the value of i?

/* this won't behave as we want it to; */
/* every click will alert 4 */
for (var i=0; i<5; i++) {
 $('<p>click me</p>').appendTo('body').click(function() {
 alert(i);
 });
}

Example 2.40. Locking in the value of i with a closure

/* fix: “close” the value of i inside createFunction, so it won't change */
var createFunction = function(i) {
 return function() { alert(i); };
};

for (var i=0; i<5; i++) {
 $('p').appendTo('body').click(createFunction(i));
}

18

Chapter 3. jQuery Basics

$(document).ready()
You cannot safely manipulate a page until the document is “ready.” jQuery detects this state of readiness for
you; code included inside $(document).ready() will only run once the page is ready for JavaScript
code to execute.

Example 3.1. A $(document).ready() block

$(document).ready(function() {
 console.log('ready!');
});

There is a shorthand for $(document).ready() that you will sometimes see; however, I recommend
against using it if you are writing code that people who aren't experienced with jQuery may see.

Example 3.2. Shorthand for $(document).ready()

$(function() {
 console.log('ready!');
});

You can also passed a named function to $(document).ready() instead of passing an anonymous
function.

Example 3.3. Passing a named function instead of an anonymous function

var readyFn = function() {
 // code to run when the document is ready
};

$(document).ready(readyFn);

Selecting Elements
The most basic concept of jQuery is to “select some elements and do something with them.” jQuery
supports most CSS3 selectors, as well as some non-standard selectors. For a complete selector reference,
visit http://api.jquery.com/category/selectors/.

Following are a few examples of common selection techniques.

Example 3.4. Selecting elements by ID

$('#myId'); // note IDs must be unique per page

Example 3.5. Selecting elements by class name

$('div.myClass'); // performance improves if you specify element type

http://api.jquery.com/category/selectors/

jQuery Basics

19

Example 3.6. Selecting elements by attribute

$('input[name=first_name]'); // beware, this can be very slow

Example 3.7. Selecting elements by compound CSS selector

$('#contents ul.people li');

Example 3.8. Pseudo-selectors

$('a.external:first');
$('tr:odd');
$('#myForm :input'); // select all input-like elements in a form
$('div:visible');
$('div:gt(2)'); // all except the first three divs
$('div:animated'); // all currently animated divs

Choosing Selectors

Choosing good selectors is one way to improve the performance of your JavaScript. A little
specificity — for example, including an element type such as div when selecting elements by class
name — can go a long way. Generally, any time you can give jQuery a hint about where it might
expect to find what you're looking for, you should. On the other hand, too much specificity can be
a bad thing. A selector such as #myTable thead tr th.special is overkill if a selector
such as #myTable th.special will get you what you want.

jQuery offers many attribute-based selectors, allowing you to make selections based on the content
of arbitrary attributes using simplified regular expressions.

// find all <a>s whose rel attribute
// ends with "thinger"
$("a[rel$='thinger']");

While these can be useful in a pinch, they can also be extremely slow — I once wrote an attribute-
based selector that locked up my page for multiple seconds. Wherever possible, make your selections
using IDs, class names, and tag names.

Want to know more? Paul Irish has a great presentation about improving performance in JavaScript
[http://paulirish.com/perf], with several slides focused specifically on selector performance.

Does My Selection Contain Any Elements?
Once you've made a selection, you'll often want to know whether you have anything to work with. You
may be inclined to try something like:

if ($('div.foo')) { ... }

This won't work. When you make a selection using $(), an object is always returned, and objects always
evaluate to true. Even if your selection doesn't contain any elements, the code inside the if statement
will still run.

Instead, you need to test the selection's length property, which tells you how many elements were selected.
If the answer is 0, the length property will evaluate to false when used as a boolean value.

http://paulirish.com/perf
http://paulirish.com/perf

jQuery Basics

20

Example 3.9. Testing whether a selection contains elements

if ($('div.foo').length) { ... }

Saving Selections
Every time you make a selection, a lot of code runs, and jQuery doesn't do caching of selections for you.
If you've made a selection that you might need to make again, you should save the selection in a variable
rather than making the selection repeatedly.

Example 3.10. Storing selections in a variable

var $divs = $('div');

Note

In Example 3.10, “Storing selections in a variable”, the variable name begins with a dollar sign.
Unlike in other languages, there's nothing special about the dollar sign in JavaScript -- it's just
another character. We use it here to indicate that the variable contains a jQuery object. This
practice -- a sort of Hungarian notation [http://en.wikipedia.org/wiki/Hungarian_notation] -- is
merely convention, and is not mandatory.

Once you've stored your selection, you can call jQuery methods on the variable you stored it in just like
you would have called them on the original selection.

Note

A selection only fetches the elements that are on the page when you make the selection. If you
add elements to the page later, you'll have to repeat the selection or otherwise add them to the
selection stored in the variable. Stored selections don't magically update when the DOM changes.

Refining & Filtering Selections
Sometimes you have a selection that contains more than what you're after; in this case, you may want to
refine your selection. jQuery offers several methods for zeroing in on exactly what you're after.

Example 3.11. Refining selections

$('div.foo').has('p'); // div.foo elements that contain <p>'s
$('h1').not('.bar'); // h1 elements that don't have a class of bar
$('ul li').filter('.current'); // unordered list items with class of current
$('ul li').first(); // just the first unordered list item
$('ul li').eq(5); // the fifth

Form-Related Selectors
jQuery offers several pseudo-selectors that help you find elements in your forms; these are especially
helpful because it can be difficult to distinguish between form elements based on their state or type using
standard CSS selectors.

:button Selects <button> elements and elements with type="button"

:checkbox Selects inputs with type="checkbox"

http://en.wikipedia.org/wiki/Hungarian_notation
http://en.wikipedia.org/wiki/Hungarian_notation

jQuery Basics

21

:checked Selects checked inputs

:disabled Selects disabled form elements

:enabled Selects enabled form elements

:file Selects inputs with type="file"

:image Selects inputs with type="image"

:input Selects <input>, <textarea>, and <select> elements

:password Selects inputs with type="password"

:radio Selects inputs with type="radio"

:reset Selects inputs with type="reset"

:selected Selects options that are selected

:submit Selects inputs with type="submit"

:text Selects inputs with type="text"

Example 3.12. Using form-related pseduo-selectors

$("#myForm :input'); // get all elements that accept input

Working with Selections
Once you have a selection, you can call methods on the selection. Methods generally come in two different
flavors: getters and setters. Getters return a property of the first selected element; setters set a property
on all selected elements.

Chaining
If you call a method on a selection and that method returns a jQuery object, you can continue to call jQuery
methods on the object without pausing for a semicolon.

Example 3.13. Chaining

$('#content').find('h3').eq(2).html('new text for the third h3!');

If you are writing a chain that includes several steps, you (and the person who comes after you) may find
your code more readable if you break the chain over several lines.

