
⇌RMG
RMG-Py API Reference

Release 1.0.3

William H. Green, Richard H. West, and the RMG Team

February 04, 2016

CONTENTS

1 RMG API Reference 3
1.1 CanTherm (rmgpy.cantherm) . 3
1.2 Chemkin files (rmgpy.chemkin) . 7
1.3 Physical constants (rmgpy.constants) . 10
1.4 Database (rmgpy.data) . 11
1.5 Kinetics (rmgpy.kinetics) . 36
1.6 Molecular representations (rmgpy.molecule) . 54
1.7 Pressure dependence (rmgpy.pdep) . 76
1.8 QMTP (rmgpy.qm) . 83
1.9 Physical quantities (rmgpy.quantity) . 87
1.10 Reactions (rmgpy.reaction) . 90
1.11 Reaction mechanism generation (rmgpy.rmg) . 94
1.12 Reaction system simulation (rmgpy.solver) . 97
1.13 Species (rmgpy.species) . 98
1.14 Statistical mechanics (rmgpy.statmech) . 101
1.15 Thermodynamics (rmgpy.thermo) . 115

Bibliography 125

Python Module Index 127

Index 129

i

ii

RMG-Py API Reference, Release 1.0.3

RMG is an automatic chemical reaction mechanism generator that constructs kinetic models composed of elementary
chemical reaction steps using a general understanding of how molecules react.

This is the API Reference guide for RMG. For instructions on how to use RMG, please refer to the User Guide.

For the latest documentation and source code, please visit http://reactionmechanismgenerator.github.io/RMG-Py/

CONTENTS 1

http://reactionmechanismgenerator.github.io/RMG-Py/

RMG-Py API Reference, Release 1.0.3

2 CONTENTS

CHAPTER

ONE

RMG API REFERENCE

This document provides the complete details of the application programming interface (API) for the Python version
of the Reaction Mechanism Generator. The functionality of RMG-Py is divided into many modules and subpackages.
An overview of these components is given in the table below. Click on the name of a component to learn more and
view its API.

Module Description
rmgpy.cantherm Computing chemical properties from quantum chemistry calculations
rmgpy.chemkin Reading and writing models in Chemkin format
rmgpy.constants Physical constants
rmgpy.data Working with the RMG database
rmgpy.kinetics Kinetics models of chemical reaction rates
rmgpy.molecule Molecular representations using chemical graph theory
rmgpy.pdep Pressure-dependent kinetics from master equation models
rmgpy.qm On-the-fly quantum calculations
rmgpy.quantity Physical quantities and unit conversions
rmgpy.reaction Chemical reactions
rmgpy.rmg Automatic reaction mechanism generation
rmgpy.solver Modeling reaction systems
rmgpy.species Chemical species
rmgpy.statmech Statistical mechanics models of molecular degrees of freedom
rmgpy.thermo Thermodynamics models of chemical species

1.1 CanTherm (rmgpy.cantherm)

The rmgpy.cantherm subpackage contains the main functionality for CanTherm, a tool for computing thermody-
namic and kinetic properties of chemical species and reactions.

1.1.1 Reading Gaussian log files

Class Description
GaussianLog Extract chemical parameters from Gaussian log files

1.1.2 Geometry

Class Description
Geometry The three-dimensional geometry of a molecular conformation

3

RMG-Py API Reference, Release 1.0.3

1.1.3 Input

Function Description
loadInputFile() Load a CanTherm job input file

1.1.4 Job classes

Class Description
CanTherm Main class for CanTherm jobs
StatMechJob Compute the molecular degrees of freedom for a molecular conformation
ThermoJob Compute the thermodynamic properties of a species
KineticsJob Compute the high pressure-limit rate coefficient for a reaction using transition state

theory
PressureDependenceJobCompute the phenomenological pressure-dependent rate coefficients 𝑘(𝑇, 𝑃) for a

unimolecular reaction network

1.1.5 Exceptions

Exception Description
GaussianError Raised when an error occurs while working with a Gaussian log file

rmgpy.cantherm.gaussian.GaussianLog

autodoc: failed to import class u’GaussianLog’ from module u’rmgpy.cantherm.gaussian’; the following
exception was raised: Traceback (most recent call last): File “/home/connie/anaconda/lib/python2.7/site-
packages/Sphinx-1.3.1-py2.7.egg/sphinx/ext/autodoc.py”, line 385, in import_object __import__(self.modname)
File “/home/connie/Research/Code/RMG-Py/rmgpy/cantherm/__init__.py”, line 30, in <module> from .main im-
port CanTherm File “/home/connie/Research/Code/RMG-Py/rmgpy/cantherm/main.py”, line 48, in <module> from
rmgpy.cantherm.input import loadInputFile File “/home/connie/Research/Code/RMG-Py/rmgpy/cantherm/input.py”,
line 38, in <module> from rmgpy.species import Species, TransitionState File “rmgpy/quantity.pxd”, line 33, in init
rmgpy.species (build/pyrex/rmgpy/species.c:17811) cdef class Units(object): File “rmgpy/quantity.py”, line 36, in init
rmgpy.quantity (build/pyrex/rmgpy/quantity.c:16271) import quantities as pq ImportError: No module named quanti-
ties

rmgpy.cantherm.geometry.Geometry

autodoc: failed to import class u’Geometry’ from module u’rmgpy.cantherm.geometry’; the following ex-
ception was raised: Traceback (most recent call last): File “/home/connie/anaconda/lib/python2.7/site-
packages/Sphinx-1.3.1-py2.7.egg/sphinx/ext/autodoc.py”, line 385, in import_object __import__(self.modname)
File “/home/connie/Research/Code/RMG-Py/rmgpy/cantherm/__init__.py”, line 30, in <module> from .main im-
port CanTherm File “/home/connie/Research/Code/RMG-Py/rmgpy/cantherm/main.py”, line 48, in <module> from
rmgpy.cantherm.input import loadInputFile File “/home/connie/Research/Code/RMG-Py/rmgpy/cantherm/input.py”,
line 50, in <module> from rmgpy.kinetics.arrhenius import Arrhenius, ArrheniusEP, PDepArrhenius, MultiArrhenius,
MultiPDepArrhenius File “/home/connie/Research/Code/RMG-Py/rmgpy/kinetics/__init__.py”, line 31, in <mod-
ule> from .model import KineticsModel, PDepKineticsModel, TunnelingModel, \ File “rmgpy/kinetics/model.pyx”,
line 38, in init rmgpy.kinetics.model (build/pyrex/rmgpy/kinetics/model.c:13566) from rmgpy.molecule im-
port Molecule File “/home/connie/Research/Code/RMG-Py/rmgpy/molecule/__init__.py”, line 32, in <mod-
ule> from .element import * File “rmgpy/molecule/element.py”, line 44, in init rmgpy.molecule.element
(build/pyrex/rmgpy/molecule/element.c:5181) from rdkit.Chem import GetPeriodicTable ImportError: No module
named rdkit.Chem

4 Chapter 1. RMG API Reference

RMG-Py API Reference, Release 1.0.3

CanTherm input files

autodoc: failed to import function u’loadInputFile’ from module u’rmgpy.cantherm.input’; the following
exception was raised: Traceback (most recent call last): File “/home/connie/anaconda/lib/python2.7/site-
packages/Sphinx-1.3.1-py2.7.egg/sphinx/ext/autodoc.py”, line 385, in import_object __import__(self.modname)
File “/home/connie/Research/Code/RMG-Py/rmgpy/cantherm/__init__.py”, line 30, in <module> from .main im-
port CanTherm File “/home/connie/Research/Code/RMG-Py/rmgpy/cantherm/main.py”, line 48, in <module> from
rmgpy.cantherm.input import loadInputFile File “/home/connie/Research/Code/RMG-Py/rmgpy/cantherm/input.py”,
line 56, in <module> from rmgpy.pdep.configuration import Configuration File “/home/connie/Research/Code/RMG-
Py/rmgpy/pdep/__init__.py”, line 33, in <module> from .configuration import * File “rmgpy/pdep/configuration.pyx”,
line 47, in init rmgpy.pdep.configuration (build/pyrex/rmgpy/pdep/configuration.c:12766) from rmgpy.transport im-
port TransportData File “/home/connie/Research/Code/RMG-Py/rmgpy/transport.py”, line 7, in <module> from
rmgpy.quantity import DipoleMoment, Energy, Length, Volume ImportError: cannot import name DipoleMoment

rmgpy.cantherm.KineticsJob

autodoc: failed to import class u’KineticsJob’ from module u’rmgpy.cantherm’; the following excep-
tion was raised: Traceback (most recent call last): File “/home/connie/anaconda/lib/python2.7/site-
packages/Sphinx-1.3.1-py2.7.egg/sphinx/ext/autodoc.py”, line 385, in import_object __import__(self.modname)
File “/home/connie/Research/Code/RMG-Py/rmgpy/cantherm/__init__.py”, line 30, in <module> from
.main import CanTherm File “/home/connie/Research/Code/RMG-Py/rmgpy/cantherm/main.py”, line 48,
in <module> from rmgpy.cantherm.input import loadInputFile File “/home/connie/Research/Code/RMG-
Py/rmgpy/cantherm/input.py”, line 56, in <module> from rmgpy.pdep.configuration import Configuration File
“/home/connie/Research/Code/RMG-Py/rmgpy/pdep/__init__.py”, line 34, in <module> from .network import * File
“/home/connie/Research/Code/RMG-Py/rmgpy/pdep/network.py”, line 41, in <module> from rmgpy.reaction import
Reaction File “rmgpy/molecule/graph.pxd”, line 27, in init rmgpy.reaction (build/pyrex/rmgpy/reaction.c:30460)
cdef class Vertex(object): File “/home/connie/Research/Code/RMG-Py/rmgpy/molecule/__init__.py”, line 33, in
<module> from .molecule import * File “rmgpy/molecule/molecule.py”, line 51, in init rmgpy.molecule.molecule
(build/pyrex/rmgpy/molecule/molecule.c:32592) from rdkit import Chem ImportError: No module named rdkit

rmgpy.cantherm.CanTherm

autodoc: failed to import class u’CanTherm’ from module u’rmgpy.cantherm’; the following excep-
tion was raised: Traceback (most recent call last): File “/home/connie/anaconda/lib/python2.7/site-
packages/Sphinx-1.3.1-py2.7.egg/sphinx/ext/autodoc.py”, line 385, in import_object __import__(self.modname)
File “/home/connie/Research/Code/RMG-Py/rmgpy/cantherm/__init__.py”, line 30, in <module> from .main import
CanTherm File “/home/connie/Research/Code/RMG-Py/rmgpy/cantherm/main.py”, line 48, in <module> from
rmgpy.cantherm.input import loadInputFile File “/home/connie/Research/Code/RMG-Py/rmgpy/cantherm/input.py”,
line 56, in <module> from rmgpy.pdep.configuration import Configuration File “/home/connie/Research/Code/RMG-
Py/rmgpy/pdep/__init__.py”, line 35, in <module> from .draw import * File “/home/connie/Research/Code/RMG-
Py/rmgpy/pdep/draw.py”, line 39, in <module> from rmgpy.molecule.draw import MoleculeDrawer, create-
NewSurface File “/home/connie/Research/Code/RMG-Py/rmgpy/molecule/draw.py”, line 54, in <module> from
rmgpy.qm.molecule import Geometry File “/home/connie/Research/Code/RMG-Py/rmgpy/qm/molecule.py”, line 19,
in <module> import qmdata File “/home/connie/Research/Code/RMG-Py/rmgpy/qm/qmdata.py”, line 4, in <module>
from rmgpy.quantity import Energy, Mass, Length, Frequency ImportError: cannot import name Energy

Saving CanTherm output

autodoc: failed to import function u’prettify’ from module u’rmgpy.cantherm.output’; the following ex-
ception was raised: Traceback (most recent call last): File “/home/connie/anaconda/lib/python2.7/site-
packages/Sphinx-1.3.1-py2.7.egg/sphinx/ext/autodoc.py”, line 385, in import_object __import__(self.modname)

1.1. CanTherm (rmgpy.cantherm) 5

RMG-Py API Reference, Release 1.0.3

File “/home/connie/Research/Code/RMG-Py/rmgpy/cantherm/__init__.py”, line 30, in <module> from .main im-
port CanTherm File “/home/connie/Research/Code/RMG-Py/rmgpy/cantherm/main.py”, line 48, in <module> from
rmgpy.cantherm.input import loadInputFile File “/home/connie/Research/Code/RMG-Py/rmgpy/cantherm/input.py”,
line 56, in <module> from rmgpy.pdep.configuration import Configuration File “/home/connie/Research/Code/RMG-
Py/rmgpy/pdep/__init__.py”, line 35, in <module> from .draw import * File “/home/connie/Research/Code/RMG-
Py/rmgpy/pdep/draw.py”, line 39, in <module> from rmgpy.molecule.draw import MoleculeDrawer, create-
NewSurface File “/home/connie/Research/Code/RMG-Py/rmgpy/molecule/draw.py”, line 54, in <module> from
rmgpy.qm.molecule import Geometry File “/home/connie/Research/Code/RMG-Py/rmgpy/qm/molecule.py”, line 19,
in <module> import qmdata File “/home/connie/Research/Code/RMG-Py/rmgpy/qm/qmdata.py”, line 4, in <module>
from rmgpy.quantity import Energy, Mass, Length, Frequency ImportError: cannot import name Energy

autodoc: failed to import class u’PrettifyVisitor’ from module u’rmgpy.cantherm.output’; the following
exception was raised: Traceback (most recent call last): File “/home/connie/anaconda/lib/python2.7/site-
packages/Sphinx-1.3.1-py2.7.egg/sphinx/ext/autodoc.py”, line 385, in import_object __import__(self.modname)
File “/home/connie/Research/Code/RMG-Py/rmgpy/cantherm/__init__.py”, line 30, in <module> from .main im-
port CanTherm File “/home/connie/Research/Code/RMG-Py/rmgpy/cantherm/main.py”, line 48, in <module> from
rmgpy.cantherm.input import loadInputFile File “/home/connie/Research/Code/RMG-Py/rmgpy/cantherm/input.py”,
line 56, in <module> from rmgpy.pdep.configuration import Configuration File “/home/connie/Research/Code/RMG-
Py/rmgpy/pdep/__init__.py”, line 35, in <module> from .draw import * File “/home/connie/Research/Code/RMG-
Py/rmgpy/pdep/draw.py”, line 39, in <module> from rmgpy.molecule.draw import MoleculeDrawer, create-
NewSurface File “/home/connie/Research/Code/RMG-Py/rmgpy/molecule/draw.py”, line 54, in <module> from
rmgpy.qm.molecule import Geometry File “/home/connie/Research/Code/RMG-Py/rmgpy/qm/molecule.py”, line 19,
in <module> import qmdata File “/home/connie/Research/Code/RMG-Py/rmgpy/qm/qmdata.py”, line 4, in <module>
from rmgpy.quantity import Energy, Mass, Length, Frequency ImportError: cannot import name Energy

rmgpy.cantherm.PressureDependenceJob

autodoc: failed to import class u’PressureDependenceJob’ from module u’rmgpy.cantherm’; the follow-
ing exception was raised: Traceback (most recent call last): File “/home/connie/anaconda/lib/python2.7/site-
packages/Sphinx-1.3.1-py2.7.egg/sphinx/ext/autodoc.py”, line 385, in import_object __import__(self.modname)
File “/home/connie/Research/Code/RMG-Py/rmgpy/cantherm/__init__.py”, line 30, in <module> from .main im-
port CanTherm File “/home/connie/Research/Code/RMG-Py/rmgpy/cantherm/main.py”, line 48, in <module> from
rmgpy.cantherm.input import loadInputFile File “/home/connie/Research/Code/RMG-Py/rmgpy/cantherm/input.py”,
line 56, in <module> from rmgpy.pdep.configuration import Configuration File “/home/connie/Research/Code/RMG-
Py/rmgpy/pdep/__init__.py”, line 35, in <module> from .draw import * File “/home/connie/Research/Code/RMG-
Py/rmgpy/pdep/draw.py”, line 39, in <module> from rmgpy.molecule.draw import MoleculeDrawer, create-
NewSurface File “/home/connie/Research/Code/RMG-Py/rmgpy/molecule/draw.py”, line 54, in <module> from
rmgpy.qm.molecule import Geometry File “/home/connie/Research/Code/RMG-Py/rmgpy/qm/molecule.py”, line 19,
in <module> import qmdata File “/home/connie/Research/Code/RMG-Py/rmgpy/qm/qmdata.py”, line 4, in <module>
from rmgpy.quantity import Energy, Mass, Length, Frequency ImportError: cannot import name Energy

rmgpy.cantherm.StatMechJob

autodoc: failed to import class u’StatMechJob’ from module u’rmgpy.cantherm’; the following ex-
ception was raised: Traceback (most recent call last): File “/home/connie/anaconda/lib/python2.7/site-
packages/Sphinx-1.3.1-py2.7.egg/sphinx/ext/autodoc.py”, line 385, in import_object __import__(self.modname)
File “/home/connie/Research/Code/RMG-Py/rmgpy/cantherm/__init__.py”, line 30, in <module> from .main im-
port CanTherm File “/home/connie/Research/Code/RMG-Py/rmgpy/cantherm/main.py”, line 48, in <module> from
rmgpy.cantherm.input import loadInputFile File “/home/connie/Research/Code/RMG-Py/rmgpy/cantherm/input.py”,
line 56, in <module> from rmgpy.pdep.configuration import Configuration File “/home/connie/Research/Code/RMG-
Py/rmgpy/pdep/__init__.py”, line 35, in <module> from .draw import * File “/home/connie/Research/Code/RMG-
Py/rmgpy/pdep/draw.py”, line 39, in <module> from rmgpy.molecule.draw import MoleculeDrawer, create-
NewSurface File “/home/connie/Research/Code/RMG-Py/rmgpy/molecule/draw.py”, line 54, in <module> from

6 Chapter 1. RMG API Reference

RMG-Py API Reference, Release 1.0.3

rmgpy.qm.molecule import Geometry File “/home/connie/Research/Code/RMG-Py/rmgpy/qm/molecule.py”, line 19,
in <module> import qmdata File “/home/connie/Research/Code/RMG-Py/rmgpy/qm/qmdata.py”, line 4, in <module>
from rmgpy.quantity import Energy, Mass, Length, Frequency ImportError: cannot import name Energy

rmgpy.cantherm.ThermoJob

autodoc: failed to import class u’ThermoJob’ from module u’rmgpy.cantherm’; the following excep-
tion was raised: Traceback (most recent call last): File “/home/connie/anaconda/lib/python2.7/site-
packages/Sphinx-1.3.1-py2.7.egg/sphinx/ext/autodoc.py”, line 385, in import_object __import__(self.modname)
File “/home/connie/Research/Code/RMG-Py/rmgpy/cantherm/__init__.py”, line 30, in <module> from .main import
CanTherm File “/home/connie/Research/Code/RMG-Py/rmgpy/cantherm/main.py”, line 48, in <module> from
rmgpy.cantherm.input import loadInputFile File “/home/connie/Research/Code/RMG-Py/rmgpy/cantherm/input.py”,
line 56, in <module> from rmgpy.pdep.configuration import Configuration File “/home/connie/Research/Code/RMG-
Py/rmgpy/pdep/__init__.py”, line 35, in <module> from .draw import * File “/home/connie/Research/Code/RMG-
Py/rmgpy/pdep/draw.py”, line 39, in <module> from rmgpy.molecule.draw import MoleculeDrawer, create-
NewSurface File “/home/connie/Research/Code/RMG-Py/rmgpy/molecule/draw.py”, line 54, in <module> from
rmgpy.qm.molecule import Geometry File “/home/connie/Research/Code/RMG-Py/rmgpy/qm/molecule.py”, line 19,
in <module> import qmdata File “/home/connie/Research/Code/RMG-Py/rmgpy/qm/qmdata.py”, line 4, in <module>
from rmgpy.quantity import Energy, Mass, Length, Frequency ImportError: cannot import name Energy

1.2 Chemkin files (rmgpy.chemkin)

The rmgpy.chemkin module contains functions for reading and writing of Chemkin and Chemkin-like files.

1.2.1 Reading Chemkin files

Function Description
loadChemkinFile() Load a reaction mechanism from a Chemkin file
loadSpeciesDictionary() Load a species dictionary from a file
loadTransportFile() Load a Chemkin transport properties file
readKineticsEntry() Read a single reaction entry from a Chemkin file
readReactionComments() Read the comments associated with a reaction entry
readReactionsBlock() Read the reactions block of a Chemkin file
readThermoEntry() Read a single thermodynamics entry from a Chemkin file
removeCommentFromLine() Remove comment text from a line of a Chemkin file or species dictionary

1.2.2 Writing Chemkin files

Function Description
saveChemkinFile() Save a reaction mechanism to a Chemkin file
saveSpeciesDictionary() Save a species dictionary to a file
saveTransportFile() Save a Chemkin transport properties file
saveHTMLFile() Save an HTML file representing a Chemkin mechanism
saveJavaKineticsLibrary() Save a mechanism to a (Chemkin-like) kinetics library for RMG-Java
getSpeciesIdentifier() Return the Chemkin-valid identifier for a given species
markDuplicateReactions() Find and mark all duplicate reactions in a mechanism
writeKineticsEntry() Write a single reaction entry to a Chemkin file
writeThermoEntry() Write a single thermodynamics entry to a Chemkin file

1.2. Chemkin files (rmgpy.chemkin) 7

RMG-Py API Reference, Release 1.0.3

1.2.3 Exceptions

Exception Description
ChemkinError Raised when an error occurs while working with a Chemkin file

Reading Chemkin files

Main functions

autodoc: failed to import function u’loadChemkinFile’ from module u’rmgpy.chemkin’; the following ex-
ception was raised: Traceback (most recent call last): File “/home/connie/anaconda/lib/python2.7/site-
packages/Sphinx-1.3.1-py2.7.egg/sphinx/ext/autodoc.py”, line 385, in import_object __import__(self.modname)
File “/home/connie/Research/Code/RMG-Py/rmgpy/chemkin.py”, line 44, in <module> from rmgpy.rmg.model
import Species File “/home/connie/Research/Code/RMG-Py/rmgpy/rmg/model.py”, line 44, in <module> from
rmgpy.quantity import Quantity ImportError: cannot import name Quantity

autodoc: failed to import function u’loadSpeciesDictionary’ from module u’rmgpy.chemkin’; the follow-
ing exception was raised: Traceback (most recent call last): File “/home/connie/anaconda/lib/python2.7/site-
packages/Sphinx-1.3.1-py2.7.egg/sphinx/ext/autodoc.py”, line 385, in import_object __import__(self.modname)
File “/home/connie/Research/Code/RMG-Py/rmgpy/chemkin.py”, line 44, in <module> from rmgpy.rmg.model
import Species File “/home/connie/Research/Code/RMG-Py/rmgpy/rmg/model.py”, line 44, in <module> from
rmgpy.quantity import Quantity ImportError: cannot import name Quantity

autodoc: failed to import function u’loadTransportFile’ from module u’rmgpy.chemkin’; the following ex-
ception was raised: Traceback (most recent call last): File “/home/connie/anaconda/lib/python2.7/site-
packages/Sphinx-1.3.1-py2.7.egg/sphinx/ext/autodoc.py”, line 385, in import_object __import__(self.modname)
File “/home/connie/Research/Code/RMG-Py/rmgpy/chemkin.py”, line 44, in <module> from rmgpy.rmg.model
import Species File “/home/connie/Research/Code/RMG-Py/rmgpy/rmg/model.py”, line 44, in <module> from
rmgpy.quantity import Quantity ImportError: cannot import name Quantity

Helper functions

autodoc: failed to import function u’readKineticsEntry’ from module u’rmgpy.chemkin’; the following
exception was raised: Traceback (most recent call last): File “/home/connie/anaconda/lib/python2.7/site-
packages/Sphinx-1.3.1-py2.7.egg/sphinx/ext/autodoc.py”, line 385, in import_object __import__(self.modname)
File “/home/connie/Research/Code/RMG-Py/rmgpy/chemkin.py”, line 44, in <module> from rmgpy.rmg.model
import Species File “/home/connie/Research/Code/RMG-Py/rmgpy/rmg/model.py”, line 44, in <module> from
rmgpy.quantity import Quantity ImportError: cannot import name Quantity

autodoc: failed to import function u’readReactionComments’ from module u’rmgpy.chemkin’; the follow-
ing exception was raised: Traceback (most recent call last): File “/home/connie/anaconda/lib/python2.7/site-
packages/Sphinx-1.3.1-py2.7.egg/sphinx/ext/autodoc.py”, line 385, in import_object __import__(self.modname)
File “/home/connie/Research/Code/RMG-Py/rmgpy/chemkin.py”, line 44, in <module> from rmgpy.rmg.model
import Species File “/home/connie/Research/Code/RMG-Py/rmgpy/rmg/model.py”, line 44, in <module> from
rmgpy.quantity import Quantity ImportError: cannot import name Quantity

autodoc: failed to import function u’readReactionsBlock’ from module u’rmgpy.chemkin’; the following
exception was raised: Traceback (most recent call last): File “/home/connie/anaconda/lib/python2.7/site-
packages/Sphinx-1.3.1-py2.7.egg/sphinx/ext/autodoc.py”, line 385, in import_object __import__(self.modname)
File “/home/connie/Research/Code/RMG-Py/rmgpy/chemkin.py”, line 44, in <module> from rmgpy.rmg.model
import Species File “/home/connie/Research/Code/RMG-Py/rmgpy/rmg/model.py”, line 44, in <module> from
rmgpy.quantity import Quantity ImportError: cannot import name Quantity

8 Chapter 1. RMG API Reference

RMG-Py API Reference, Release 1.0.3

autodoc: failed to import function u’readThermoEntry’ from module u’rmgpy.chemkin’; the following ex-
ception was raised: Traceback (most recent call last): File “/home/connie/anaconda/lib/python2.7/site-
packages/Sphinx-1.3.1-py2.7.egg/sphinx/ext/autodoc.py”, line 385, in import_object __import__(self.modname)
File “/home/connie/Research/Code/RMG-Py/rmgpy/chemkin.py”, line 44, in <module> from rmgpy.rmg.model
import Species File “/home/connie/Research/Code/RMG-Py/rmgpy/rmg/model.py”, line 44, in <module> from
rmgpy.quantity import Quantity ImportError: cannot import name Quantity

autodoc: failed to import function u’removeCommentFromLine’ from module u’rmgpy.chemkin’; the follow-
ing exception was raised: Traceback (most recent call last): File “/home/connie/anaconda/lib/python2.7/site-
packages/Sphinx-1.3.1-py2.7.egg/sphinx/ext/autodoc.py”, line 385, in import_object __import__(self.modname)
File “/home/connie/Research/Code/RMG-Py/rmgpy/chemkin.py”, line 44, in <module> from rmgpy.rmg.model
import Species File “/home/connie/Research/Code/RMG-Py/rmgpy/rmg/model.py”, line 44, in <module> from
rmgpy.quantity import Quantity ImportError: cannot import name Quantity

Writing Chemkin files

Main functions

autodoc: failed to import function u’saveChemkinFile’ from module u’rmgpy.chemkin’; the following ex-
ception was raised: Traceback (most recent call last): File “/home/connie/anaconda/lib/python2.7/site-
packages/Sphinx-1.3.1-py2.7.egg/sphinx/ext/autodoc.py”, line 385, in import_object __import__(self.modname)
File “/home/connie/Research/Code/RMG-Py/rmgpy/chemkin.py”, line 44, in <module> from rmgpy.rmg.model
import Species File “/home/connie/Research/Code/RMG-Py/rmgpy/rmg/model.py”, line 44, in <module> from
rmgpy.quantity import Quantity ImportError: cannot import name Quantity

autodoc: failed to import function u’saveSpeciesDictionary’ from module u’rmgpy.chemkin’; the follow-
ing exception was raised: Traceback (most recent call last): File “/home/connie/anaconda/lib/python2.7/site-
packages/Sphinx-1.3.1-py2.7.egg/sphinx/ext/autodoc.py”, line 385, in import_object __import__(self.modname)
File “/home/connie/Research/Code/RMG-Py/rmgpy/chemkin.py”, line 44, in <module> from rmgpy.rmg.model
import Species File “/home/connie/Research/Code/RMG-Py/rmgpy/rmg/model.py”, line 44, in <module> from
rmgpy.quantity import Quantity ImportError: cannot import name Quantity

autodoc: failed to import function u’saveTransportFile’ from module u’rmgpy.chemkin’; the following ex-
ception was raised: Traceback (most recent call last): File “/home/connie/anaconda/lib/python2.7/site-
packages/Sphinx-1.3.1-py2.7.egg/sphinx/ext/autodoc.py”, line 385, in import_object __import__(self.modname)
File “/home/connie/Research/Code/RMG-Py/rmgpy/chemkin.py”, line 44, in <module> from rmgpy.rmg.model
import Species File “/home/connie/Research/Code/RMG-Py/rmgpy/rmg/model.py”, line 44, in <module> from
rmgpy.quantity import Quantity ImportError: cannot import name Quantity

autodoc: failed to import function u’saveHTMLFile’ from module u’rmgpy.chemkin’; the following ex-
ception was raised: Traceback (most recent call last): File “/home/connie/anaconda/lib/python2.7/site-
packages/Sphinx-1.3.1-py2.7.egg/sphinx/ext/autodoc.py”, line 385, in import_object __import__(self.modname)
File “/home/connie/Research/Code/RMG-Py/rmgpy/chemkin.py”, line 44, in <module> from rmgpy.rmg.model
import Species File “/home/connie/Research/Code/RMG-Py/rmgpy/rmg/model.py”, line 44, in <module> from
rmgpy.quantity import Quantity ImportError: cannot import name Quantity

autodoc: failed to import function u’saveJavaKineticsLibrary’ from module u’rmgpy.chemkin’; the follow-
ing exception was raised: Traceback (most recent call last): File “/home/connie/anaconda/lib/python2.7/site-
packages/Sphinx-1.3.1-py2.7.egg/sphinx/ext/autodoc.py”, line 385, in import_object __import__(self.modname)
File “/home/connie/Research/Code/RMG-Py/rmgpy/chemkin.py”, line 44, in <module> from rmgpy.rmg.model
import Species File “/home/connie/Research/Code/RMG-Py/rmgpy/rmg/model.py”, line 44, in <module> from
rmgpy.quantity import Quantity ImportError: cannot import name Quantity

1.2. Chemkin files (rmgpy.chemkin) 9

RMG-Py API Reference, Release 1.0.3

Helper functions

autodoc: failed to import function u’getSpeciesIdentifier’ from module u’rmgpy.chemkin’; the following
exception was raised: Traceback (most recent call last): File “/home/connie/anaconda/lib/python2.7/site-
packages/Sphinx-1.3.1-py2.7.egg/sphinx/ext/autodoc.py”, line 385, in import_object __import__(self.modname)
File “/home/connie/Research/Code/RMG-Py/rmgpy/chemkin.py”, line 44, in <module> from rmgpy.rmg.model
import Species File “/home/connie/Research/Code/RMG-Py/rmgpy/rmg/model.py”, line 44, in <module> from
rmgpy.quantity import Quantity ImportError: cannot import name Quantity

autodoc: failed to import function u’writeKineticsEntry’ from module u’rmgpy.chemkin’; the following
exception was raised: Traceback (most recent call last): File “/home/connie/anaconda/lib/python2.7/site-
packages/Sphinx-1.3.1-py2.7.egg/sphinx/ext/autodoc.py”, line 385, in import_object __import__(self.modname)
File “/home/connie/Research/Code/RMG-Py/rmgpy/chemkin.py”, line 44, in <module> from rmgpy.rmg.model
import Species File “/home/connie/Research/Code/RMG-Py/rmgpy/rmg/model.py”, line 44, in <module> from
rmgpy.quantity import Quantity ImportError: cannot import name Quantity

autodoc: failed to import function u’writeThermoEntry’ from module u’rmgpy.chemkin’; the following
exception was raised: Traceback (most recent call last): File “/home/connie/anaconda/lib/python2.7/site-
packages/Sphinx-1.3.1-py2.7.egg/sphinx/ext/autodoc.py”, line 385, in import_object __import__(self.modname)
File “/home/connie/Research/Code/RMG-Py/rmgpy/chemkin.py”, line 44, in <module> from rmgpy.rmg.model
import Species File “/home/connie/Research/Code/RMG-Py/rmgpy/rmg/model.py”, line 44, in <module> from
rmgpy.quantity import Quantity ImportError: cannot import name Quantity

autodoc: failed to import function u’markDuplicateReactions’ from module u’rmgpy.chemkin’; the follow-
ing exception was raised: Traceback (most recent call last): File “/home/connie/anaconda/lib/python2.7/site-
packages/Sphinx-1.3.1-py2.7.egg/sphinx/ext/autodoc.py”, line 385, in import_object __import__(self.modname)
File “/home/connie/Research/Code/RMG-Py/rmgpy/chemkin.py”, line 44, in <module> from rmgpy.rmg.model
import Species File “/home/connie/Research/Code/RMG-Py/rmgpy/rmg/model.py”, line 44, in <module> from
rmgpy.quantity import Quantity ImportError: cannot import name Quantity

1.3 Physical constants (rmgpy.constants)

The rmgpy.constants module contains module-level variables defining relevant physical constants relevant in
chemistry applications. The recommended method of importing this module is

import rmgpy.constants as constants

so as to not place the constants in the importing module’s global namespace.

The constants defined in this module are listed in the table below:

10 Chapter 1. RMG API Reference

RMG-Py API Reference, Release 1.0.3

Table 1.1: Physical constants defined in the rmgpy.constants module

Symbol Constant Value Description
𝐸h E_h 4.35974434 × 10−18 J Hartree energy
𝐹 F 96485.3365 C/mol Faraday constant
𝐺 G 6.67384 × 10−11 m3/kg · s2 Newtonian gravitational constant
𝑁A Na 6.02214179 × 1023 mol−1 Avogadro constant
𝑅 R 8.314472 J/mol · K gas law constant
𝑎0 a0 5.2917721092 × 10−11 m Bohr radius
𝑐 c 299792458 m/s speed of light in a vacuum
𝑒 e 1.602176565 × 10−19 C elementary charge
𝑔 g 9.80665 m/s2 standard acceleration due to gravity
ℎ h 6.62606896 × 10−34 J · s Planck constant
ℎ̄ hbar 1.054571726 × 10−34 J · s reduced Planck constant
𝑘B kB 1.3806504 × 10−23 J/K Boltzmann constant
𝑚e m_e 9.10938291 × 10−31 kg electron rest mass
𝑚n m_n 1.674927351 × 10−27 kg neutron rest mass
𝑚p m_p 1.672621777 × 10−27 kg proton rest mass
𝑚u amu 1.660538921 × 10−27 kg atomic mass unit
𝜋 pi 3.14159 . . .