Example 3.14. Formatting chained code

$('#content')
 .find('h3')
 .eq(2)
 .html('new text for the third h3!');

If you change your selection in the midst of a chain, jQuery provides the $.fn.end method to get you
back to your original selection.

jQuery Basics

22

Example 3.15. Restoring your original selection using $.fn.end

$('#content')
 .find('h3')
 .eq(2)
 .html('new text for the third h3!')
 .end() // restores the selection to all h3's in #content
 .eq(0)
 .html('new text for the first h3!');

Note

Chaining is extraordinarily powerful, and it's a feature that many libraries have adapted since it
was made popular by jQuery. However, it must be used with care. Extensive chaining can make
code extremely difficult to modify or debug. There is no hard-and-fast rule to how long a chain
should be -- just know that it is easy to get carried away.

Getters & Setters
jQuery “overloads” its methods, so the method used to set a value generally has the same name as the
method used to get a value. [Definition: When a method is used to set a value, it is called a setter].
[Definition: When a method is used to get (or read) a value, it is called a getter]. Setters affect all elements
in a selection; getters get the requested value only for the first element in the selection.

Example 3.16. The $.fn.html method used as a setter

$('h1').html('hello world');

Example 3.17. The html method used as a getter

$('h1').html();

Setters return a jQuery object, allowing you to continue to call jQuery methods on your selection; getters
return whatever they were asked to get, meaning you cannot continue to call jQuery methods on the value
returned by the getter.

CSS, Styling, & Dimensions
jQuery includes a handy way to get and set CSS properties of elements.

Note

CSS properties that normally include a hyphen need to be camel cased in JavaScript. For example,
the CSS property font-size is expressed as fontSize in JavaScript.

Example 3.18. Getting CSS properties

$('h1').css('fontSize'); // returns a string such as "19px"

Example 3.19. Setting CSS properties

$('h1').css('fontSize', '100px'); // setting an individual property
$('h1').css({ 'fontSize' : '100px', 'color' : 'red' }); // setting multiple properties

jQuery Basics

23

Note the style of the argument we use on the second line -- it is an object that contains multiple properties.
This is a common way to pass multiple arguments to a function, and many jQuery setter methods accept
objects to set mulitple values at once.

Using CSS Classes for Styling
As a getter, the $.fn.css method is valuable; however, it should generally be avoided as a setter in
production-ready code, because you don't want presentational information in your JavaScript. Instead,
write CSS rules for classes that describe the various visual states, and then simply change the class on the
element you want to affect.

Example 3.20. Working with classes

var $h1 = $('h1');

$h1.addClass('big');
$h1.removeClass('big');
$h1.toggleClass('big');

if ($h1.hasClass('big')) { ... }

Classes can also be useful for storing state information about an element, such as indicating that an element
is selected.

Dimensions
jQuery offers a variety of methods for obtaining and modifying dimenion and position information about
an element.

The code in Example 3.21, “Basic dimensions methods” is just a very brief overview of the dimensions
functionality in jQuery; for complete details about jQuery dimension methods, visit http://api.jquery.com/
category/dimensions/.

Example 3.21. Basic dimensions methods

$('h1').width('50px'); // sets the width of all H1 elements
$('h1').width(); // gets the width of the first H1

$('h1').height('50px'); // sets the height of all H1 elements
$('h1').height(); // gets the height of the first H1

$('h1').position(); // returns an object containing position
 // information for the first H1 relative to
 // its "offset (positioned) parent"

Attributes
An element's attributes can contain useful information for your application, so it's important to be able
to get and set them.

The $.fn.attr method acts as both a getter and a setter. As with the $.fn.css method, $.fn.attr
as a setter can accept either a key and a value, or an object containing one or more key/value pairs.

http://api.jquery.com/category/dimensions/
http://api.jquery.com/category/dimensions/

jQuery Basics

24

Example 3.22. Setting attributes

$('a').attr('href', 'allMyHrefsAreTheSameNow.html');
$('a').attr({
 'title' : 'all titles are the same too!',
 'href' : 'somethingNew.html'
});

This time, we broke the object up into multiple lines. Remember, whitespace doesn't matter in JavaScript,
so you should feel free to use it liberally to make your code more legible! You can use a minification tool
later to strip out unnecessary whitespace for production.

Example 3.23. Getting attributes

$('a').attr('href'); // returns the href for the first a element in the document

Traversing
Once you have a jQuery selection, you can find other elements using your selection as a starting point.

For complete documentation of jQuery traversal methods, visit http://api.jquery.com/category/traversing/.

Note

Be cautious with traversing long distances in your documents -- complex traversal makes it
imperative that your document's structure remain the same, something that's difficult to guarantee
even if you're the one creating the whole application from server to client. One- or two-step
traversal is fine, but you generally want to avoid traversals that take you from one container to
another.

Example 3.24. Moving around the DOM using traversal methods

$('h1').next('p');
$('div:visible').parent();
$('input[name=first_name]').closest('form');
$('#myList').children();
$('li.selected').siblings();

You can also iterate over a selection using $.fn.each. This method iterates over all of the elements in
a selection, and runs a function for each one. The function receives the index of the current element and
the DOM element itself as arguments. Inside the function, the DOM element is also available as this
by default.

Example 3.25. Iterating over a selection

$('#myList li').each(function(idx, el) {
 console.log(
 'Element ' + idx +
 'has the following html: ' +
 $(el).html()
);
});

http://api.jquery.com/category/traversing/

jQuery Basics

25

Manipulating Elements
Once you've made a selection, the fun begins. You can change, move, remove, and clone elements. You
can also create new elements via a simple syntax.

For complete documentation of jQuery manipulation methods, visit http://api.jquery.com/category/
manipulation/.

Getting and Setting Information about Elements
There are any number of ways you can change an existing element. Among the most common tasks you'll
perform is changing the inner HTML or attribute of an element. jQuery offers simple, cross-browser
methods for these sorts of manipulations. You can also get information about elements using many of
the same methods in their getter incarnations. We'll see examples of these throughout this section, but
specifically, here are a few methods you can use to get and set information about elements.

Note

Changing things about elements is trivial, but remember that the change will affect all elements
in the selection, so if you just want to change one element, be sure to specify that in your selection
before calling a setter method.

Note

When methods act as getters, they generally only work on the first element in the selection, and
they do not return a jQuery object, so you can't chain additional methods to them. One notable
exception is $.fn.text; as mentioned below, it gets the text for all elements in the selection.

$.fn.html Get or set the html contents.

$.fn.text Get or set the text contents; HTML will be stripped.

$.fn.attr Get or set the value of the provided attribute.

$.fn.width Get or set the width in pixels of the first element in the selection as an integer.

$.fn.height Get or set the height in pixels of the first element in the selection as an integer.

$.fn.position Get an object with position information for the first element in the selection, relative
to its first positioned ancestor. This is a getter only.

$.fn.val Get or set the value of form elements.

Example 3.26. Changing the HTML of an element

$('#myDiv p:first')
 .html('New first paragraph!');

Moving, Copying, and Removing Elements
There are a variety of ways to move elements around the DOM; generally, there are two approaches:

• Place the selected element(s) relative to another element

• Place an element relative to the selected element(s)

http://api.jquery.com/category/manipulation/
http://api.jquery.com/category/manipulation/

jQuery Basics

26

For example, jQuery provides $.fn.insertAfter and $.fn.after. The $.fn.insertAfter
method places the selected element(s) after the element that you provide as an argument; the
$.fn.after method places the element provided as an argument after the selected element. Several
other methods follow this pattern: $.fn.insertBefore and $.fn.before; $.fn.appendTo and
$.fn.append; and $.fn.prependTo and $.fn.prepend.