1.4 Database (rmgpy.data)

1.4.1 General classes

Class/Function Description
Entry An entry in a database
Database A database of entries
LogicNode A node in a database that represents a logical collection of entries
LogicAnd A logical collection of entries, where all entries in the collection must match
LogicOr A logical collection of entries, where any entry in the collection can match
makeLogicNode() Create a LogicNode based on a string representation

1.4.2 Thermodynamics database

Class Description
ThermoDepository A depository of all thermodynamics parameters for one or more species
ThermoLibrary A library of curated thermodynamics parameters for one or more species
ThermoGroups A representation of a portion of a database for implementing the Benson group additivity

method
ThermoDatabase An entire thermodynamics database, including depositories, libraries, and groups

1.4. Database (rmgpy.data) 11

RMG-Py API Reference, Release 1.0.3

1.4.3 Kinetics database

Class Description
DepositoryReaction A reaction with kinetics determined from querying a kinetics depository
LibraryReaction A reaction with kinetics determined from querying a kinetics library
TemplateReaction A reaction with kinetics determined from querying a kinetics group additivity or rate

rules method
ReactionRecipe A sequence of actions that represent the process of a chemical reaction
KineticsDepository A depository of all kinetics parameters for one or more reactions
KineticsLibrary A library of curated kinetics parameters for one or more reactions
KineticsGroups A set of group additivity values for a reaction family, organized in a tree
KineticsRules A set of rate rules for a reaction family
KineticsFamily A kinetics database for one reaction family, including depositories, libraries, groups, and

rules
KineticsDatabase A kinetics database for all reaction families, including depositories, libraries, groups, and

rules

1.4.4 Statistical mechanics database

Class Description
GroupFrequencies A set of characteristic frequencies for a group in the frequency database
StatmechDepository A depository of all statistical mechanics parameters for one or more species
StatmechLibrary A library of curated statistical mechanics parameters for one or more species
StatmechGroups A set of characteristic frequencies for various functional groups, organized in a tree
StatmechDatabase An entire statistical mechanics database, including depositories, libraries, and groups

1.4.5 Statistical mechanics fitting

Class/Function Description
DirectFit DQED class for fitting a small number of vibrational frequencies and hindered rotors
PseudoFit DQED class for fitting a large number of vibrational frequencies and hindered rotors by

assuming degeneracies for both
PseudoRotorFit DQED class for fitting a moderate number of vibrational frequencies and hindered

rotors by assuming degeneracies for hindered rotors only
fitStatmechDirect()Directly fit a small number of vibrational frequencies and hindered rotors
fitStatmechPseudo() Fit a large number of vibrational frequencies and hindered rotors by assuming

degeneracies for both
fitStatmechPseudoRotors()Fit a moderate number of vibrational frequencies and hindered rotors by assuming

degeneracies for hindered rotors only
fitStatmechToHeatCapacity()Fit vibrational and torsional degrees of freedom to heat capacity data

1.4.6 Exceptions

Exception Description
DatabaseError Raised when an error occurs while working with the database
InvalidActionError Raised when an error occurs while applying a reaction recipe
UndeterminableKineticsErrorRaised when the kinetics of a given reaction cannot be determined
StatmechFitError Raised when an error occurs while fitting internal degrees of freedom to heat

capacity data

12 Chapter 1. RMG API Reference

RMG-Py API Reference, Release 1.0.3

rmgpy.data.base.Database

class rmgpy.data.base.Database(entries=None, top=None, label=’‘, name=’‘, solvent=None, short-
Desc=’‘, longDesc=’‘)

An RMG-style database, consisting of a dictionary of entries (associating items with data), and an optional tree
for assigning a hierarchy to the entries. The use of the tree enables the database to be easily extensible as more
parameters are available.

In constructing the tree, it is important to develop a hierarchy such that siblings are mutually exclusive, to
ensure that there is a unique path of descent down a tree for each structure. If non-mutually exclusive siblings
are encountered, a warning is raised and the parent of the siblings is returned.

There is no requirement that the children of a node span the range of more specific permutations of the parent.
As the database gets more complex, attempting to maintain complete sets of children for each parent in each
database rapidly becomes untenable, and is against the spirit of extensibility behind the database development.

You must derive from this class and implement the loadEntry(), saveEntry(),
processOldLibraryEntry(), and generateOldLibraryEntry() methods in order to load and
save from the new and old database formats.

ancestors(node)
Returns all the ancestors of a node, climbing up the tree to the top.

descendTree(structure, atoms, root=None, strict=False)
Descend the tree in search of the functional group node that best matches the local structure around atoms
in structure.

If root=None then uses the first matching top node.

Returns None if there is no matching root.

Set strict to True if all labels in final matched node must match that of the structure. This is used in
kinetics groups to find the correct reaction template, but not generally used in other GAVs due to species
generally not being prelabeled.

descendants(node)
Returns all the descendants of a node, climbing down the tree to the bottom.

generateOldTree(entries, level)
Generate a multi-line string representation of the current tree using the old-style syntax.

getEntriesToSave()
Return a sorted list of the entries in this database that should be saved to the output file.

getSpecies(path)
Load the dictionary containing all of the species in a kinetics library or depository.

load(path, local_context=None, global_context=None)
Load an RMG-style database from the file at location path on disk. The parameters local_context and
global_context are used to provide specialized mapping of identifiers in the input file to corresponding
functions to evaluate. This method will automatically add a few identifiers required by all data entries, so
you don’t need to provide these.

loadOld(dictstr, treestr, libstr, numParameters, numLabels=1, pattern=True)
Load a dictionary-tree-library based database. The database is stored in three files: dictstr is the path to
the dictionary, treestr to the tree, and libstr to the library. The tree is optional, and should be set to ‘’ if not
desired.

loadOldDictionary(path, pattern)
Parse an old-style RMG database dictionary located at path. An RMG dictionary is a list of key-value
pairs of a one-line string key and a multi-line string value. Each record is separated by at least one empty

1.4. Database (rmgpy.data) 13

RMG-Py API Reference, Release 1.0.3

line. Returns a dict object with the values converted to Molecule or Group objects depending on the
value of pattern.

loadOldLibrary(path, numParameters, numLabels=1)
Parse an RMG database library located at path.

loadOldTree(path)
Parse an old-style RMG database tree located at path. An RMG tree is an n-ary tree representing the
hierarchy of items in the dictionary.

matchNodeToChild(parentNode, childNode)
Return True if parentNode is a parent of childNode. Otherwise, return False. Both parentNode and
childNode must be Entry types with items containing Group or LogicNode types. If parentNode and
childNode are identical, the function will also return False.

matchNodeToNode(node, nodeOther)
Return True if node and nodeOther are identical. Otherwise, return False. Both node and nodeOther must
be Entry types with items containing Group or LogicNode types.

matchNodeToStructure(node, structure, atoms, strict=False)
Return True if the structure centered at atom matches the structure at node in the dictionary. The structure
at node should have atoms with the appropriate labels because they are set on loading and never change.
However, the atoms in structure may not have the correct labels, hence the atoms parameter. The atoms
parameter may include extra labels, and so we only require that every labeled atom in the functional group
represented by node has an equivalent labeled atom in structure.

Matching to structure is more strict than to node. All labels in structure must be found in node. However
the reverse is not true, unless strict is set to True.

At-
tribute

Description

node Either an Entry or a key in the self.entries dictionary which has a Group or LogicNode as
its Entry.item

struc-
ture

A Group or a Molecule

atoms Dictionary of {label: atom} in the structure. A possible dictionary is the one produced by
structure.getLabeledAtoms()

strict If set to True, ensures that all the node’s atomLabels are matched by in the structure

parseOldLibrary(path, numParameters, numLabels=1)
Parse an RMG database library located at path, returning the loaded entries (rather than storing them in
the database). This method does not discard duplicate entries.

save(path)
Save the current database to the file at location path on disk.

saveDictionary(path)
Extract species from all entries associated with a kinetics library or depository and save them to the path
given.

saveOld(dictstr, treestr, libstr)
Save the current database to a set of text files using the old-style syntax.

saveOldDictionary(path)
Save the current database dictionary to a text file using the old-style syntax.

saveOldLibrary(path)
Save the current database library to a text file using the old-style syntax.

saveOldTree(path)
Save the current database tree to a text file using the old-style syntax.

14 Chapter 1. RMG API Reference

RMG-Py API Reference, Release 1.0.3

rmgpy.data.kinetics.DepositoryReaction

autodoc: failed to import class u’DepositoryReaction’ from module u’rmgpy.data.kinetics’; the following
exception was raised: Traceback (most recent call last): File “/home/connie/anaconda/lib/python2.7/site-
packages/Sphinx-1.3.1-py2.7.egg/sphinx/ext/autodoc.py”, line 385, in import_object __import__(self.modname) File
“/home/connie/Research/Code/RMG-Py/rmgpy/data/kinetics/__init__.py”, line 32, in <module> from .common im-
port * File “/home/connie/Research/Code/RMG-Py/rmgpy/data/kinetics/common.py”, line 37, in <module> from
rmgpy.reaction import Reaction, ReactionError ImportError: cannot import name ReactionError

rmgpy.data.base.Entry

class rmgpy.data.base.Entry(index=-1, label=’‘, item=None, parent=None, children=None, data=None,
reference=None, referenceType=’‘, shortDesc=’‘, longDesc=’‘,
rank=None)

A class for representing individual records in an RMG database. Each entry in the database associates a chemical
item (generally a species, functional group, or reaction) with a piece of data corresponding to that item. A
significant amount of metadata can also be stored with each entry.

The attributes are:

Attribute Description
index A unique nonnegative integer index for the entry
label A unique string identifier for the entry (or ‘’ if not used)
item The item that this entry represents
parent The parent of the entry in the hierarchy (or None if not used)
children A list of the children of the entry in the hierarchy (or None if not used)
data The data to associate with the item
reference A Reference object containing bibliographic reference information to the source of the

data
reference-
Type

The way the data was determined: ’theoretical’, ’experimental’, or ’review’

shortDesc A brief (one-line) description of the data
longDesc A long, verbose description of the data
rank An integer indicating the degree of confidence in the entry data, or None if not used

rmgpy.data.statmech.GroupFrequencies

class rmgpy.data.statmech.GroupFrequencies(frequencies=None, symmetry=1)
Represent a set of characteristic frequencies for a group in the frequency database. These frequencies are stored
in the frequencies attribute, which is a list of tuples, where each tuple defines a lower bound, upper bound,
and degeneracy. Each group also has a symmetry correction.

generateFrequencies(count=1)
Generate a set of frequencies. For each characteristic frequency group, the number of frequencies returned
is degeneracy * count, and these are distributed linearly between the lower and upper bounds.

rmgpy.data.kinetics.KineticsDatabase

autodoc: failed to import class u’KineticsDatabase’ from module u’rmgpy.data.kinetics’; the following
exception was raised: Traceback (most recent call last): File “/home/connie/anaconda/lib/python2.7/site-
packages/Sphinx-1.3.1-py2.7.egg/sphinx/ext/autodoc.py”, line 385, in import_object __import__(self.modname) File

1.4. Database (rmgpy.data) 15

RMG-Py API Reference, Release 1.0.3

“/home/connie/Research/Code/RMG-Py/rmgpy/data/kinetics/__init__.py”, line 32, in <module> from .common im-
port * File “/home/connie/Research/Code/RMG-Py/rmgpy/data/kinetics/common.py”, line 37, in <module> from
rmgpy.reaction import Reaction, ReactionError ImportError: cannot import name ReactionError

rmgpy.data.kinetics.KineticsDepository

autodoc: failed to import class u’KineticsDepository’ from module u’rmgpy.data.kinetics’; the following
exception was raised: Traceback (most recent call last): File “/home/connie/anaconda/lib/python2.7/site-
packages/Sphinx-1.3.1-py2.7.egg/sphinx/ext/autodoc.py”, line 385, in import_object __import__(self.modname) File
“/home/connie/Research/Code/RMG-Py/rmgpy/data/kinetics/__init__.py”, line 32, in <module> from .common im-
port * File “/home/connie/Research/Code/RMG-Py/rmgpy/data/kinetics/common.py”, line 37, in <module> from
rmgpy.reaction import Reaction, ReactionError ImportError: cannot import name ReactionError

rmgpy.data.kinetics.KineticsFamily

autodoc: failed to import class u’KineticsFamily’ from module u’rmgpy.data.kinetics’; the following ex-
ception was raised: Traceback (most recent call last): File “/home/connie/anaconda/lib/python2.7/site-
packages/Sphinx-1.3.1-py2.7.egg/sphinx/ext/autodoc.py”, line 385, in import_object __import__(self.modname) File
“/home/connie/Research/Code/RMG-Py/rmgpy/data/kinetics/__init__.py”, line 32, in <module> from .common im-
port * File “/home/connie/Research/Code/RMG-Py/rmgpy/data/kinetics/common.py”, line 37, in <module> from
rmgpy.reaction import Reaction, ReactionError ImportError: cannot import name ReactionError

rmgpy.data.kinetics.KineticsGroups

autodoc: failed to import class u’KineticsGroups’ from module u’rmgpy.data.kinetics’; the following ex-
ception was raised: Traceback (most recent call last): File “/home/connie/anaconda/lib/python2.7/site-
packages/Sphinx-1.3.1-py2.7.egg/sphinx/ext/autodoc.py”, line 385, in import_object __import__(self.modname) File
“/home/connie/Research/Code/RMG-Py/rmgpy/data/kinetics/__init__.py”, line 32, in <module> from .common im-
port * File “/home/connie/Research/Code/RMG-Py/rmgpy/data/kinetics/common.py”, line 37, in <module> from
rmgpy.reaction import Reaction, ReactionError ImportError: cannot import name ReactionError

rmgpy.data.kinetics.KineticsLibrary

autodoc: failed to import class u’KineticsLibrary’ from module u’rmgpy.data.kinetics’; the following ex-
ception was raised: Traceback (most recent call last): File “/home/connie/anaconda/lib/python2.7/site-
packages/Sphinx-1.3.1-py2.7.egg/sphinx/ext/autodoc.py”, line 385, in import_object __import__(self.modname) File
“/home/connie/Research/Code/RMG-Py/rmgpy/data/kinetics/__init__.py”, line 32, in <module> from .common im-
port * File “/home/connie/Research/Code/RMG-Py/rmgpy/data/kinetics/common.py”, line 37, in <module> from
rmgpy.reaction import Reaction, ReactionError ImportError: cannot import name ReactionError

rmgpy.data.kinetics.KineticsRules

autodoc: failed to import class u’KineticsRules’ from module u’rmgpy.data.kinetics’; the following ex-
ception was raised: Traceback (most recent call last): File “/home/connie/anaconda/lib/python2.7/site-
packages/Sphinx-1.3.1-py2.7.egg/sphinx/ext/autodoc.py”, line 385, in import_object __import__(self.modname) File
“/home/connie/Research/Code/RMG-Py/rmgpy/data/kinetics/__init__.py”, line 32, in <module> from .common im-
port * File “/home/connie/Research/Code/RMG-Py/rmgpy/data/kinetics/common.py”, line 37, in <module> from
rmgpy.reaction import Reaction, ReactionError ImportError: cannot import name ReactionError

16 Chapter 1. RMG API Reference

RMG-Py API Reference, Release 1.0.3

rmgpy.data.kinetics.LibraryReaction

autodoc: failed to import class u’LibraryReaction’ from module u’rmgpy.data.kinetics’; the following ex-
ception was raised: Traceback (most recent call last): File “/home/connie/anaconda/lib/python2.7/site-
packages/Sphinx-1.3.1-py2.7.egg/sphinx/ext/autodoc.py”, line 385, in import_object __import__(self.modname) File
“/home/connie/Research/Code/RMG-Py/rmgpy/data/kinetics/__init__.py”, line 32, in <module> from .common im-
port * File “/home/connie/Research/Code/RMG-Py/rmgpy/data/kinetics/common.py”, line 37, in <module> from
rmgpy.reaction import Reaction, ReactionError ImportError: cannot import name ReactionError

rmgpy.data.base.LogicNode

class rmgpy.data.base.LogicNode(items, invert)
A base class for AND and OR logic nodes.

class rmgpy.data.base.LogicAnd(items, invert)
A logical AND node. Structure must match all components.

matchToStructure(database, structure, atoms, strict=False)
Does this node in the given database match the given structure with the labeled atoms?

Setting strict to True makes enforces matching of atomLabels in the structure to every atomLabel in the
node.

class rmgpy.data.base.LogicOr(items, invert)
A logical OR node. Structure can match any component.

Initialize with a list of component items and a boolean instruction to invert the answer.

getPossibleStructures(entries)
Return a list of the possible structures below this node.

matchLogicOr(other)
Is other the same LogicOr group as self?

matchToStructure(database, structure, atoms, strict=False)
Does this node in the given database match the given structure with the labeled atoms?

Setting strict to True makes enforces matching of atomLabels in the structure to every atomLabel in the
node.

rmgpy.data.base.makeLogicNode(string)
Creates and returns a node in the tree which is a logic node.

String should be of the form:

•OR{}

•AND{}

•NOT OR{}

•NOT AND{}

And the returned object will be of class LogicOr or LogicAnd

rmgpy.data.kinetics.ReactionRecipe

autodoc: failed to import class u’ReactionRecipe’ from module u’rmgpy.data.kinetics’; the following ex-
ception was raised: Traceback (most recent call last): File “/home/connie/anaconda/lib/python2.7/site-
packages/Sphinx-1.3.1-py2.7.egg/sphinx/ext/autodoc.py”, line 385, in import_object __import__(self.modname) File

1.4. Database (rmgpy.data) 17

RMG-Py API Reference, Release 1.0.3

“/home/connie/Research/Code/RMG-Py/rmgpy/data/kinetics/__init__.py”, line 32, in <module> from .common im-
port * File “/home/connie/Research/Code/RMG-Py/rmgpy/data/kinetics/common.py”, line 37, in <module> from
rmgpy.reaction import Reaction, ReactionError ImportError: cannot import name ReactionError

rmgpy.data.statmech.StatmechDatabase

class rmgpy.data.statmech.StatmechDatabase
A class for working with the RMG statistical mechanics (frequencies) database.

getStatmechData(molecule, thermoModel=None)
Return the thermodynamic parameters for a given Molecule object molecule. This function first searches
the loaded libraries in order, returning the first match found, before falling back to estimation via group
additivity.

getStatmechDataFromDepository(molecule)
Return statmech data for the given Molecule object molecule by searching the entries in the depository.
Returns a list of tuples (statmechData, depository, entry).

getStatmechDataFromGroups(molecule, thermoModel)
Return statmech data for the given Molecule object molecule by estimating using characteristic group
frequencies and fitting the remaining internal modes to heat capacity data from the given thermo model
thermoModel. This always returns valid degrees of freedom data.

getStatmechDataFromLibrary(molecule, library)
Return statmech data for the given Molecule object molecule by searching the entries in the specified
StatmechLibrary object library. Returns None if no data was found.

load(path, libraries=None, depository=True)
Load the statmech database from the given path on disk, where path points to the top-level folder of the
thermo database.

loadDepository(path)
Load the statmech database from the given path on disk, where path points to the top-level folder of the
thermo database.

loadGroups(path)
Load the statmech database from the given path on disk, where path points to the top-level folder of the
thermo database.

loadLibraries(path, libraries=None)
Load the statmech database from the given path on disk, where path points to the top-level folder of the
thermo database.

loadOld(path)
Load the old RMG thermo database from the given path on disk, where path points to the top-level folder
of the old RMG database.

save(path)
Save the statmech database to the given path on disk, where path points to the top-level folder of the
statmech database.

saveDepository(path)
Save the statmech depository to the given path on disk, where path points to the top-level folder of the
statmech depository.

saveGroups(path)
Save the statmech groups to the given path on disk, where path points to the top-level folder of the statmech
groups.

18 Chapter 1. RMG API Reference

RMG-Py API Reference, Release 1.0.3

saveLibraries(path)
Save the statmech libraries to the given path on disk, where path points to the top-level folder of the
statmech libraries.

saveOld(path)
Save the old RMG thermo database to the given path on disk, where path points to the top-level folder of
the old RMG database.

rmgpy.data.statmech.StatmechDepository

class rmgpy.data.statmech.StatmechDepository(label=’‘, name=’‘, shortDesc=’‘, longDesc=’‘)
A class for working with the RMG statistical mechanics (frequencies) depository.

ancestors(node)
Returns all the ancestors of a node, climbing up the tree to the top.

descendTree(structure, atoms, root=None, strict=False)
Descend the tree in search of the functional group node that best matches the local structure around atoms
in structure.

If root=None then uses the first matching top node.

Returns None if there is no matching root.

Set strict to True if all labels in final matched node must match that of the structure. This is used in
kinetics groups to find the correct reaction template, but not generally used in other GAVs due to species
generally not being prelabeled.

descendants(node)
Returns all the descendants of a node, climbing down the tree to the bottom.

generateOldTree(entries, level)
Generate a multi-line string representation of the current tree using the old-style syntax.

getEntriesToSave()
Return a sorted list of the entries in this database that should be saved to the output file.

getSpecies(path)
Load the dictionary containing all of the species in a kinetics library or depository.

load(path, local_context=None, global_context=None)
Load an RMG-style database from the file at location path on disk. The parameters local_context and
global_context are used to provide specialized mapping of identifiers in the input file to corresponding
functions to evaluate. This method will automatically add a few identifiers required by all data entries, so
you don’t need to provide these.

loadOld(dictstr, treestr, libstr, numParameters, numLabels=1, pattern=True)
Load a dictionary-tree-library based database. The database is stored in three files: dictstr is the path to
the dictionary, treestr to the tree, and libstr to the library. The tree is optional, and should be set to ‘’ if not
desired.

loadOldDictionary(path, pattern)
Parse an old-style RMG database dictionary located at path. An RMG dictionary is a list of key-value
pairs of a one-line string key and a multi-line string value. Each record is separated by at least one empty
line. Returns a dict object with the values converted to Molecule or Group objects depending on the
value of pattern.

loadOldLibrary(path, numParameters, numLabels=1)
Parse an RMG database library located at path.

1.4. Database (rmgpy.data) 19

RMG-Py API Reference, Release 1.0.3

loadOldTree(path)
Parse an old-style RMG database tree located at path. An RMG tree is an n-ary tree representing the
hierarchy of items in the dictionary.

matchNodeToChild(parentNode, childNode)
Return True if parentNode is a parent of childNode. Otherwise, return False. Both parentNode and
childNode must be Entry types with items containing Group or LogicNode types. If parentNode and
childNode are identical, the function will also return False.

matchNodeToNode(node, nodeOther)
Return True if node and nodeOther are identical. Otherwise, return False. Both node and nodeOther must
be Entry types with items containing Group or LogicNode types.

matchNodeToStructure(node, structure, atoms, strict=False)
Return True if the structure centered at atom matches the structure at node in the dictionary. The structure
at node should have atoms with the appropriate labels because they are set on loading and never change.
However, the atoms in structure may not have the correct labels, hence the atoms parameter. The atoms
parameter may include extra labels, and so we only require that every labeled atom in the functional group
represented by node has an equivalent labeled atom in structure.

Matching to structure is more strict than to node. All labels in structure must be found in node. However
the reverse is not true, unless strict is set to True.

At-
tribute

Description

node Either an Entry or a key in the self.entries dictionary which has a Group or LogicNode as
its Entry.item

struc-
ture

A Group or a Molecule

atoms Dictionary of {label: atom} in the structure. A possible dictionary is the one produced by
structure.getLabeledAtoms()

strict If set to True, ensures that all the node’s atomLabels are matched by in the structure

parseOldLibrary(path, numParameters, numLabels=1)
Parse an RMG database library located at path, returning the loaded entries (rather than storing them in
the database). This method does not discard duplicate entries.

save(path)
Save the current database to the file at location path on disk.

saveDictionary(path)
Extract species from all entries associated with a kinetics library or depository and save them to the path
given.

saveEntry(f, entry)
Write the given entry in the thermo database to the file object f.

saveOld(dictstr, treestr, libstr)
Save the current database to a set of text files using the old-style syntax.

saveOldDictionary(path)
Save the current database dictionary to a text file using the old-style syntax.

saveOldLibrary(path)
Save the current database library to a text file using the old-style syntax.

saveOldTree(path)
Save the current database tree to a text file using the old-style syntax.

20 Chapter 1. RMG API Reference

RMG-Py API Reference, Release 1.0.3

rmgpy.data.statmechfit

Fitting functions

rmgpy.data.statmechfit.fitStatmechToHeatCapacity(Tlist, Cvlist, Nvib, Nrot, molecule=None)
For a given set of dimensionless heat capacity data Cvlist corresponding to temperature list Tlist in K, fit Nvib
harmonic oscillator and Nrot hindered internal rotor modes. External and other previously-known modes should
have already been removed from Cvlist prior to calling this function. You must provide at least 7 values for
Cvlist.

This function returns a list containing the fitted vibrational frequencies in a HarmonicOscillator object and
the fitted 1D hindered rotors in HinderedRotor objects.

rmgpy.data.statmechfit.fitStatmechDirect(Tlist, Cvlist, Nvib, Nrot, molecule=None)
Fit Nvib harmonic oscillator and Nrot hindered internal rotor modes to the provided dimensionless heat capaci-
ties Cvlist at temperatures Tlist in K. This method assumes that there are enough heat capacity points provided
that the vibrational frequencies and hindered rotation frequency- barrier pairs can be fit directly.

rmgpy.data.statmechfit.fitStatmechPseudoRotors(Tlist, Cvlist, Nvib, Nrot, molecule=None)
Fit Nvib harmonic oscillator and Nrot hindered internal rotor modes to the provided dimensionless heat capac-
ities Cvlist at temperatures Tlist in K. This method assumes that there are enough heat capacity points pro-
vided that the vibrational frequencies can be fit directly, but the hindered rotors must be combined into a single
“pseudo-rotor”.

rmgpy.data.statmechfit.fitStatmechPseudo(Tlist, Cvlist, Nvib, Nrot, molecule=None)
Fit Nvib harmonic oscillator and Nrot hindered internal rotor modes to the provided dimensionless heat capac-
ities Cvlist at temperatures Tlist in K. This method assumes that there are relatively few heat capacity points
provided, so the vibrations must be combined into one real vibration and two “pseudo-vibrations” and the hin-
dered rotors must be combined into a single “pseudo-rotor”.

Helper functions

rmgpy.data.statmechfit.harmonicOscillator_heatCapacity(T, freq)
Return the heat capacity in J/mol*K at the given set of temperatures Tlist in K for the harmonic oscillator with
a frequency freq in cm^-1.

rmgpy.data.statmechfit.harmonicOscillator_d_heatCapacity_d_freq(T, freq)
Return the first derivative of the heat capacity with respect to the harmonic oscillator frequency in J/mol*K/cm^-
1 at the given set of temperatures Tlist in K, evaluated at the frequency freq in cm^-1.

rmgpy.data.statmechfit.hinderedRotor_heatCapacity(T, freq, barr)
Return the heat capacity in J/mol*K at the given set of temperatures Tlist in K for the 1D hindered rotor with a
frequency freq in cm^-1 and a barrier height barr in cm^-1.

rmgpy.data.statmechfit.hinderedRotor_d_heatCapacity_d_freq(T, freq, barr)
Return the first derivative of the heat capacity with respect to the hindered rotor frequency in J/mol*K/cm^-1 at
the given set of temperatures Tlist in K, evaluated at the frequency freq in cm^-1 and a barrier height barr in
cm^-1.

rmgpy.data.statmechfit.hinderedRotor_d_heatCapacity_d_barr(T, freq, barr)
Return the first derivative of the heat capacity with respect to the hindered rotor frequency in J/mol*K/cm^-1 at
the given set of temperatures Tlist in K, evaluated at the frequency freq in cm^-1 and a barrier height barr in
cm^-1.

1.4. Database (rmgpy.data) 21

RMG-Py API Reference, Release 1.0.3

Helper classes

class rmgpy.data.statmechfit.DirectFit(Tdata, Cvdata, Nvib, Nrot)
Class for fitting vibrational frequencies and hindered rotor frequency-barrier pairs for the case when there are
few enough oscillators and rotors that their values can be fit directly.

initialize()
Initialize the DQED solver. The required parameters are:

•Neq - The number of algebraic equations.

•Nvars - The number of unknown variables.

•Ncons - The number of constraint equations.

The optional parameters are:

•bounds - A list of 2-tuples giving the lower and upper bound for each unknown variable. Use None
if there is no bound in one or either direction. If provided, you must give bounds for every unknown
variable.

•tolf - The tolerance used for stopping when the norm of the residual has absolute length less than tolf,
i.e. ‖𝑓‖ ≤ 𝜖𝑓 .

•told - The tolerance used for stopping when changes to the unknown variables has absolute length less
than told, i.e. ‖∆𝑥⃗‖ ≤ 𝜖𝑑.

•tolx - The tolerance used for stopping when changes to the unknown variables has relative length less
than tolx, i.e. ‖∆𝑥⃗‖ ≤ 𝜖𝑥 · ‖𝑥⃗‖.

•maxIter - The maximum number of iterations to use

•verbose - True to have DQED print extra information about the solve, False to only see printed
output when the solver has an error.

solve()
Using the initial guess x0, return the least-squares solution to the set of nonlinear algebraic equations
defined by the evaluate() method of the derived class. This is the method that actually conducts the
call to DQED. Returns the solution vector and a flag indicating the status of the solve. The possible output
values of the flag are:

Value Meaning
2 The norm of the residual is zero; the solution vector is a root of the system
3 The bounds on the trust region are being encountered on each step; the solution vector may or

may not be a local minimum
4 The solution vector is a local minimum
5 A significant amount of noise or uncertainty has been observed in the residual; the solution

may or may not be a local minimum
6 The solution vector is only changing by small absolute amounts; the solution may or may not

be a local minimum
7 The solution vector is only changing by small relative amounts; the solution may or may not

be a local minimum
8 The maximum number of iterations has been reached; the solution is the best found, but may

or may not be a local minimum
9-18 An error occurred during the solve operation; the solution is not a local minimum

class rmgpy.data.statmechfit.PseudoRotorFit(Tdata, Cvdata, Nvib, Nrot)
Class for fitting vibrational frequencies and hindered rotor frequency-barrier pairs for the case when there are
too many oscillators and rotors for their values can be fit directly, and where collapsing the rotors into a single
pseudo-rotor allows for fitting the vibrational frequencies directly.

22 Chapter 1. RMG API Reference

RMG-Py API Reference, Release 1.0.3

initialize()
Initialize the DQED solver. The required parameters are:

•Neq - The number of algebraic equations.

•Nvars - The number of unknown variables.

•Ncons - The number of constraint equations.

The optional parameters are:

•bounds - A list of 2-tuples giving the lower and upper bound for each unknown variable. Use None
if there is no bound in one or either direction. If provided, you must give bounds for every unknown
variable.

•tolf - The tolerance used for stopping when the norm of the residual has absolute length less than tolf,
i.e. ‖𝑓‖ ≤ 𝜖𝑓 .

•told - The tolerance used for stopping when changes to the unknown variables has absolute length less
than told, i.e. ‖∆𝑥⃗‖ ≤ 𝜖𝑑.

•tolx - The tolerance used for stopping when changes to the unknown variables has relative length less
than tolx, i.e. ‖∆𝑥⃗‖ ≤ 𝜖𝑥 · ‖𝑥⃗‖.

•maxIter - The maximum number of iterations to use

•verbose - True to have DQED print extra information about the solve, False to only see printed
output when the solver has an error.

solve()
Using the initial guess x0, return the least-squares solution to the set of nonlinear algebraic equations
defined by the evaluate() method of the derived class. This is the method that actually conducts the
call to DQED. Returns the solution vector and a flag indicating the status of the solve. The possible output
values of the flag are:

Value Meaning
2 The norm of the residual is zero; the solution vector is a root of the system
3 The bounds on the trust region are being encountered on each step; the solution vector may or

may not be a local minimum
4 The solution vector is a local minimum
5 A significant amount of noise or uncertainty has been observed in the residual; the solution

may or may not be a local minimum
6 The solution vector is only changing by small absolute amounts; the solution may or may not

be a local minimum
7 The solution vector is only changing by small relative amounts; the solution may or may not

be a local minimum
8 The maximum number of iterations has been reached; the solution is the best found, but may

or may not be a local minimum
9-18 An error occurred during the solve operation; the solution is not a local minimum

class rmgpy.data.statmechfit.PseudoFit(Tdata, Cvdata, Nvib, Nrot)
Class for fitting vibrational frequencies and hindered rotor frequency-barrier pairs for the case when there are
too many oscillators and rotors for their values can be fit directly, and where we must collapse both the vibrations
and hindered rotations into “pseudo-oscillators” and “pseudo-rotors”.

initialize()
Initialize the DQED solver. The required parameters are:

•Neq - The number of algebraic equations.

•Nvars - The number of unknown variables.

1.4. Database (rmgpy.data) 23

RMG-Py API Reference, Release 1.0.3

•Ncons - The number of constraint equations.

The optional parameters are:

•bounds - A list of 2-tuples giving the lower and upper bound for each unknown variable. Use None
if there is no bound in one or either direction. If provided, you must give bounds for every unknown
variable.

•tolf - The tolerance used for stopping when the norm of the residual has absolute length less than tolf,
i.e. ‖𝑓‖ ≤ 𝜖𝑓 .

•told - The tolerance used for stopping when changes to the unknown variables has absolute length less
than told, i.e. ‖∆𝑥⃗‖ ≤ 𝜖𝑑.

•tolx - The tolerance used for stopping when changes to the unknown variables has relative length less
than tolx, i.e. ‖∆𝑥⃗‖ ≤ 𝜖𝑥 · ‖𝑥⃗‖.

•maxIter - The maximum number of iterations to use

•verbose - True to have DQED print extra information about the solve, False to only see printed
output when the solver has an error.

solve()
Using the initial guess x0, return the least-squares solution to the set of nonlinear algebraic equations
defined by the evaluate() method of the derived class. This is the method that actually conducts the
call to DQED. Returns the solution vector and a flag indicating the status of the solve. The possible output
values of the flag are:

Value Meaning
2 The norm of the residual is zero; the solution vector is a root of the system
3 The bounds on the trust region are being encountered on each step; the solution vector may or

may not be a local minimum
4 The solution vector is a local minimum
5 A significant amount of noise or uncertainty has been observed in the residual; the solution

may or may not be a local minimum
6 The solution vector is only changing by small absolute amounts; the solution may or may not

be a local minimum
7 The solution vector is only changing by small relative amounts; the solution may or may not

be a local minimum
8 The maximum number of iterations has been reached; the solution is the best found, but may

or may not be a local minimum
9-18 An error occurred during the solve operation; the solution is not a local minimum

rmgpy.data.statmech.StatmechGroups

class rmgpy.data.statmech.StatmechGroups(label=’‘, name=’‘, shortDesc=’‘, longDesc=’‘)
A class for working with an RMG statistical mechanics (frequencies) group database.

ancestors(node)
Returns all the ancestors of a node, climbing up the tree to the top.

descendTree(structure, atoms, root=None, strict=False)
Descend the tree in search of the functional group node that best matches the local structure around atoms
in structure.

If root=None then uses the first matching top node.

Returns None if there is no matching root.

24 Chapter 1. RMG API Reference

RMG-Py API Reference, Release 1.0.3

Set strict to True if all labels in final matched node must match that of the structure. This is used in
kinetics groups to find the correct reaction template, but not generally used in other GAVs due to species
generally not being prelabeled.

descendants(node)
Returns all the descendants of a node, climbing down the tree to the bottom.

generateOldLibraryEntry(data)
Return a list of values used to save entries to the old-style RMG thermo database based on the thermody-
namics object data.

generateOldTree(entries, level)
Generate a multi-line string representation of the current tree using the old-style syntax.

getEntriesToSave()
Return a sorted list of the entries in this database that should be saved to the output file.

getFrequencyGroups(molecule)
Return the set of characteristic group frequencies corresponding to the speficied molecule. This is done by
searching the molecule for certain functional groups for which characteristic frequencies are known, and
using those frequencies.

getSpecies(path)
Load the dictionary containing all of the species in a kinetics library or depository.

getStatmechData(molecule, thermoModel)
Use the previously-loaded frequency database to generate a set of characteristic group frequencies corre-
sponding to the speficied molecule. The provided thermo data in thermoModel is used to fit some frequen-
cies and all hindered rotors to heat capacity data.

load(path, local_context=None, global_context=None)
Load an RMG-style database from the file at location path on disk. The parameters local_context and
global_context are used to provide specialized mapping of identifiers in the input file to corresponding
functions to evaluate. This method will automatically add a few identifiers required by all data entries, so
you don’t need to provide these.

loadOld(dictstr, treestr, libstr, numParameters, numLabels=1, pattern=True)
Load a dictionary-tree-library based database. The database is stored in three files: dictstr is the path to
the dictionary, treestr to the tree, and libstr to the library. The tree is optional, and should be set to ‘’ if not
desired.

loadOldDictionary(path, pattern)
Parse an old-style RMG database dictionary located at path. An RMG dictionary is a list of key-value
pairs of a one-line string key and a multi-line string value. Each record is separated by at least one empty
line. Returns a dict object with the values converted to Molecule or Group objects depending on the
value of pattern.

loadOldLibrary(path, numParameters, numLabels=1)
Parse an RMG database library located at path.

loadOldTree(path)
Parse an old-style RMG database tree located at path. An RMG tree is an n-ary tree representing the
hierarchy of items in the dictionary.

matchNodeToChild(parentNode, childNode)
Return True if parentNode is a parent of childNode. Otherwise, return False. Both parentNode and
childNode must be Entry types with items containing Group or LogicNode types. If parentNode and
childNode are identical, the function will also return False.

matchNodeToNode(node, nodeOther)
Return True if node and nodeOther are identical. Otherwise, return False. Both node and nodeOther must

1.4. Database (rmgpy.data) 25

RMG-Py API Reference, Release 1.0.3

be Entry types with items containing Group or LogicNode types.

matchNodeToStructure(node, structure, atoms, strict=False)
Return True if the structure centered at atom matches the structure at node in the dictionary. The structure
at node should have atoms with the appropriate labels because they are set on loading and never change.
However, the atoms in structure may not have the correct labels, hence the atoms parameter. The atoms
parameter may include extra labels, and so we only require that every labeled atom in the functional group
represented by node has an equivalent labeled atom in structure.

Matching to structure is more strict than to node. All labels in structure must be found in node. However
the reverse is not true, unless strict is set to True.

At-
tribute

Description

node Either an Entry or a key in the self.entries dictionary which has a Group or LogicNode as
its Entry.item

struc-
ture

A Group or a Molecule

atoms Dictionary of {label: atom} in the structure. A possible dictionary is the one produced by
structure.getLabeledAtoms()

strict If set to True, ensures that all the node’s atomLabels are matched by in the structure

parseOldLibrary(path, numParameters, numLabels=1)
Parse an RMG database library located at path, returning the loaded entries (rather than storing them in
the database). This method does not discard duplicate entries.

processOldLibraryEntry(data)
Process a list of parameters data as read from an old-style RMG statmech database, returning the corre-
sponding thermodynamics object.

save(path)
Save the current database to the file at location path on disk.

saveDictionary(path)
Extract species from all entries associated with a kinetics library or depository and save them to the path
given.

saveEntry(f, entry)
Write the given entry in the thermo database to the file object f.

saveOld(dictstr, treestr, libstr)
Save the current database to a set of text files using the old-style syntax.

saveOldDictionary(path)
Save the current database dictionary to a text file using the old-style syntax.

saveOldLibrary(path)
Save the current database library to a text file using the old-style syntax.

saveOldTree(path)
Save the current database tree to a text file using the old-style syntax.

rmgpy.data.statmech.StatmechLibrary

class rmgpy.data.statmech.StatmechLibrary(label=’‘, name=’‘, shortDesc=’‘, longDesc=’‘)
A class for working with a RMG statistical mechanics (frequencies) library.

ancestors(node)
Returns all the ancestors of a node, climbing up the tree to the top.

26 Chapter 1. RMG API Reference

RMG-Py API Reference, Release 1.0.3

descendTree(structure, atoms, root=None, strict=False)
Descend the tree in search of the functional group node that best matches the local structure around atoms
in structure.

If root=None then uses the first matching top node.

Returns None if there is no matching root.

Set strict to True if all labels in final matched node must match that of the structure. This is used in
kinetics groups to find the correct reaction template, but not generally used in other GAVs due to species
generally not being prelabeled.

descendants(node)
Returns all the descendants of a node, climbing down the tree to the bottom.

generateOldLibraryEntry(data)
Return a list of values used to save entries to the old-style RMG thermo database based on the thermody-
namics object data.

generateOldTree(entries, level)
Generate a multi-line string representation of the current tree using the old-style syntax.

getEntriesToSave()
Return a sorted list of the entries in this database that should be saved to the output file.

getSpecies(path)
Load the dictionary containing all of the species in a kinetics library or depository.

load(path, local_context=None, global_context=None)
Load an RMG-style database from the file at location path on disk. The parameters local_context and
global_context are used to provide specialized mapping of identifiers in the input file to corresponding
functions to evaluate. This method will automatically add a few identifiers required by all data entries, so
you don’t need to provide these.

loadOld(dictstr, treestr, libstr, numParameters, numLabels=1, pattern=True)
Load a dictionary-tree-library based database. The database is stored in three files: dictstr is the path to
the dictionary, treestr to the tree, and libstr to the library. The tree is optional, and should be set to ‘’ if not
desired.

loadOldDictionary(path, pattern)
Parse an old-style RMG database dictionary located at path. An RMG dictionary is a list of key-value
pairs of a one-line string key and a multi-line string value. Each record is separated by at least one empty
line. Returns a dict object with the values converted to Molecule or Group objects depending on the
value of pattern.

loadOldLibrary(path, numParameters, numLabels=1)
Parse an RMG database library located at path.

loadOldTree(path)
Parse an old-style RMG database tree located at path. An RMG tree is an n-ary tree representing the
hierarchy of items in the dictionary.

matchNodeToChild(parentNode, childNode)
Return True if parentNode is a parent of childNode. Otherwise, return False. Both parentNode and
childNode must be Entry types with items containing Group or LogicNode types. If parentNode and
childNode are identical, the function will also return False.

matchNodeToNode(node, nodeOther)
Return True if node and nodeOther are identical. Otherwise, return False. Both node and nodeOther must
be Entry types with items containing Group or LogicNode types.

1.4. Database (rmgpy.data) 27

RMG-Py API Reference, Release 1.0.3

matchNodeToStructure(node, structure, atoms, strict=False)
Return True if the structure centered at atom matches the structure at node in the dictionary. The structure
at node should have atoms with the appropriate labels because they are set on loading and never change.
However, the atoms in structure may not have the correct labels, hence the atoms parameter. The atoms
parameter may include extra labels, and so we only require that every labeled atom in the functional group
represented by node has an equivalent labeled atom in structure.

Matching to structure is more strict than to node. All labels in structure must be found in node. However
the reverse is not true, unless strict is set to True.

At-
tribute

Description

node Either an Entry or a key in the self.entries dictionary which has a Group or LogicNode as
its Entry.item

struc-
ture

A Group or a Molecule

atoms Dictionary of {label: atom} in the structure. A possible dictionary is the one produced by
structure.getLabeledAtoms()

strict If set to True, ensures that all the node’s atomLabels are matched by in the structure

parseOldLibrary(path, numParameters, numLabels=1)
Parse an RMG database library located at path, returning the loaded entries (rather than storing them in
the database). This method does not discard duplicate entries.

processOldLibraryEntry(data)
Process a list of parameters data as read from an old-style RMG thermo database, returning the corre-
sponding thermodynamics object.

save(path)
Save the current database to the file at location path on disk.

saveDictionary(path)
Extract species from all entries associated with a kinetics library or depository and save them to the path
given.

saveEntry(f, entry)
Write the given entry in the thermo database to the file object f.

saveOld(dictstr, treestr, libstr)
Save the current database to a set of text files using the old-style syntax.

saveOldDictionary(path)
Save the current database dictionary to a text file using the old-style syntax.

saveOldLibrary(path)
Save the current database library to a text file using the old-style syntax.

saveOldTree(path)
Save the current database tree to a text file using the old-style syntax.

rmgpy.data.kinetics.TemplateReaction

autodoc: failed to import class u’TemplateReaction’ from module u’rmgpy.data.kinetics’; the following
exception was raised: Traceback (most recent call last): File “/home/connie/anaconda/lib/python2.7/site-
packages/Sphinx-1.3.1-py2.7.egg/sphinx/ext/autodoc.py”, line 385, in import_object __import__(self.modname) File
“/home/connie/Research/Code/RMG-Py/rmgpy/data/kinetics/__init__.py”, line 32, in <module> from .common im-
port * File “/home/connie/Research/Code/RMG-Py/rmgpy/data/kinetics/common.py”, line 37, in <module> from
rmgpy.reaction import Reaction, ReactionError ImportError: cannot import name ReactionError

28 Chapter 1. RMG API Reference

RMG-Py API Reference, Release 1.0.3

rmgpy.data.thermo.ThermoDatabase

class rmgpy.data.thermo.ThermoDatabase
A class for working with the RMG thermodynamics database.

computeGroupAdditivityThermo(molecule)
Return the set of thermodynamic parameters corresponding to a given Molecule object molecule by esti-
mation using the group additivity values. If no group additivity values are loaded, a DatabaseError is
raised.

The entropy is not corrected for the symmetry of the molecule. This should be done later by the calling
function.

estimateRadicalThermoViaHBI(molecule, stableThermoEstimator)
Estimate the thermodynamics of a radical by saturating it, applying the provided stableThermoEstimator
method on the saturated species, then applying hydrogen bond increment corrections for the radical site(s)
and correcting for the symmetry.

estimateThermoViaGroupAdditivity(molecule)
Return the set of thermodynamic parameters corresponding to a given Molecule object molecule by esti-
mation using the group additivity values. If no group additivity values are loaded, a DatabaseError is
raised.

findCp0andCpInf(species, thermoData)
Calculate the Cp0 and CpInf values, and add them to the thermoData object.

Modifies thermoData in place and doesn’t return anything

getAllThermoData(species)
Return all possible sets of thermodynamic parameters for a given Species object species. The hits from
the depository come first, then the libraries (in order), and then the group additivity estimate. This method
is useful for a generic search job.

Returns: a list of tuples (ThermoData, source, entry) (Source is a library or depository, or None)

getThermoData(species, trainingSet=None, quantumMechanics=None)
Return the thermodynamic parameters for a given Species object species. This function first searches
the loaded libraries in order, returning the first match found, before falling back to estimation via group
additivity.

Returns: ThermoData

getThermoDataFromDepository(species)
Return all possible sets of thermodynamic parameters for a given Species object species from the depos-
itory. If no depository is loaded, a DatabaseError is raised.

Returns: a list of tuples (thermoData, depository, entry) without any Cp0 or CpInf data.

getThermoDataFromGroups(species)
Return the set of thermodynamic parameters corresponding to a given Species object species by esti-
mation using the group additivity values. If no group additivity values are loaded, a DatabaseError is
raised.

The resonance isomer (molecule) with the lowest H298 is used, and as a side-effect the resonance isomers
(items in species.molecule list) are sorted in ascending order.

Returns: ThermoData

getThermoDataFromLibraries(species, trainingSet=None)
Return the thermodynamic parameters for a given Species object species. This function first searches the
loaded libraries in order, returning the first match found, before failing and returning None. trainingSet is

1.4. Database (rmgpy.data) 29

RMG-Py API Reference, Release 1.0.3

used to identify if function is called during training set or not. During training set calculation we want to
use gas phase thermo to not affect reverse rate calculation.

Returns: ThermoData or None

getThermoDataFromLibrary(species, library)
Return the set of thermodynamic parameters corresponding to a given Species object species from the
specified thermodynamics library. If library is a string, the list of libraries is searched for a library with
that name. If no match is found in that library, None is returned. If no corresponding library is found, a
DatabaseError is raised.

Returns a tuple: (ThermoData, library, entry) or None.

load(path, libraries=None, depository=True)
Load the thermo database from the given path on disk, where path points to the top-level folder of the
thermo database.

loadDepository(path)
Load the thermo database from the given path on disk, where path points to the top-level folder of the
thermo database.

loadGroups(path)
Load the thermo database from the given path on disk, where path points to the top-level folder of the
thermo database.

loadLibraries(path, libraries=None)
Load the thermo database from the given path on disk, where path points to the top-level folder of the
thermo database.

loadOld(path)
Load the old RMG thermo database from the given path on disk, where path points to the top-level folder
of the old RMG database.

pruneHeteroatoms(allowed=[’C’, ‘H’, ‘O’, ‘S’])
Remove all species from thermo libraries that contain atoms other than those allowed.

This is useful before saving the database for use in RMG-Java

save(path)
Save the thermo database to the given path on disk, where path points to the top-level folder of the thermo
database.

saveDepository(path)
Save the thermo depository to the given path on disk, where path points to the top-level folder of the
thermo depository.

saveGroups(path)
Save the thermo groups to the given path on disk, where path points to the top-level folder of the thermo
groups.

saveLibraries(path)
Save the thermo libraries to the given path on disk, where path points to the top-level folder of the thermo
libraries.

saveOld(path)
Save the old RMG thermo database to the given path on disk, where path points to the top-level folder of
the old RMG database.

30 Chapter 1. RMG API Reference

RMG-Py API Reference, Release 1.0.3

rmgpy.data.thermo.ThermoDepository

class rmgpy.data.thermo.ThermoDepository(label=’‘, name=’‘, shortDesc=’‘, longDesc=’‘)
A class for working with the RMG thermodynamics depository.

ancestors(node)
Returns all the ancestors of a node, climbing up the tree to the top.

descendTree(structure, atoms, root=None, strict=False)
Descend the tree in search of the functional group node that best matches the local structure around atoms
in structure.

If root=None then uses the first matching top node.

Returns None if there is no matching root.

Set strict to True if all labels in final matched node must match that of the structure. This is used in
kinetics groups to find the correct reaction template, but not generally used in other GAVs due to species
generally not being prelabeled.

descendants(node)
Returns all the descendants of a node, climbing down the tree to the bottom.

generateOldTree(entries, level)
Generate a multi-line string representation of the current tree using the old-style syntax.

getEntriesToSave()
Return a sorted list of the entries in this database that should be saved to the output file.

getSpecies(path)
Load the dictionary containing all of the species in a kinetics library or depository.

load(path, local_context=None, global_context=None)
Load an RMG-style database from the file at location path on disk. The parameters local_context and
global_context are used to provide specialized mapping of identifiers in the input file to corresponding
functions to evaluate. This method will automatically add a few identifiers required by all data entries, so
you don’t need to provide these.

loadOld(dictstr, treestr, libstr, numParameters, numLabels=1, pattern=True)
Load a dictionary-tree-library based database. The database is stored in three files: dictstr is the path to
the dictionary, treestr to the tree, and libstr to the library. The tree is optional, and should be set to ‘’ if not
desired.

loadOldDictionary(path, pattern)
Parse an old-style RMG database dictionary located at path. An RMG dictionary is a list of key-value
pairs of a one-line string key and a multi-line string value. Each record is separated by at least one empty
line. Returns a dict object with the values converted to Molecule or Group objects depending on the
value of pattern.

loadOldLibrary(path, numParameters, numLabels=1)
Parse an RMG database library located at path.

loadOldTree(path)
Parse an old-style RMG database tree located at path. An RMG tree is an n-ary tree representing the
hierarchy of items in the dictionary.

matchNodeToChild(parentNode, childNode)
Return True if parentNode is a parent of childNode. Otherwise, return False. Both parentNode and
childNode must be Entry types with items containing Group or LogicNode types. If parentNode and
childNode are identical, the function will also return False.

1.4. Database (rmgpy.data) 31

RMG-Py API Reference, Release 1.0.3

matchNodeToNode(node, nodeOther)
Return True if node and nodeOther are identical. Otherwise, return False. Both node and nodeOther must
be Entry types with items containing Group or LogicNode types.

matchNodeToStructure(node, structure, atoms, strict=False)
Return True if the structure centered at atom matches the structure at node in the dictionary. The structure
at node should have atoms with the appropriate labels because they are set on loading and never change.
However, the atoms in structure may not have the correct labels, hence the atoms parameter. The atoms
parameter may include extra labels, and so we only require that every labeled atom in the functional group
represented by node has an equivalent labeled atom in structure.

Matching to structure is more strict than to node. All labels in structure must be found in node. However
the reverse is not true, unless strict is set to True.

At-
tribute

Description

node Either an Entry or a key in the self.entries dictionary which has a Group or LogicNode as
its Entry.item

struc-
ture

A Group or a Molecule

atoms Dictionary of {label: atom} in the structure. A possible dictionary is the one produced by
structure.getLabeledAtoms()

strict If set to True, ensures that all the node’s atomLabels are matched by in the structure

parseOldLibrary(path, numParameters, numLabels=1)
Parse an RMG database library located at path, returning the loaded entries (rather than storing them in
the database). This method does not discard duplicate entries.

save(path)
Save the current database to the file at location path on disk.

saveDictionary(path)
Extract species from all entries associated with a kinetics library or depository and save them to the path
given.

saveEntry(f, entry)
Write the given entry in the thermo database to the file object f.

saveOld(dictstr, treestr, libstr)
Save the current database to a set of text files using the old-style syntax.

saveOldDictionary(path)
Save the current database dictionary to a text file using the old-style syntax.

saveOldLibrary(path)
Save the current database library to a text file using the old-style syntax.

saveOldTree(path)
Save the current database tree to a text file using the old-style syntax.

rmgpy.data.thermo.ThermoGroups

class rmgpy.data.thermo.ThermoGroups(label=’‘, name=’‘, shortDesc=’‘, longDesc=’‘)
A class for working with an RMG thermodynamics group additivity database.

ancestors(node)
Returns all the ancestors of a node, climbing up the tree to the top.

32 Chapter 1. RMG API Reference

RMG-Py API Reference, Release 1.0.3

descendTree(structure, atoms, root=None, strict=False)
Descend the tree in search of the functional group node that best matches the local structure around atoms
in structure.

If root=None then uses the first matching top node.

Returns None if there is no matching root.

Set strict to True if all labels in final matched node must match that of the structure. This is used in
kinetics groups to find the correct reaction template, but not generally used in other GAVs due to species
generally not being prelabeled.

descendants(node)
Returns all the descendants of a node, climbing down the tree to the bottom.

generateOldLibraryEntry(data)
Return a list of values used to save entries to the old-style RMG thermo database based on the thermody-
namics object data.

generateOldTree(entries, level)
Generate a multi-line string representation of the current tree using the old-style syntax.

getEntriesToSave()
Return a sorted list of the entries in this database that should be saved to the output file.

getSpecies(path)
Load the dictionary containing all of the species in a kinetics library or depository.

load(path, local_context=None, global_context=None)
Load an RMG-style database from the file at location path on disk. The parameters local_context and
global_context are used to provide specialized mapping of identifiers in the input file to corresponding
functions to evaluate. This method will automatically add a few identifiers required by all data entries, so
you don’t need to provide these.

loadOld(dictstr, treestr, libstr, numParameters, numLabels=1, pattern=True)
Load a dictionary-tree-library based database. The database is stored in three files: dictstr is the path to
the dictionary, treestr to the tree, and libstr to the library. The tree is optional, and should be set to ‘’ if not
desired.

loadOldDictionary(path, pattern)
Parse an old-style RMG database dictionary located at path. An RMG dictionary is a list of key-value
pairs of a one-line string key and a multi-line string value. Each record is separated by at least one empty
line. Returns a dict object with the values converted to Molecule or Group objects depending on the
value of pattern.

loadOldLibrary(path, numParameters, numLabels=1)
Parse an RMG database library located at path.

loadOldTree(path)
Parse an old-style RMG database tree located at path. An RMG tree is an n-ary tree representing the
hierarchy of items in the dictionary.

matchNodeToChild(parentNode, childNode)
Return True if parentNode is a parent of childNode. Otherwise, return False. Both parentNode and
childNode must be Entry types with items containing Group or LogicNode types. If parentNode and
childNode are identical, the function will also return False.

matchNodeToNode(node, nodeOther)
Return True if node and nodeOther are identical. Otherwise, return False. Both node and nodeOther must
be Entry types with items containing Group or LogicNode types.

1.4. Database (rmgpy.data) 33

RMG-Py API Reference, Release 1.0.3

matchNodeToStructure(node, structure, atoms, strict=False)
Return True if the structure centered at atom matches the structure at node in the dictionary. The structure
at node should have atoms with the appropriate labels because they are set on loading and never change.
However, the atoms in structure may not have the correct labels, hence the atoms parameter. The atoms
parameter may include extra labels, and so we only require that every labeled atom in the functional group
represented by node has an equivalent labeled atom in structure.

Matching to structure is more strict than to node. All labels in structure must be found in node. However
the reverse is not true, unless strict is set to True.

At-
tribute

Description

node Either an Entry or a key in the self.entries dictionary which has a Group or LogicNode as
its Entry.item

struc-
ture

A Group or a Molecule

atoms Dictionary of {label: atom} in the structure. A possible dictionary is the one produced by
structure.getLabeledAtoms()

strict If set to True, ensures that all the node’s atomLabels are matched by in the structure

parseOldLibrary(path, numParameters, numLabels=1)
Parse an RMG database library located at path, returning the loaded entries (rather than storing them in
the database). This method does not discard duplicate entries.

processOldLibraryEntry(data)
Process a list of parameters data as read from an old-style RMG thermo database, returning the corre-
sponding thermodynamics object.

save(path)
Save the current database to the file at location path on disk.

saveDictionary(path)
Extract species from all entries associated with a kinetics library or depository and save them to the path
given.

saveEntry(f, entry)
Write the given entry in the thermo database to the file object f.

saveOld(dictstr, treestr, libstr)
Save the current database to a set of text files using the old-style syntax.

saveOldDictionary(path)
Save the current database dictionary to a text file using the old-style syntax.

saveOldLibrary(path)
Save the current database library to a text file using the old-style syntax.

saveOldTree(path)
Save the current database tree to a text file using the old-style syntax.

rmgpy.data.thermo.ThermoLibrary

class rmgpy.data.thermo.ThermoLibrary(label=’‘, name=’‘, solvent=None, shortDesc=’‘,
longDesc=’‘)

A class for working with a RMG thermodynamics library.

ancestors(node)
Returns all the ancestors of a node, climbing up the tree to the top.

34 Chapter 1. RMG API Reference

RMG-Py API Reference, Release 1.0.3

descendTree(structure, atoms, root=None, strict=False)
Descend the tree in search of the functional group node that best matches the local structure around atoms
in structure.

If root=None then uses the first matching top node.

Returns None if there is no matching root.

Set strict to True if all labels in final matched node must match that of the structure. This is used in
kinetics groups to find the correct reaction template, but not generally used in other GAVs due to species
generally not being prelabeled.

descendants(node)
Returns all the descendants of a node, climbing down the tree to the bottom.

generateOldLibraryEntry(data)
Return a list of values used to save entries to the old-style RMG thermo database based on the thermody-
namics object data.

generateOldTree(entries, level)
Generate a multi-line string representation of the current tree using the old-style syntax.

getEntriesToSave()
Return a sorted list of the entries in this database that should be saved to the output file.

getSpecies(path)
Load the dictionary containing all of the species in a kinetics library or depository.

load(path, local_context=None, global_context=None)
Load an RMG-style database from the file at location path on disk. The parameters local_context and
global_context are used to provide specialized mapping of identifiers in the input file to corresponding
functions to evaluate. This method will automatically add a few identifiers required by all data entries, so
you don’t need to provide these.

loadOld(dictstr, treestr, libstr, numParameters, numLabels=1, pattern=True)
Load a dictionary-tree-library based database. The database is stored in three files: dictstr is the path to
the dictionary, treestr to the tree, and libstr to the library. The tree is optional, and should be set to ‘’ if not
desired.

loadOldDictionary(path, pattern)
Parse an old-style RMG database dictionary located at path. An RMG dictionary is a list of key-value
pairs of a one-line string key and a multi-line string value. Each record is separated by at least one empty
line. Returns a dict object with the values converted to Molecule or Group objects depending on the
value of pattern.

loadOldLibrary(path, numParameters, numLabels=1)
Parse an RMG database library located at path.

loadOldTree(path)
Parse an old-style RMG database tree located at path. An RMG tree is an n-ary tree representing the
hierarchy of items in the dictionary.

matchNodeToChild(parentNode, childNode)
Return True if parentNode is a parent of childNode. Otherwise, return False. Both parentNode and
childNode must be Entry types with items containing Group or LogicNode types. If parentNode and
childNode are identical, the function will also return False.

matchNodeToNode(node, nodeOther)
Return True if node and nodeOther are identical. Otherwise, return False. Both node and nodeOther must
be Entry types with items containing Group or LogicNode types.

1.4. Database (rmgpy.data) 35

RMG-Py API Reference, Release 1.0.3

matchNodeToStructure(node, structure, atoms, strict=False)
Return True if the structure centered at atom matches the structure at node in the dictionary. The structure
at node should have atoms with the appropriate labels because they are set on loading and never change.
However, the atoms in structure may not have the correct labels, hence the atoms parameter. The atoms
parameter may include extra labels, and so we only require that every labeled atom in the functional group
represented by node has an equivalent labeled atom in structure.

Matching to structure is more strict than to node. All labels in structure must be found in node. However
the reverse is not true, unless strict is set to True.

At-
tribute

Description

node Either an Entry or a key in the self.entries dictionary which has a Group or LogicNode as
its Entry.item

struc-
ture

A Group or a Molecule

atoms Dictionary of {label: atom} in the structure. A possible dictionary is the one produced by
structure.getLabeledAtoms()

strict If set to True, ensures that all the node’s atomLabels are matched by in the structure

parseOldLibrary(path, numParameters, numLabels=1)
Parse an RMG database library located at path, returning the loaded entries (rather than storing them in
the database). This method does not discard duplicate entries.

processOldLibraryEntry(data)
Process a list of parameters data as read from an old-style RMG thermo database, returning the corre-
sponding thermodynamics object.

save(path)
Save the current database to the file at location path on disk.

saveDictionary(path)
Extract species from all entries associated with a kinetics library or depository and save them to the path
given.

saveEntry(f, entry)
Write the given entry in the thermo database to the file object f.

saveOld(dictstr, treestr, libstr)
Save the current database to a set of text files using the old-style syntax.

saveOldDictionary(path)
Save the current database dictionary to a text file using the old-style syntax.

saveOldLibrary(path)
Save the current database library to a text file using the old-style syntax.

saveOldTree(path)
Save the current database tree to a text file using the old-style syntax.

1.5 Kinetics (rmgpy.kinetics)

The rmgpy.kinetics subpackage contains classes that represent various kinetics models of chemical reaction rates
and models of quantum mechanical tunneling through an activation barrier.

36 Chapter 1. RMG API Reference

RMG-Py API Reference, Release 1.0.3

1.5.1 Pressure-independent kinetics models

Class Description
KineticsData A kinetics model based on a set of discrete rate coefficient points in temperature
Arrhenius A kinetics model based on the (modified) Arrhenius expression
MultiArrhenius A kinetics model based on a sum of Arrhenius expressions

1.5.2 Pressure-dependent kinetics models

Class Description
PDepKineticsData A kinetics model based on a set of discrete rate coefficient points in temperature and

pressure
PDepArrhenius A kinetics model based on a set of Arrhenius expressions for a range of pressures
MultiPDepArrheniusA kinetics model based on a sum of PDepArrhenius expressions
Chebyshev A kinetics model based on a Chebyshev polynomial representation
ThirdBody A low pressure-limit kinetics model based on the (modified) Arrhenius expression, with a

third body
Lindemann A kinetics model of pressure-dependent falloff based on the Lindemann model
Troe A kinetics model of pressure-dependent falloff based on the Lindemann model with the

Troe falloff factor

1.5.3 Tunneling models

Class Description
Wigner A one-dimensional tunneling model based on the Wigner expression
Eckart A one-dimensional tunneling model based on the (asymmetric) Eckart expression

rmgpy.kinetics.KineticsData

class rmgpy.kinetics.KineticsData(Tdata=None, kdata=None, Tmin=None, Tmax=None, Pmin=None,
Pmax=None, comment=’‘)

A kinetics model based on an array of rate coefficient data vs. temperature. The attributes are:

Attribute Description
Tdata An array of temperatures at which rate coefficient values are known
kdata An array of rate coefficient values
Tmin The minimum temperature at which the model is valid, or zero if unknown or undefined
Tmax The maximum temperature at which the model is valid, or zero if unknown or undefined
Pmin The minimum pressure at which the model is valid, or zero if unknown or undefined
Pmax The maximum pressure at which the model is valid, or zero if unknown or undefined
comment Information about the model (e.g. its source)

Pmax
The maximum pressure at which the model is valid, or None if not defined.

Pmin
The minimum pressure at which the model is valid, or None if not defined.

Tdata
An array of temperatures at which rate coefficient values are known.

Tmax
The maximum temperature at which the model is valid, or None if not defined.

1.5. Kinetics (rmgpy.kinetics) 37

RMG-Py API Reference, Release 1.0.3

Tmin
The minimum temperature at which the model is valid, or None if not defined.

comment
comment: str

discrepancy(self, KineticsModel otherKinetics)→ double
Returns some measure of the discrepancy based on two different reaction models.

getRateCoefficient(self, double T, double P=0.0)→ double
Return the rate coefficient in the appropriate combination of m^3, mol, and s at temperature T in K.

isIdenticalTo(self, KineticsModel otherKinetics)→ bool
Returns True if the kdata and Tdata match. Returns False otherwise.

isPressureDependent(self)→ bool
Return False since, by default, all objects derived from KineticsModel represent pressure-independent
kinetics.

isSimilarTo(self, KineticsModel otherKinetics)→ bool
Returns True if rates of reaction at temperatures 500,1000,1500,2000 K and 1 and 10 bar are within +/ .5
for log(k), in other words, within a factor of 3.

isTemperatureValid(self, double T)→ bool
Return True if the temperature T in K is within the valid temperature range of the kinetic data, or False
if not. If the minimum and maximum temperature are not defined, True is returned.

kdata
An array of rate coefficient values.

toHTML(self)
Return an HTML rendering.

rmgpy.kinetics.Arrhenius

class rmgpy.kinetics.Arrhenius(A=None, n=0.0, Ea=None, T0=(1.0, ‘K’), Tmin=None, Tmax=None,
Pmin=None, Pmax=None, comment=’‘)

A kinetics model based on the (modified) Arrhenius equation. The attributes are:

Attribute Description
A The preexponential factor
T0 The reference temperature
n The temperature exponent
Ea The activation energy
Tmin The minimum temperature at which the model is valid, or zero if unknown or undefined
Tmax The maximum temperature at which the model is valid, or zero if unknown or undefined
Pmin The minimum pressure at which the model is valid, or zero if unknown or undefined
Pmax The maximum pressure at which the model is valid, or zero if unknown or undefined
comment Information about the model (e.g. its source)

The Arrhenius equation, given below, accurately reproduces the kinetics of many reaction families:

𝑘(𝑇) = 𝐴

(︂
𝑇

𝑇0

)︂𝑛

exp

(︂
− 𝐸a

𝑅𝑇

)︂
Above, 𝐴 is the preexponential factor, 𝑇0 is the reference temperature, 𝑛 is the temperature exponent, and 𝐸a is
the activation energy.

A
The preexponential factor.

38 Chapter 1. RMG API Reference

RMG-Py API Reference, Release 1.0.3

Ea
The activation energy.

Pmax
The maximum pressure at which the model is valid, or None if not defined.

Pmin
The minimum pressure at which the model is valid, or None if not defined.

T0
The reference temperature.

Tmax
The maximum temperature at which the model is valid, or None if not defined.

Tmin
The minimum temperature at which the model is valid, or None if not defined.

changeRate(self, double factor)
Changes A factor in Arrhenius expression by multiplying it by a factor.

changeT0(self, double T0)
Changes the reference temperature used in the exponent to T0 in K, and adjusts the preexponential factor
accordingly.

comment
comment: str

discrepancy(self, KineticsModel otherKinetics)→ double
Returns some measure of the discrepancy based on two different reaction models.

fitToData(self, ndarray Tlist, ndarray klist, str kunits, double T0=1, ndarray weights=None, bool three-
Params=True)

Fit the Arrhenius parameters to a set of rate coefficient data klist in units of kunits corresponding to a set
of temperatures Tlist in K. A linear least-squares fit is used, which guarantees that the resulting parameters
provide the best possible approximation to the data.

getRateCoefficient(self, double T, double P=0.0)→ double
Return the rate coefficient in the appropriate combination of m^3, mol, and s at temperature T in K.

isIdenticalTo(self, KineticsModel otherKinetics)→ bool
Returns True if kinetics matches that of another kinetics model. Must match temperature and pressure
range of kinetics model, as well as parameters: A, n, Ea, T0. (Shouldn’t have pressure range if it’s
Arrhenius.) Otherwise returns False.

isPressureDependent(self)→ bool
Return False since, by default, all objects derived from KineticsModel represent pressure-independent
kinetics.

isSimilarTo(self, KineticsModel otherKinetics)→ bool
Returns True if rates of reaction at temperatures 500,1000,1500,2000 K and 1 and 10 bar are within +/ .5
for log(k), in other words, within a factor of 3.

isTemperatureValid(self, double T)→ bool
Return True if the temperature T in K is within the valid temperature range of the kinetic data, or False
if not. If the minimum and maximum temperature are not defined, True is returned.

n
The temperature exponent.

toHTML(self)
Return an HTML rendering.

1.5. Kinetics (rmgpy.kinetics) 39

RMG-Py API Reference, Release 1.0.3

rmgpy.kinetics.MultiArrhenius

class rmgpy.kinetics.MultiArrhenius(arrhenius=None, Tmin=None, Tmax=None, Pmin=None,
Pmax=None, comment=’‘)

A kinetics model based on a set of (modified) Arrhenius equations, which are summed to obtain the overall rate.
The attributes are:

Attribute Description
arrhenius A list of the Arrhenius kinetics
Tmin The minimum temperature at which the model is valid, or zero if unknown or undefined
Tmax The maximum temperature at which the model is valid, or zero if unknown or undefined
Pmin The minimum pressure at which the model is valid, or zero if unknown or undefined
Pmax The maximum pressure at which the model is valid, or zero if unknown or undefined
comment Information about the model (e.g. its source)

Pmax
The maximum pressure at which the model is valid, or None if not defined.

Pmin
The minimum pressure at which the model is valid, or None if not defined.

Tmax
The maximum temperature at which the model is valid, or None if not defined.

Tmin
The minimum temperature at which the model is valid, or None if not defined.

arrhenius
arrhenius: list

changeRate(self, double factor)
Change kinetics rate by a multiple factor.

comment
comment: str

discrepancy(self, KineticsModel otherKinetics)→ double
Returns some measure of the discrepancy based on two different reaction models.

getRateCoefficient(self, double T, double P=0.0)→ double
Return the rate coefficient in the appropriate combination of m^3, mol, and s at temperature T in K.

isIdenticalTo(self, KineticsModel otherKinetics)→ bool
Returns True if kinetics matches that of another kinetics model. Each duplicate reaction must be matched
and equal to that in the other MultiArrhenius model in the same order. Otherwise returns False

isPressureDependent(self)→ bool
Return False since, by default, all objects derived from KineticsModel represent pressure-independent
kinetics.

isSimilarTo(self, KineticsModel otherKinetics)→ bool
Returns True if rates of reaction at temperatures 500,1000,1500,2000 K and 1 and 10 bar are within +/ .5
for log(k), in other words, within a factor of 3.

isTemperatureValid(self, double T)→ bool
Return True if the temperature T in K is within the valid temperature range of the kinetic data, or False
if not. If the minimum and maximum temperature are not defined, True is returned.

toArrhenius(self, double Tmin=-1, double Tmax=-1)→ Arrhenius
Return an Arrhenius instance of the kinetics model

40 Chapter 1. RMG API Reference

RMG-Py API Reference, Release 1.0.3

Fit the Arrhenius parameters to a set of rate coefficient data generated from the MultiArrhenius kinetics,
over the temperature range Tmin to Tmax, in Kelvin. If Tmin or Tmax are unspecified (or -1) then the
MultiArrhenius’s Tmin and Tmax are used. A linear least-squares fit is used, which guarantees that the
resulting parameters provide the best possible approximation to the data.

toHTML(self)
Return an HTML rendering.

rmgpy.kinetics.PDepKineticsData

class rmgpy.kinetics.PDepKineticsData(Tdata=None, Pdata=None, kdata=None, Tmin=None,
Tmax=None, Pmin=None, Pmax=None, comment=’‘)

A kinetics model based on an array of rate coefficient data vs. temperature and pressure. The attributes are:

Attribute Description
Tdata An array of temperatures at which rate coefficient values are known
Pdata An array of pressures at which rate coefficient values are known
kdata An array of rate coefficient values at each temperature and pressure
Tmin The minimum temperature at which the model is valid, or zero if unknown or undefined
Tmax The maximum temperature at which the model is valid, or zero if unknown or undefined
Pmin The minimum pressure at which the model is valid, or zero if unknown or undefined
Pmax The maximum pressure at which the model is valid, or zero if unknown or undefined
comment Information about the model (e.g. its source)

Pdata
An array of pressures at which rate coefficient values are known.