The method that makes the most sense for you will depend on what elements you already have selected,
and whether you will need to store a reference to the elements you're adding to the page. If you need to
store a reference, you will always want to take the first approach -- placing the selected elements relative
to another element -- as it returns the element(s) you're placing. In this case, $.fn.insertAfter,
$.fn.insertBefore, $.fn.appendTo, and $.fn.prependTo will be your tools of choice.

Example 3.27. Moving elements using different approaches

// make the first list item the last list item
var $li = $('#myList li:first').appendTo('#myList');

// another approach to the same problem
$('#myList').append($('#myList li:first'));

// note that there's no way to access the
// list item that we moved, as this returns
// the list itself

Cloning Elements

When you use methods such as $.fn.appendTo, you are moving the element; sometimes you want to make
a copy of the element instead. In this case, you'll need to use $.fn.clone first.

Example 3.28. Making a copy of an element

// copy the first list item to the end of the list
$('#myList li:first').clone().appendTo('#myList');

Note

If you need to copy related data and events, be sure to pass true as an argument to
$.fn.clone.

Removing Elements

There are two ways to remove elements from the page: $.fn.remove and $.fn.detach. You'll use
$.fn.remove when you want to permanently remove the selection from the page; while the method
does return the removed element(s), those elements will not have their associated data and events attached
to them if you return them to the page.

If you need the data and events to persist, you'll want to use $.fn.detach instead. Like $.fn.remove,
it returns the selection, but it also maintains the data and events associated with the selection, so you can
restore the selection to the page at a later time.

Note

The $.fn.detach method is extremely valuable if you are doing heavy manipulation to an
element. In that case, it's beneficial to $.fn.detach the element from the page, work on it

jQuery Basics

27

in your code, and then restore it to the page when you're done. This saves you from expensive
"DOM touches" while maintaining the element's data and events.

If you want to leave the element on the page but simply want to remove its contents, you can use
$.fn.empty to dispose of the element's inner HTML.

Creating New Elements
jQuery offers a trivial and elegant way to create new elements using the same $() method you use to
make selections.

Example 3.29. Creating new elements

$('<p>This is a new paragraph</p>');
$('<li class="new">new list item</p>');

Example 3.30. Creating a new element with an attribute object

$('<a/>', {
 html : 'This is a new link',
 'class' : 'new',
 href : 'foo.html'
});

Note that in the attributes object we included as the second argument, the property name class is quoted,
while the property names text and href are not. Property names generally do not need to be quoted unless
they are reserved words (as class is in this case).

When you create a new element, it is not immediately added to the page. There are several ways to add
an element to the page once it's been created.

Example 3.31. Getting a new element on to the page

var $myNewElement = $('<p>New element</p>');
$myNewElement.appendTo('#content');

$myNewElement.insertAfter('ul:last'); // this will remove the p from #content!
$('ul').last().after($myNewElement.clone()); // clone the p so now we have 2

Strictly speaking, you don't have to store the created element in a variable -- you could just call the method
to add the element to the page directly after the $(). However, most of the time you will want a reference
to the element you added, so you don't need to select it later.

You can even create an element as you're adding it to the page, but note that in this case you don't get a
reference to the newly created element.

Example 3.32. Creating and adding an element to the page at the same time

$('ul').append('list item');

Note

The syntax for adding new elements to the page is so easy, it's tempting to forget that there's a
huge performance cost for adding to the DOM repeatedly. If you are adding many elements to
the same container, you'll want to concatenate all the html into a single string, and then append

jQuery Basics

28

that string to the container instead of appending the elements one at a time. You can use an array
to gather all the pieces together, then join them into a single string for appending.

var myItems = [], $myList = $('#myList');

for (var i=0; i<100; i++) {
 myItems.push('item ' + i + '');
}

$myList.append(myItems.join(''));

Manipulating Attributes
jQuery's attribute manipulation capabilities are extensive. Basic changes are simple, but the $.fn.attr
method also allows for more complex manipulations.

Example 3.33. Manipulating a single attribute

$('#myDiv a:first').attr('href', 'newDestination.html');

Example 3.34. Manipulating multiple attributes

$('#myDiv a:first').attr({
 href : 'newDestination.html',
 rel : 'super-special'
});

Example 3.35. Using a function to determine an attribute's new value

$('#myDiv a:first').attr({
 rel : 'super-special',
 href : function() {
 return '/new/' + $(this).attr('href');
 }
});

$('#myDiv a:first').attr('href', function() {
 return '/new/' + $(this).attr('href');
});

Exercises

Selecting
Open the file /exercises/index.html in your browser. Use the file /exercises/js/
sandbox.js or work in Firebug to accomplish the following:

1. Select all of the div elements that have a class of "module".

2. Come up with three selectors that you could use to get the third item in the #myList unordered list.
Which is the best to use? Why?

3. Select the label for the search input using an attribute selector.

jQuery Basics

29

4. Figure out how many elements on the page are hidden (hint: .length).

5. Figure out how many image elements on the page have an alt attribute.

6. Select all of the odd table rows in the table body.

Traversing
Open the file /exercises/index.html in your browser. Use the file /exercises/js/
sandbox.js or work in Firebug to accomplish the following:

1. Select all of the image elements on the page; log each image's alt attribute.

2. Select the search input text box, then traverse up to the form and add a class to the form.

3. Select the list item inside #myList that has a class of "current" and remove that class from it; add a
class of "current" to the next list item.

4. Select the select element inside #specials; traverse your way to the submit button.

5. Select the first list item in the #slideshow element; add the class "current" to it, and then add a class
of "disabled" to its sibling elements.

Manipulating
Open the file /exercises/index.html in your browser. Use the file /exercises/js/
sandbox.js or work in Firebug to accomplish the following:

1. Add five new list items to the end of the unordered list #myList. Hint:

for (var i = 0; i<5; i++) { ... }

2. Remove the odd list items

3. Add another h2 and another paragraph to the last div.module

4. Add another option to the select element; give the option the value "Wednesday"

5. Add a new div.module to the page after the last one; put a copy of one of the existing images inside of it.

30

Chapter 4. jQuery Core
$ vs $()

Until now, we’ve been dealing entirely with methods that are called on a jQuery object. For example:

$('h1').remove();

Most jQuery methods are called on jQuery objects as shown above; these methods are said to be part of
the $.fn namespace, or the “jQuery prototype,” and are best thought of as jQuery object methods.

However, there are several methods that do not act on a selection; these methods are said to be part of the
jQuery namespace, and are best thought of as core jQuery methods.

This distinction can be incredibly confusing to new jQuery users. Here’s what you need to remember:

• Methods called on jQuery selections are in the $.fn namespace, and automatically receive and return
the selection as this.

• Methods in the $ namespace are generally utility-type methods, and do not work with selections; they
are not automatically passed any arguments, and their return value will vary.

There are a few cases where object methods and core methods have the same names, such as $.each and
$.fn.each. In these cases, be extremely careful when reading the documentation that you are exploring
the correct method.