Pmax
The maximum pressure at which the model is valid, or None if not defined.

Pmin
The minimum pressure at which the model is valid, or None if not defined.

Tdata
An array of temperatures at which rate coefficient values are known.

Tmax
The maximum temperature at which the model is valid, or None if not defined.

Tmin
The minimum temperature at which the model is valid, or None if not defined.

comment
comment: str

discrepancy(self, KineticsModel otherKinetics)→ double
Returns some measure of the discrepancy based on two different reaction models.

efficiencies
efficiencies: dict

getEffectiveColliderEfficiencies(self, list species)→ ndarray
Return the effective collider efficiencies for all species in the form of a numpy array. This function helps
assist rapid effective pressure calculations in the solver.

getEffectivePressure(self, double P, list species, ndarray fractions)→ double
Return the effective pressure in Pa for a system at a given pressure P in Pa composed of the given list of
species (Species or Molecule objects) with the given fractions.

1.5. Kinetics (rmgpy.kinetics) 41

RMG-Py API Reference, Release 1.0.3

getRateCoefficient(self, double T, double P=0.0)→ double
Return the rate coefficient in the appropriate combination of m^3, mol, and s at temperature T in K and
pressure P in Pa.

highPlimit
highPlimit: rmgpy.kinetics.model.KineticsModel

isIdenticalTo(self, KineticsModel otherKinetics)→ bool
Returns True if the kdata and Tdata match. Returns False otherwise.

isPressureDependent(self)→ bool
Return True since all objects derived from PDepKineticsModel represent pressure-dependent kinetics.

isPressureValid(self, double P)→ bool
Return True if the pressure P in Pa is within the valid pressure range of the kinetic data, or False if not.
If the minimum and maximum pressure are not defined, True is returned.

isSimilarTo(self, KineticsModel otherKinetics)→ bool
Returns True if rates of reaction at temperatures 500,1000,1500,2000 K and 1 and 10 bar are within +/ .5
for log(k), in other words, within a factor of 3.

isTemperatureValid(self, double T)→ bool
Return True if the temperature T in K is within the valid temperature range of the kinetic data, or False
if not. If the minimum and maximum temperature are not defined, True is returned.

kdata
An array of rate coefficient values at each temperature and pressure.

toHTML(self)
Return an HTML rendering.

rmgpy.kinetics.PDepArrhenius

class rmgpy.kinetics.PDepArrhenius(pressures=None, arrhenius=None, highPlimit=None,
Tmin=None, Tmax=None, Pmin=None, Pmax=None, com-
ment=’‘)

A kinetic model of a phenomenological rate coefficient 𝑘(𝑇, 𝑃) where a set of Arrhenius kinetics are stored at
a variety of pressures and interpolated between on a logarithmic scale. The attributes are:

Attribute Description
pressures The list of pressures
arrhenius The list of Arrhenius objects at each pressure
Tmin The minimum temperature in K at which the model is valid, or zero if unknown or undefined
Tmax The maximum temperature in K at which the model is valid, or zero if unknown or undefined
Pmin The minimum pressure in bar at which the model is valid, or zero if unknown or undefined
Pmax The maximum pressure in bar at which the model is valid, or zero if unknown or undefined
efficiencies A dict associating chemical species with associated efficiencies
order The reaction order (1 = first, 2 = second, etc.)
comment Information about the model (e.g. its source)

The pressure-dependent Arrhenius formulation is sometimes used to extend the Arrhenius expression to handle
pressure-dependent kinetics. The formulation simply parameterizes 𝐴, 𝑛, and 𝐸a to be dependent on pressure:

𝑘(𝑇, 𝑃) = 𝐴(𝑃)

(︂
𝑇

𝑇0

)︂𝑛(𝑃)

exp

(︂
−𝐸a(𝑃)

𝑅𝑇

)︂
Although this suggests some physical insight, the 𝑘(𝑇, 𝑃) data is often highly complex and non-Arrhenius,
limiting the usefulness of this formulation to simple systems.

42 Chapter 1. RMG API Reference

RMG-Py API Reference, Release 1.0.3

Pmax
The maximum pressure at which the model is valid, or None if not defined.

Pmin
The minimum pressure at which the model is valid, or None if not defined.

Tmax
The maximum temperature at which the model is valid, or None if not defined.

Tmin
The minimum temperature at which the model is valid, or None if not defined.

arrhenius
arrhenius: list

changeRate(self, double factor)
Changes kinetics rate by a multiple factor.

comment
comment: str

discrepancy(self, KineticsModel otherKinetics)→ double
Returns some measure of the discrepancy based on two different reaction models.

efficiencies
efficiencies: dict

fitToData(self, ndarray Tlist, ndarray Plist, ndarray K, str kunits, double T0=1)
Fit the pressure-dependent Arrhenius model to a matrix of rate coefficient data K with units of kunits
corresponding to a set of temperatures Tlist in K and pressures Plist in Pa. An Arrhenius model is fit cpdef
changeRate(self, double factor)at each pressure.

getEffectiveColliderEfficiencies(self, list species)→ ndarray
Return the effective collider efficiencies for all species in the form of a numpy array. This function helps
assist rapid effective pressure calculations in the solver.

getEffectivePressure(self, double P, list species, ndarray fractions)→ double
Return the effective pressure in Pa for a system at a given pressure P in Pa composed of the given list of
species (Species or Molecule objects) with the given fractions.

getRateCoefficient(self, double T, double P=0)→ double
Return the rate coefficient in the appropriate combination of m^3, mol, and s at temperature T in K and
pressure P in Pa.

highPlimit
highPlimit: rmgpy.kinetics.model.KineticsModel

isIdenticalTo(self, KineticsModel otherKinetics)→ bool
Returns True if kinetics matches that of another kinetics model. Each duplicate reaction must be matched
and equal to that in the other PDepArrhenius model in the same order. Otherwise returns False

isPressureDependent(self)→ bool
Return True since all objects derived from PDepKineticsModel represent pressure-dependent kinetics.

isPressureValid(self, double P)→ bool
Return True if the pressure P in Pa is within the valid pressure range of the kinetic data, or False if not.
If the minimum and maximum pressure are not defined, True is returned.

isSimilarTo(self, KineticsModel otherKinetics)→ bool
Returns True if rates of reaction at temperatures 500,1000,1500,2000 K and 1 and 10 bar are within +/ .5
for log(k), in other words, within a factor of 3.

1.5. Kinetics (rmgpy.kinetics) 43

RMG-Py API Reference, Release 1.0.3

isTemperatureValid(self, double T)→ bool
Return True if the temperature T in K is within the valid temperature range of the kinetic data, or False
if not. If the minimum and maximum temperature are not defined, True is returned.

pressures
The list of pressures.

toHTML(self)
Return an HTML rendering.

rmgpy.kinetics.MultiPDepArrhenius

class rmgpy.kinetics.MultiPDepArrhenius(arrhenius=None, Tmin=None, Tmax=None, Pmin=None,
Pmax=None, comment=’‘)

A kinetic model of a phenomenological rate coefficient 𝑘(𝑇, 𝑃) where sets of Arrhenius kinetics are stored at a
variety of pressures and interpolated between on a logarithmic scale. The attributes are:

Attribute Description
arrhenius A list of the PDepArrhenius kinetics at each temperature
Tmin The minimum temperature at which the model is valid, or zero if unknown or undefined
Tmax The maximum temperature at which the model is valid, or zero if unknown or undefined
Pmin The minimum pressure at which the model is valid, or zero if unknown or undefined
Pmax The maximum pressure at which the model is valid, or zero if unknown or undefined
comment Information about the model (e.g. its source)

Pmax
The maximum pressure at which the model is valid, or None if not defined.

Pmin
The minimum pressure at which the model is valid, or None if not defined.

Tmax
The maximum temperature at which the model is valid, or None if not defined.

Tmin
The minimum temperature at which the model is valid, or None if not defined.

arrhenius
arrhenius: list

changeRate(self, double factor)
Change kinetic rate by a multiple factor.

comment
comment: str

discrepancy(self, KineticsModel otherKinetics)→ double
Returns some measure of the discrepancy based on two different reaction models.

efficiencies
efficiencies: dict

getEffectiveColliderEfficiencies(self, list species)→ ndarray
Return the effective collider efficiencies for all species in the form of a numpy array. This function helps
assist rapid effective pressure calculations in the solver.

getEffectivePressure(self, double P, list species, ndarray fractions)→ double
Return the effective pressure in Pa for a system at a given pressure P in Pa composed of the given list of
species (Species or Molecule objects) with the given fractions.

44 Chapter 1. RMG API Reference

RMG-Py API Reference, Release 1.0.3

getRateCoefficient(self, double T, double P=0.0)→ double
Return the rate coefficient in the appropriate combination of m^3, mol, and s at temperature T in K and
pressure P in Pa.

highPlimit
highPlimit: rmgpy.kinetics.model.KineticsModel

isIdenticalTo(self, KineticsModel otherKinetics)→ bool
Returns True if kinetics matches that of another kinetics model. Each duplicate reaction must be matched
and equal to that in the other MultiArrhenius model in the same order. Otherwise returns False

isPressureDependent(self)→ bool
Return True since all objects derived from PDepKineticsModel represent pressure-dependent kinetics.

isPressureValid(self, double P)→ bool
Return True if the pressure P in Pa is within the valid pressure range of the kinetic data, or False if not.
If the minimum and maximum pressure are not defined, True is returned.

isSimilarTo(self, KineticsModel otherKinetics)→ bool
Returns True if rates of reaction at temperatures 500,1000,1500,2000 K and 1 and 10 bar are within +/ .5
for log(k), in other words, within a factor of 3.

isTemperatureValid(self, double T)→ bool
Return True if the temperature T in K is within the valid temperature range of the kinetic data, or False
if not. If the minimum and maximum temperature are not defined, True is returned.

toHTML(self)
Return an HTML rendering.

rmgpy.kinetics.Chebyshev

class rmgpy.kinetics.Chebyshev(coeffs=None, kunits=’‘, highPlimit=None, Tmin=None, Tmax=None,
Pmin=None, Pmax=None, comment=’‘)

A model of a phenomenological rate coefficient 𝑘(𝑇, 𝑃) using a set of Chebyshev polynomials in temperature
and pressure. The attributes are:

Attribute Description
coeffs Matrix of Chebyshev coefficients, such that the resulting 𝑘(𝑇, 𝑃) has units of cm^3, mol, s
kunits The units of the rate coefficient
degreeT The number of terms in the inverse temperature direction
degreeP The number of terms in the log pressure direction
Tmin The minimum temperature at which the model is valid, or zero if unknown or undefined
Tmax The maximum temperature at which the model is valid, or zero if unknown or undefined
Pmin The minimum pressure at which the model is valid, or zero if unknown or undefined
Pmax The maximum pressure at which the model is valid, or zero if unknown or undefined
comment Information about the model (e.g. its source)

The Chebyshev polynomial formulation is a means of fitting a wide range of complex 𝑘(𝑇, 𝑃) behavior. How-
ever, there is no meaningful physical interpretation of the polynomial-based fit, and one must take care to
minimize the magnitude of Runge’s phenomenon. The formulation is as follows:

log 𝑘(𝑇, 𝑃) =

𝑁𝑇∑︁
𝑡=1

𝑁𝑃∑︁
𝑝=1

𝛼𝑡𝑝𝜑𝑡(𝑇)𝜑𝑝(𝑃)

Above, 𝛼𝑡𝑝 is a constant, 𝜑𝑛(𝑥) is the Chebyshev polynomial of degree 𝑛 evaluated at 𝑥, and

𝑇 ≡ 2𝑇−1 − 𝑇−1
min − 𝑇−1

max

𝑇−1
max − 𝑇−1

min

1.5. Kinetics (rmgpy.kinetics) 45

RMG-Py API Reference, Release 1.0.3

𝑃 ≡ 2 log𝑃 − log𝑃min − log𝑃max

log𝑃max − log𝑃min

are reduced temperature and reduced pressure designed to map the ranges (𝑇min, 𝑇max) and (𝑃min, 𝑃max) to
(−1, 1).

Pmax
The maximum pressure at which the model is valid, or None if not defined.

Pmin
The minimum pressure at which the model is valid, or None if not defined.

Tmax
The maximum temperature at which the model is valid, or None if not defined.

Tmin
The minimum temperature at which the model is valid, or None if not defined.

changeRate(self, double factor)
Changes kinetics rates by a multiple factor.

coeffs
The Chebyshev coefficients.

comment
comment: str

degreeP
degreeP: ‘int’

degreeT
degreeT: ‘int’

discrepancy(self, KineticsModel otherKinetics)→ double
Returns some measure of the discrepancy based on two different reaction models.

efficiencies
efficiencies: dict

fitToData(self, ndarray Tlist, ndarray Plist, ndarray K, str kunits, int degreeT, int degreeP, double
Tmin, double Tmax, double Pmin, double Pmax)

Fit a Chebyshev kinetic model to a set of rate coefficients K, which is a matrix corresponding to the
temperatures Tlist in K and pressures Plist in Pa. degreeT and degreeP are the degree of the polynomials
in temperature and pressure, while Tmin, Tmax, Pmin, and Pmax set the edges of the valid temperature
and pressure ranges in K and bar, respectively.

getEffectiveColliderEfficiencies(self, list species)→ ndarray
Return the effective collider efficiencies for all species in the form of a numpy array. This function helps
assist rapid effective pressure calculations in the solver.

getEffectivePressure(self, double P, list species, ndarray fractions)→ double
Return the effective pressure in Pa for a system at a given pressure P in Pa composed of the given list of
species (Species or Molecule objects) with the given fractions.

getRateCoefficient(self, double T, double P=0)→ double
Return the rate coefficient in the appropriate combination of m^3, mol, and s at temperature T in K and
pressure P in Pa by evaluating the Chebyshev expression.

highPlimit
highPlimit: rmgpy.kinetics.model.KineticsModel

isIdenticalTo(self, KineticsModel otherKinetics)→ bool
Checks to see if kinetics matches that of other kinetics and returns True if coeffs, kunits, Tmin,

46 Chapter 1. RMG API Reference

RMG-Py API Reference, Release 1.0.3

isPressureDependent(self)→ bool
Return True since all objects derived from PDepKineticsModel represent pressure-dependent kinetics.

isPressureValid(self, double P)→ bool
Return True if the pressure P in Pa is within the valid pressure range of the kinetic data, or False if not.
If the minimum and maximum pressure are not defined, True is returned.

isSimilarTo(self, KineticsModel otherKinetics)→ bool
Returns True if rates of reaction at temperatures 500,1000,1500,2000 K and 1 and 10 bar are within +/ .5
for log(k), in other words, within a factor of 3.

isTemperatureValid(self, double T)→ bool
Return True if the temperature T in K is within the valid temperature range of the kinetic data, or False
if not. If the minimum and maximum temperature are not defined, True is returned.

kunits
kunits: str

toHTML(self)
Return an HTML rendering.

rmgpy.kinetics.ThirdBody

class rmgpy.kinetics.ThirdBody(arrheniusLow=None, Tmin=None, Tmax=None, Pmin=None,
Pmax=None, efficiencies=None, comment=’‘)

A kinetic model of a phenomenological rate coefficient 𝑘(𝑇, 𝑃) using third-body kinetics. The attributes are:

Attribute Description
arrheniusLow The Arrhenius kinetics at the low-pressure limit
Tmin The minimum temperature at which the model is valid, or zero if unknown or undefined
Tmax The maximum temperature at which the model is valid, or zero if unknown or undefined
Pmin The minimum pressure at which the model is valid, or zero if unknown or undefined
Pmax The maximum pressure at which the model is valid, or zero if unknown or undefined
efficiencies A dict associating chemical species with associated efficiencies
comment Information about the model (e.g. its source)

Third-body kinetics simply introduce an inert third body to the rate expression:

𝑘(𝑇, 𝑃) = 𝑘0(𝑇)[M]

Above, [M] ≈ 𝑃/𝑅𝑇 is the concentration of the bath gas. This formulation is equivalent to stating that the
kinetics are always in the low-pressure limit.

Pmax
The maximum pressure at which the model is valid, or None if not defined.

Pmin
The minimum pressure at which the model is valid, or None if not defined.

Tmax
The maximum temperature at which the model is valid, or None if not defined.

Tmin
The minimum temperature at which the model is valid, or None if not defined.

arrheniusLow
arrheniusLow: rmgpy.kinetics.arrhenius.Arrhenius

changeRate(self, double factor)
Changes kinetics rate by a multiple factor.

1.5. Kinetics (rmgpy.kinetics) 47

RMG-Py API Reference, Release 1.0.3

comment
comment: str

discrepancy(self, KineticsModel otherKinetics)→ double
Returns some measure of the discrepancy based on two different reaction models.

efficiencies
efficiencies: dict

getEffectiveColliderEfficiencies(self, list species)→ ndarray
Return the effective collider efficiencies for all species in the form of a numpy array. This function helps
assist rapid effective pressure calculations in the solver.

getEffectivePressure(self, double P, list species, ndarray fractions)→ double
Return the effective pressure in Pa for a system at a given pressure P in Pa composed of the given list of
species (Species or Molecule objects) with the given fractions.

getRateCoefficient(self, double T, double P=0.0)→ double
Return the value of the rate coefficient 𝑘(𝑇) in units of m^3, mol, and s at the specified temperature
T in K and pressure P in Pa. If you wish to consider collision efficiencies, then you should first use
getEffectivePressure() to compute the effective pressure, and pass that value as the pressure to this
method.

highPlimit
highPlimit: rmgpy.kinetics.model.KineticsModel

isIdenticalTo(self, KineticsModel otherKinetics)→ bool
Checks to see if kinetics matches that of other kinetics and returns True if coeffs, kunits, Tmin,

isPressureDependent(self)→ bool
Return True since all objects derived from PDepKineticsModel represent pressure-dependent kinetics.

isPressureValid(self, double P)→ bool
Return True if the pressure P in Pa is within the valid pressure range of the kinetic data, or False if not.
If the minimum and maximum pressure are not defined, True is returned.

isSimilarTo(self, KineticsModel otherKinetics)→ bool
Returns True if rates of reaction at temperatures 500,1000,1500,2000 K and 1 and 10 bar are within +/ .5
for log(k), in other words, within a factor of 3.

isTemperatureValid(self, double T)→ bool
Return True if the temperature T in K is within the valid temperature range of the kinetic data, or False
if not. If the minimum and maximum temperature are not defined, True is returned.

toHTML(self)
Return an HTML rendering.

rmgpy.kinetics.Lindemann

class rmgpy.kinetics.Lindemann(arrheniusHigh=None, arrheniusLow=None, Tmin=None, Tmax=None,
Pmin=None, Pmax=None, efficiencies=None, comment=’‘)

A kinetic model of a phenomenological rate coefficient 𝑘(𝑇, 𝑃) using the Lindemann formulation. The attributes
are:

48 Chapter 1. RMG API Reference

RMG-Py API Reference, Release 1.0.3

Attribute Description
arrheniusHigh The Arrhenius kinetics at the high-pressure limit
arrheniusLow The Arrhenius kinetics at the low-pressure limit
Tmin The minimum temperature at which the model is valid, or zero if unknown or undefined
Tmax The maximum temperature at which the model is valid, or zero if unknown or undefined
Pmin The minimum pressure at which the model is valid, or zero if unknown or undefined
Pmax The maximum pressure at which the model is valid, or zero if unknown or undefined
efficiencies A dict associating chemical species with associated efficiencies
comment Information about the model (e.g. its source)

The Lindemann model qualitatively predicts the falloff of some simple pressure-dependent reaction kinetics.
The formulation is as follows:

𝑘(𝑇, 𝑃) = 𝑘∞(𝑇)

[︂
𝑃r

1 + 𝑃r

]︂
where

𝑃r =
𝑘0(𝑇)

𝑘∞(𝑇)
[M]

𝑘0(𝑇) = 𝐴0𝑇
𝑛0 exp

(︂
− 𝐸0

𝑅𝑇

)︂
𝑘∞(𝑇) = 𝐴∞𝑇𝑛∞ exp

(︂
−𝐸∞

𝑅𝑇

)︂
and [M] ≈ 𝑃/𝑅𝑇 is the concentration of the bath gas. The Arrhenius expressions 𝑘0(𝑇) and 𝑘∞(𝑇) represent
the low-pressure and high-pressure limit kinetics, respectively.

Pmax
The maximum pressure at which the model is valid, or None if not defined.

Pmin
The minimum pressure at which the model is valid, or None if not defined.

Tmax
The maximum temperature at which the model is valid, or None if not defined.

Tmin
The minimum temperature at which the model is valid, or None if not defined.

arrheniusHigh
arrheniusHigh: rmgpy.kinetics.arrhenius.Arrhenius

arrheniusLow
arrheniusLow: rmgpy.kinetics.arrhenius.Arrhenius

changeRate(self, double factor)
Changes kinetics rate by a multiple factor.

comment
comment: str

discrepancy(self, KineticsModel otherKinetics)→ double
Returns some measure of the discrepancy based on two different reaction models.

efficiencies
efficiencies: dict

getEffectiveColliderEfficiencies(self, list species)→ ndarray
Return the effective collider efficiencies for all species in the form of a numpy array. This function helps
assist rapid effective pressure calculations in the solver.

1.5. Kinetics (rmgpy.kinetics) 49

RMG-Py API Reference, Release 1.0.3

getEffectivePressure(self, double P, list species, ndarray fractions)→ double
Return the effective pressure in Pa for a system at a given pressure P in Pa composed of the given list of
species (Species or Molecule objects) with the given fractions.

getRateCoefficient(self, double T, double P=0.0)→ double
Return the value of the rate coefficient 𝑘(𝑇) in units of m^3, mol, and s at the specified temperature
T in K and pressure P in Pa. If you wish to consider collision efficiencies, then you should first use
getEffectivePressure() to compute the effective pressure, and pass that value as the pressure to this
method.

highPlimit
highPlimit: rmgpy.kinetics.model.KineticsModel

isIdenticalTo(self, KineticsModel otherKinetics)→ bool
Checks to see if kinetics matches that of other kinetics and returns True if coeffs, kunits, Tmin,

isPressureDependent(self)→ bool
Return True since all objects derived from PDepKineticsModel represent pressure-dependent kinetics.

isPressureValid(self, double P)→ bool
Return True if the pressure P in Pa is within the valid pressure range of the kinetic data, or False if not.
If the minimum and maximum pressure are not defined, True is returned.

isSimilarTo(self, KineticsModel otherKinetics)→ bool
Returns True if rates of reaction at temperatures 500,1000,1500,2000 K and 1 and 10 bar are within +/ .5
for log(k), in other words, within a factor of 3.

isTemperatureValid(self, double T)→ bool
Return True if the temperature T in K is within the valid temperature range of the kinetic data, or False
if not. If the minimum and maximum temperature are not defined, True is returned.

toHTML(self)
Return an HTML rendering.

rmgpy.kinetics.Troe

class rmgpy.kinetics.Troe(arrheniusHigh=None, arrheniusLow=None, alpha=0.0, T3=None, T1=None,
T2=None, Tmin=None, Tmax=None, Pmin=None, Pmax=None, efficien-
cies=None, comment=’‘)

A kinetic model of a phenomenological rate coefficient 𝑘(𝑇, 𝑃) using the Troe formulation. The attributes are:

Attribute Description
arrheniusHigh The Arrhenius kinetics at the high-pressure limit
arrheniusLow The Arrhenius kinetics at the low-pressure limit
alpha The 𝛼 parameter
T1 The 𝑇1 parameter
T2 The 𝑇2 parameter
T3 The 𝑇3 parameter
Tmin The minimum temperature at which the model is valid, or zero if unknown or undefined
Tmax The maximum temperature at which the model is valid, or zero if unknown or undefined
Pmin The minimum pressure at which the model is valid, or zero if unknown or undefined
Pmax The maximum pressure at which the model is valid, or zero if unknown or undefined
efficiencies A dict associating chemical species with associated efficiencies
comment Information about the model (e.g. its source)

The Troe model attempts to make the Lindemann model quantitative by introducing a broadening factor 𝐹 . The

50 Chapter 1. RMG API Reference

RMG-Py API Reference, Release 1.0.3

formulation is as follows:

𝑘(𝑇, 𝑃) = 𝑘∞(𝑇)

[︂
𝑃r

1 + 𝑃r

]︂
𝐹

where

𝑃r =
𝑘0(𝑇)

𝑘∞(𝑇)
[M]

𝑘0(𝑇) = 𝐴0𝑇
𝑛0 exp

(︂
− 𝐸0

𝑅𝑇

)︂
𝑘∞(𝑇) = 𝐴∞𝑇𝑛∞ exp

(︂
−𝐸∞

𝑅𝑇

)︂
and [M] ≈ 𝑃/𝑅𝑇 is the concentration of the bath gas. The Arrhenius expressions 𝑘0(𝑇) and 𝑘∞(𝑇) represent
the low-pressure and high-pressure limit kinetics, respectively. The broadening factor 𝐹 is computed via

log𝐹 =

{︃
1 +

[︂
log𝑃r + 𝑐

𝑛− 𝑑(log𝑃r + 𝑐)

]︂2}︃−1

log𝐹cent

𝑐 = −0.4 − 0.67 log𝐹cent

𝑛 = 0.75 − 1.27 log𝐹cent

𝑑 = 0.14

𝐹cent = (1 − 𝛼) exp (−𝑇/𝑇3) + 𝛼 exp (−𝑇/𝑇1) + exp (−𝑇2/𝑇)

Pmax
The maximum pressure at which the model is valid, or None if not defined.

Pmin
The minimum pressure at which the model is valid, or None if not defined.

T1
The Troe 𝑇1 parameter.

T2
The Troe 𝑇2 parameter.

T3
The Troe 𝑇3 parameter.

Tmax
The maximum temperature at which the model is valid, or None if not defined.

Tmin
The minimum temperature at which the model is valid, or None if not defined.

alpha
alpha: ‘double’

arrheniusHigh
arrheniusHigh: rmgpy.kinetics.arrhenius.Arrhenius

arrheniusLow
arrheniusLow: rmgpy.kinetics.arrhenius.Arrhenius

changeRate(self, double factor)
Changes kinetics rate by a multiple factor.

1.5. Kinetics (rmgpy.kinetics) 51

RMG-Py API Reference, Release 1.0.3

comment
comment: str

discrepancy(self, KineticsModel otherKinetics)→ double
Returns some measure of the discrepancy based on two different reaction models.

efficiencies
efficiencies: dict

getEffectiveColliderEfficiencies(self, list species)→ ndarray
Return the effective collider efficiencies for all species in the form of a numpy array. This function helps
assist rapid effective pressure calculations in the solver.

getEffectivePressure(self, double P, list species, ndarray fractions)→ double
Return the effective pressure in Pa for a system at a given pressure P in Pa composed of the given list of
species (Species or Molecule objects) with the given fractions.

getRateCoefficient(self, double T, double P=0.0)→ double
Return the value of the rate coefficient 𝑘(𝑇) in units of m^3, mol, and s at the specified temperature
T in K and pressure P in Pa. If you wish to consider collision efficiencies, then you should first use
getEffectivePressure() to compute the effective pressure, and pass that value as the pressure to this
method.

highPlimit
highPlimit: rmgpy.kinetics.model.KineticsModel

isIdenticalTo(self, KineticsModel otherKinetics)→ bool
Checks to see if kinetics matches that of other kinetics and returns True if coeffs, kunits, Tmin,

isPressureDependent(self)→ bool
Return True since all objects derived from PDepKineticsModel represent pressure-dependent kinetics.

isPressureValid(self, double P)→ bool
Return True if the pressure P in Pa is within the valid pressure range of the kinetic data, or False if not.
If the minimum and maximum pressure are not defined, True is returned.

isSimilarTo(self, KineticsModel otherKinetics)→ bool
Returns True if rates of reaction at temperatures 500,1000,1500,2000 K and 1 and 10 bar are within +/ .5
for log(k), in other words, within a factor of 3.

isTemperatureValid(self, double T)→ bool
Return True if the temperature T in K is within the valid temperature range of the kinetic data, or False
if not. If the minimum and maximum temperature are not defined, True is returned.

toHTML(self)
Return an HTML rendering.

rmgpy.kinetics.Wigner

class rmgpy.kinetics.Wigner(frequency)
A tunneling model based on the Wigner formula. The attributes are:

Attribute Description
frequency The imaginary frequency of the transition state

An early formulation for incorporating the effect of tunneling is that of Wigner [1932Wigner]:

𝜅(𝑇) = 1 +
1

24

(︂
ℎ |𝜈TS|
𝑘B𝑇

)︂2

52 Chapter 1. RMG API Reference

RMG-Py API Reference, Release 1.0.3

where ℎ is the Planck constant, 𝜈TS is the negative frequency, 𝑘B is the Boltzmann constant, and 𝑇 is the
absolute temperature.

The Wigner formula represents the first correction term in a perturbative expansion for a parabolic barrier
[1959Bell], and is therefore only accurate in the limit of a small tunneling correction. There are many cases for
which the tunneling correction is very large; for these cases the Wigner model is inappropriate.

calculateTunnelingFactor(self, double T)→ double
Calculate and return the value of the Wigner tunneling correction for the reaction at the temperature T in
K.

calculateTunnelingFunction(self, ndarray Elist)→ ndarray
Raises NotImplementedError, as the Wigner tunneling model does not have a well-defined energy-
dependent tunneling function.

frequency
The negative frequency along the reaction coordinate.

rmgpy.kinetics.Eckart

class rmgpy.kinetics.Eckart(frequency, E0_reac, E0_TS, E0_prod=None)
A tunneling model based on the Eckart model. The attributes are:

Attribute Description
frequency The imaginary frequency of the transition state
E0_reac The ground-state energy of the reactants
E0_TS The ground-state energy of the transition state
E0_prod The ground-state energy of the products

If E0_prod is not given, it is assumed to be the same as the reactants; this results in the so-called “symmetric”
Eckart model. Providing E0_prod, and thereby using the “asymmetric” Eckart model, is the recommended
approach.

The Eckart tunneling model is based around a potential of the form

𝑉 (𝑥) =
ℎ̄2

2𝑚

[︃
𝐴𝑒𝑥

1 + 𝑒𝑥
+

𝐵𝑒𝑥

(1 + 𝑒𝑥)
2

]︃

where 𝑥 represents the reaction coordinate and 𝐴 and 𝐵 are parameters. The potential is symmetric if 𝐴 = 0
and asymmetric if 𝐴 ̸= 0. If we add the constraint |𝐵| > |𝐴| then the potential has a maximum at

𝑥max = ln

(︂
𝐵 + 𝐴

𝐵 −𝐴

)︂

𝑉 (𝑥max) =
ℎ̄2

2𝑚

(𝐴 + 𝐵)2

4𝐵

The one-dimensional Schrodinger equation with the Eckart potential is analytically solvable. The resulting
microcanonical tunneling factor 𝜅(𝐸) is a function of the total energy of the molecular system:

𝜅(𝐸) = 1 − cosh(2𝜋𝑎− 2𝜋𝑏) + cosh(2𝜋𝑑)

cosh(2𝜋𝑎 + 2𝜋𝑏) + cosh(2𝜋𝑑)

where

2𝜋𝑎 =
2
√
𝛼1𝜉

𝛼
−1/2
1 + 𝛼

−1/2
2

1.5. Kinetics (rmgpy.kinetics) 53

RMG-Py API Reference, Release 1.0.3

2𝜋𝑏 =
2
√︀
|(𝜉 − 1)𝛼1 + 𝛼2|
𝛼
−1/2
1 + 𝛼

−1/2
2

2𝜋𝑑 = 2
√︀
|𝛼1𝛼2 − 4𝜋2/16|

𝛼1 = 2𝜋
∆𝑉1

ℎ |𝜈TS|

𝛼2 = 2𝜋
∆𝑉2

ℎ |𝜈TS|

𝜉 =
𝐸

∆𝑉1

∆𝑉1 and ∆𝑉2 are the thermal energy difference between the transition state and the reactants and products,
respectively; 𝜈TS is the negative frequency, ℎ is the Planck constant.

Applying a Laplace transform gives the canonical tunneling factor as a function of temperature 𝑇 (expressed as
𝛽 ≡ 1/𝑘B𝑇):

𝜅(𝑇) = 𝑒𝛽Δ𝑉1

∫︁ ∞

0

𝜅(𝐸)𝑒−𝛽𝐸 𝑑𝐸

If product data is not available, then it is assumed that 𝛼2 ≈ 𝛼1.

The Eckart correction requires information about the reactants as well as the transition state. For best results,
information about the products should also be given. (The former is called the symmetric Eckart correction, the
latter the asymmetric Eckart correction.) This extra information allows the Eckart correction to generally give a
better result than the Wigner correction.

E0_TS
The ground-state energy of the transition state.

E0_prod
The ground-state energy of the products.

E0_reac
The ground-state energy of the reactants.

calculateTunnelingFactor(self, double T)→ double
Calculate and return the value of the Eckart tunneling correction for the reaction at the temperature T in K.

calculateTunnelingFunction(self, ndarray Elist)→ ndarray
Calculate and return the value of the Eckart tunneling function for the reaction at the energies Elist in
J/mol.

frequency
The negative frequency along the reaction coordinate.

1.6 Molecular representations (rmgpy.molecule)

The rmgpy.molecule subpackage contains classes and functions for working with molecular representations, partic-
ularly using chemical graph theory.

54 Chapter 1. RMG API Reference

RMG-Py API Reference, Release 1.0.3

1.6.1 Graphs

Class Description
Vertex A generic vertex (node) in a graph
Edge A generic edge (arc) in a graph
Graph A generic graph data type

1.6.2 Graph isomorphism

Class Description
VF2 Graph isomorphism using the VF2 algorithm

1.6.3 Elements and atom types

Class/Function Description
Element A model of a chemical element
getElement() Return the Element object for a given atomic number or symbol
AtomType A model of an atom type: an element and local bond structure
getAtomType() Return the AtomType object for a given atom in a molecule

1.6.4 Molecules

Class Description
Atom An atom in a molecule
Bond A bond in a molecule
Molecule A molecular structure represented using a chemical graph

1.6.5 Functional groups

Class Description
GroupAtom An atom in a functional group
GroupBond A bond in a functional group
Group A functional group structure represented using a chemical graph

1.6.6 Adjacency lists

Function Description
fromAdjacencyList() Convert an adjacency list to a set of atoms and bonds
toAdjacencyList() Convert a set of atoms and bonds to an adjacency list

1.6. Molecular representations (rmgpy.molecule) 55

RMG-Py API Reference, Release 1.0.3

1.6.7 Symmetry numbers

Class Description
calculateAtomSymmetryNumber() Calculate the atom-centered symmetry number for an atom in a molecule
calculateBondSymmetryNumber() Calculate the bond-centered symmetry number for a bond in a molecule
calculateAxisSymmetryNumber() Calculate the axis-centered symmetry number for a double bond axis in a

molecule
calculateCyclicSymmetryNumber()Calculate the ring-centered symmetry number for a ring in a molecule
calculateSymmetryNumber() Calculate the total internal + external symmetry number for a molecule

1.6.8 Molecule and reaction drawing

Class Description
MoleculeDrawer Draw the skeletal formula of a molecule
ReactionDrawer Draw a chemical reaction

1.6.9 Exceptions

Exception Description
ElementError Raised when an error occurs while working with chemical elements
AtomTypeError Raised when an error occurs while working with atom types
InvalidAdjacencyListError Raised when an invalid adjacency list is encountered
ActionError Raised when an error occurs while working with a reaction recipe action

rmgpy.molecule.graph.Vertex

class rmgpy.molecule.graph.Vertex
A base class for vertices in a graph. Contains several connectivity values useful for accelerating isomorphism
searches, as proposed by Morgan (1965).

Attribute Type Description
connectivity int The number of nearest neighbors
sortingLabel int An integer label used to sort the vertices

copy()
Return a copy of the vertex. The default implementation assumes that no semantic information is associ-
ated with each vertex, and therefore simply returns a new Vertex object.

equivalent()
Return True if two vertices self and other are semantically equivalent, or False if not. You should
reimplement this function in a derived class if your vertices have semantic information.

isSpecificCaseOf()
Return True if self is semantically more specific than other, or False if not. You should reimplement
this function in a derived class if your edges have semantic information.

resetConnectivityValues()
Reset the cached structure information for this vertex.

56 Chapter 1. RMG API Reference

http://dx.doi.org/10.1021/c160017a018

RMG-Py API Reference, Release 1.0.3

rmgpy.molecule.graph.Edge

class rmgpy.molecule.graph.Edge
A base class for edges in a graph. This class does not store the vertex pair that comprises the edge; that
functionality would need to be included in the derived class.

copy()
Return a copy of the edge. The default implementation assumes that no semantic information is associated
with each edge, and therefore simply returns a new Edge object. Note that the vertices are not copied in
this implementation.

equivalent()
Return True if two edges self and other are semantically equivalent, or False if not. You should reim-
plement this function in a derived class if your edges have semantic information.

getOtherVertex()
Given a vertex that makes up part of the edge, return the other vertex. Raise a ValueError if the given
vertex is not part of the edge.

isSpecificCaseOf()
Return True if self is semantically more specific than other, or False if not. You should reimplement
this function in a derived class if your edges have semantic information.

rmgpy.molecule.graph.Graph

class rmgpy.molecule.graph.Graph
A graph data type. The vertices of the graph are stored in a list vertices; this provides a consistent traversal
order. The edges of the graph are stored in a dictionary of dictionaries edges. A single edge can be accessed
using graph.edges[vertex1][vertex2] or the getEdge() method; in either case, an exception will be
raised if the edge does not exist. All edges of a vertex can be accessed using graph.edges[vertex] or the
getEdges() method.

addEdge()
Add an edge to the graph. The two vertices in the edge must already exist in the graph, or a ValueError
is raised.

addVertex()
Add a vertex to the graph. The vertex is initialized with no edges.

copy()
Create a copy of the current graph. If deep is True, a deep copy is made: copies of the vertices and edges
are used in the new graph. If deep is False or not specified, a shallow copy is made: the original vertices
and edges are used in the new graph.

findIsomorphism()
Returns True if other is subgraph isomorphic and False otherwise, and the matching mapping. Uses the
VF2 algorithm of Vento and Foggia.

findSubgraphIsomorphisms()
Returns True if other is subgraph isomorphic and False otherwise. Also returns the lists all of valid
mappings.

Uses the VF2 algorithm of Vento and Foggia.

getAllCycles()
Given a starting vertex, returns a list of all the cycles containing that vertex.

getAllCyclicVertices()
Returns all vertices belonging to one or more cycles.

1.6. Molecular representations (rmgpy.molecule) 57

RMG-Py API Reference, Release 1.0.3

getAllPolycyclicVertices()
Return all vertices belonging to two or more cycles, fused or spirocyclic.

getEdge()
Returns the edge connecting vertices vertex1 and vertex2.

getEdges()
Return a list of the edges involving the specified vertex.

getSmallestSetOfSmallestRings()
Return a list of the smallest set of smallest rings in the graph. The algorithm implements was adapted from
a description by Fan, Panaye, Doucet, and Barbu (doi: 10.1021/ci00015a002)

B. T. Fan, A. Panaye, J. P. Doucet, and A. Barbu. “Ring Perception: A New Algorithm for Directly Finding
the Smallest Set of Smallest Rings from a Connection Table.” J. Chem. Inf. Comput. Sci. 33, p. 657-662
(1993).

hasEdge()
Returns True if vertices vertex1 and vertex2 are connected by an edge, or False if not.

hasVertex()
Returns True if vertex is a vertex in the graph, or False if not.

isCyclic()
Return True if one or more cycles are present in the graph or False otherwise.

isEdgeInCycle()
Return True if the edge between vertices vertex1 and vertex2 is in one or more cycles in the graph, or
False if not.

isIsomorphic()
Returns True if two graphs are isomorphic and False otherwise. Uses the VF2 algorithm of Vento and
Foggia.

isMappingValid()
Check that a proposed mapping of vertices from self to other is valid by checking that the vertices and
edges involved in the mapping are mutually equivalent.

isSubgraphIsomorphic()
Returns True if other is subgraph isomorphic and False otherwise. Uses the VF2 algorithm of Vento and
Foggia.

isVertexInCycle()
Return True if the given vertex is contained in one or more cycles in the graph, or False if not.

merge()
Merge two graphs so as to store them in a single Graph object.

removeEdge()
Remove the specified edge from the graph. Does not remove vertices that no longer have any edges as a
result of this removal.

removeVertex()
Remove vertex and all edges associated with it from the graph. Does not remove vertices that no longer
have any edges as a result of this removal.

resetConnectivityValues()
Reset any cached connectivity information. Call this method when you have modified the graph.

sortVertices()
Sort the vertices in the graph. This can make certain operations, e.g. the isomorphism functions, much
more efficient.

58 Chapter 1. RMG API Reference

RMG-Py API Reference, Release 1.0.3

split()
Convert a single Graph object containing two or more unconnected graphs into separate graphs.

updateConnectivityValues()
Update the connectivity values for each vertex in the graph. These are used to accelerate the isomorphism
checking.

rmgpy.molecule.vf2.VF2

class rmgpy.molecule.vf2.VF2
An implementation of the second version of the Vento-Foggia (VF2) algorithm for graph and subgraph isomor-
phism.

findIsomorphism()
Return a list of dicts of all valid isomorphism mappings from graph graph1 to graph graph2 with the
optional initial mapping initialMapping. If no valid isomorphisms are found, an empty list is returned.

findSubgraphIsomorphisms()
Return a list of dicts of all valid subgraph isomorphism mappings from graph graph1 to subgraph graph2
with the optional initial mapping initialMapping. If no valid subgraph isomorphisms are found, an empty
list is returned.

isIsomorphic()
Return True if graph graph1 is isomorphic to graph graph2 with the optional initial mapping initialMap-
ping, or False otherwise.

isSubgraphIsomorphic()
Return True if graph graph1 is subgraph isomorphic to subgraph graph2 with the optional initial mapping
initialMapping, or False otherwise.

rmgpy.molecule.Element

class rmgpy.molecule.Element
A chemical element. The attributes are:

Attribute Type Description
number int The atomic number of the element
symbol str The symbol used for the element
name str The IUPAC name of the element
mass float The mass of the element in kg/mol
covRadius float Covalent bond radius in Angstrom

This class is specifically for properties that all atoms of the same element share. Ideally there is only one instance
of this class for each element.

rmgpy.molecule.getElement()
Return the Element object corresponding to the given parameter value. If an integer is provided, the value is
treated as the atomic number. If a string is provided, the value is treated as the symbol. An ElementError is
raised if no matching element is found.

rmgpy.molecule.AtomType

class rmgpy.molecule.AtomType
A class for internal representation of atom types. Using unique objects rather than strings allows us to use fast
pointer comparisons instead of slow string comparisons, as well as store extra metadata. In particular, we store

1.6. Molecular representations (rmgpy.molecule) 59

RMG-Py API Reference, Release 1.0.3

metadata describing the atom type’s hierarchy with regard to other atom types, and the atom types that can result
when various actions involving this atom type are taken. The attributes are:

Attribute Type Description
label str A unique label for the atom type
generic list The atom types that are more generic than this one
specific list The atom types that are more specific than this one
incrementBond list The atom type(s) that result when an adjacent bond’s order is incremented
decrementBond list The atom type(s) that result when an adjacent bond’s order is decremented
formBond list The atom type(s) that result when a new single bond is formed to this atom

type
breakBond list The atom type(s) that result when an existing single bond to this atom type is

broken
incrementRadical list The atom type(s) that result when the number of radical electrons is

incremented
decrementRadical list The atom type(s) that result when the number of radical electrons is

decremented
incrementLone-
Pair

list The atom type(s) that result when the number of lone electron pairs is
incremented

decrementLone-
Pair

list The atom type(s) that result when the number of lone electron pairs is
decremented

equivalent()
Returns True if two atom types atomType1 and atomType2 are equivalent or False otherwise. This
function respects wildcards, e.g. R!H is equivalent to C.

isSpecificCaseOf()
Returns True if atom type atomType1 is a specific case of atom type atomType2 or False otherwise.

rmgpy.molecule.getAtomType()
Determine the appropriate atom type for an Atom object atom with local bond structure bonds, a dict containing
atom-bond pairs.

The atom type of an atom describes the atom itself and (often) something about the local bond structure around
that atom. This is a useful semantic tool for accelerating graph isomorphism queries, and a useful shorthand when
specifying molecular substructure patterns via an RMG-style adjacency list.

We define the following basic atom types:

Atom type Description
General atom types
R any atom with any local bond structure
R!H any non-hydrogen atom with any local bond structure
Carbon atom types
C carbon atom with any local bond structure
Cs carbon atom with four single bonds
Cd carbon atom with one double bond (to carbon) and two single bonds
Cdd carbon atom with two double bonds
Ct carbon atom with one triple bond and one single bond
CO carbon atom with one double bond (to oxygen) and two single bonds
Cb carbon atom with two benzene bonds and one single bond
Cbf carbon atom with three benzene bonds
Hydrogen atom types
H hydrogen atom with one single bond
Oxygen atom types

Continued on next page

60 Chapter 1. RMG API Reference

RMG-Py API Reference, Release 1.0.3

Table 1.2 – continued from previous page
Atom type Description
O oxygen atom with any local bond structure
Os oxygen atom with two single bonds
Od oxygen atom with one double bond
Oa oxygen atom with no bonds
Silicon atom types
Si silicon atom with any local bond structure
Sis silicon atom with four single bonds
Sid silicon atom with one double bond (to carbon) and two single bonds
Sidd silicon atom with two double bonds
Sit silicon atom with one triple bond and one single bond
SiO silicon atom with one double bond (to oxygen) and two single bonds
Sib silicon atom with two benzene bonds and one single bond
Sibf silicon atom with three benzene bonds
Sulfur atom types
S sulfur atom with any local bond structure
Ss sulfur atom with two single bonds
Sd sulfur atom with one double bond
Sa sulfur atom with no bonds

Reaction recipes

A reaction recipe is a procedure for applying a reaction to a set of chemical species. Each reaction recipe is made up
of a set of actions that, when applied sequentially, a set of chemical reactants to chemical products via that reaction’s
characteristic chemical process. Each action requires a small set of parameters in order to be fully defined.

We define the following reaction recipe actions:

Action
name

Arguments Action

CHANGE_BONDcenter1, order,
center2

change the bond order of the bond between center1 and center2 by
order; do not break or form bonds

FORM_BONDcenter1, order,
center2

form a new bond between center1 and center2 of type order

BREAK_BONDcenter1, order,
center2

break the bond between center1 and center2, which should be of
type order

GAIN_RADICALcenter, radical increase the number of free electrons on center by radical
LOSE_RADICALcenter, radical decrease the number of free electrons on center by radical

rmgpy.molecule.Atom

class rmgpy.molecule.Atom
An atom. The attributes are:

Attribute Type Description
atomType AtomType The atom type
element Element The chemical element the atom represents
radicalElectrons short The number of radical electrons
charge short The formal charge of the atom
label str A string label that can be used to tag individual atoms
coords numpy array The (x,y,z) coordinates in Angstrom
lonePairs short The number of lone electron pairs

1.6. Molecular representations (rmgpy.molecule) 61

RMG-Py API Reference, Release 1.0.3

Additionally, the mass, number, and symbol attributes of the atom’s element can be read (but not written)
directly from the atom object, e.g. atom.symbol instead of atom.element.symbol.

applyAction()
Update the atom pattern as a result of applying action, a tuple containing the name of the reaction recipe
action along with any required parameters. The available actions can be found here.

copy()
Generate a deep copy of the current atom. Modifying the attributes of the copy will not affect the original.

decrementLonePairs()
Update the lone electron pairs pattern as a result of applying a LOSE_PAIR action.

decrementRadical()
Update the atom pattern as a result of applying a LOSE_RADICAL action, where radical specifies the
number of radical electrons to remove.

equivalent()
Return True if other is indistinguishable from this atom, or False otherwise. If other is an Atom object,
then all attributes except label must match exactly. If other is an GroupAtom object, then the atom must
match any of the combinations in the atom pattern.

incrementLonePairs()
Update the lone electron pairs pattern as a result of applying a GAIN_PAIR action.

incrementRadical()
Update the atom pattern as a result of applying a GAIN_RADICAL action, where radical specifies the
number of radical electrons to add.

isCarbon()
Return True if the atom represents a carbon atom or False if not.

isHydrogen()
Return True if the atom represents a hydrogen atom or False if not.

isNitrogen()
Return True if the atom represents a nitrogen atom or False if not.

isNonHydrogen()
Return True if the atom does not represent a hydrogen atom or False if not.

isOxygen()
Return True if the atom represents an oxygen atom or False if not.

isSpecificCaseOf()
Return True if self is a specific case of other, or False otherwise. If other is an Atom object, then this is
the same as the equivalent() method. If other is an GroupAtom object, then the atom must match or
be more specific than any of the combinations in the atom pattern.

resetConnectivityValues()
Reset the cached structure information for this vertex.

setLonePairs()
Set the number of lone electron pairs.

setSpinMultiplicity()
Set the spin multiplicity.

updateCharge()
Update self.charge, according to the valence, and the number and types of bonds, radicals, and lone pairs.

62 Chapter 1. RMG API Reference

RMG-Py API Reference, Release 1.0.3

rmgpy.molecule.Bond

class rmgpy.molecule.Bond
A chemical bond. The attributes are:

Attribute Type Description
order str The bond type

applyAction()
Update the bond as a result of applying action, a tuple containing the name of the reaction recipe action
along with any required parameters. The available actions can be found here.

copy()
Generate a deep copy of the current bond. Modifying the attributes of the copy will not affect the original.

decrementOrder()
Update the bond as a result of applying a CHANGE_BOND action to decrease the order by one.

equivalent()
Return True if other is indistinguishable from this bond, or False otherwise. other can be either a Bond
or a GroupBond object.

getOtherVertex()
Given a vertex that makes up part of the edge, return the other vertex. Raise a ValueError if the given
vertex is not part of the edge.

incrementOrder()
Update the bond as a result of applying a CHANGE_BOND action to increase the order by one.

isBenzene()
Return True if the bond represents a benzene bond or False if not.

isDouble()
Return True if the bond represents a double bond or False if not.

isSingle()
Return True if the bond represents a single bond or False if not.

isSpecificCaseOf()
Return True if self is a specific case of other, or False otherwise. other can be either a Bond or a
GroupBond object.

isTriple()
Return True if the bond represents a triple bond or False if not.

Bond types

The bond type simply indicates the order of a chemical bond. We define the following bond types:

Bond type Description
S a single bond
D a double bond
T a triple bond
B a benzene bond

rmgpy.molecule.Molecule

class rmgpy.molecule.Molecule
A representation of a molecular structure using a graph data type, extending the Graph class. The atoms and

1.6. Molecular representations (rmgpy.molecule) 63

RMG-Py API Reference, Release 1.0.3

bonds attributes are aliases for the vertices and edges attributes. Other attributes are:

Attribute Type Description
symmetryNumber int The (estimated) external + internal symmetry number of the molecule
multiplicity int The multiplicity of this species, multiplicity = 2*total_spin+1

A new molecule object can be easily instantiated by passing the SMILES or InChI string representing the molec-
ular structure.

addAtom()
Add an atom to the graph. The atom is initialized with no bonds.

addBond()
Add a bond to the graph as an edge connecting the two atoms atom1 and atom2.

addEdge()
Add an edge to the graph. The two vertices in the edge must already exist in the graph, or a ValueError
is raised.

addVertex()
Add a vertex to the graph. The vertex is initialized with no edges.

calculateCp0()
Return the value of the heat capacity at zero temperature in J/mol*K.

calculateCpInf()
Return the value of the heat capacity at infinite temperature in J/mol*K.

calculateSymmetryNumber()
Return the symmetry number for the structure. The symmetry number includes both external and internal
modes.

clearLabeledAtoms()
Remove the labels from all atoms in the molecule.

connectTheDots()
Delete all bonds, and set them again based on the Atoms’ coords. Does not detect bond type.

containsLabeledAtom()
Return True if the molecule contains an atom with the label label and False otherwise.

copy()
Create a copy of the current graph. If deep is True, a deep copy is made: copies of the vertices and edges
are used in the new graph. If deep is False or not specified, a shallow copy is made: the original vertices
and edges are used in the new graph.

countInternalRotors()
Determine the number of internal rotors in the structure. Any single bond not in a cycle and between two
atoms that also have other bonds are considered to be internal rotors.

deleteHydrogens()
Irreversibly delete all non-labeled hydrogens without updating connectivity values. If there’s nothing but
hydrogens, it does nothing. It destroys information; be careful with it.

draw()
Generate a pictorial representation of the chemical graph using the draw module. Use path to specify
the file to save the generated image to; the image type is automatically determined by extension. Valid
extensions are .png, .svg, .pdf, and .ps; of these, the first is a raster format and the remainder are
vector formats.

findIsomorphism()
Returns True if other is isomorphic and False otherwise, and the matching mapping. The initialMap

64 Chapter 1. RMG API Reference

RMG-Py API Reference, Release 1.0.3

attribute can be used to specify a required mapping from self to other (i.e. the atoms of self are the keys,
while the atoms of other are the values). The returned mapping also uses the atoms of self for the keys
and the atoms of other for the values. The other parameter must be a Molecule object, or a TypeError
is raised.

findSubgraphIsomorphisms()
Returns True if other is subgraph isomorphic and False otherwise. Also returns the lists all of valid
mappings. The initialMap attribute can be used to specify a required mapping from self to other (i.e. the
atoms of self are the keys, while the atoms of other are the values). The returned mappings also use the
atoms of self for the keys and the atoms of other for the values. The other parameter must be a Group
object, or a TypeError is raised.

fromAdjacencyList()
Convert a string adjacency list adjlist to a molecular structure. Skips the first line (assuming it’s a label)
unless withLabel is False.

fromAugmentedInChI()
Convert an Augmented InChI string aug_inchi to a molecular structure.

fromInChI()
Convert an InChI string inchistr to a molecular structure.

fromSMARTS()
Convert a SMARTS string smartsstr to a molecular structure. Uses RDKit to perform the conversion. This
Kekulizes everything, removing all aromatic atom types.

fromSMILES()
Convert a SMILES string smilesstr to a molecular structure.

fromXYZ()
Create an RMG molecule from a list of coordinates and a corresponding list of atomic numbers. These
are typically received from CCLib and the molecule is sent to ConnectTheDots so will only contain single
bonds.

getAllCycles()
Given a starting vertex, returns a list of all the cycles containing that vertex.

getAllCyclicVertices()
Returns all vertices belonging to one or more cycles.

getAllPolycyclicVertices()
Return all vertices belonging to two or more cycles, fused or spirocyclic.

getBond()
Returns the bond connecting atoms atom1 and atom2.

getBonds()
Return a list of the bonds involving the specified atom.

getEdge()
Returns the edge connecting vertices vertex1 and vertex2.

getEdges()
Return a list of the edges involving the specified vertex.

getFingerprint()
Return a string containing the “fingerprint” used to accelerate graph isomorphism comparisons with other
molecules. The fingerprint is a short string containing a summary of selected information about the
molecule. Two fingerprint strings matching is a necessary (but not sufficient) condition for the associ-
ated molecules to be isomorphic.

1.6. Molecular representations (rmgpy.molecule) 65

http://rdkit.org/

RMG-Py API Reference, Release 1.0.3

getFormula()
Return the molecular formula for the molecule.

getLabeledAtom()
Return the atoms in the molecule that are labeled.

getLabeledAtoms()
Return the labeled atoms as a dict with the keys being the labels and the values the atoms themselves. If
two or more atoms have the same label, the value is converted to a list of these atoms.

getMolecularWeight()
Return the molecular weight of the molecule in kg/mol.

getNetCharge()
Iterate through the atoms in the structure and calculate the net charge on the overall molecule.

getNumAtoms()
Return the number of atoms in molecule. If element is given, ie. “H” or “C”, the number of atoms of that
element is returned.

getNumberOfRadicalElectrons()
Return the total number of radical electrons on all atoms in the molecule. In this function, monoradical
atoms count as one, biradicals count as two, etc.

getRadicalAtoms()
Return the atoms in the molecule that have unpaired electrons.

getRadicalCount()
Return the number of unpaired electrons.

getSmallestSetOfSmallestRings()
Return a list of the smallest set of smallest rings in the graph. The algorithm implements was adapted from
a description by Fan, Panaye, Doucet, and Barbu (doi: 10.1021/ci00015a002)

B. T. Fan, A. Panaye, J. P. Doucet, and A. Barbu. “Ring Perception: A New Algorithm for Directly Finding
the Smallest Set of Smallest Rings from a Connection Table.” J. Chem. Inf. Comput. Sci. 33, p. 657-662
(1993).

getSymmetryNumber()
Returns the symmetry number of Molecule. First checks whether the value is stored as an attribute of
Molecule. If not, it calls the calculateSymmetryNumber method.

getURL()
Get a URL to the molecule’s info page on the RMG website.

hasAtom()
Returns True if atom is an atom in the graph, or False if not.

hasBond()
Returns True if atoms atom1 and atom2 are connected by an bond, or False if not.

hasEdge()
Returns True if vertices vertex1 and vertex2 are connected by an edge, or False if not.

hasVertex()
Returns True if vertex is a vertex in the graph, or False if not.

isAromatic()
Returns True if the molecule is aromatic, or False if not. Iterates over the SSSR’s and searches for
rings that consist solely of Cb atoms. Assumes that aromatic rings always consist of 6 atoms. In cases of
naphthalene, where a 6 + 4 aromatic system exists, there will be at least one 6 membered aromatic ring so
this algorithm will not fail for fused aromatic rings.

66 Chapter 1. RMG API Reference

RMG-Py API Reference, Release 1.0.3

isAtomInCycle()
Return True if atom is in one or more cycles in the structure, and False if not.

isBondInCycle()
Return True if the bond between atoms atom1 and atom2 is in one or more cycles in the graph, or False
if not.

isCyclic()
Return True if one or more cycles are present in the graph or False otherwise.

isEdgeInCycle()
Return True if the edge between vertices vertex1 and vertex2 is in one or more cycles in the graph, or
False if not.

isIsomorphic()
Returns True if two graphs are isomorphic and False otherwise. The initialMap attribute can be used to
specify a required mapping from self to other (i.e. the atoms of self are the keys, while the atoms of other
are the values). The other parameter must be a Molecule object, or a TypeError is raised. Also ensures
multiplicities are also equal.

isLinear()
Return True if the structure is linear and False otherwise.

isMappingValid()
Check that a proposed mapping of vertices from self to other is valid by checking that the vertices and
edges involved in the mapping are mutually equivalent.

isRadical()
Return True if the molecule contains at least one radical electron, or False otherwise.

isSubgraphIsomorphic()
Returns True if other is subgraph isomorphic and False otherwise. The initialMap attribute can be used
to specify a required mapping from self to other (i.e. the atoms of self are the keys, while the atoms of
other are the values). The other parameter must be a Group object, or a TypeError is raised.

isVertexInCycle()
Return True if the given vertex is contained in one or more cycles in the graph, or False if not.

is_equal()
Method to test equality of two Molecule objects.

merge()
Merge two molecules so as to store them in a single Molecule object. The merged Molecule object is
returned.

removeAtom()
Remove atom and all bonds associated with it from the graph. Does not remove atoms that no longer have
any bonds as a result of this removal.

removeBond()
Remove the bond between atoms atom1 and atom2 from the graph. Does not remove atoms that no longer
have any bonds as a result of this removal.

removeEdge()
Remove the specified edge from the graph. Does not remove vertices that no longer have any edges as a
result of this removal.

removeVertex()
Remove vertex and all edges associated with it from the graph. Does not remove vertices that no longer
have any edges as a result of this removal.

1.6. Molecular representations (rmgpy.molecule) 67

RMG-Py API Reference, Release 1.0.3

resetConnectivityValues()
Reset any cached connectivity information. Call this method when you have modified the graph.

saturate()
Saturate the molecule by replacing all radicals with bonds to hydrogen atoms. Changes self molecule
object.

sortAtoms()
Sort the atoms in the graph. This can make certain operations, e.g. the isomorphism functions, much more
efficient.

sortVertices()
Sort the vertices in the graph. This can make certain operations, e.g. the isomorphism functions, much
more efficient.

split()
Convert a single Molecule object containing two or more unconnected molecules into separate
class:Molecule objects.

toAdjacencyList()
Convert the molecular structure to a string adjacency list.

toAugmentedInChI()
Adds an extra layer to the InChI denoting the multiplicity of the molecule.

Separate layer with a forward slash character.

toAugmentedInChIKey()
Adds an extra layer to the InChIKey denoting the multiplicity of the molecule.

Simply append the multiplicity string, do not separate by a character like forward slash.

toInChI()
Convert a molecular structure to an InChI string. Uses RDKit to perform the conversion. Perceives aro-
maticity.

or

Convert a molecular structure to an InChI string. Uses OpenBabel to perform the conversion.

toInChIKey()
Convert a molecular structure to an InChI Key string. Uses OpenBabel to perform the conversion.

or

Convert a molecular structure to an InChI Key string. Uses RDKit to perform the conversion.

Removes check-sum dash (-) and character so that only the 14 + 9 characters remain.

toRDKitMol()
Convert a molecular structure to a RDKit rdmol object.

toSMARTS()
Convert a molecular structure to an SMARTS string. Uses RDKit to perform the conversion. Perceives
aromaticity and removes Hydrogen atoms.

toSMILES()
Convert a molecular structure to an SMILES string.

If there is a Nitrogen atom present it uses OpenBabel to perform the conversion, and the SMILES may or
may not be canonical.

Otherwise, it uses RDKit to perform the conversion, so it will be canonical SMILES. While converting to
an RDMolecule it will perceive aromaticity and removes Hydrogen atoms.

68 Chapter 1. RMG API Reference

http://rdkit.org/
http://openbabel.org/
http://openbabel.org/
http://rdkit.org/
http://rdkit.org/
http://openbabel.org/
http://rdkit.org/

RMG-Py API Reference, Release 1.0.3

toSingleBonds()
Returns a copy of the current molecule, consisting of only single bonds.

This is useful for isomorphism comparison against something that was made via fromXYZ, which does
not attempt to perceive bond orders

update()
Update connectivity values, atom types of atoms. Update multiplicity, and sort atoms using the new
connectivity values.

updateAtomTypes()
Iterate through the atoms in the structure, checking their atom types to ensure they are correct (i.e. accu-
rately describe their local bond environment) and complete (i.e. are as detailed as possible).

updateConnectivityValues()
Update the connectivity values for each vertex in the graph. These are used to accelerate the isomorphism
checking.

updateLonePairs()
Iterate through the atoms in the structure and calculate the number of lone electron pairs, assuming a
neutral molecule.

updateMultiplicity()
Update the multiplicity of a newly formed molecule.

rmgpy.molecule.GroupAtom

class rmgpy.molecule.GroupAtom
An atom group. This class is based on the Atom class, except that it uses atom types instead of elements, and all
attributes are lists rather than individual values. The attributes are:

Attribute Type Description
atomType list The allowed atom types (as AtomType objects)
radicalElectrons list The allowed numbers of radical electrons (as short integers)
charge list The allowed formal charges (as short integers)
label str A string label that can be used to tag individual atoms
lonePairs list The number of lone electron pairs

Each list represents a logical OR construct, i.e. an atom will match the group if it matches any item in the list.
However, the radicalElectrons, and charge attributes are linked such that an atom must match values from the
same index in each of these in order to match.

applyAction()
Update the atom group as a result of applying action, a tuple containing the name of the reaction recipe
action along with any required parameters. The available actions can be found here.

copy()
Return a deep copy of the GroupAtom object. Modifying the attributes of the copy will not affect the
original.

equivalent()
Returns True if other is equivalent to self or False if not, where other can be either an Atom or an
GroupAtom object. When comparing two GroupAtom objects, this function respects wildcards, e.g. R!H
is equivalent to C.

isSpecificCaseOf()
Returns True if other is the same as self or is a more specific case of self. Returns False if some of self
is not included in other or they are mutually exclusive.

1.6. Molecular representations (rmgpy.molecule) 69

RMG-Py API Reference, Release 1.0.3

resetConnectivityValues()
Reset the cached structure information for this vertex.

rmgpy.molecule.GroupBond

class rmgpy.molecule.GroupBond
A bond group. This class is based on the Bond class, except that all attributes are lists rather than individual
values. The allowed bond types are given here. The attributes are:

Attribute Type Description
order list The allowed bond orders (as character strings)

Each list represents a logical OR construct, i.e. a bond will match the group if it matches any item in the list.

applyAction()
Update the bond group as a result of applying action, a tuple containing the name of the reaction recipe
action along with any required parameters. The available actions can be found here.

copy()
Return a deep copy of the GroupBond object. Modifying the attributes of the copy will not affect the
original.

equivalent()
Returns True if other is equivalent to self or False if not, where other can be either an Bond or an
GroupBond object.

getOtherVertex()
Given a vertex that makes up part of the edge, return the other vertex. Raise a ValueError if the given
vertex is not part of the edge.

isSpecificCaseOf()
Returns True if other is the same as self or is a more specific case of self. Returns False if some of self
is not included in other or they are mutually exclusive.

rmgpy.molecule.Group

class rmgpy.molecule.Group
A representation of a molecular substructure group using a graph data type, extending the Graph class.
The atoms and bonds attributes are aliases for the vertices and edges attributes, and store GroupAtom and
GroupBond objects, respectively. Corresponding alias methods have also been provided.

addAtom()
Add an atom to the graph. The atom is initialized with no bonds.

addBond()
Add a bond to the graph as an edge connecting the two atoms atom1 and atom2.

addEdge()
Add an edge to the graph. The two vertices in the edge must already exist in the graph, or a ValueError
is raised.

addVertex()
Add a vertex to the graph. The vertex is initialized with no edges.

clearLabeledAtoms()
Remove the labels from all atoms in the molecular group.

containsLabeledAtom()
Return True if the group contains an atom with the label label and False otherwise.

70 Chapter 1. RMG API Reference

RMG-Py API Reference, Release 1.0.3

copy()
Create a copy of the current graph. If deep is True, a deep copy is made: copies of the vertices and edges
are used in the new graph. If deep is False or not specified, a shallow copy is made: the original vertices
and edges are used in the new graph.

findIsomorphism()
Returns True if other is isomorphic and False otherwise, and the matching mapping. The initialMap
attribute can be used to specify a required mapping from self to other (i.e. the atoms of self are the keys,
while the atoms of other are the values). The returned mapping also uses the atoms of self for the keys and
the atoms of other for the values. The other parameter must be a Group object, or a TypeError is raised.

findSubgraphIsomorphisms()
Returns True if other is subgraph isomorphic and False otherwise. In other words, return True is self is
more specific than other. Also returns the lists all of valid mappings. The initialMap attribute can be used
to specify a required mapping from self to other (i.e. the atoms of self are the keys, while the atoms of
other are the values). The returned mappings also use the atoms of self for the keys and the atoms of other
for the values. The other parameter must be a Group object, or a TypeError is raised.

fromAdjacencyList()
Convert a string adjacency list adjlist to a molecular structure. Skips the first line (assuming it’s a label)
unless withLabel is False.

getAllCycles()
Given a starting vertex, returns a list of all the cycles containing that vertex.

getAllCyclicVertices()
Returns all vertices belonging to one or more cycles.

getAllPolycyclicVertices()
Return all vertices belonging to two or more cycles, fused or spirocyclic.

getBond()
Returns the bond connecting atoms atom1 and atom2.

getBonds()
Return a list of the bonds involving the specified atom.

getEdge()
Returns the edge connecting vertices vertex1 and vertex2.

getEdges()
Return a list of the edges involving the specified vertex.

getLabeledAtom()
Return the atom in the group that is labeled with the given label. Raises ValueError if no atom in the
group has that label.

getLabeledAtoms()
Return the labeled atoms as a dict with the keys being the labels and the values the atoms themselves. If
two or more atoms have the same label, the value is converted to a list of these atoms.

getSmallestSetOfSmallestRings()
Return a list of the smallest set of smallest rings in the graph. The algorithm implements was adapted from
a description by Fan, Panaye, Doucet, and Barbu (doi: 10.1021/ci00015a002)

B. T. Fan, A. Panaye, J. P. Doucet, and A. Barbu. “Ring Perception: A New Algorithm for Directly Finding
the Smallest Set of Smallest Rings from a Connection Table.” J. Chem. Inf. Comput. Sci. 33, p. 657-662
(1993).

hasAtom()
Returns True if atom is an atom in the graph, or False if not.

1.6. Molecular representations (rmgpy.molecule) 71

RMG-Py API Reference, Release 1.0.3

hasBond()
Returns True if atoms atom1 and atom2 are connected by an bond, or False if not.

hasEdge()
Returns True if vertices vertex1 and vertex2 are connected by an edge, or False if not.

hasVertex()
Returns True if vertex is a vertex in the graph, or False if not.

isCyclic()
Return True if one or more cycles are present in the graph or False otherwise.

isEdgeInCycle()
Return True if the edge between vertices vertex1 and vertex2 is in one or more cycles in the graph, or
False if not.

isIdentical()
Returns True if other is identical and False otherwise. The function isIsomorphic respects wildcards,
while this function does not, make it more useful for checking groups to groups (as opposed to molecules
to groups)

isIsomorphic()
Returns True if two graphs are isomorphic and False otherwise. The initialMap attribute can be used to
specify a required mapping from self to other (i.e. the atoms of self are the keys, while the atoms of other
are the values). The other parameter must be a Group object, or a TypeError is raised.

isMappingValid()
Check that a proposed mapping of vertices from self to other is valid by checking that the vertices and
edges involved in the mapping are mutually equivalent.

isSubgraphIsomorphic()
Returns True if other is subgraph isomorphic and False otherwise. In other words, return True if self
is more specific than other. The initialMap attribute can be used to specify a required mapping from self
to other (i.e. the atoms of self are the keys, while the atoms of other are the values). The other parameter
must be a Group object, or a TypeError is raised.

isVertexInCycle()
Return True if the given vertex is contained in one or more cycles in the graph, or False if not.

merge()
Merge two groups so as to store them in a single Group object. The merged Group object is returned.

removeAtom()
Remove atom and all bonds associated with it from the graph. Does not remove atoms that no longer have
any bonds as a result of this removal.

removeBond()
Remove the bond between atoms atom1 and atom2 from the graph. Does not remove atoms that no longer
have any bonds as a result of this removal.

removeEdge()
Remove the specified edge from the graph. Does not remove vertices that no longer have any edges as a
result of this removal.

removeVertex()
Remove vertex and all edges associated with it from the graph. Does not remove vertices that no longer
have any edges as a result of this removal.

resetConnectivityValues()
Reset any cached connectivity information. Call this method when you have modified the graph.