Utility Methods
jQuery offers several utility methods in the $ namespace. These methods are helpful for accomplishing
routine programming tasks. Below are examples of a few of the utility methods; for a complete reference
on jQuery utility methods, visit http://api.jquery.com/category/utilities/.

$.trim Removes leading and trailing whitespace.

$.trim(' lots of extra whitespace ');
// returns 'lots of extra whitespace'

$.each Iterates over arrays and objects.

$.each(['foo', 'bar', 'baz'], function(idx, val) {
 console.log('element ' + idx + 'is ' + val);
});

$.each({ foo : 'bar', baz : 'bim' }, function(k, v) {
 console.log(k + ' : ' + v);
});

Note

There is also a method $.fn.each, which is used for iterating over a selection
of elements.

$.inArray Returns a value's index in an array, or -1 if the value is not in the array.

var myArray = [1, 2, 3, 5];

http://api.jquery.com/category/utilities/

jQuery Core

31

if ($.inArray(4, myArray) !== -1) {
 console.log('found it!');
}

$.extend Changes the properties of the first object using the properties of subsequent objects.

var firstObject = { foo : 'bar', a : 'b' };
var secondObject = { foo : 'baz' };

var newObject = $.extend(firstObject, secondObject);
console.log(firstObject.foo); // 'baz'
console.log(newObject.foo); // 'baz'

If you don't want to change any of the objects you pass to $.extend, pass an empty
object as the first argument.

var firstObject = { foo : 'bar', a : 'b' };
var secondObject = { foo : 'baz' };

var newObject = $.extend({}, firstObject, secondObject);
console.log(firstObject.foo); // 'bar'
console.log(newObject.foo); // 'baz'

Data Methods
As your work with jQuery progresses, you'll find that there's often data about an element that you want to
store with the element. In plain JavaScript, you might do this by adding a property to the DOM element,
but you'd have to deal with memory leaks in some browsers. jQuery offers a straightforward way to store
data related to an element, and it manages the memory issues for you.

Example 4.1. Storing and retrieving data related to an element

$('#myDiv').data('keyName', { foo : 'bar' });
$('#myDiv').data('keyName'); // { foo : 'bar' }

You can store any kind of data on an element, and it's hard to overstate the importance of this when you
get into complex application development. For the purposes of this class, we'll mostly use $.fn.data
to store references to other elements.

For example, we may want to establish a relationship between a list item and a div that's inside of it. We
could establish this relationship every single time we interact with the list item, but a better solution would
be to establish the relationship once, and then store a pointer to the div on the list item using $.fn.data:

Example 4.2. Storing a relationship between elements using $.fn.data

$('#myList li').each(function() {
 var $li = $(this), $div = $li.find('div.content');
 $li.data('contentDiv', $div);
});

// later, we don't have to find the div again;
// we can just read it from the list item's data
var $firstLi = $('#myList li:first');
$firstLi.data('contentDiv').html('new content');

jQuery Core

32

In addition to passing $.fn.data a single key-value pair to store data, you can also pass an object
containing one or more pairs.

Feature & Browser Detection
Although jQuery eliminates most JavaScript browser quirks, there are still occasions when your code needs
to know about the browser environment.

jQuery offers the $.support object, as well as the deprecated $.browser object, for this purpose.
For complete documentation on these objects, visit http://api.jquery.com/jQuery.support/ and http://
api.jquery.com/jQuery.browser/.

The $.support object is dedicated to determining what features a browser supports; it is recommended
as a more “future-proof” method of customizing your JavaScript for different browser environments.

The $.browser object was deprecated in favor of the $.support object, but it will not be removed
from jQuery anytime soon. It provides direct detection of the browser brand and version.

Avoiding Conflicts with Other Libraries
If you are using another JavaScript library that uses the $ variable, you can run into conflicts with jQuery.
In order to avoid these conflicts, you need to put jQuery in no-conflict mode immediately after it is loaded
onto the page and before you attempt to use jQuery in your page.

When you put jQuery into no-conflict mode, you have the option of assigning a variable name to replace $.

Example 4.3. Putting jQuery into no-conflict mode

<script src="prototype.js"></script>
<script src="jquery.js"></script>
<script>var $j = jQuery.noConflict();</script>

You can continue to use the standard $ by wrapping your code in a self-executing anonymous function;
this is a standard pattern for plugin authoring, where the author cannot know whether another library will
have taken over the $.

Example 4.4. Using the $ inside a self-executing anonymous function

<script src="prototype.js"></script>
<script src="jquery.js"></script>
<script>
jQuery.noConflict();

(function($) {
 // your code here, using the $
})(jQuery);
</script>

http://api.jquery.com/jQuery.support/
http://api.jquery.com/jQuery.browser/
http://api.jquery.com/jQuery.browser/

33

Chapter 5. Events

Overview
jQuery provides simple methods for attaching event handlers to selections. When an event occurs, the
provided function is executed. Inside the function, this refers to the element that was clicked.

For details on jQuery events, visit http://api.jquery.com/category/events/.

The event handling function can receive an event object. This object can be used to determine the nature
of the event, and to prevent the event’s default behavior.

For details on the event object, visit http://api.jquery.com/category/events/event-object/.

Connecting Events to Elements
jQuery offers convenience methods for most common events, and these are the methods you will see used
most often. These methods -- including $.fn.click, $.fn.focus, $.fn.blur, $.fn.change,
etc. -- are shorthand for jQuery's $.fn.bind method. The bind method is useful for binding the same
hadler function to multiple events, and is also used when you want to provide data to the event hander,
or when you are working with custom events.

Example 5.1. Event binding using a convenience method

$('p').click(function() {
 console.log('click');
});

Example 5.2. Event biding using the $.fn.bind method

$('p').bind('click', function() {
 console.log('click');
});

Example 5.3. Event binding using the $.fn.bind method with data

$('input').bind(
 'click change', // bind to multiple events
 { foo : 'bar' }, // pass in data

 function(eventObject) {
 console.log(eventObject.type, eventObject.data);
 }
);

Connecting Events to Run Only Once

Sometimes you need a particular handler to run only once -- after that, you may want no handler to run,
or you may want a different handler to run. jQuery provides the $.fn.one method for this purpose.

http://api.jquery.com/category/events/
http://api.jquery.com/category/events/event-object/

Events

34

Example 5.4. Switching handlers using the $.fn.one method

$('p').one('click', function() {
 $(this).click(function() { console.log('You clicked this before!'); });
});

The $.fn.one method is especially useful if you need to do some complicated setup the first time an
element is clicked, but not subsequent times.

Disconnecting Events
To disconnect an event handler, you use the $.fn.unbind method and pass in the event type to unbind.
If you attached a named function to the event, then you can isolate the unbinding to that named function
by passing it as the second argument.

Example 5.5. Unbinding all click handlers on a selection

$('p').unbind('click');

Example 5.6. Unbinding a particular click handler

var foo = function() { console.log('foo'); };
var bar = function() { console.log('bar'); };

$('p').bind('click', foo).bind('click', bar);
$('p').unbind('click', bar); // foo is still bound to the click event

Namespacing Events
For complex applications and for plugins you share with others, it can be useful to namespace your events
so you don't unintentionally disconnect events that you didn't or couldn't know about.