72 Chapter 1. RMG API Reference

RMG-Py API Reference, Release 1.0.3

sortAtoms()
Sort the atoms in the graph. This can make certain operations, e.g. the isomorphism functions, much more
efficient.

sortVertices()
Sort the vertices in the graph. This can make certain operations, e.g. the isomorphism functions, much
more efficient.

split()
Convert a single Group object containing two or more unconnected groups into separate class:Group
objects.

toAdjacencyList()
Convert the molecular structure to a string adjacency list.

updateConnectivityValues()
Update the connectivity values for each vertex in the graph. These are used to accelerate the isomorphism
checking.

updateFingerprint()
Update the molecular fingerprint used to accelerate the subgraph isomorphism checks.

Adjacency Lists

Note: The adjacency list syntax changed in July 2014. The minimal requirement for most translations is to prefix the
number of unpaired electrons with the letter u. The new syntax, however, allows much greater flexibility, including
definition of lone pairs, partial charges, wildcards, and molecule multiplicities.

Note: To quickly visualize any adjacency list, or to generate an adjacency list from other types of molecular rep-
resentations such as SMILES, InChI, or even common species names, use the Molecule Search tool found here:
http://rmg.mit.edu/molecule_search

An adjacency list is the most general way of specifying a chemical molecule or molecular pattern in RMG. It is based
on the adjacency list representation of the graph data type – the underlying data type for molecules and patterns in
RMG – but extended to allow for specification of extra semantic information.

The first line of most adjacency lists is a unique identifier for the molecule or pattern the adjacency list represents.
This is not strictly required, but is recommended in most cases. Generally the identifier should only use alphanumeric
characters and the underscore, as if an identifier in many popular programming languages. However, strictly speaking
any non-space ASCII character is allowed.

The subsequent lines may contain keyword-value pairs. Currently there is only one keyword, multiplicity.

For species or molecule declarations, the value after multiplicity defines the spin multiplicity of the molecule.
E.g. multiplicity 1 for most ground state closed shell species, multiplicity 2 for most radical species, and
multiplicity 3 for a triplet biradical. If the multiplicity line is not present then a value of (1 + number of
unpaired electrons) is assumed. Thus, it can usually be omitted, but if present can be used to distinguish, for example,
singlet CH2 from triplet CH2.

If defining a Functional Group, then the value must be a list, which defines the multiplicities that will be matched by
the group, eg. multiplicity [1,2,3] or, for a single value, multiplicity [1]. If a wildcard is desired, the
line ’multiplicity x can be used instead to accept all multiplicities. If the multiplicity line is omitted altogether,
then a wildcard is assumed.

e.g. the following two group adjlists represent identical groups.

1.6. Molecular representations (rmgpy.molecule) 73

http://rmg.mit.edu/molecule_search

RMG-Py API Reference, Release 1.0.3

group1
multiplicity x
1 R!H u0

group2
1 R!H u0

After the identifier line and keyword-value lines, each subsequent line describes a single atom and its local bond
structure. The format of these lines is a whitespace-delimited list with tokens

<number> [<label>] <element> u<unpaired> [p<pairs>] [c<charge>] <bondlist>

The first item is the number used to identify that atom. Any number may be used, though it is recommended to number
the atoms sequentially starting from one. Next is an optional label used to tag that atom; this should be an asterisk
followed by a unique number for the label, e.g. *1. In some cases (e.g. thermodynamics groups) there is only one
labeled atom, and the label is just an asterisk with no number: *.

After that is the atom’s element or atom type, indicated by its atomic symbol, followed by a sequence of tokens
describing the electronic state of the atom:

• u0 number of unpaired electrons (eg. radicals)

• p0 number of lone pairs of electrons, common on oxygen and nitrogen.

• c0 formal charge on the atom, e.g. c-1 (negatively charged), c0, c+1 (positively charged)

For Molecule definitions: The value must be a single integer (and for charge must have a + or - sign if not equal to
0) The number of unpaired electrons (i.e. radical electrons) is required, even if zero. The number of lone pairs and the
formal charge are assumed to be zero if omitted.

For Group definitions: The value can be an integer or a list of integers (with signs, for charges), eg. u[0,1,2] or
c[0,+1,+2,+3,+4], or may be a wildcard x which matches any valid value, eg. px is the same as p[0,1,2,3,4,
...] and cx is the same as c[...,-4,-3,-2,-1,0,+1,+2,+3,+4,...]. Lists must be enclosed is square brack-
ets, and separated by commas, without spaces. If lone pairs or formal charges are omitted from a group definition, the
wildcard is assumed.

The last set of tokens is the list of bonds. To indicate a bond, place the number of the atom at the other end of the bond
and the bond type within curly braces and separated by a comma, e.g. {2,S}. Multiple bonds from the same atom
should be separated by whitespace.

Note: You must take care to make sure each bond is listed on the lines of both atoms in the bond, and that these
entries have the same bond type. RMG will raise an exception if it encounters such an invalid adjacency list.

When writing a molecular substructure pattern, you may specify multiple elements, radical counts, and bond types as
a comma-separated list inside square brackets. For example, to specify any carbon or oxygen atom, use the syntax
[C,O]. For a single or double bond to atom 2, write {2,[S,D]}.

Atom types such as R!H or Cdd may also be used as a shorthand. (Atom types like Cdd can also be used in full
molecules, but this use is discouraged, as RMG can compute them automatically for full molecules.)

Below is an example adjacency list, for 1,3-hexadiene, with the weakest bond in the molecule labeled with *1 and
*2. Note that hydrogen atoms can be omitted if desired, as their presence is inferred, provided that unpaired electrons,
lone pairs, and charges are all correctly defined:

HXD13
multiplicity 1
1 C u0 {2,D}
2 C u0 {1,D} {3,S}
3 C u0 {2,S} {4,D}
4 C u0 {3,D} {5,S}

74 Chapter 1. RMG API Reference

RMG-Py API Reference, Release 1.0.3

5 *1 C u0 {4,S} {6,S}
6 *2 C u0 {5,S}

The allowed element types, radicals, and bonds are listed in the following table:

Notation Explanation

Chemical Element

C Carbon atom
O Oxygen atom
H Hydrogen atom
S Sulfur atom
N Nitrogen atom

Nonreactive Elements

Si Silicon atom
Cl Chlorine atom
He Helium atom
Ar Argon atom

Chemical Bond

S Single Bond
D Double Bond
T Triple bond
B Benzene bond

rmgpy.molecule.adjlist.fromAdjacencyList(adjlist, group=False, saturateH=False)
Convert a string adjacency list adjlist into a set of Atom and Bond objects.

rmgpy.molecule.adjlist.toAdjacencyList(atoms, multiplicity, label=None, group=False, re-
moveH=False, removeLonePairs=False, oldStyle=False)

Convert a chemical graph defined by a list of atoms into a string adjacency list.

rmgpy.molecule.symmetry

rmgpy.molecule.symmetry.calculateAtomSymmetryNumber()
Return the symmetry number centered at atom in the structure. The atom of interest must not be in a cycle.

rmgpy.molecule.symmetry.calculateBondSymmetryNumber()
Return the symmetry number centered at bond in the structure.

rmgpy.molecule.symmetry.calculateAxisSymmetryNumber()
Get the axis symmetry number correction. The “axis” refers to a series of two or more cumulated double bonds
(e.g. C=C=C, etc.). Corrections for single C=C bonds are handled in getBondSymmetryNumber().

Each axis (C=C=C) has the potential to double the symmetry number. If an end has 0 or 1 groups (eg. =C=CJJ
or =C=C-R) then it cannot alter the axis symmetry and is disregarded:

A=C=C=C.. A-C=C=C=C-A

s=1 s=1

If an end has 2 groups that are different then it breaks the symmetry and the symmetry for that axis is 1, no
matter what’s at the other end:

A\ A\ /A
T=C=C=C=C-A T=C=C=C=T

B/ A/ \B
s=1 s=1

If you have one or more ends with 2 groups, and neither end breaks the symmetry, then you have an axis
symmetry number of 2:

1.6. Molecular representations (rmgpy.molecule) 75

RMG-Py API Reference, Release 1.0.3

A\ /B A\
C=C=C=C=C C=C=C=C-B

A/ \B A/
s=2 s=2

rmgpy.molecule.symmetry.calculateCyclicSymmetryNumber()
Get the symmetry number correction for cyclic regions of a molecule. For complicated fused rings the smallest
set of smallest rings is used.

rmgpy.molecule.symmetry.calculateSymmetryNumber()
Return the symmetry number for the structure. The symmetry number includes both external and internal modes.

rmgpy.molecule.draw.MoleculeDrawer

autodoc: failed to import class u’MoleculeDrawer’ from module u’rmgpy.molecule.draw’; the following
exception was raised: Traceback (most recent call last): File “/home/connie/anaconda/lib/python2.7/site-
packages/Sphinx-1.3.1-py2.7.egg/sphinx/ext/autodoc.py”, line 385, in import_object __import__(self.modname) File
“/home/connie/Research/Code/RMG-Py/rmgpy/molecule/draw.py”, line 54, in <module> from rmgpy.qm.molecule
import Geometry File “/home/connie/Research/Code/RMG-Py/rmgpy/qm/molecule.py”, line 19, in <module> import
qmdata File “/home/connie/Research/Code/RMG-Py/rmgpy/qm/qmdata.py”, line 4, in <module> from rmgpy.quantity
import Energy, Mass, Length, Frequency ImportError: cannot import name Energy

rmgpy.molecule.draw.ReactionDrawer

autodoc: failed to import class u’ReactionDrawer’ from module u’rmgpy.molecule.draw’; the following
exception was raised: Traceback (most recent call last): File “/home/connie/anaconda/lib/python2.7/site-
packages/Sphinx-1.3.1-py2.7.egg/sphinx/ext/autodoc.py”, line 385, in import_object __import__(self.modname) File
“/home/connie/Research/Code/RMG-Py/rmgpy/molecule/draw.py”, line 54, in <module> from rmgpy.qm.molecule
import Geometry File “/home/connie/Research/Code/RMG-Py/rmgpy/qm/molecule.py”, line 19, in <module> import
qmdata File “/home/connie/Research/Code/RMG-Py/rmgpy/qm/qmdata.py”, line 4, in <module> from rmgpy.quantity
import Energy, Mass, Length, Frequency ImportError: cannot import name Energy

1.7 Pressure dependence (rmgpy.pdep)

The rmgpy.pdep subpackage provides functionality for calcuating the pressure-dependent rate coefficients 𝑘(𝑇, 𝑃)
for unimolecular reaction networks.

A unimolecular reaction network is defined by a set of chemically reactive molecular configurations - local minima on
a potential energy surface - divided into unimolecular isomers and bimolecular reactants or products. In our vernacular,
reactants can associate to form an isomer, while such association is neglected for products. These configurations are
connected by chemical reactions to form a network; these are referred to as path reactions. The system also consists of
an excess of inert gas M, representing a thermal bath; this allows for neglecting all collisions other than those between
an isomer and the bath gas.

An isomer molecule at sufficiently high internal energy can be transformed by a number of possible events:

• The isomer molecule can collide with any other molecule, resulting in an increase or decrease in energy

• The isomer molecule can isomerize to an adjacent isomer at the same energy

• The isomer molecule can dissociate into any directly connected bimolecular reactant or product channel

It is this competition between collision and reaction events that gives rise to pressure-dependent kinetics.

76 Chapter 1. RMG API Reference

RMG-Py API Reference, Release 1.0.3

1.7.1 Collision events

Class Description
SingleExponentialDown A collisional energy transfer model based on the single exponential down model

1.7.2 Reaction events

Function Description
calculateMicrocanonicalRateCoefficient()Return the microcanonical rate coefficient 𝑘(𝐸) for a reaction
applyRRKMTheory() Use RRKM theory to compute 𝑘(𝐸) for a reaction
applyInverseLaplaceTransformMethod() Use the inverse Laplace transform method to compute 𝑘(𝐸) for

a reaction

1.7.3 Pressure-dependent reaction networks

Class Description
Configuration A molecular configuration on a potential energy surface
Network A collisional energy transfer model based on the single exponential down model

1.7.4 The master equation

Function Description
generateFullMEMatrix() Return the full master equation matrix for a network

1.7.5 Master equation reduction methods

Function Description
msc.applyModifiedStrongCollisionMethod()Reduce the master equation to phenomenological rate coefficients

𝑘(𝑇, 𝑃) using the modified strong collision method
rs.applyReservoirStateMethod() Reduce the master equation to phenomenological rate coefficients

𝑘(𝑇, 𝑃) using the reservoir state method
cse.applyChemicallySignificantEigenvaluesMethod()Reduce the master equation to phenomenological rate coefficients

𝑘(𝑇, 𝑃) using the chemically-significant eigenvalues method

1.7.6 Exceptions

Exception Description
NetworkError Raised when an error occurs while working with a pressure-dependent

reaction network
InvalidMicrocanonicalRateErrorRaised when the 𝑘(𝐸) is not consistent with the high pressure-limit kinetics

or thermodynamics

rmgpy.pdep.SingleExponentialDown

autodoc: failed to import class u’SingleExponentialDown’ from module u’rmgpy.pdep’; the following ex-
ception was raised: Traceback (most recent call last): File “/home/connie/anaconda/lib/python2.7/site-
packages/Sphinx-1.3.1-py2.7.egg/sphinx/ext/autodoc.py”, line 385, in import_object __import__(self.modname) File

1.7. Pressure dependence (rmgpy.pdep) 77

RMG-Py API Reference, Release 1.0.3

“/home/connie/Research/Code/RMG-Py/rmgpy/pdep/__init__.py”, line 35, in <module> from .draw import * File
“/home/connie/Research/Code/RMG-Py/rmgpy/pdep/draw.py”, line 39, in <module> from rmgpy.molecule.draw
import MoleculeDrawer, createNewSurface File “/home/connie/Research/Code/RMG-Py/rmgpy/molecule/draw.py”,
line 54, in <module> from rmgpy.qm.molecule import Geometry File “/home/connie/Research/Code/RMG-
Py/rmgpy/qm/molecule.py”, line 19, in <module> import qmdata File “/home/connie/Research/Code/RMG-
Py/rmgpy/qm/qmdata.py”, line 4, in <module> from rmgpy.quantity import Energy, Mass, Length, Frequency Im-
portError: cannot import name Energy

Reaction events

Microcanonical rate coefficients

autodoc: failed to import function u’calculateMicrocanonicalRateCoefficient’ from module u’rmgpy.pdep’; the fol-
lowing exception was raised: Traceback (most recent call last): File “/home/connie/anaconda/lib/python2.7/site-
packages/Sphinx-1.3.1-py2.7.egg/sphinx/ext/autodoc.py”, line 385, in import_object __import__(self.modname) File
“/home/connie/Research/Code/RMG-Py/rmgpy/pdep/__init__.py”, line 35, in <module> from .draw import * File
“/home/connie/Research/Code/RMG-Py/rmgpy/pdep/draw.py”, line 39, in <module> from rmgpy.molecule.draw
import MoleculeDrawer, createNewSurface File “/home/connie/Research/Code/RMG-Py/rmgpy/molecule/draw.py”,
line 54, in <module> from rmgpy.qm.molecule import Geometry File “/home/connie/Research/Code/RMG-
Py/rmgpy/qm/molecule.py”, line 19, in <module> import qmdata File “/home/connie/Research/Code/RMG-
Py/rmgpy/qm/qmdata.py”, line 4, in <module> from rmgpy.quantity import Energy, Mass, Length, Frequency Im-
portError: cannot import name Energy

RRKM theory

autodoc: failed to import function u’applyRRKMTheory’ from module u’rmgpy.pdep’; the following ex-
ception was raised: Traceback (most recent call last): File “/home/connie/anaconda/lib/python2.7/site-
packages/Sphinx-1.3.1-py2.7.egg/sphinx/ext/autodoc.py”, line 385, in import_object __import__(self.modname) File
“/home/connie/Research/Code/RMG-Py/rmgpy/pdep/__init__.py”, line 35, in <module> from .draw import * File
“/home/connie/Research/Code/RMG-Py/rmgpy/pdep/draw.py”, line 39, in <module> from rmgpy.molecule.draw
import MoleculeDrawer, createNewSurface File “/home/connie/Research/Code/RMG-Py/rmgpy/molecule/draw.py”,
line 54, in <module> from rmgpy.qm.molecule import Geometry File “/home/connie/Research/Code/RMG-
Py/rmgpy/qm/molecule.py”, line 19, in <module> import qmdata File “/home/connie/Research/Code/RMG-
Py/rmgpy/qm/qmdata.py”, line 4, in <module> from rmgpy.quantity import Energy, Mass, Length, Frequency Im-
portError: cannot import name Energy

Inverse Laplace transform method

autodoc: failed to import function u’applyInverseLaplaceTransformMethod’ from module u’rmgpy.pdep’; the fol-
lowing exception was raised: Traceback (most recent call last): File “/home/connie/anaconda/lib/python2.7/site-
packages/Sphinx-1.3.1-py2.7.egg/sphinx/ext/autodoc.py”, line 385, in import_object __import__(self.modname) File
“/home/connie/Research/Code/RMG-Py/rmgpy/pdep/__init__.py”, line 35, in <module> from .draw import * File
“/home/connie/Research/Code/RMG-Py/rmgpy/pdep/draw.py”, line 39, in <module> from rmgpy.molecule.draw
import MoleculeDrawer, createNewSurface File “/home/connie/Research/Code/RMG-Py/rmgpy/molecule/draw.py”,
line 54, in <module> from rmgpy.qm.molecule import Geometry File “/home/connie/Research/Code/RMG-
Py/rmgpy/qm/molecule.py”, line 19, in <module> import qmdata File “/home/connie/Research/Code/RMG-
Py/rmgpy/qm/qmdata.py”, line 4, in <module> from rmgpy.quantity import Energy, Mass, Length, Frequency Im-
portError: cannot import name Energy

78 Chapter 1. RMG API Reference

RMG-Py API Reference, Release 1.0.3

rmgpy.pdep.Configuration

autodoc: failed to import class u’Configuration’ from module u’rmgpy.pdep’; the following excep-
tion was raised: Traceback (most recent call last): File “/home/connie/anaconda/lib/python2.7/site-
packages/Sphinx-1.3.1-py2.7.egg/sphinx/ext/autodoc.py”, line 385, in import_object __import__(self.modname)
File “/home/connie/Research/Code/RMG-Py/rmgpy/pdep/__init__.py”, line 35, in <module> from .draw import *
File “/home/connie/Research/Code/RMG-Py/rmgpy/pdep/draw.py”, line 39, in <module> from rmgpy.molecule.draw
import MoleculeDrawer, createNewSurface File “/home/connie/Research/Code/RMG-Py/rmgpy/molecule/draw.py”,
line 54, in <module> from rmgpy.qm.molecule import Geometry File “/home/connie/Research/Code/RMG-
Py/rmgpy/qm/molecule.py”, line 19, in <module> import qmdata File “/home/connie/Research/Code/RMG-
Py/rmgpy/qm/qmdata.py”, line 4, in <module> from rmgpy.quantity import Energy, Mass, Length, Frequency
ImportError: cannot import name Energy

rmgpy.pdep.Network

autodoc: failed to import class u’Network’ from module u’rmgpy.pdep’; the following exception was
raised: Traceback (most recent call last): File “/home/connie/anaconda/lib/python2.7/site-packages/Sphinx-
1.3.1-py2.7.egg/sphinx/ext/autodoc.py”, line 385, in import_object __import__(self.modname) File
“/home/connie/Research/Code/RMG-Py/rmgpy/pdep/__init__.py”, line 35, in <module> from .draw import *
File “/home/connie/Research/Code/RMG-Py/rmgpy/pdep/draw.py”, line 39, in <module> from rmgpy.molecule.draw
import MoleculeDrawer, createNewSurface File “/home/connie/Research/Code/RMG-Py/rmgpy/molecule/draw.py”,
line 54, in <module> from rmgpy.qm.molecule import Geometry File “/home/connie/Research/Code/RMG-
Py/rmgpy/qm/molecule.py”, line 19, in <module> import qmdata File “/home/connie/Research/Code/RMG-
Py/rmgpy/qm/qmdata.py”, line 4, in <module> from rmgpy.quantity import Energy, Mass, Length, Frequency
ImportError: cannot import name Energy

The master equation

autodoc: failed to import function u’generateFullMEMatrix’ from module u’rmgpy.pdep.me’; the follow-
ing exception was raised: Traceback (most recent call last): File “/home/connie/anaconda/lib/python2.7/site-
packages/Sphinx-1.3.1-py2.7.egg/sphinx/ext/autodoc.py”, line 385, in import_object __import__(self.modname) File
“/home/connie/Research/Code/RMG-Py/rmgpy/pdep/__init__.py”, line 35, in <module> from .draw import * File
“/home/connie/Research/Code/RMG-Py/rmgpy/pdep/draw.py”, line 39, in <module> from rmgpy.molecule.draw
import MoleculeDrawer, createNewSurface File “/home/connie/Research/Code/RMG-Py/rmgpy/molecule/draw.py”,
line 54, in <module> from rmgpy.qm.molecule import Geometry File “/home/connie/Research/Code/RMG-
Py/rmgpy/qm/molecule.py”, line 19, in <module> import qmdata File “/home/connie/Research/Code/RMG-
Py/rmgpy/qm/qmdata.py”, line 4, in <module> from rmgpy.quantity import Energy, Mass, Length, Frequency Im-
portError: cannot import name Energy

Throughout this document we will utilize the following terminology:

• An isomer is a unimolecular configuration on the potential energy surface.

• A reactant channel is a bimolecular configuration that associates to form an isomer. Dissociation from the
isomer back to reactants is allowed.

• A product channel is a bimolecular configuration that is formed by dissociation of an isomer. Reassociation of
products to the isomer is not allowed.

The isomers are the configurations for which we must model the energy states. We designate 𝑝𝑖(𝐸, 𝐽, 𝑡) as the pop-
ulation of isomer 𝑖 having total energy 𝐸 and total angular momentum quantum number 𝐽 at time 𝑡. At long times,
statistical mechanics requires that the population of each isomer approach a Boltzmann distribution 𝑏𝑖(𝐸, 𝐽):

lim
𝑡→∞

𝑝𝑖(𝐸, 𝐽, 𝑡) ∝ 𝑏𝑖(𝐸, 𝐽)

1.7. Pressure dependence (rmgpy.pdep) 79

RMG-Py API Reference, Release 1.0.3

We can simplify by eliminating the angular momentum quantum number to get

𝑝𝑖(𝐸, 𝑡) =
∑︁
𝐽

𝑝𝑖(𝐸, 𝐽, 𝑡)

Let us also denote the (time-dependent) total population of isomer 𝑖 by 𝑥𝑖(𝑡):

𝑥𝑖(𝑡) ≡
∑︁
𝐽

∫︁ ∞

0

𝑝𝑖(𝐸, 𝐽, 𝑡) 𝑑𝐸

The two molecules of a reactant or product channel are free to move apart from one another and interact independently
with other molecules in the system. Accordingly, we treat these channels as fully thermalized, leaving as the only
variable the total concentrations 𝑦𝑛A(𝑡) and 𝑦𝑛B(𝑡) of the molecules A𝑛 and B𝑛 of reactant channel 𝑛. (Since the
product channels act as infinite sinks, their populations do not need to be considered explicitly.)

Finally, we will use 𝑁isom, 𝑁reac, and 𝑁prod as the numbers of isomers, reactant channels, and product channels,
respectively, in the system.

The governing equation for the population distributions 𝑝𝑖(𝐸, 𝐽, 𝑡) of each isomer 𝑖 and the reactant concentrations
𝑦𝑛A(𝑡) and 𝑦𝑛B(𝑡) combines the collision and reaction models to give a linear integro-differential equation:

𝑑

𝑑𝑡
𝑝𝑖(𝐸, 𝐽, 𝑡) = 𝜔𝑖(𝑇, 𝑃)

∑︁
𝐽′

∫︁ ∞

0

𝑃𝑖(𝐸, 𝐽,𝐸′, 𝐽 ′)𝑝𝑖(𝐸
′, 𝐽 ′, 𝑡) 𝑑𝐸′ − 𝜔𝑖(𝑇, 𝑃)𝑝𝑖(𝐸, 𝐽, 𝑡)

+

𝑁isom∑︁
𝑗 ̸=𝑖

𝑘𝑖𝑗(𝐸, 𝐽)𝑝𝑗(𝐸, 𝐽, 𝑡) −
𝑁isom∑︁
𝑗 ̸=𝑖

𝑘𝑗𝑖(𝐸, 𝐽)𝑝𝑖(𝐸, 𝐽, 𝑡)

+

𝑁reac∑︁
𝑛=1

𝑦𝑛A(𝑡)𝑦𝑛B(𝑡)𝑓𝑖𝑛(𝐸, 𝐽)𝑏𝑛(𝐸, 𝐽, 𝑡) −
𝑁reac+𝑁prod∑︁

𝑛=1

𝑔𝑛𝑖(𝐸, 𝐽)𝑝𝑖(𝐸, 𝐽, 𝑡)

𝑑

𝑑𝑡
𝑦𝑛A(𝑡) =

𝑑

𝑑𝑡
𝑦𝑛B(𝑡) =

𝑁isom∑︁
𝑖=1

∫︁ ∞

0

𝑔𝑛𝑖(𝐸, 𝐽)𝑝𝑖(𝐸, 𝐽, 𝑡) 𝑑𝐸

−
𝑁isom∑︁
𝑖=1

𝑦𝑛A(𝑡)𝑦𝑛B(𝑡)

∫︁ ∞

0

𝑓𝑖𝑛(𝐸, 𝐽)𝑏𝑛(𝐸, 𝐽, 𝑡) 𝑑𝐸

A summary of the variables is given below:

Variable Meaning
𝑝𝑖(𝐸, 𝐽, 𝑡) Population distribution of isomer 𝑖
𝑦𝑛A(𝑡) Total population of species A𝑛 in reactant channel 𝑛
𝜔𝑖(𝑇, 𝑃) Collision frequency of isomer 𝑖
𝑃𝑖(𝐸, 𝐽,𝐸′, 𝐽 ′) Collisional transfer probability from (𝐸′, 𝐽 ′) to (𝐸, 𝐽) for isomer 𝑖
𝑘𝑖𝑗(𝐸, 𝐽) Microcanonical rate coefficient for isomerization from isomer 𝑗 to isomer 𝑖
𝑓𝑖𝑚(𝐸, 𝐽) Microcanonical rate coefficient for association from reactant channel 𝑚 to isomer 𝑖
𝑔𝑛𝑗(𝐸, 𝐽) Microcanonical rate coefficient for dissociation from isomer 𝑗 to reactant or product channel 𝑛
𝑏𝑛(𝐸, 𝐽, 𝑡) Boltzmann distribution for reactant channel 𝑛
𝑁isom Total number of isomers
𝑁reac Total number of reactant channels
𝑁prod Total number of product channels

The above is called the two-dimensional master equation because it contains two dimensions: total energy 𝐸 and
total angular momentum quantum number 𝐽 . In the first equation (for isomers), the first pair of terms correspond
to collision, the second pair to isomerization, and the final pair to association/dissociation. Similarly, in the second
equation above (for reactant channels), the pair of terms refer to dissociation/association.

80 Chapter 1. RMG API Reference

RMG-Py API Reference, Release 1.0.3

We can also simplify the above to the one-dimensional form, which only has 𝐸 as a dimension:

𝑑

𝑑𝑡
𝑝𝑖(𝐸, 𝑡) = 𝜔𝑖(𝑇, 𝑃)

∫︁ ∞

0

𝑃𝑖(𝐸,𝐸′)𝑝𝑖(𝐸
′, 𝑡) 𝑑𝐸′ − 𝜔𝑖(𝑇, 𝑃)𝑝𝑖(𝐸, 𝑡)

+

𝑁isom∑︁
𝑗 ̸=𝑖

𝑘𝑖𝑗(𝐸)𝑝𝑗(𝐸, 𝑡) −
𝑁isom∑︁
𝑗 ̸=𝑖

𝑘𝑗𝑖(𝐸)𝑝𝑖(𝐸, 𝑡)

+

𝑁reac∑︁
𝑛=1

𝑦𝑛A(𝑡)𝑦𝑛B(𝑡)𝑓𝑖𝑛(𝐸)𝑏𝑛(𝐸, 𝑡) −
𝑁reac+𝑁prod∑︁

𝑛=1

𝑔𝑛𝑖(𝐸)𝑝𝑖(𝐸, 𝑡)

𝑑

𝑑𝑡
𝑦𝑛A(𝑡) =

𝑑

𝑑𝑡
𝑦𝑛B(𝑡) =

𝑁isom∑︁
𝑖=1

∫︁ ∞

0

𝑔𝑛𝑖(𝐸)𝑝𝑖(𝐸, 𝑡) 𝑑𝐸

−
𝑁isom∑︁
𝑖=1

𝑦𝑛A(𝑡)𝑦𝑛B(𝑡)

∫︁ ∞

0

𝑓𝑖𝑛(𝐸)𝑏𝑛(𝐸, 𝑡) 𝑑𝐸

The equations as given are nonlinear, both due to the presence of the bimolecular reactants and because both 𝜔𝑖

and 𝑃𝑖(𝐸,𝐸′) depend on the composition, which is changing with time. The rate coefficients can be derived from
considering the pseudo-first-order situation where 𝑦𝑛A(𝑡) ≪ 𝑦𝑛B(𝑡), and all 𝑦(𝑡) are negligible compared to the bath
gas M. From these assumptions the changes in 𝜔𝑖, 𝑃𝑖(𝐸,𝐸′), and all 𝑦𝑛B can be neglected, which yields a linear
equation system.

Except for the simplest of unimolecular reaction networks, both the one-dimensional and two-dimensional master
equation must be solved numerically. To do this we must discretize and truncate the energy domain into a finite
number of discrete bins called grains. This converts the linear integro-differential equation into a system of first-order
ordinary differential equations:

𝑑

𝑑𝑡

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

p1

p2

...
𝑦1A
𝑦2A

...

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

M1 K12 . . . F11b1𝑦1B F12b2𝑦2B . . .
K21 M2 . . . F21b1𝑦1B F22b2𝑦2B . . .

...
...

. . .
...

...
. . .

(g11)𝑇 (g12)𝑇 . . . ℎ1 0 . . .
(g21)𝑇 (g22)𝑇 . . . 0 ℎ2 . . .

...
...

. . .
...

...
. . .

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

p1

p2

...
𝑦1A
𝑦2A

...

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
The diagonal matrices K𝑖𝑗 and F𝑖𝑛 and the vector g𝑛𝑖 contain the microcanonical rate coefficients for isomerization,
association, and dissociation, respectively:

(K𝑖𝑗)𝑟𝑠 =

{︃
1

Δ𝐸𝑟

∫︀ 𝐸𝑟+Δ𝐸𝑟/2

𝐸𝑟−Δ𝐸𝑟/2
𝑘𝑖𝑗(𝐸) 𝑑𝐸 𝑟 = 𝑠

0 𝑟 ̸= 𝑠

(F𝑖𝑛)𝑟𝑠 =

{︃
1

Δ𝐸𝑟

∫︀ 𝐸𝑟+Δ𝐸𝑟/2

𝐸𝑟−Δ𝐸𝑟/2
𝑓𝑖𝑛(𝐸) 𝑑𝐸 𝑟 = 𝑠

0 𝑟 ̸= 𝑠

(g𝑛𝑖)𝑟 =
1

∆𝐸𝑟

∫︁ 𝐸𝑟+Δ𝐸𝑟/2

𝐸𝑟−Δ𝐸𝑟/2

𝑔𝑛𝑖(𝐸) 𝑑𝐸

The matrices M𝑖 represent the collisional transfer probabilities minus the rates of reactive loss to other isomers and to
reactants and products:

(M𝑖)𝑟𝑠 =

{︃
𝜔𝑖 [𝑃𝑖(𝐸𝑟, 𝐸𝑟) − 1] −

∑︀𝑁isom

𝑗 ̸=𝑖 𝑘𝑖𝑗(𝐸𝑟) −
∑︀𝑁reac+𝑁prod

𝑛=1 𝑔𝑛𝑖(𝐸𝑟) 𝑟 = 𝑠

𝜔𝑖𝑃𝑖(𝐸𝑟, 𝐸𝑠) 𝑟 ̸= 𝑠

The scalars ℎ𝑛 are simply the total rate coefficient for loss of reactant channel 𝑛 due to chemical reactions:

ℎ𝑛 = −
𝑁isom∑︁
𝑖=1

𝑁grains∑︁
𝑟=1

𝑦𝑛B𝑓𝑖𝑛(𝐸𝑟)𝑏𝑛(𝐸𝑟)

1.7. Pressure dependence (rmgpy.pdep) 81

RMG-Py API Reference, Release 1.0.3

The interested reader is referred to any of a variety of other sources for alternative presentations, of which an illustrative
sampling is given here [Gilbert1990] [Baer1996] [Holbrook1996] [Forst2003] [Pilling2003].

Methods for estimating k(T,P) values

The objective of each of the methods described in this section is to reduce the master equation into a small number of
phenomenological rate coefficients 𝑘(𝑇, 𝑃). All of the methods share a common formalism in that they seek to express
the population distribution vector p𝑖 for each unimolecular isomer 𝑖 as a linear combination of the total populations of
all unimolecular isomers and bimolecular reactant channels.