Example 5.7. Namespacing events

$('p').bind('click.myNamespace', function() { /* ... */ });
$('p').unbind('click.myNamespace');
$('p').unbind('.myNamespace'); // unbind all events in the namespace

Inside the Event Handling Function
As mentioned in the overview, the event handling function receives an event object, which contains many
properties and methods. The event object is most commonly used to prevent the default action of the event
via the preventDefault method. However, the event object contains a number of other useful properties
and methods, including:

pageX, pageY The mouse position at the time the event occurred, relative to the top left of
the page.

type The type of the event (e.g. "click").

which The button or key that was pressed.

data Any data that was passed in when the event was bound.

target The DOM element that initiated the event.

Events

35

preventDefault() Prevent the default action of the event (e.g. following a link).

stopPropagation() Stop the event from bubbling up to other elements.

In addition to the event object, the event handling function also has access to the DOM element that the
handler was bound to via the keyword this. To turn the DOM element into a jQuery object that we can
use jQuery methods on, we simply do $(this), often following this idiom:

var $this = $(this);

Example 5.8. Preventing a link from being followed

$('a').click(function(e) {
 var $this = $(this);
 if ($this.attr('href').match('evil')) {
 e.preventDefault();
 $this.addClass('evil');
 }
});

Triggering Event Handlers
jQuery provides a way to trigger the event handlers bound to an element without any user interaction
via the $.fn.trigger method. While this method has its uses, it should not be used simply to call
a function that was bound as a click handler. Instead, you should store the function you want to call in
a variable, and pass the variable name when you do your binding. Then, you can call the function itself
whenever you want, without the need for $.fn.trigger.

Example 5.9. Triggering an event handler the right way

var foo = function(e) {
 if (e) {
 console.log(e);
 } else {
 console.log('this didn\'t come from an event!');
 }
};

$('p').click(foo);

foo(); // instead of $('p').trigger('click')

Increasing Performance with Event Delegation
You'll frequently use jQuery to add new elements to the page, and when you do, you may need to bind
events to those new elements -- events you already bound to similar elements that were on the page
originally. Instead of repeating your event binding every time you add elements to the page, you can use
event delegation. With event delegation, you bind your event to a container element, and then when the
event occurs, you look to see which contained element it occurred on. If this sounds complicated, luckily
jQuery makes it easy with its $.fn.live and $.fn.delegate methods.

While most people discover event delegation while dealing with elements added to the page later, it has
some performance benefits even if you never add more elements to the page. The time required to bind

Events

36

event handlers to hundreds of individual elements is non-trivial; if you have a large set of elements, you
should consider delegating related events to a container element.

Note

The $.fn.live method was introduced in jQuery 1.3, and at that time only certain event
types were supported. As of jQuery 1.4.2, the $.fn.delegate method is available, and is the
preferred method.

Example 5.10. Event delegation using $.fn.delegate

$('#myUnorderedList').delegate('li', 'click', function(e) {
 var $myListItem = $(this);
 // ...
});

Example 5.11. Event delegation using $.fn.live

$('#myUnorderedList li').live('click', function(e) {
 var $myListItem = $(this);
 // ...
});

Unbinding Delegated Events
If you need to remove delegated events, you can't simply unbind them. Instead, use $.fn.undelegate
for events connected with $.fn.delegate, and $.fn.die for events connected with $.fn.live.
As with bind, you can optionally pass in the name of the bound function.

Example 5.12. Unbinding delegated events

$('#myUnorderedList').undelegate('li', 'click');
$('#myUnorderedList li').die('click');

Event Helpers
jQuery offers two event-related helper functions that save you a few keystrokes.

$.fn.hover

The $.fn.hover method lets you pass one or two functions to be run when the mouseenter and
mouseleave events occur on an element. If you pass one function, it will be run for both events; if you
pass two functions, the first will run for mouseenter, and the second will run for mouseleave.

Note

Prior to jQuery 1.4, the $.fn.hover method required two functions.

Example 5.13. The hover helper function

$('#menu li').hover(function() {
 $(this).toggleClass('hover');
});

Events

37

$.fn.toggle

Much like $.fn.hover, the $.fn.toggle method receives two or more functions; each time the event
occurs, the next function in the list is called. Generally, $.fn.toggle is used with just two functions,
but technically you can use as many as you'd like.

Example 5.14. The toggle helper function

$('p.expander').toggle(
 function() {
 $(this).prev().addClass('open');
 },
 function() {
 $(this).prev().removeClass('open');
 }
);

Exercises

Create an Input Hint
Open the file /exercises/index.html in your browser. Use the file /exercises/js/
inputHint.js or work in Firebug. Your task is to use the text of the label for the search input to create
"hint" text for the search input. The steps are as follows:

1. Set the value of the search input to the text of the label element

2. Add a class of "hint" to the search input

3. Remove the label element

4. Bind a focus event to the search input that removes the hint text and the "hint" class

5. Bind a blur event to the search input that restores the hint text and "hint" class if no search text was
entered

What other considerations might there be if you were creating this functionality for a real site?

Add Tabbed Navigation
Open the file /exercises/index.html in your browser. Use the file /exercises/js/
tabs.js. Your task is to create tabbed navigation for the two div.module elements. To accomplish this:

1. Hide all of the modules.

2. Create an unordered list element before the first module.

3. Iterate over the modules using $.fn.each. For each module, use the text of the h2 element as the
text for a list item that you add to the unordered list element.

4. Bind a click even to the list item that:

• Shows the related module, and hides any other modules

Events

38

• Adds a class of "current" to the clicked list item

• Removes the class "current" from the other list item

5. Finally, show the first tab.

39

Chapter 6. Effects
Overview

jQuery makes it trivial to add simple effects to your page. Effects can use the built-in settings, or provide
a customized duration. You can also create custom animations of arbitrary CSS properties.

For complete details on jQuery effects, visit http://api.jquery.com/category/effects/.

Built-in Effects
Frequently used effects are built into jQuery as methods:

$.fn.show Show the selected element.

$.fn.hide Hide the selected elements.

$.fn.fadeIn Animate the opacity of the selected elements to 100%.

$.fn.fadeOut Animate the opacity of the selected elements to 0%.

$.fn.slideDown Display the selected elements with a vertical sliding motion.

$.fn.slideUp Hide the selected elements with a vertical sliding motion.

$.fn.slideToggle Show or hide the selected elements with a vertical sliding motion, depending
on whether the elements are currently visible.

Example 6.1. A basic use of a built-in effect

$('h1').show();

Changing the Duration of Built-in Effects
With the exception of $.fn.show and $.fn.hide, all of the built-in methods are animated over the
course of 400ms by default. Changing the duration of an effect is simple.

Example 6.2. Setting the duration of an effect

$('h1').fadeIn(300); // fade in over 300ms
$('h1').fadeOut('slow'); // using a built-in speed definition

jQuery.fx.speeds

jQuery has an object at jQuery.fx.speeds that contains the default speed, as well as settings for
"slow" and "fast".

speeds: {
 slow: 600,
 fast: 200,
 // Default speed
 _default: 400
}

http://api.jquery.com/category/effects/

Effects

40

It is possible to override or add to this object. For example, you may want to change the default duration
of effects, or you may want to create your own effects speed.

Example 6.3. Augmenting jQuery.fx.speeds with custom speed definitions

jQuery.fx.speeds.blazing = 100;
jQuery.fx.speeds.turtle = 2000;

Doing Something when an Effect is Done
Often, you'll want to run some code once an animation is done -- if you run it before the animation is
done, it may affect the quality of the animation, or it may remove elements that are part of the animation.
[Definition: Callback functions provide a way to register your interest in an event that will happen in the
future.] In this case, the event we'll be responding to is the conclusion of the animation. Inside of the
callback function, the keyword this refers to the element that the effect was called on; as we did inside
of event handler functions, we can turn it into a jQuery object via $(this).

Example 6.4. Running code when an animation is complete

$('div.old').fadeOut(300, function() { $(this).remove(); });

Note that if your selection doesn't return any elements, your callback will never run! You can solve this
problem by testing whether your selection returned any elements; if not, you can just run the callback
immediately.

Example 6.5. Run a callback even if there were no elements to animate

var $thing = $('#nonexistent');

var cb = function() {
 console.log('done!');
};

if ($thing.length) {
 $thing.fadeIn(300, cb);
} else {
 cb();
}

Custom Effects with $.fn.animate
jQuery makes it possible to animate arbitrary CSS properties via the $.fn.animate method. The
$.fn.animate method lets you animate to a set value, or to a value relative to the current value.

Example 6.6. Custom effects with $.fn.animate

$('div.funtimes').animate(
 {
 left : "+=50",
 opacity : 0.25
 },
 300, // duration
 function() { console.log('done!'); // calback
});

Effects

41

Note

Color-related properties cannot be animated with $.fn.animate using jQuery out of the
box. Color animations can easily be accomplished by including the color plugin [http://
plugins.jquery.com/files/jquery.color.js.txt]. We'll discuss using plugins later in the book.

Easing
[Definition: Easing describes the manner in which an effect occurs -- whether the rate of change is steady,
or varies over the duration of the animation.] jQuery includes only two methods of easing: swing and
linear. If you want more natural transitions in your animations, various easing plugins are available.

As of jQuery 1.4, it is possible to do per-property easing when using the $.fn.animate method.

Example 6.7. Per-property easing

$('div.funtimes').animate(
 {
 left : ["+=50", "swing],
 opacity : [0.25, "linear"]
 },
 300
);

For more details on easing options, see http://api.jquery.com/animate/.

Managing Effects
jQuery provides several tools for managing animations.

$.fn.stop Stop currently running animations on the selected elements.

$.fn.delay Wait the specified number of milliseconds before running the next animation.

$('h1').show(300).delay(1000).hide(300);

jQuery.fx.off If this value is true, there will be no transition for animations; elements will
immediately be set to the target final state instead. This can be especially useful when
dealing with older browsers; you also may want to provide the option to your users.

Exercises

Reveal Hidden Text
Open the file /exercises/index.html in your browser. Use the file /exercises/js/
blog.js. Your task is to add some interactivity to the blog section of the page. The spec for the feature
is as follows:

• Clicking on a headline in the #blog div should slide down the excerpt paragraph

• Clicking on another headline should slide down its excerpt paragraph, and slide up any other currently
showing excerpt paragraphs.

http://plugins.jquery.com/files/jquery.color.js.txt
http://plugins.jquery.com/files/jquery.color.js.txt
http://plugins.jquery.com/files/jquery.color.js.txt
http://api.jquery.com/animate/

Effects

42

Hint: don't forget about the :visible selector!

Create Dropdown Menus
Open the file /exercises/index.html in your browser. Use the file /exercises/js/
navigation.js. Your task is to add dropdowns to the main navigation at the top of the page.

• Hovering over an item in the main menu should show that item's submenu items, if any.

• Exiting an item should hide any submenu items.

To accomplish this, use the $.fn.hover method to add and remove a class from the submenu items to
control whether they're visible or hidden. (The file at /exercises/css/styles.css includes the
"hover" class for this purpose.)

Create a Slideshow
Open the file /exercises/index.html in your browser. Use the file /exercises/js/
slideshow.js. Your task is to take a plain semantic HTML page and enhance it with JavaScript by
adding a slideshow.

1. Move the #slideshow element to the top of the body.

2. Write code to cycle through the list items inside the element; fade one in, display it for a few seconds,
then fade it out and fade in the next one.

3. When you get to the end of the list, start again at the beginning.

For an extra challenge, create a navigation area under the slideshow that shows how many images there
are and which image you're currently viewing. (Hint: $.fn.prevAll will come in handy for this.)

43

Chapter 7. Ajax
Overview

The XMLHttpRequest method (XHR) allows browsers communicate with the server without requiring a
page reload. This method, also known as Ajax (Asynchronous JavaScript and XML), allows for web pages
that provide rich, interactive experiences.

Ajax requests are triggered by JavaScript code; your code sends a request to a URL, and when it receives a
response, a callback function can be triggered to handle the response. Because the request is asynchronous,
the rest of your code continues to execute while the request is being processed, so it’s imperative that a
callback be used to handle the response.

jQuery provides Ajax support that abstracts away painful browser differences. It offers both a full-
featured $.ajax() method, and simple convenience methods such as $.get(), $.getScript(),
$.getJSON(), $.post(), and $().load().

Most jQuery applications don’t in fact use XML, despite the name “Ajax”; instead, they transport data as
plain HTML or JSON (JavaScript Object Notation).

In general, Ajax does not work across domains. Exceptions are services that provide JSONP (JSON with
Padding) support, which allow limited cross-domain functionality.

Key Concepts
Proper use of Ajax-related jQuery methods requires understanding some key concepts first.

GET vs. Post
The two most common “methods” for sending a request to a server are GET and POST. It’s important to
understand the proper application of each.

The GET method should be used for non-destructive operations — that is, operations where you are only
“getting” data from the server, not changing data on the server. For example, a query to a search service
might be a GET request. GET requests may be cached by the browser, which can lead to unpredictable
behavior if you are not expecting it. GET requests generally send all of their data in a query string.

The POST method should be used for destructive operations — that is, operations where you are changing
data on the server. For example, a user saving a blog post should be a POST request. POST requests are
generally not cached by the browser; a query string can be part of the URL, but the data tends to be sent
separately as post data.

Data Types
jQuery generally requires some instruction as to the type of data you expect to get back from an Ajax
request; in some cases the data type is specified by the method name, and in other cases it is provided as
part of a configuration object. There are several options:

text For transporting simple strings

html For transporting blocks of HTML to be placed on the page

script For ading a new script to the page

Ajax

44

json For transporting JSON-formatted data, which can include strings, arrays, and objects

Note

As of jQuery 1.4, if the JSON data sent by your server isn't properly formatted, the
request may fail silently. See http://json.org for details on properly formatting JSON,
but as a general rule, use built-in language methods for generating JSON on the server
to avoid syntax issues.

jsonp For transporting JSON data from another domain

xml For transporting data in a custom XML schema

I am a strong proponent of using the JSON format in most cases, as it provides the most flexibility. It is
especially useful for sending both HTML and data at the same time.