The modified strong collision method

autodoc: failed to import function u’applyModifiedStrongCollisionMethod’ from module u’rmgpy.pdep.msc’; the
following exception was raised: Traceback (most recent call last): File “/home/connie/anaconda/lib/python2.7/site-
packages/Sphinx-1.3.1-py2.7.egg/sphinx/ext/autodoc.py”, line 385, in import_object __import__(self.modname) File
“/home/connie/Research/Code/RMG-Py/rmgpy/pdep/__init__.py”, line 35, in <module> from .draw import * File
“/home/connie/Research/Code/RMG-Py/rmgpy/pdep/draw.py”, line 39, in <module> from rmgpy.molecule.draw
import MoleculeDrawer, createNewSurface File “/home/connie/Research/Code/RMG-Py/rmgpy/molecule/draw.py”,
line 54, in <module> from rmgpy.qm.molecule import Geometry File “/home/connie/Research/Code/RMG-
Py/rmgpy/qm/molecule.py”, line 19, in <module> import qmdata File “/home/connie/Research/Code/RMG-
Py/rmgpy/qm/qmdata.py”, line 4, in <module> from rmgpy.quantity import Energy, Mass, Length, Frequency Im-
portError: cannot import name Energy

The reservoir state method

autodoc: failed to import function u’applyReservoirStateMethod’ from module u’rmgpy.pdep.rs’; the follow-
ing exception was raised: Traceback (most recent call last): File “/home/connie/anaconda/lib/python2.7/site-
packages/Sphinx-1.3.1-py2.7.egg/sphinx/ext/autodoc.py”, line 385, in import_object __import__(self.modname) File
“/home/connie/Research/Code/RMG-Py/rmgpy/pdep/__init__.py”, line 35, in <module> from .draw import * File
“/home/connie/Research/Code/RMG-Py/rmgpy/pdep/draw.py”, line 39, in <module> from rmgpy.molecule.draw
import MoleculeDrawer, createNewSurface File “/home/connie/Research/Code/RMG-Py/rmgpy/molecule/draw.py”,
line 54, in <module> from rmgpy.qm.molecule import Geometry File “/home/connie/Research/Code/RMG-
Py/rmgpy/qm/molecule.py”, line 19, in <module> import qmdata File “/home/connie/Research/Code/RMG-
Py/rmgpy/qm/qmdata.py”, line 4, in <module> from rmgpy.quantity import Energy, Mass, Length, Frequency Im-
portError: cannot import name Energy

The chemically-significant eigenvalues method

autodoc: failed to import function u’applyChemicallySignificantEigenvaluesMethod’ from module u’rmgpy.pdep.cse’;
the following exception was raised: Traceback (most recent call last): File “/home/connie/anaconda/lib/python2.7/site-
packages/Sphinx-1.3.1-py2.7.egg/sphinx/ext/autodoc.py”, line 385, in import_object __import__(self.modname) File
“/home/connie/Research/Code/RMG-Py/rmgpy/pdep/__init__.py”, line 35, in <module> from .draw import * File
“/home/connie/Research/Code/RMG-Py/rmgpy/pdep/draw.py”, line 39, in <module> from rmgpy.molecule.draw
import MoleculeDrawer, createNewSurface File “/home/connie/Research/Code/RMG-Py/rmgpy/molecule/draw.py”,
line 54, in <module> from rmgpy.qm.molecule import Geometry File “/home/connie/Research/Code/RMG-
Py/rmgpy/qm/molecule.py”, line 19, in <module> import qmdata File “/home/connie/Research/Code/RMG-
Py/rmgpy/qm/qmdata.py”, line 4, in <module> from rmgpy.quantity import Energy, Mass, Length, Frequency Im-
portError: cannot import name Energy

82 Chapter 1. RMG API Reference

RMG-Py API Reference, Release 1.0.3

1.8 QMTP (rmgpy.qm)

The rmgpy.qm subpackage contains classes and functions for working with molecular geometries, and interfacing
with quantum chemistry software.

1.8.1 Main

Class Description
QMSettings A class to store settings related to quantum mechanics calculations
QMCalculator An object to store settings and previous calculations

1.8.2 Molecule

Class Description
Geometry A geometry, used for quantum calculations
QMMolecule A base class for QM Molecule calculations

1.8.3 QM Data

Class/Function Description
QMData General class for data extracted from a QM calculation
CCLibData QM Data extracted from a cclib data object

1.8.4 QM Verifier

Class/Function Description
QMVerifier Verifies whether a QM job was succesfully completed

1.8.5 Symmetry

Class/Function Description
PointGroup A symmetry Point Group
PointGroupCalculator Wrapper type to determine molecular symmetry point groups based on 3D

coordinates
SymmetryJob Determine the point group using the SYMMETRY program

1.8.6 Gaussian

Class/Function Description
Gaussian A base class for all QM calculations that use Gaussian
GaussianMol A base Class for calculations of molecules using Gaussian.
GaussianMolPM3 A base Class for calculations of molecules using Gaussian at PM3.
GaussianMolPM6 A base Class for calculations of molecules using Gaussian at PM6.

1.8. QMTP (rmgpy.qm) 83

RMG-Py API Reference, Release 1.0.3

1.8.7 Mopac

Class/Function Description
Mopac A base class for all QM calculations that use Mopac
MopacMol A base Class for calculations of molecules using Mopac.
MopacMolPM3 A base Class for calculations of molecules using Mopac at PM3.
MopacMolPM6 A base Class for calculations of molecules using Mopac at PM6.
MopacMolPM7 A base Class for calculations of molecules using Mopac at PM7.

rmgpy.qm.main

autodoc: failed to import class u’QMSettings’ from module u’rmgpy.qm.main’; the following ex-
ception was raised: Traceback (most recent call last): File “/home/connie/anaconda/lib/python2.7/site-
packages/Sphinx-1.3.1-py2.7.egg/sphinx/ext/autodoc.py”, line 385, in import_object __import__(self.modname) File
“/home/connie/Research/Code/RMG-Py/rmgpy/qm/main.py”, line 34, in <module> import rmgpy.qm.mopac File
“/home/connie/Research/Code/RMG-Py/rmgpy/qm/mopac.py”, line 9, in <module> from qmdata import CCLibData
File “/home/connie/Research/Code/RMG-Py/rmgpy/qm/qmdata.py”, line 4, in <module> from rmgpy.quantity import
Energy, Mass, Length, Frequency ImportError: cannot import name Energy

autodoc: failed to import class u’QMCalculator’ from module u’rmgpy.qm.main’; the following ex-
ception was raised: Traceback (most recent call last): File “/home/connie/anaconda/lib/python2.7/site-
packages/Sphinx-1.3.1-py2.7.egg/sphinx/ext/autodoc.py”, line 385, in import_object __import__(self.modname) File
“/home/connie/Research/Code/RMG-Py/rmgpy/qm/main.py”, line 34, in <module> import rmgpy.qm.mopac File
“/home/connie/Research/Code/RMG-Py/rmgpy/qm/mopac.py”, line 9, in <module> from qmdata import CCLibData
File “/home/connie/Research/Code/RMG-Py/rmgpy/qm/qmdata.py”, line 4, in <module> from rmgpy.quantity import
Energy, Mass, Length, Frequency ImportError: cannot import name Energy

rmgpy.qm.molecule

autodoc: failed to import class u’Geometry’ from module u’rmgpy.qm.molecule’; the following ex-
ception was raised: Traceback (most recent call last): File “/home/connie/anaconda/lib/python2.7/site-
packages/Sphinx-1.3.1-py2.7.egg/sphinx/ext/autodoc.py”, line 385, in import_object __import__(self.modname)
File “/home/connie/Research/Code/RMG-Py/rmgpy/qm/molecule.py”, line 19, in <module> import qmdata File
“/home/connie/Research/Code/RMG-Py/rmgpy/qm/qmdata.py”, line 4, in <module> from rmgpy.quantity import En-
ergy, Mass, Length, Frequency ImportError: cannot import name Energy

autodoc: failed to import class u’QMMolecule’ from module u’rmgpy.qm.molecule’; the following ex-
ception was raised: Traceback (most recent call last): File “/home/connie/anaconda/lib/python2.7/site-
packages/Sphinx-1.3.1-py2.7.egg/sphinx/ext/autodoc.py”, line 385, in import_object __import__(self.modname)
File “/home/connie/Research/Code/RMG-Py/rmgpy/qm/molecule.py”, line 19, in <module> import qmdata File
“/home/connie/Research/Code/RMG-Py/rmgpy/qm/qmdata.py”, line 4, in <module> from rmgpy.quantity import En-
ergy, Mass, Length, Frequency ImportError: cannot import name Energy

rmgpy.qm.qmdata

autodoc: failed to import class u’QMData’ from module u’rmgpy.qm.qmdata’; the following excep-
tion was raised: Traceback (most recent call last): File “/home/connie/anaconda/lib/python2.7/site-
packages/Sphinx-1.3.1-py2.7.egg/sphinx/ext/autodoc.py”, line 385, in import_object __import__(self.modname)
File “/home/connie/Research/Code/RMG-Py/rmgpy/qm/qmdata.py”, line 4, in <module> from rmgpy.quantity import
Energy, Mass, Length, Frequency ImportError: cannot import name Energy

84 Chapter 1. RMG API Reference

RMG-Py API Reference, Release 1.0.3

autodoc: failed to import class u’CCLibData’ from module u’rmgpy.qm.qmdata’; the following ex-
ception was raised: Traceback (most recent call last): File “/home/connie/anaconda/lib/python2.7/site-
packages/Sphinx-1.3.1-py2.7.egg/sphinx/ext/autodoc.py”, line 385, in import_object __import__(self.modname) File
“/home/connie/Research/Code/RMG-Py/rmgpy/qm/qmdata.py”, line 4, in <module> from rmgpy.quantity import En-
ergy, Mass, Length, Frequency ImportError: cannot import name Energy

rmgpy.qm.qmverifier

class rmgpy.qm.qmverifier.QMVerifier(molfile)

Verifies whether a QM job (externalized) was succesfully completed by

• searching for specific keywords in the output files,

• located in a specific directory (e.g. “QMFiles”)

checkForInChiKeyCollision(logFileInChI)
This method is designed in the case a MOPAC output file was found but the InChI found in the file did not
correspond to the InChI of the given molecule.

This could mean two things: 1) that the InChI Key hash does not correspond to the InChI it is hashed from.
This is the rarest case of them all 2) the complete InChI did not fit onto just one line in the MOPAC output
file. Therefore it was continued on the second line and only a part of the InChI was actually taken as the
‘whole’ InChI.

This method reads in the MOPAC input file and compares the found InChI in there to the InChI of the
given molecule.

succesfulJobExists()
checks whether one of the flags is true. If so, it returns true.

rmgpy.qm.symmetry

class rmgpy.qm.symmetry.PointGroup(pointGroup, symmetryNumber, chiral)
A symmetry Point Group.

Attributes are:

•pointGroup

•symmetryNumber

•chiral

•linear

class rmgpy.qm.symmetry.PointGroupCalculator(settings, uniqueID, qmData)
Wrapper type to determine molecular symmetry point groups based on 3D coords information.

Will point to a specific algorithm, like SYMMETRY that is able to do this.

class rmgpy.qm.symmetry.SymmetryJob(settings, uniqueID, qmData)
Determine the point group using the SYMMETRY program

(http://www.cobalt.chem.ucalgary.ca/ps/symmetry/).

Required input is a line with number of atoms followed by lines for each atom including: 1) atom number 2)
x,y,z coordinates

finalTol determines how loose the point group criteria are; values are comparable to those specified in the
GaussView point group interface

1.8. QMTP (rmgpy.qm) 85

http://www.cobalt.chem.ucalgary.ca/ps/symmetry/

RMG-Py API Reference, Release 1.0.3

calculate()
Do the entire point group calculation.

This writes the input file, then tries several times to run ‘symmetry’ with different parameters, until a point
group is found and returned.

inputFilePath
The input file’s path

parse(output)
Check the output string and extract the resulting point group, which is returned.

run(command)
Run the command, wait for it to finish, and return the stdout.

uniqueID = None
The object that holds information from a previous QM Job on 3D coords, molecule etc...

writeInputFile()
Write the input file for the SYMMETRY program.

rmgpy.qm.gaussian

autodoc: failed to import class u’Gaussian’ from module u’rmgpy.qm.gaussian’; the following ex-
ception was raised: Traceback (most recent call last): File “/home/connie/anaconda/lib/python2.7/site-
packages/Sphinx-1.3.1-py2.7.egg/sphinx/ext/autodoc.py”, line 385, in import_object __import__(self.modname) File
“/home/connie/Research/Code/RMG-Py/rmgpy/qm/gaussian.py”, line 9, in <module> from qmdata import CCLib-
Data File “/home/connie/Research/Code/RMG-Py/rmgpy/qm/qmdata.py”, line 4, in <module> from rmgpy.quantity
import Energy, Mass, Length, Frequency ImportError: cannot import name Energy

autodoc: failed to import class u’GaussianMol’ from module u’rmgpy.qm.gaussian’; the following ex-
ception was raised: Traceback (most recent call last): File “/home/connie/anaconda/lib/python2.7/site-
packages/Sphinx-1.3.1-py2.7.egg/sphinx/ext/autodoc.py”, line 385, in import_object __import__(self.modname) File
“/home/connie/Research/Code/RMG-Py/rmgpy/qm/gaussian.py”, line 9, in <module> from qmdata import CCLib-
Data File “/home/connie/Research/Code/RMG-Py/rmgpy/qm/qmdata.py”, line 4, in <module> from rmgpy.quantity
import Energy, Mass, Length, Frequency ImportError: cannot import name Energy

autodoc: failed to import class u’GaussianMolPM3’ from module u’rmgpy.qm.gaussian’; the following
exception was raised: Traceback (most recent call last): File “/home/connie/anaconda/lib/python2.7/site-
packages/Sphinx-1.3.1-py2.7.egg/sphinx/ext/autodoc.py”, line 385, in import_object __import__(self.modname) File
“/home/connie/Research/Code/RMG-Py/rmgpy/qm/gaussian.py”, line 9, in <module> from qmdata import CCLib-
Data File “/home/connie/Research/Code/RMG-Py/rmgpy/qm/qmdata.py”, line 4, in <module> from rmgpy.quantity
import Energy, Mass, Length, Frequency ImportError: cannot import name Energy

autodoc: failed to import class u’GaussianMolPM6’ from module u’rmgpy.qm.gaussian’; the following
exception was raised: Traceback (most recent call last): File “/home/connie/anaconda/lib/python2.7/site-
packages/Sphinx-1.3.1-py2.7.egg/sphinx/ext/autodoc.py”, line 385, in import_object __import__(self.modname) File
“/home/connie/Research/Code/RMG-Py/rmgpy/qm/gaussian.py”, line 9, in <module> from qmdata import CCLib-
Data File “/home/connie/Research/Code/RMG-Py/rmgpy/qm/qmdata.py”, line 4, in <module> from rmgpy.quantity
import Energy, Mass, Length, Frequency ImportError: cannot import name Energy

rmgpy.qm.mopac

autodoc: failed to import class u’Mopac’ from module u’rmgpy.qm.mopac’; the following excep-
tion was raised: Traceback (most recent call last): File “/home/connie/anaconda/lib/python2.7/site-
packages/Sphinx-1.3.1-py2.7.egg/sphinx/ext/autodoc.py”, line 385, in import_object __import__(self.modname)

86 Chapter 1. RMG API Reference

RMG-Py API Reference, Release 1.0.3

File “/home/connie/Research/Code/RMG-Py/rmgpy/qm/mopac.py”, line 9, in <module> from qmdata import CCLib-
Data File “/home/connie/Research/Code/RMG-Py/rmgpy/qm/qmdata.py”, line 4, in <module> from rmgpy.quantity
import Energy, Mass, Length, Frequency ImportError: cannot import name Energy

autodoc: failed to import class u’MopacMol’ from module u’rmgpy.qm.mopac’; the following ex-
ception was raised: Traceback (most recent call last): File “/home/connie/anaconda/lib/python2.7/site-
packages/Sphinx-1.3.1-py2.7.egg/sphinx/ext/autodoc.py”, line 385, in import_object __import__(self.modname) File
“/home/connie/Research/Code/RMG-Py/rmgpy/qm/mopac.py”, line 9, in <module> from qmdata import CCLibData
File “/home/connie/Research/Code/RMG-Py/rmgpy/qm/qmdata.py”, line 4, in <module> from rmgpy.quantity import
Energy, Mass, Length, Frequency ImportError: cannot import name Energy

autodoc: failed to import class u’MopacMolPM3’ from module u’rmgpy.qm.mopac’; the following ex-
ception was raised: Traceback (most recent call last): File “/home/connie/anaconda/lib/python2.7/site-
packages/Sphinx-1.3.1-py2.7.egg/sphinx/ext/autodoc.py”, line 385, in import_object __import__(self.modname) File
“/home/connie/Research/Code/RMG-Py/rmgpy/qm/mopac.py”, line 9, in <module> from qmdata import CCLibData
File “/home/connie/Research/Code/RMG-Py/rmgpy/qm/qmdata.py”, line 4, in <module> from rmgpy.quantity import
Energy, Mass, Length, Frequency ImportError: cannot import name Energy

autodoc: failed to import class u’MopacMolPM6’ from module u’rmgpy.qm.mopac’; the following ex-
ception was raised: Traceback (most recent call last): File “/home/connie/anaconda/lib/python2.7/site-
packages/Sphinx-1.3.1-py2.7.egg/sphinx/ext/autodoc.py”, line 385, in import_object __import__(self.modname) File
“/home/connie/Research/Code/RMG-Py/rmgpy/qm/mopac.py”, line 9, in <module> from qmdata import CCLibData
File “/home/connie/Research/Code/RMG-Py/rmgpy/qm/qmdata.py”, line 4, in <module> from rmgpy.quantity import
Energy, Mass, Length, Frequency ImportError: cannot import name Energy

autodoc: failed to import class u’MopacMolPM7’ from module u’rmgpy.qm.mopac’; the following ex-
ception was raised: Traceback (most recent call last): File “/home/connie/anaconda/lib/python2.7/site-
packages/Sphinx-1.3.1-py2.7.egg/sphinx/ext/autodoc.py”, line 385, in import_object __import__(self.modname) File
“/home/connie/Research/Code/RMG-Py/rmgpy/qm/mopac.py”, line 9, in <module> from qmdata import CCLibData
File “/home/connie/Research/Code/RMG-Py/rmgpy/qm/qmdata.py”, line 4, in <module> from rmgpy.quantity import
Energy, Mass, Length, Frequency ImportError: cannot import name Energy

1.9 Physical quantities (rmgpy.quantity)

A physical quantity is defined by a numerical value and a unit of measurement.

The rmgpy.quantity module contains classes and methods for working with physical quantities. Physical quantities
are represented by either the ScalarQuantity or ArrayQuantity class depending on whether a scalar or vector (or
tensor) value is used. The Quantity function automatically chooses the appropriate class based on the input value.
In both cases, the value of a physical quantity is available from the value attribute, and the units from the units
attribute.

For efficient computation, the value is stored internally in the SI equivalent units. The SI value can be accessed directly
using the value_si attribute. Usually it is good practice to read the value_si attribute into a local variable and then
use it for computations, especially if it is referred to multiple times in the calculation.

Physical quantities also allow for storing of uncertainty values for both scalars and arrays. The uncertaintyType at-
tribute indicates whether the given uncertainties are additive ("+|-") or multiplicative ("*|/"), and the uncertainty
attribute contains the stored uncertainties. For additive uncertainties these are stored in the given units (not the SI equiv-
alent), since they are generally not needed for efficient computations. For multiplicative uncertainties, the uncertainty
values are by definition dimensionless.

1.9. Physical quantities (rmgpy.quantity) 87

RMG-Py API Reference, Release 1.0.3

1.9.1 Quantity objects

Class Description
ScalarQuantity A scalar physical quantity, with units and uncertainty
ArrayQuantity An array physical quantity, with units and uncertainty
Quantity() Return a scalar or array physical quantity

1.9.2 Unit types

Units can be classified into categories based on the associated dimensionality. For example, miles and kilometers
are both units of length; seconds and hours are both units of time, etc. Clearly, quantities of different unit types are
fundamentally different.

RMG provides functions that create physical quantities (scalar or array) and validate the units for a variety of unit
types. This prevents the user from inadvertently mixing up their units - e.g. by setting an enthalpy with entropy units
- which should reduce errors. RMG recognizes the following unit types:

Function Unit type SI unit
Acceleration() acceleration m/s2

Area() area m2

Concentration() concentration mol/cm3

Dimensionless() dimensionless
Energy() energy J/mol
Entropy() entropy J/mol · K
Flux() flux mol/cm2 · s
Frequency() frequency cm−1

Force() force N
Inertia() inertia kg · m2

Length() length m
Mass() mass kg
Momentum() momentum kg · m/s2

Power() power W
Pressure() pressure Pa
RateCoefficient() rate coefficient s−1, m3/mol · s, m6/mol2 · s, m9/mol3 · s
Temperature() temperature K
Time() time s
Velocity() velocity m/s
Volume() volume m3

In RMG, all energies, heat capacities, concentrations, fluxes, and rate coefficients are treated as intensive; this means
that these quantities are always expressed “per mole” or “per molecule”. All other unit types are extensive. A special
exception is added for mass so as to allow for coercion of g/mol to amu.

RMG also handles rate coefficient units as a special case, as there are multiple allowed dimensionalities based on the
reaction order. Note that RMG generally does not attempt to verify that the rate coefficient units match the reaction
order, but only that it matches one of the possibilities.

The table above gives the SI unit that RMG uses internally to work with physical quantities. This does not necessarily
correspond with the units used when outputting values. For example, pressures are often output in units of bar instead
of Pa, and moments of inertia in amu * angstrom2 instead of kg * m2. The recommended rule of thumb is to use
prefixed SI units (or aliases thereof) in the output; for example, use kJ/mol instead of kcal/mol for energy values.

88 Chapter 1. RMG API Reference

RMG-Py API Reference, Release 1.0.3

rmgpy.quantity.ScalarQuantity

class rmgpy.quantity.ScalarQuantity
The ScalarQuantity class provides a representation of a scalar physical quantity, with optional units and
uncertainty information. The attributes are:

Attribute Description
value The numeric value of the quantity in the given units
units The units the value was specified in
uncertainty The numeric uncertainty in the value
uncertaintyType The type of uncertainty: ’+|-’ for additive, ’*|/’ for multiplicative
value_si The numeric value of the quantity in the corresponding SI units

It is often more convenient to perform computations using SI units instead of the given units of the quantity. For
this reason, the SI equivalent of the value attribute can be directly accessed using the value_si attribute. This
value is cached on the ScalarQuantity object for speed.

copy()
Return a copy of the quantity.

equals()
Return True if the everything in a quantity object matches the parameters in this object. If there are lists
of values or uncertainties, each item in the list must be matching and in the same order. Otherwise, return
False (Originally intended to return warning if units capitalization was different, however, Quantity object
only parses units matching in case, so this will not be a problem.)

getConversionFactorFromSI()
Return the conversion factor for converting a quantity to a given set of units from the SI equivalent units.

getConversionFactorToSI()
Return the conversion factor for converting a quantity in a given set of‘units‘ to the SI equivalent units.

getUncertainty()
The numeric value of the uncertainty, in the given units if additive, or no units if multiplicative.

getUncertaintyType()
The type of uncertainty: ’+|-’ for additive, ’*|/’ for multiplicative

getValue()
The numeric value of the quantity, in the given units

isUncertaintyAdditive()
Return True if the uncertainty is specified in additive format and False otherwise.

isUncertaintyMultiplicative()
Return True if the uncertainty is specified in multiplicative format and False otherwise.

setUncertaintyType()
Check the uncertainty type is valid, then set it, and set the uncertainty to -1.

If you set the uncertainty then change the type, we have no idea what to do with the units. This ensures
you set the type first.

rmgpy.quantity.ArrayQuantity

class rmgpy.quantity.ArrayQuantity
The ArrayQuantity class provides a representation of an array of physical quantity values, with optional units
and uncertainty information. The attributes are:

1.9. Physical quantities (rmgpy.quantity) 89

RMG-Py API Reference, Release 1.0.3

Attribute Description
value The numeric value of the quantity in the given units
units The units the value was specified in
uncertainty The numeric uncertainty in the value
uncertaintyType The type of uncertainty: ’+|-’ for additive, ’*|/’ for multiplicative
value_si The numeric value of the quantity in the corresponding SI units

It is often more convenient to perform computations using SI units instead of the given units of the quantity. For
this reason, the SI equivalent of the value attribute can be directly accessed using the value_si attribute. This
value is cached on the ArrayQuantity object for speed.

copy()
Return a copy of the quantity.

equals()
Return True if the everything in a quantity object matches the parameters in this object. If there are lists
of values or uncertainties, each item in the list must be matching and in the same order. Otherwise, return
False (Originally intended to return warning if units capitalization was different, however, Quantity object
only parses units matching in case, so this will not be a problem.)

getConversionFactorFromSI()
Return the conversion factor for converting a quantity to a given set of units from the SI equivalent units.

getConversionFactorToSI()
Return the conversion factor for converting a quantity in a given set of‘units‘ to the SI equivalent units.

isUncertaintyAdditive()
Return True if the uncertainty is specified in additive format and False otherwise.

isUncertaintyMultiplicative()
Return True if the uncertainty is specified in multiplicative format and False otherwise.

rmgpy.quantity.Quantity

autodoc: failed to import function u’Quantity’ from module u’rmgpy.quantity’; the following exception was
raised: Traceback (most recent call last): File “/home/connie/anaconda/lib/python2.7/site-packages/Sphinx-
1.3.1-py2.7.egg/sphinx/ext/autodoc.py”, line 392, in import_object obj = self.get_attr(obj, part) File
“/home/connie/anaconda/lib/python2.7/site-packages/Sphinx-1.3.1-py2.7.egg/sphinx/ext/autodoc.py”, line 288,
in get_attr return safe_getattr(obj, name, *defargs) File “/home/connie/anaconda/lib/python2.7/site-packages/Sphinx-
1.3.1-py2.7.egg/sphinx/util/inspect.py”, line 115, in safe_getattr raise AttributeError(name) AttributeError: Quantity

1.10 Reactions (rmgpy.reaction)

The rmgpy.reaction subpackage contains classes and functions for working with chemical reaction.

1.10.1 Reaction

Class Description
Reaction A chemical reaction

90 Chapter 1. RMG API Reference

RMG-Py API Reference, Release 1.0.3

1.10.2 Exceptions

Class Description
ReactionError Raised when an error occurs while working with reactions

rmgpy.reaction.Reaction

class rmgpy.reaction.Reaction
A chemical reaction. The attributes are:

Attribute Type Description
index int A unique nonnegative integer index
label str A descriptive string label
reactants list The reactant species (as Species objects)
products list The product species (as Species objects)
kinetics KineticsModel The kinetics model to use for the reaction
reversible bool True if the reaction is reversible, False if not
transition-
State

TransitionState The transition state

duplicate bool True if the reaction is known to be a duplicate, False if not
degeneracy double The reaction path degeneracy for the reaction
pairs list Reactant-product pairings to use in converting reaction flux to

species flux

calculateMicrocanonicalRateCoefficient()
Calculate the microcanonical rate coefficient 𝑘(𝐸) for the reaction reaction at the energies Elist in J/mol.
reacDensStates and prodDensStates are the densities of states of the reactant and product configurations
for this reaction. If the reaction is irreversible, only the reactant density of states is required; if the reaction
is reversible, then both are required. This function will try to use the best method that it can based on the
input data available:

•If detailed information has been provided for the transition state (i.e. the molecular degrees of free-
dom), then RRKM theory will be used.

•If the above is not possible but high-pressure limit kinetics 𝑘∞(𝑇) have been provided, then the
inverse Laplace transform method will be used.

The density of states for the product prodDensStates and the temperature of interest T in K can also
be provided. For isomerization and association reactions prodDensStates is required; for dissociation
reactions it is optional. The temperature is used if provided in the detailed balance expression to determine
the reverse kinetics, and in certain cases in the inverse Laplace transform method.

calculateTSTRateCoefficient()
Evaluate the forward rate coefficient for the reaction with corresponding transition state TS at temperature
T in K using (canonical) transition state theory. The TST equation is

𝑘(𝑇) = 𝜅(𝑇)
𝑘B𝑇

ℎ

𝑄‡(𝑇)

𝑄A(𝑇)𝑄B(𝑇)
exp

(︂
− 𝐸0

𝑘B𝑇

)︂
where 𝑄‡ is the partition function of the transition state, 𝑄A and 𝑄B are the partition function of the
reactants, 𝐸0 is the ground-state energy difference from the transition state to the reactants, 𝑇 is the
absolute temperature, 𝑘B is the Boltzmann constant, and ℎ is the Planck constant. 𝜅(𝑇) is an optional
tunneling correction.

canTST()
Return True if the necessary parameters are available for using transition state theory – or the microcanon-
ical equivalent, RRKM theory – to compute the rate coefficient for this reaction, or False otherwise.

1.10. Reactions (rmgpy.reaction) 91

RMG-Py API Reference, Release 1.0.3

copy()
Create a deep copy of the current reaction.

draw()
Generate a pictorial representation of the chemical reaction using the draw module. Use path to specify
the file to save the generated image to; the image type is automatically determined by extension. Valid
extensions are .png, .svg, .pdf, and .ps; of these, the first is a raster format and the remainder are
vector formats.

fixBarrierHeight()
Turns the kinetics into Arrhenius (if they were ArrheniusEP) and ensures the activation energy is at least
the endothermicity for endothermic reactions, and is not negative only as a result of using Evans Polanyi
with an exothermic reaction. If forcePositive is True, then all reactions are forced to have a non-negative
barrier.

fixDiffusionLimitedA()
Decrease the pre-exponential factor (A) by a factor of getDiffusionFactor to account for the diffusion limit.

generate3dTS()
Generate the 3D structure of the transition state. Called from model.generateKinetics().

self.reactants is a list of reactants self.products is a list of products

generatePairs()
Generate the reactant-product pairs to use for this reaction when performing flux analysis. The exact
procedure for doing so depends on the reaction type:

Reaction type Template Resulting pairs
Isomerization A -> C (A,C)
Dissociation A -> C + D (A,C), (A,D)
Association A + B -> C (A,C), (B,C)
Bimolecular A + B -> C + D (A,C), (B,D) or (A,D), (B,C)

There are a number of ways of determining the correct pairing for bimolecular reactions. Here we try a
simple similarity analysis by comparing the number of heavy atoms (carbons and oxygens at the moment).
This should work most of the time, but a more rigorous algorithm may be needed for some cases.

generateReverseRateCoefficient()
Generate and return a rate coefficient model for the reverse reaction. Currently this only works if the
kinetics attribute is one of several (but not necessarily all) kinetics types.

getEnthalpiesOfReaction()
Return the enthalpies of reaction in J/mol evaluated at temperatures Tlist in K.

getEnthalpyOfReaction()
Return the enthalpy of reaction in J/mol evaluated at temperature T in K.

getEntropiesOfReaction()
Return the entropies of reaction in J/mol*K evaluated at temperatures Tlist in K.

getEntropyOfReaction()
Return the entropy of reaction in J/mol*K evaluated at temperature T in K.

getEquilibriumConstant()
Return the equilibrium constant for the reaction at the specified temperature T in K. The type parameter
lets you specify the quantities used in the equilibrium constant: Ka for activities, Kc for concentrations
(default), or Kp for pressures. Note that this function currently assumes an ideal gas mixture.

getEquilibriumConstants()
Return the equilibrium constants for the reaction at the specified temperatures Tlist in K. The type parame-

92 Chapter 1. RMG API Reference

RMG-Py API Reference, Release 1.0.3

ter lets you specify the quantities used in the equilibrium constant: Ka for activities, Kc for concentrations
(default), or Kp for pressures. Note that this function currently assumes an ideal gas mixture.

getFreeEnergiesOfReaction()
Return the Gibbs free energies of reaction in J/mol evaluated at temperatures Tlist in K.

getFreeEnergyOfReaction()
Return the Gibbs free energy of reaction in J/mol evaluated at temperature T in K.

getRateCoefficient()
Return the overall rate coefficient for the forward reaction at temperature T in K and pressure P in Pa,
including any reaction path degeneracies.

If diffusionLimiter is enabled, the reaction is in the liquid phase and we use a diffusion limitation to correct
the rate. If not, then use the intrinsic rate coefficient.

getStoichiometricCoefficient()
Return the stoichiometric coefficient of species spec in the reaction. The stoichiometric coefficient is
increased by one for each time spec appears as a product and decreased by one for each time spec appears
as a reactant.

getURL()
Get a URL to search for this reaction in the rmg website.

hasTemplate()
Return True if the reaction matches the template of reactants and products, which are both lists of
Species objects, or False if not.

isAssociation()
Return True if the reaction represents an association reaction A + B −−⇀↽−− C or False if not.

isBalanced()
Return True if the reaction has the same number of each atom on each side of the reaction equation, or
False if not.

isDissociation()
Return True if the reaction represents a dissociation reaction A −−⇀↽−− B + C or False if not.

isIsomerization()
Return True if the reaction represents an isomerization reaction A −−⇀↽−− B or False if not.

isIsomorphic()
Return True if this reaction is the same as the other reaction, or False if they are different. If eitherDi-
rection=False then the directions must match.

isUnimolecular()
Return True if the reaction has a single molecule as either reactant or product (or both) A −−⇀↽−− B + C or
A + B −−⇀↽−− C or A −−⇀↽−− B, or False if not.

matchesMolecules()
Return True if the given reactants represent the total set of reactants or products for the current
reaction, or False if not. The reactants should be Molecule objects.

reverseThisArrheniusRate()
Reverses the given kForward, which must be an Arrhenius type. You must supply the correct units for the
reverse rate. The equilibrium constant is evaluated from the current reaction instance (self).

toChemkin()
Return the chemkin-formatted string for this reaction.

If kinetics is set to True, the chemkin format kinetics will also be returned (requires the speciesList to
figure out third body colliders.) Otherwise, only the reaction string will be returned.

1.10. Reactions (rmgpy.reaction) 93

RMG-Py API Reference, Release 1.0.3

1.11 Reaction mechanism generation (rmgpy.rmg)

The rmgpy.rmg subpackage contains the main functionality for using RMG-Py to automatically generate detailed
reaction mechanisms.