A is for Asynchronous
The asynchronicity of Ajax catches many new jQuery users off guard. Because Ajax calls are asynchronous
by default, the response is not immediately available. Responses can only be handled using a callback. So,
for example, the following code will not work:

$.get('foo.php');
console.log(response);

Instead, we need to pass a callback function to our request; this callback will run when the request succeeds,
at which point we can access the data that it returned, if any.

$.get('foo.php', function(response) { console.log(response); });

Same-Origin Policy and JSONP
In general, Ajax requests are limited to the same protocol (http or https), the same port, and the same
domain as the page making the request. This limitation does not apply to scripts that are loaded via jQuery's
Ajax methods.

The other exception is requests targeted at a JSONP service on another domain. In the case of JSONP,
the provider of the service has agreed to respond to your request with a script that can be loaded into the
page using a <script> tag, thus avoiding the same-origin limitation; that script will include the data
you requested, wrapped in a callback function you provide.

Ajax and Firebug
Firebug (or the Webkit Inspector in Chrome or Safari) is an invaluable tool for working with Ajax requests.
You can see Ajax requests as they happen in the Console tab of Firebug (and in the Resources > XHR
panel of Webkit Inspector), and you can click on a request to expand it and see details such as the request
headers, response headers, response content, and more. If something isn't going as expected with an Ajax
request, this is the first place to look to track down what's wrong.

jQuery's Ajax-Related Methods
While jQuery does offer many Ajax-related convenience methods, the core $.ajax method is at the
heart of all of them, and understanding it is imperative. We'll review it first, and then touch briefly on the
convenience methods.

http://json.org

Ajax

45

I generally use the $.ajax method and do not use convenience methods. As you'll see, it offers features that
the convenience methods do not, and its syntax is more easily understandable, in my opinion.

$.ajax
jQuery’s core $.ajax method is a powerful and straightforward way of creating Ajax requests. It takes a
configuration object that contains all the instructions jQuery requires to complete the request. The $.ajax
method is particularly valuable because it offers the ability to specify both success and failure callbacks.
Also, its ability to take a configuration object that can be defined separately makes it easier to write reusable
code. For complete documentation of the configuration options, visit http://api.jquery.com/jQuery.ajax/.

Example 7.1. Using the core $.ajax method

$.ajax({
 // the URL for the request
 url : 'post.php',

 // the data to send
 // (will be converted to a query string)
 data : { id : 123 },

 // whether this is a POST or GET request
 method : 'GET',

 // the type of data we expect back
 dataType : 'json',

 // code to run if the request succeeds;
 // the response is passed to the function
 success : function(json) {
 $('<h1/>').text(json.title).appendTo('body');
 $('<div class="content"/>')
 .html(json.html).appendTo('body');
 },

 // code to run if the request fails;
 // the raw request and status codes are
 // passed to the function
 error : function(xhr, status) {
 alert('Sorry, there was a problem!');
 },

 // code to run regardless of success or failure
 complete : function(xhr, status) {
 alert('The request is complete!');
 }
});

Note

A note about the dataType setting: if the server sends back data that is in a different format
than you specify, your code may fail, and the reason will not always be clear, because the HTTP
response code will not show an error. When working with Ajax requests, make sure your server is
sending back the data type you're asking for, and verify that the Content-type header is accurate for

http://api.jquery.com/jQuery.ajax/

Ajax

46

the data type. For example, for JSON data, the Content-type header should be application/
json.

$.ajax Options

There are many, many options for the $.ajax method, which is part of its power. For a complete list of
options, visit http://api.jquery.com/jQuery.ajax/; here are several that you will use frequently:

async Set to false if the request should be sent synchronously. Defaults to true. Note that
if you set this option to false, your request will block execution of other code until the
response is received.

cache Whether to use a cached response if available. Defaults to true for all dataTypes
except "script" and "jsonp". When set to false, the URL will simply have a cachebusting
parameter appended to it.

complete A callback function to run when the request is complete, regardless of success or failure.
The function receives the raw request object and the text status of the request.

context The scope in which the callback function(s) should run (i.e. what this will mean
inside the callback function(s)). By default, this inside the callback function(s) refers
to the object originally passed to $.ajax.

data The data to be sent to the server. This can either be an object or a query string, such
as foo=bar&baz=bim.

dataType The type of data you expect back from the server. By default, jQuery will look at the
MIME type of the response if no dataType is specified.

error A callback function to run if the request results in an error. The function receives the
raw request object and the text status of the request.

jsonp The callback name to send in a query string when making a JSONP request. Defaults
to "callback".

success A callback function to run if the request succeeds. The function receives the response
data (converted to a JavaScript object if the dataType was JSON), as well as the text
status of the request and the raw request object.

timeout The time in milliseconds to wait before considering the request a failure.

traditional Set to true to use the param serialization style in use prior to jQuery 1.4. For details,
see http://api.jquery.com/jQuery.param/.

type The type of the request, "POST" or "GET". Defaults to "GET". Other request types,
such as "PUT" and "DELETE" can be used, but they may not be supported by all
browsers.

url The URL for the request.

The url option is the only required property of the $.ajax configuration object; all other properties
are optional.

Convenience Methods
If you don't need the extensive configurability of $.ajax, and you don't care about handling errors, the
Ajax convenience functions provided by jQuery can be useful, terse ways to accomplish Ajax requests.

http://api.jquery.com/jQuery.ajax/
http://api.jquery.com/jQuery.param/

Ajax

47

These methods are just "wrappers" around the core $.ajax method, and simply pre-set some of the
options on the $.ajax method.

The convenience methods provided by jQuery are:

$.get Perform a GET request to the provided URL.

$.post Perform a POST request to the provided URL.

$.getScript Add a script to the page.

$.getJSON Perform a GET request, and expect JSON to be returned.

In each case, the methods take the following arguments, in order:

url The URL for the request. Required.

data The data to be sent to the server. Optional. This can either be an object or a
query string, such as foo=bar&baz=bim.

Note

This option is not valid for $.getScript.

success callback A callback function to run if the request succeeds. Optional. The function
receives the response data (converted to a JavaScript object if the data type was
JSON), as well as the text status of the request and the raw request object.

data type The type of data you expect back from the server. Optional.

Note

This option is only applicable for methods that don't already specify
the data type in their name.

Example 7.2. Using jQuery's Ajax convenience methods

// get plain text or html
$.get('/users.php', { userId : 1234 }, function(resp) {
 console.log(resp);
});

// add a script to the page, then run a function defined in it
$.getScript('/static/js/myScript.js', function() {
 functionFromMyScript();
});

// get JSON-formatted data from the server
$.getJSON('/details.php', function(resp) {
 $.each(resp, function(k, v) {
 console.log(k + ' : ' + v);
 });
});

Ajax

48

$.fn.load

The $.fn.load method is unique among jQuery’s Ajax methods in that it is called on a selection. The
$.fn.load method fetches HTML from a URL, and uses the returned HTML to populate the selected
element(s). In addition to providing a URL to the method, you can optionally provide a selector; jQuery
will fetch only the matching content from the returned HTML.

Example 7.3. Using $.fn.load to populate an element

$('#newContent').load('/foo.html');

Example 7.4. Using $.fn.load to populate an element based on a selector

$('#newContent').load('/foo.html #myDiv h1:first', function(html) {
 alert('Content updated!');
});

Ajax and Forms
jQuery’s ajax capabilities can be especially useful when dealing with forms. The jQuery Form Plugin
[http://jquery.malsup.com/form/] is a well-tested tool for adding Ajax capabilities to forms, and you
should generally use it for handling forms with Ajax rather than trying to roll your own solution for
anything remotely complex. That said, there are a two jQuery methods you should know that relate to form
processing in jQuery: $.fn.serialize and $.fn.serializeArray.

Example 7.5. Turning form data into a query string

$('#myForm').serialize();

Example 7.6. Creating an array of objects containing form data

$('#myForm').serializeArray();

// creates a structure like this:
[
 { name : 'field1', value : 123 },
 { name : 'field2', value : 'hello world' }
]

Working with JSONP
The advent of JSONP -- essentially a consensual cross-site scripting hack -- has opened the door to
powerful mashups of content. Many prominent sites provide JSONP services, allowing you access to their
content via a predefined API. A particularly great source of JSONP-formatted data is the Yahoo! Query
Language [http://developer.yahoo.com/yql/console/], which we'll use in the following example to fetch
news about cats.

http://jquery.malsup.com/form/
http://jquery.malsup.com/form/
http://developer.yahoo.com/yql/console/
http://developer.yahoo.com/yql/console/
http://developer.yahoo.com/yql/console/

Ajax

49

Example 7.7. Using YQL and JSONP

$.ajax({
 url : 'http://query.yahooapis.com/v1/public/yql',

 // the name of the callback parameter,
 // as specified by the YQL service
 jsonp : 'callback',

 // tell jQuery we're expecting JSONP
 dataType : 'jsonp',

 // tell YQL what we want and that we want JSON
 data : {
 q : 'select title,abstract,url from search.news where query="cat"',
 format : 'json'
 },

 // work with the response
 success : function(response) {
 console.log(response);
 }
});

jQuery handles all the complex aspects of JSONP behind-the-scenes -- all we have to do is tell jQuery
the name of the JSONP callback parameter specified by YQL ("callback" in this case), and otherwise the
whole process looks and feels like a normal Ajax request.

Ajax Events
Often, you’ll want to perform an operation whenever an Ajax requests starts or stops, such as showing
or hiding a loading indicator. Rather than defining this behavior inside every Ajax request, you can bind
Ajax events to elements just like you'd bind other events. For a complete list of Ajax events, visit http://
docs.jquery.com/Ajax_Events.

Example 7.8. Setting up a loading indicator using Ajax Events

$('#loading_indicator')
 .ajaxStart(function() { $(this).show(); })
 .ajaxStop(function() { $(this).hide(); });

Exercises
Load External Content

Open the file /exercises/index.html in your browser. Use the file /exercises/js/
load.js. Your task is to load the content of a blog item when a user clicks on the title of the item.

1. Create a target div after the headline for each blog post and store a reference to it on the headline element
using $.fn.data.

2. Bind a click event to the headline that will use the $.fn.load method to load the appropriate content
from /exercises/data/blog.html into the target div. Don't forget to prevent the default action
of the click event.

http://docs.jquery.com/Ajax_Events
http://docs.jquery.com/Ajax_Events

Ajax

50

Note that each blog headline in index.html includes a link to the post. You'll need to leverage the href of
that link to get the proper content from blog.html. Once you have the href, here's one way to process it
into an ID that you can use as a selector in $.fn.load:

var href = 'blog.html#post1';
var tempArray = href.split('#');
var id = '#' + tempArray[1];

Remember to make liberal use of console.log to make sure you're on the right path!

Load Content Using JSON
Open the file /exercises/index.html in your browser. Use the file /exercises/js/
specials.js. Your task is to show the user details about the special for a given day when the user
selects a day from the select dropdown.

1. Append a target div after the form that's inside the #specials element; this will be where you put
information about the special once you receive it.

2. Bind to the change event of the select element; when the user changes the selection, send an Ajax
request to /exercises/data/specials.json.

3. When the request returns a response, use the value the user selected in the select (hint: $.fn.val) to
look up information about the special in the JSON response.

4. Add some HTML about the special to the target div you created.

5. Finally, because the form is now Ajax-enabled, remove the submit button from the form.

Note that we're loading the JSON every time the user changes their selection. How could we change the
code so we only make the request once, and then use a cached response when the user changes their choice
in the select?

51

Chapter 8. Plugins

Finding & Evaluating Plugins
Plugins extend the basic jQuery functionality, and one of the most celebrated aspects of the library is its
extensive plugin ecosystem. From table sorting to form validation to autocompletion ... if there’s a need
for it, chances are good that someone has written a plugin for it.

The quality of jQuery plugins varies widely. Many plugins are extensively tested and well-maintained, but
others are hastily created and then ignored. More than a few fail to follow best practices.

Google is your best initial resource for locating plugins, though the jQuery team is working on an improved
plugin repository. Once you’ve identified some options via a Google search, you may want to consult the
jQuery mailing list or the #jquery IRC channel to get input from others.

When looking for a plugin to fill a need, do your homework. Ensure that the plugin is well-documented,
and look for the author to provide lots of examples of its use. Be wary of plugins that do far more than
you need; they can end up adding substantial overhead to your page. For more tips on spotting a subpar
plugin, read Signs of a poorly written jQuery plugin [http://remysharp.com/2010/06/03/signs-of-a-poorly-
written-jquery-plugin/] by Remy Sharp.

Once you choose a plugin, you’ll need to add it to your page. Download the plugin, unzip it if necessary,
place it your application’s directory structure, then include the plugin in your page using a script tag (after
you include jQuery).

Writing Plugins
Sometimes you want to make a piece of functionality available throughout your code; for example, perhaps
you want a single method you can call on a jQuery selection that performs a series of operations on the
selection. In this case, you may want to write a plugin.

Most plugins are simply methods created in the $.fn namespace. jQuery guarantees that a method
called on a jQuery object will be able to access that jQuery object as this inside the method. In return,
your plugin needs to guarantee that it returns the same object it received, unless explicitly documented
otherwise.

Here is an example of a simple plugin:

Example 8.1. Creating a plugin to add and remove a class on hover

// defining the plugin
$.fn.hoverClass = function(c) {
 return this.hover(
 function() { $(this).toggleClass(c); }
);
};

// using the plugin
$('li').hoverClass('hover');

http://remysharp.com/2010/06/03/signs-of-a-poorly-written-jquery-plugin/
http://remysharp.com/2010/06/03/signs-of-a-poorly-written-jquery-plugin/
http://remysharp.com/2010/06/03/signs-of-a-poorly-written-jquery-plugin/

Plugins

52

Exercises

Make a Table Sortable
For this exercise, your task is to identify, download, and implement a table sorting plugin on the index.html
page. When you’re done, all columns in the table on the page should be sortable.

Write a Table-Striping Plugin
Open the file /exercises/index.html in your browser. Use the file /exercises/js/
stripe.js. Your task is to write a plugin called "stripe" that you can call on any table element. When
the plugin is called on a table element, it should change the color of odd rows in the table body to a user-
specified color.

$('#myTable').stripe('#cccccc');

Don't forget to return the table so other methods can be chained after the plugin!