1.11.1 Reaction models

Class Description
Species A chemical species, with RMG-specific functionality
CoreEdgeReactionModel A reaction model comprised of core and edge species and reactions

1.11.2 Input

Function Description
readInputFile() Load an RMG job input file
saveInputFile() Save an RMG job input file

1.11.3 Output

Function Description
saveOutputHTML() Save the results of an RMG job to an HTML file
saveDiffHTML() Save a comparison of two reaction mechanisms to an HTML file

1.11.4 Job classes

Class Description
RMG Main class for RMG jobs

1.11.5 Pressure dependence

Class Description
PDepReaction A pressure-dependent “net” reaction
PDepNetwork A pressure-dependent unimolecular reaction network, with RMG-specific functionality

1.11.6 Exceptions

Exception Description
InputError Raised when an error occurs while working with an RMG input file
OutputError Raised when an error occurs while saving an RMG output file
PressureDependenceError Raised when an error occurs while computing pressure-dependent rate

coefficients

94 Chapter 1. RMG API Reference

RMG-Py API Reference, Release 1.0.3

rmgpy.rmg.model.CoreEdgeReactionModel

autodoc: failed to import class u’CoreEdgeReactionModel’ from module u’rmgpy.rmg.model’; the follow-
ing exception was raised: Traceback (most recent call last): File “/home/connie/anaconda/lib/python2.7/site-
packages/Sphinx-1.3.1-py2.7.egg/sphinx/ext/autodoc.py”, line 385, in import_object __import__(self.modname) File
“/home/connie/Research/Code/RMG-Py/rmgpy/rmg/model.py”, line 44, in <module> from rmgpy.quantity import
Quantity ImportError: cannot import name Quantity

autodoc: failed to import class u’ReactionModel’ from module u’rmgpy.rmg.model’; the following ex-
ception was raised: Traceback (most recent call last): File “/home/connie/anaconda/lib/python2.7/site-
packages/Sphinx-1.3.1-py2.7.egg/sphinx/ext/autodoc.py”, line 385, in import_object __import__(self.modname) File
“/home/connie/Research/Code/RMG-Py/rmgpy/rmg/model.py”, line 44, in <module> from rmgpy.quantity import
Quantity ImportError: cannot import name Quantity

RMG input files

autodoc: failed to import function u’readInputFile’ from module u’rmgpy.rmg.input’; the following ex-
ception was raised: Traceback (most recent call last): File “/home/connie/anaconda/lib/python2.7/site-
packages/Sphinx-1.3.1-py2.7.egg/sphinx/ext/autodoc.py”, line 385, in import_object __import__(self.modname) File
“/home/connie/Research/Code/RMG-Py/rmgpy/rmg/input.py”, line 32, in <module> import quantities ImportError:
No module named quantities

autodoc: failed to import function u’saveInputFile’ from module u’rmgpy.rmg.input’; the following ex-
ception was raised: Traceback (most recent call last): File “/home/connie/anaconda/lib/python2.7/site-
packages/Sphinx-1.3.1-py2.7.egg/sphinx/ext/autodoc.py”, line 385, in import_object __import__(self.modname) File
“/home/connie/Research/Code/RMG-Py/rmgpy/rmg/input.py”, line 32, in <module> import quantities ImportError:
No module named quantities

rmgpy.rmg.main.RMG

autodoc: failed to import class u’RMG’ from module u’rmgpy.rmg.main’; the following exception was
raised: Traceback (most recent call last): File “/home/connie/anaconda/lib/python2.7/site-packages/Sphinx-
1.3.1-py2.7.egg/sphinx/ext/autodoc.py”, line 385, in import_object __import__(self.modname) File
“/home/connie/Research/Code/RMG-Py/rmgpy/rmg/main.py”, line 47, in <module> from rmgpy.solver.base import
TerminationTime, TerminationConversion File “/home/connie/Research/Code/RMG-Py/rmgpy/solver/__init__.py”,
line 31, in <module> from .base import ReactionSystem, TerminationTime, TerminationConversion File
“rmgpy/solver/base.pyx”, line 52, in init rmgpy.solver.base (build/pyrex/rmgpy/solver/base.c:21674) from
rmgpy.quantity import Quantity ImportError: cannot import name Quantity

autodoc: failed to import function u’initializeLog’ from module u’rmgpy.rmg.main’; the following ex-
ception was raised: Traceback (most recent call last): File “/home/connie/anaconda/lib/python2.7/site-
packages/Sphinx-1.3.1-py2.7.egg/sphinx/ext/autodoc.py”, line 385, in import_object __import__(self.modname) File
“/home/connie/Research/Code/RMG-Py/rmgpy/rmg/main.py”, line 47, in <module> from rmgpy.solver.base import
TerminationTime, TerminationConversion File “/home/connie/Research/Code/RMG-Py/rmgpy/solver/__init__.py”,
line 31, in <module> from .base import ReactionSystem, TerminationTime, TerminationConversion ImportError: can-
not import name TerminationTime

autodoc: failed to import function u’makeProfileGraph’ from module u’rmgpy.rmg.main’; the following
exception was raised: Traceback (most recent call last): File “/home/connie/anaconda/lib/python2.7/site-
packages/Sphinx-1.3.1-py2.7.egg/sphinx/ext/autodoc.py”, line 385, in import_object __import__(self.modname) File
“/home/connie/Research/Code/RMG-Py/rmgpy/rmg/main.py”, line 47, in <module> from rmgpy.solver.base import
TerminationTime, TerminationConversion File “/home/connie/Research/Code/RMG-Py/rmgpy/solver/__init__.py”,
line 31, in <module> from .base import ReactionSystem, TerminationTime, TerminationConversion ImportError: can-
not import name TerminationTime

1.11. Reaction mechanism generation (rmgpy.rmg) 95

RMG-Py API Reference, Release 1.0.3

autodoc: failed to import function u’processProfileStats’ from module u’rmgpy.rmg.main’; the following
exception was raised: Traceback (most recent call last): File “/home/connie/anaconda/lib/python2.7/site-
packages/Sphinx-1.3.1-py2.7.egg/sphinx/ext/autodoc.py”, line 385, in import_object __import__(self.modname) File
“/home/connie/Research/Code/RMG-Py/rmgpy/rmg/main.py”, line 47, in <module> from rmgpy.solver.base import
TerminationTime, TerminationConversion File “/home/connie/Research/Code/RMG-Py/rmgpy/solver/__init__.py”,
line 31, in <module> from .base import ReactionSystem, TerminationTime, TerminationConversion ImportError: can-
not import name TerminationTime

Saving RMG output

autodoc: failed to import function u’saveOutputHTML’ from module u’rmgpy.rmg.output’; the following
exception was raised: Traceback (most recent call last): File “/home/connie/anaconda/lib/python2.7/site-
packages/Sphinx-1.3.1-py2.7.egg/sphinx/ext/autodoc.py”, line 385, in import_object __import__(self.modname) File
“/home/connie/Research/Code/RMG-Py/rmgpy/rmg/output.py”, line 41, in <module> from rmgpy.chemkin import
getSpeciesIdentifier File “/home/connie/Research/Code/RMG-Py/rmgpy/chemkin.py”, line 44, in <module> from
rmgpy.rmg.model import Species File “/home/connie/Research/Code/RMG-Py/rmgpy/rmg/model.py”, line 44, in
<module> from rmgpy.quantity import Quantity ImportError: cannot import name Quantity

autodoc: failed to import function u’saveDiffHTML’ from module u’rmgpy.rmg.output’; the following ex-
ception was raised: Traceback (most recent call last): File “/home/connie/anaconda/lib/python2.7/site-
packages/Sphinx-1.3.1-py2.7.egg/sphinx/ext/autodoc.py”, line 385, in import_object __import__(self.modname) File
“/home/connie/Research/Code/RMG-Py/rmgpy/rmg/output.py”, line 41, in <module> from rmgpy.chemkin import
getSpeciesIdentifier File “/home/connie/Research/Code/RMG-Py/rmgpy/chemkin.py”, line 44, in <module> from
rmgpy.rmg.model import Species File “/home/connie/Research/Code/RMG-Py/rmgpy/rmg/model.py”, line 44, in
<module> from rmgpy.quantity import Quantity ImportError: cannot import name Quantity

rmgpy.rmg.pdep.PDepNetwork

autodoc: failed to import class u’PDepNetwork’ from module u’rmgpy.rmg.pdep’; the following ex-
ception was raised: Traceback (most recent call last): File “/home/connie/anaconda/lib/python2.7/site-
packages/Sphinx-1.3.1-py2.7.egg/sphinx/ext/autodoc.py”, line 385, in import_object __import__(self.modname) File
“/home/connie/Research/Code/RMG-Py/rmgpy/rmg/pdep.py”, line 39, in <module> import rmgpy.pdep.network File
“/home/connie/Research/Code/RMG-Py/rmgpy/pdep/__init__.py”, line 35, in <module> from .draw import * File
“/home/connie/Research/Code/RMG-Py/rmgpy/pdep/draw.py”, line 39, in <module> from rmgpy.molecule.draw
import MoleculeDrawer, createNewSurface File “/home/connie/Research/Code/RMG-Py/rmgpy/molecule/draw.py”,
line 54, in <module> from rmgpy.qm.molecule import Geometry File “/home/connie/Research/Code/RMG-
Py/rmgpy/qm/molecule.py”, line 19, in <module> import qmdata File “/home/connie/Research/Code/RMG-
Py/rmgpy/qm/qmdata.py”, line 4, in <module> from rmgpy.quantity import Energy, Mass, Length, Frequency Im-
portError: cannot import name Energy

rmgpy.rmg.pdep.PDepReaction

autodoc: failed to import class u’PDepReaction’ from module u’rmgpy.rmg.pdep’; the following ex-
ception was raised: Traceback (most recent call last): File “/home/connie/anaconda/lib/python2.7/site-
packages/Sphinx-1.3.1-py2.7.egg/sphinx/ext/autodoc.py”, line 385, in import_object __import__(self.modname) File
“/home/connie/Research/Code/RMG-Py/rmgpy/rmg/pdep.py”, line 39, in <module> import rmgpy.pdep.network File
“/home/connie/Research/Code/RMG-Py/rmgpy/pdep/__init__.py”, line 35, in <module> from .draw import * File
“/home/connie/Research/Code/RMG-Py/rmgpy/pdep/draw.py”, line 39, in <module> from rmgpy.molecule.draw
import MoleculeDrawer, createNewSurface File “/home/connie/Research/Code/RMG-Py/rmgpy/molecule/draw.py”,
line 54, in <module> from rmgpy.qm.molecule import Geometry File “/home/connie/Research/Code/RMG-
Py/rmgpy/qm/molecule.py”, line 19, in <module> import qmdata File “/home/connie/Research/Code/RMG-

96 Chapter 1. RMG API Reference

RMG-Py API Reference, Release 1.0.3

Py/rmgpy/qm/qmdata.py”, line 4, in <module> from rmgpy.quantity import Energy, Mass, Length, Frequency Im-
portError: cannot import name Energy

rmgpy.rmg.model.Species

autodoc: failed to import class u’Species’ from module u’rmgpy.rmg.model’; the following excep-
tion was raised: Traceback (most recent call last): File “/home/connie/anaconda/lib/python2.7/site-
packages/Sphinx-1.3.1-py2.7.egg/sphinx/ext/autodoc.py”, line 385, in import_object __import__(self.modname)
File “/home/connie/Research/Code/RMG-Py/rmgpy/rmg/model.py”, line 44, in <module> from rmgpy.quantity
import Quantity ImportError: cannot import name Quantity

1.12 Reaction system simulation (rmgpy.solver)

The rmgpy.solver module contains classes used to represent and simulate reaction systems.

1.12.1 Reaction systems

Class Description
ReactionSystem Base class for all reaction systems
SimpleReactor A simple isothermal, isobaric, well-mixed batch reactor

1.12.2 Termination criteria

Class Description
TerminationTime Represent a time at which the simulation should be terminated
TerminationConversion Represent a species conversion at which the simulation should be terminated

rmgpy.solver.ReactionSystem

autodoc: failed to import class u’ReactionSystem’ from module u’rmgpy.solver’; the following ex-
ception was raised: Traceback (most recent call last): File “/home/connie/anaconda/lib/python2.7/site-
packages/Sphinx-1.3.1-py2.7.egg/sphinx/ext/autodoc.py”, line 385, in import_object __import__(self.modname) File
“/home/connie/Research/Code/RMG-Py/rmgpy/solver/__init__.py”, line 31, in <module> from .base import Reac-
tionSystem, TerminationTime, TerminationConversion ImportError: cannot import name TerminationTime

rmgpy.solver.SimpleReactor

autodoc: failed to import class u’SimpleReactor’ from module u’rmgpy.solver’; the following ex-
ception was raised: Traceback (most recent call last): File “/home/connie/anaconda/lib/python2.7/site-
packages/Sphinx-1.3.1-py2.7.egg/sphinx/ext/autodoc.py”, line 385, in import_object __import__(self.modname) File
“/home/connie/Research/Code/RMG-Py/rmgpy/solver/__init__.py”, line 31, in <module> from .base import Reac-
tionSystem, TerminationTime, TerminationConversion ImportError: cannot import name TerminationTime

1.12. Reaction system simulation (rmgpy.solver) 97

RMG-Py API Reference, Release 1.0.3

Termination criteria

autodoc: failed to import class u’TerminationTime’ from module u’rmgpy.solver’; the following ex-
ception was raised: Traceback (most recent call last): File “/home/connie/anaconda/lib/python2.7/site-
packages/Sphinx-1.3.1-py2.7.egg/sphinx/ext/autodoc.py”, line 385, in import_object __import__(self.modname) File
“/home/connie/Research/Code/RMG-Py/rmgpy/solver/__init__.py”, line 31, in <module> from .base import Reac-
tionSystem, TerminationTime, TerminationConversion ImportError: cannot import name TerminationTime

autodoc: failed to import class u’TerminationConversion’ from module u’rmgpy.solver’; the following ex-
ception was raised: Traceback (most recent call last): File “/home/connie/anaconda/lib/python2.7/site-
packages/Sphinx-1.3.1-py2.7.egg/sphinx/ext/autodoc.py”, line 385, in import_object __import__(self.modname) File
“/home/connie/Research/Code/RMG-Py/rmgpy/solver/__init__.py”, line 31, in <module> from .base import Reac-
tionSystem, TerminationTime, TerminationConversion ImportError: cannot import name TerminationTime

1.13 Species (rmgpy.species)

The rmgpy.species subpackage contains classes and functions for working with chemical species.

1.13.1 Species

Class Description
Species A chemical species

1.13.2 Transition state

Class Description
TransitionState A transition state

1.13.3 Exceptions

Class Description
SpeciesError Raised when an error occurs while working with species

rmgpy.species.Species

class rmgpy.species.Species
A chemical species, representing a local minimum on a potential energy surface. The attributes are:

98 Chapter 1. RMG API Reference

RMG-Py API Reference, Release 1.0.3

Attribute Description
index A unique nonnegative integer index
label A descriptive string label
thermo The heat capacity model for the species
conformer The molecular conformer for the species
molecule A list of the Molecule objects describing the molecular structure
transportData A set of transport collision parameters
molecularWeight The molecular weight of the species
dipoleMoment The molecular dipole moment
polarizability The polarizability alpha
Zrot The rotational relaxation collision number
energyTransferModel The collisional energy transfer model to use
reactive True if the species participates in reactions, False if not
props A generic ‘properties’ dictionary to store user-defined flags
aug_inchi Unique augmented inchi

note: rmg.model.Species inherits from this class, and adds some extra methods.

calculateCp0()
Return the value of the heat capacity at zero temperature in J/mol*K.

calculateCpInf()
Return the value of the heat capacity at infinite temperature in J/mol*K.

copy()
Create a copy of the current species. If the kw argument ‘deep’ is True, then a deep copy will be made of
the Molecule objects in self.molecule.

For other complex attributes, a deep copy will always be made.

fromAdjacencyList()
Load the structure of a species as a Molecule object from the given adjacency list adjlist and store it as the
first entry of a list in the molecule attribute. Does not generate resonance isomers of the loaded molecule.

fromSMILES()
Load the structure of a species as a Molecule object from the given SMILES string smiles and store it
as the first entry of a list in the molecule attribute. Does not generate resonance isomers of the loaded
molecule.

generateResonanceIsomers()
Generate all of the resonance isomers of this species. The isomers are stored as a list in the molecule
attribute. If the length of molecule is already greater than one, it is assumed that all of the resonance
isomers have already been generated.

getDensityOfStates()
Return the density of states 𝜌(𝐸) 𝑑𝐸 at the specified energies Elist in J/mol above the ground state.

getEnthalpy()
Return the enthalpy in J/mol for the species at the specified temperature T in K.

getEntropy()
Return the entropy in J/mol*K for the species at the specified temperature T in K.

getFreeEnergy()
Return the Gibbs free energy in J/mol for the species at the specified temperature T in K.

getHeatCapacity()
Return the heat capacity in J/mol*K for the species at the specified temperature T in K.

getPartitionFunction()
Return the partition function for the species at the specified temperature T in K.

1.13. Species (rmgpy.species) 99

RMG-Py API Reference, Release 1.0.3

getSumOfStates()
Return the sum of states 𝑁(𝐸) at the specified energies Elist in J/mol.

getSymmetryNumber()
Get the symmetry number for the species, which is the highest symmetry number amongst its resonance
isomers. This function is currently used for website purposes and testing only as it requires additional
calculateSymmetryNumber calls.

hasStatMech()
Return True if the species has statistical mechanical parameters, or False otherwise.

hasThermo()
Return True if the species has thermodynamic parameters, or False otherwise.

isIsomorphic()
Return True if the species is isomorphic to other, which can be either a Molecule object or a Species
object.

toAdjacencyList()
Return a string containing each of the molecules’ adjacency lists.

rmgpy.species.TransitionState

class rmgpy.species.TransitionState
A chemical transition state, representing a first-order saddle point on a potential energy surface. The attributes
are:

Attribute TDescription
label A descriptive string label
conformer The molecular degrees of freedom model for the species
frequency The negative frequency of the first-order saddle point
tunneling The type of tunneling model to use for tunneling through the reaction barrier
degeneracy The reaction path degeneracy

calculateTunnelingFactor()
Calculate and return the value of the canonical tunneling correction factor for the reaction at the given
temperature T in K.

calculateTunnelingFunction()
Calculate and return the value of the microcanonical tunneling correction for the reaction at the given
energies Elist in J/mol.

getDensityOfStates()
Return the density of states 𝜌(𝐸) 𝑑𝐸 at the specified energies Elist in J/mol above the ground state.

getEnthalpy()
Return the enthalpy in J/mol for the transition state at the specified temperature T in K.

getEntropy()
Return the entropy in J/mol*K for the transition state at the specified temperature T in K.

getFreeEnergy()
Return the Gibbs free energy in J/mol for the transition state at the specified temperature T in K.

getHeatCapacity()
Return the heat capacity in J/mol*K for the transition state at the specified temperature T in K.

getPartitionFunction()
Return the partition function for the transition state at the specified temperature T in K.

100 Chapter 1. RMG API Reference

RMG-Py API Reference, Release 1.0.3

getSumOfStates()
Return the sum of states 𝑁(𝐸) at the specified energies Elist in J/mol.

1.14 Statistical mechanics (rmgpy.statmech)

The rmgpy.statmech subpackage contains classes that represent various statistical mechanical models of molecular
degrees of freedom. These models enable the computation of macroscopic parameters (e.g. thermodynamics, kinetics,
etc.) from microscopic parameters.

A molecular system consisting of 𝑁 atoms is described by 3𝑁 molecular degrees of freedom. Three of these modes
involve translation of the system as a whole. Another three of these modes involve rotation of the system as a whole,
unless the system is linear (e.g. diatomics), for which there are only two rotational modes. The remaining 3𝑁 − 6
(or 3𝑁 − 5 if linear) modes involve internal motion of the atoms within the system. Many of these modes are well-
described as harmonic oscillations, while others are better modeled as torsional rotations around a bond within the
system.

Molecular degrees of freedom are mathematically represented using the Schrodinger equation 𝐻̂Ψ = 𝐸Ψ. By solving
the Schrodinger equation, we can determine the available energy states of the molecular system, which enables com-
putation of macroscopic parameters. Depending on the temperature of interest, some modes (e.g. vibrations) require
a quantum mechanical treatment, while others (e.g. translation, rotation) can be described using a classical solution.

1.14.1 Translational degrees of freedom

Class Description
IdealGasTranslation A model of three-dimensional translation of an ideal gas

1.14.2 Rotational degrees of freedom

Class Description
LinearRotor A model of two-dimensional rigid rotation of a linear molecule
NonlinearRotor A model of three-dimensional rigid rotation of a nonlinear molecule
KRotor A model of one-dimensional rigid rotation of a K-rotor
SphericalTopRotor A model of three-dimensional rigid rotation of a spherical top molecule

1.14.3 Vibrational degrees of freedom

Class Description
HarmonicOscillator A model of a set of one-dimensional harmonic oscillators

1.14.4 Torsional degrees of freedom

Class Description
HinderedRotor A model of a one-dimensional hindered rotation

1.14. Statistical mechanics (rmgpy.statmech) 101

RMG-Py API Reference, Release 1.0.3

1.14.5 The Schrodinger equation

Class Description
getPartitionFunction()Calculate the partition function at a given temperature from energy levels and

degeneracies
getHeatCapacity() Calculate the dimensionless heat capacity at a given temperature from energy levels

and degeneracies
getEnthalpy() Calculate the enthalpy at a given temperature from energy levels and degeneracies
getEntropy() Calculate the entropy at a given temperature from energy levels and degeneracies
getSumOfStates() Calculate the sum of states for a given energy domain from energy levels and

degeneracies
getDensityOfStates() Calculate the density of states for a given energy domain from energy levels and

degeneracies

1.14.6 Convolution

Class Description
convolve() Return the convolution of two arrays
convolveBS()Convolve a degree of freedom into a density or sum of states using the Beyer-Swinehart (BS)

direct count algorithm
convolveBSSR()Convolve a degree of freedom into a density or sum of states using the

Beyer-Swinehart-Stein-Rabinovitch (BSSR) direct count algorithm

1.14.7 Molecular conformers

Class Description
Conformer A model of a molecular conformation

Translational degrees of freedom

class rmgpy.statmech.IdealGasTranslation(mass=None, quantum=False)
A statistical mechanical model of translation in an 3-dimensional infinite square well by an ideal gas. The
attributes are:

Attribute Description
mass The mass of the translating object
quantum True to use the quantum mechanical model, False to use the classical model

Translational energies are much smaller than 𝑘B𝑇 except for temperatures approaching absolute zero, so a
classical treatment of translation is more than adequate.

The translation of an ideal gas – a gas composed of randomly-moving, noninteracting particles of negligible
size – in three dimensions can be modeled using the particle-in-a-box model. In this model, a gas particle is
confined to a three-dimensional box of size 𝐿𝑥𝐿𝑦𝐿𝑧 = 𝑉 with the following potential:

𝑉 (𝑥, 𝑦, 𝑧) =

{︃
0 0 ≤ 𝑥 ≤ 𝐿𝑥, 0 ≤ 𝑦 ≤ 𝐿𝑦, 0 ≤ 𝑧 ≤ 𝐿𝑧

∞ otherwise

The time-independent Schrodinger equation for this system (within the box) is given by

− ℎ̄2

2𝑀

(︂
𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
+

𝜕2

𝜕𝑧2

)︂
Ψ(𝑥, 𝑦, 𝑧) = 𝐸Ψ(𝑥, 𝑦, 𝑧)

102 Chapter 1. RMG API Reference

RMG-Py API Reference, Release 1.0.3

where 𝑀 is the total mass of the particle. Because the box is finite in all dimensions, the solution of the above
is quantized with the following energy levels:

𝐸𝑛𝑥,𝑛𝑦,𝑛𝑧
=

ℎ̄2

2𝑀

[︃(︂
𝑛𝑥𝜋

𝐿𝑥

)︂2

+

(︂
𝑛𝑦𝜋

𝐿𝑦

)︂2

+

(︂
𝑛𝑧𝜋

𝐿𝑧

)︂2
]︃

𝑛𝑥, 𝑛𝑦, 𝑛𝑧 = 1, 2, . . .

Above we have introduced 𝑛𝑥, 𝑛𝑦 , and 𝑛𝑧 as quantum numbers. The quantum mechanical partition function is
obtained by summing over the above energy levels:

𝑄trans(𝑇) =

∞∑︁
𝑛𝑥=1

∞∑︁
𝑛𝑦=1

∞∑︁
𝑛𝑧=1

exp

(︂
−
𝐸𝑛𝑥,𝑛𝑦,𝑛𝑧

𝑘B𝑇

)︂
In almost all cases the temperature of interest is large relative to the energy spacing; in this limit we can obtain
a closed-form analytical expression for the translational partition function in the classical limit:

𝑄cl
trans(𝑇) =

(︂
2𝜋𝑀𝑘B𝑇

ℎ2

)︂3/2

𝑉

For a constant-pressure problem we can use the ideal gas law to replace 𝑉 with 𝑘B𝑇/𝑃 . This gives the partition
function a temperature dependence of 𝑇 5/2.

getDensityOfStates(self, ndarray Elist, ndarray densStates0=None)→ ndarray
Return the density of states 𝜌(𝐸) 𝑑𝐸 at the specified energies Elist in J/mol above the ground state. If an
initial density of states densStates0 is given, the rotor density of states will be convoluted into these states.

getEnthalpy(self, double T)→ double
Return the enthalpy in J/mol for the degree of freedom at the specified temperature T in K.

getEntropy(self, double T)→ double
Return the entropy in J/mol*K for the degree of freedom at the specified temperature T in K.

getHeatCapacity(self, double T)→ double
Return the heat capacity in J/mol*K for the degree of freedom at the specified temperature T in K.

getPartitionFunction(self, double T)→ double
Return the value of the partition function 𝑄(𝑇) at the specified temperature T in K.

getSumOfStates(self, ndarray Elist, ndarray sumStates0=None)→ ndarray
Return the sum of states 𝑁(𝐸) at the specified energies Elist in J/mol above the ground state. If an initial
sum of states sumStates0 is given, the rotor sum of states will be convoluted into these states.

mass
The mass of the translating object.

quantum
quantum: ‘bool’

rmgpy.statmech.LinearRotor

class rmgpy.statmech.LinearRotor(inertia=None, symmetry=1, quantum=False, rotationalCon-
stant=None)

A statistical mechanical model of a two-dimensional (linear) rigid rotor. The attributes are:

Attribute Description
inertia The moment of inertia of the rotor
rotationalConstant The rotational constant of the rotor
symmetry The symmetry number of the rotor
quantum True to use the quantum mechanical model, False to use the classical model

1.14. Statistical mechanics (rmgpy.statmech) 103

RMG-Py API Reference, Release 1.0.3

Note that the moment of inertia and the rotational constant are simply two ways of representing the same
quantity; only one of these can be specified independently.

In the majority of chemical applications, the energies involved in the rigid rotor place it very nearly in the
classical limit at all relevant temperatures; therefore, the classical model is used by default.

A linear rigid rotor is modeled as a pair of point masses 𝑚1 and 𝑚2 separated by a distance 𝑅. Since we
are modeling the rotation of this system, we choose to work in spherical coordinates. Following the physics
convention – where 0 ≤ 𝜃 ≤ 𝜋 is the zenith angle and 0 ≤ 𝜑 ≤ 2𝜋 is the azimuth – the Schrodinger equation
for the rotor is given by

− ℎ̄2

2𝐼

[︂
1

sin 𝜃

𝜕

𝜕𝜃

(︂
sin 𝜃

𝜕

𝜕𝜃

)︂
+

1

sin2 𝜃

𝜕2

𝜕𝜑2

]︂
Ψ(𝜃, 𝜑) = 𝐸Ψ(𝜃, 𝜑)

where 𝐼 ≡ 𝜇𝑅2 is the moment of inertia of the rotating body, and 𝜇 ≡ 𝑚1𝑚2/(𝑚1 + 𝑚2) is the reduced mass.
Note that there is no potential term in the above expression; for this reason, a rigid rotor is often referred to as a
free rotor. Solving the Schrodinger equation gives the energy levels 𝐸𝐽 and corresponding degeneracies 𝑔𝐽 for
the linear rigid rotor as

𝐸𝐽 = 𝐵𝐽(𝐽 + 1) 𝐽 = 0, 1, 2, . . .

𝑔𝐽 = 2𝐽 + 1

where 𝐽 is the quantum number for the rotor – sometimes called the total angular momentum quantum number
– and 𝐵 ≡ ℎ̄2/2𝐼 is the rotational constant.

Using these expressions for the energy levels and corresponding degeneracies, we can evaluate the partition
function for the linear rigid rotor:

𝑄rot(𝑇) =
1

𝜎

∞∑︁
𝐽=0

(2𝐽 + 1)𝑒−𝐵𝐽(𝐽+1)/𝑘B𝑇

In many cases the temperature of interest is large relative to the energy spacing; in this limit we can obtain a
closed-form analytical expression for the linear rotor partition function in the classical limit:

𝑄cl
rot(𝑇) =

1

𝜎

8𝜋2𝐼𝑘B𝑇

ℎ2

Above we have also introduced 𝜎 as the symmetry number of the rigid rotor.

getDensityOfStates(self, ndarray Elist, ndarray densStates0=None)→ ndarray
Return the density of states 𝜌(𝐸) 𝑑𝐸 at the specified energies Elist in J/mol above the ground state. If an
initial density of states densStates0 is given, the rotor density of states will be convoluted into these states.

getEnthalpy(self, double T)→ double
Return the enthalpy in J/mol for the degree of freedom at the specified temperature T in K.

getEntropy(self, double T)→ double
Return the entropy in J/mol*K for the degree of freedom at the specified temperature T in K.

getHeatCapacity(self, double T)→ double
Return the heat capacity in J/mol*K for the degree of freedom at the specified temperature T in K.

getLevelDegeneracy(self, int J)→ int
Return the degeneracy of level J.

getLevelEnergy(self, int J)→ double
Return the energy of level J in kJ/mol.

getPartitionFunction(self, double T)→ double
Return the value of the partition function 𝑄(𝑇) at the specified temperature T in K.

104 Chapter 1. RMG API Reference

RMG-Py API Reference, Release 1.0.3

getSumOfStates(self, ndarray Elist, ndarray sumStates0=None)→ ndarray
Return the sum of states 𝑁(𝐸) at the specified energies Elist in J/mol above the ground state. If an initial
sum of states sumStates0 is given, the rotor sum of states will be convoluted into these states.

inertia
The moment of inertia of the rotor.

quantum
quantum: ‘bool’

rotationalConstant
The rotational constant of the rotor.

symmetry
symmetry: ‘int’

rmgpy.statmech.NonlinearRotor

class rmgpy.statmech.NonlinearRotor(inertia=None, symmetry=1, quantum=False, rotationalCon-
stant=None)

A statistical mechanical model of an N-dimensional nonlinear rigid rotor. The attributes are:

Attribute Description
inertia The moments of inertia of the rotor
rotationalConstant The rotational constants of the rotor
symmetry The symmetry number of the rotor
quantum True to use the quantum mechanical model, False to use the classical model

Note that the moments of inertia and the rotational constants are simply two ways of representing the same
quantity; only one set of these can be specified independently.

In the majority of chemical applications, the energies involved in the rigid rotor place it very nearly in the
classical limit at all relevant temperatures; therefore, the classical model is used by default. In the current
implementation, the quantum mechanical model has not been implemented, and a NotImplementedError
will be raised if you try to use it.

A nonlinear rigid rotor is the generalization of the linear rotor to a nonlinear polyatomic system. Such a system
is characterized by three moments of inertia 𝐼A, 𝐼B, and 𝐼C instead of just one. The solution to the Schrodinger
equation for the quantum nonlinear rotor is not well defined, so we will simply show the classical result instead:

𝑄cl
rot(𝑇) =

𝜋1/2

𝜎

(︂
8𝑘B𝑇

ℎ2

)︂3/2√︀
𝐼A𝐼B𝐼C

getDensityOfStates(self, ndarray Elist, ndarray densStates0=None)→ ndarray
Return the density of states 𝜌(𝐸) 𝑑𝐸 at the specified energies Elist in J/mol above the ground state. If an
initial density of states densStates0 is given, the rotor density of states will be convoluted into these states.

getEnthalpy(self, double T)→ double
Return the enthalpy in J/mol for the degree of freedom at the specified temperature T in K.

getEntropy(self, double T)→ double
Return the entropy in J/mol*K for the degree of freedom at the specified temperature T in K.

getHeatCapacity(self, double T)→ double
Return the heat capacity in J/mol*K for the degree of freedom at the specified temperature T in K.

getPartitionFunction(self, double T)→ double
Return the value of the partition function 𝑄(𝑇) at the specified temperature T in K.

1.14. Statistical mechanics (rmgpy.statmech) 105

RMG-Py API Reference, Release 1.0.3

getSumOfStates(self, ndarray Elist, ndarray sumStates0=None)→ ndarray
Return the sum of states 𝑁(𝐸) at the specified energies Elist in J/mol above the ground state. If an initial
sum of states sumStates0 is given, the rotor sum of states will be convoluted into these states.

inertia
The moments of inertia of the rotor.

quantum
quantum: ‘bool’

rotationalConstant
The rotational constant of the rotor.

symmetry
symmetry: ‘int’

rmgpy.statmech.KRotor

class rmgpy.statmech.KRotor(inertia=None, symmetry=1, quantum=False, rotationalConstant=None)
A statistical mechanical model of an active K-rotor (a one-dimensional rigid rotor). The attributes are:

Attribute Description
inertia The moment of inertia of the rotor in amu*angstrom^2
rotationalConstant The rotational constant of the rotor in cm^-1
symmetry The symmetry number of the rotor
quantum True to use the quantum mechanical model, False to use the classical model

Note that the moment of inertia and the rotational constant are simply two ways of representing the same
quantity; only one of these can be specified independently.

In the majority of chemical applications, the energies involved in the K-rotor place it very nearly in the classical
limit at all relevant temperatures; therefore, the classical model is used by default.

The energy levels 𝐸𝐾 of the K-rotor are given by

𝐸𝐾 = 𝐵𝐾2 𝐾 = 0,±1,±2, . . .

where 𝐾 is the quantum number for the rotor and 𝐵 ≡ ℎ̄2/2𝐼 is the rotational constant.

Using these expressions for the energy levels and corresponding degeneracies, we can evaluate the partition
function for the K-rotor:

𝑄rot(𝑇) =
1

𝜎

(︃
1 +

∞∑︁
𝐾=1

2𝑒−𝐵𝐾2/𝑘B𝑇

)︃

In many cases the temperature of interest is large relative to the energy spacing; in this limit we can obtain a
closed-form analytical expression for the linear rotor partition function in the classical limit:

𝑄cl
rot(𝑇) =

1

𝜎

(︂
8𝜋2𝐼𝑘B𝑇

ℎ2

)︂1/2

where 𝜎 is the symmetry number of the K-rotor.

getDensityOfStates(self, ndarray Elist, ndarray densStates0=None)→ ndarray
Return the density of states 𝜌(𝐸) 𝑑𝐸 at the specified energies Elist in J/mol above the ground state. If an
initial density of states densStates0 is given, the rotor density of states will be convoluted into these states.

getEnthalpy(self, double T)→ double
Return the enthalpy in J/mol for the degree of freedom at the specified temperature T in K.

106 Chapter 1. RMG API Reference

RMG-Py API Reference, Release 1.0.3

getEntropy(self, double T)→ double
Return the entropy in J/mol*K for the degree of freedom at the specified temperature T in K.

getHeatCapacity(self, double T)→ double
Return the heat capacity in J/mol*K for the degree of freedom at the specified temperature T in K.

getLevelDegeneracy(self, int J)→ int
Return the degeneracy of level J.

getLevelEnergy(self, int J)→ double
Return the energy of level J in kJ/mol.

getPartitionFunction(self, double T)→ double
Return the value of the partition function 𝑄(𝑇) at the specified temperature T in K.

getSumOfStates(self, ndarray Elist, ndarray sumStates0=None)→ ndarray
Return the sum of states 𝑁(𝐸) at the specified energies Elist in J/mol above the ground state. If an initial
sum of states sumStates0 is given, the rotor sum of states will be convoluted into these states.

inertia
The moment of inertia of the rotor.

quantum
quantum: ‘bool’

rotationalConstant
The rotational constant of the rotor.

symmetry
symmetry: ‘int’

rmgpy.statmech.SphericalTopRotor

class rmgpy.statmech.SphericalTopRotor(inertia=None, symmetry=1, quantum=False, rotationalCon-
stant=None)

A statistical mechanical model of a three-dimensional rigid rotor with a single rotational constant: a spherical
top. The attributes are:

Attribute Description
inertia The moment of inertia of the rotor
rotationalConstant The rotational constant of the rotor
symmetry The symmetry number of the rotor
quantum True to use the quantum mechanical model, False to use the classical model

Note that the moment of inertia and the rotational constant are simply two ways of representing the same
quantity; only one of these can be specified independently.

In the majority of chemical applications, the energies involved in the rigid rotor place it very nearly in the
classical limit at all relevant temperatures; therefore, the classical model is used by default.

A spherical top rotor is simply the three-dimensional equivalent of a linear rigid rotor. Unlike the nonlinear
rotor, all three moments of inertia of a spherical top are equal, i.e. 𝐼A = 𝐼B = 𝐼C = 𝐼 . The energy levels 𝐸𝐽

and corresponding degeneracies 𝑔𝐽 of the spherial top rotor are given by

𝐸𝐽 = 𝐵𝐽(𝐽 + 1) 𝐽 = 0, 1, 2, . . .

𝑔𝐽 = (2𝐽 + 1)2

where 𝐽 is the quantum number for the rotor and 𝐵 ≡ ℎ̄2/2𝐼 is the rotational constant.

1.14. Statistical mechanics (rmgpy.statmech) 107

RMG-Py API Reference, Release 1.0.3

Using these expressions for the energy levels and corresponding degeneracies, we can evaluate the partition
function for the spherical top rotor:

𝑄rot(𝑇) =
1

𝜎

∞∑︁
𝐽=0

(2𝐽 + 1)2𝑒−𝐵𝐽(𝐽+1)/𝑘B𝑇

In many cases the temperature of interest is large relative to the energy spacing; in this limit we can obtain a
closed-form analytical expression for the linear rotor partition function in the classical limit:

𝑄cl
rot(𝑇) =

1

𝜎

(︂
8𝜋2𝐼𝑘B𝑇

ℎ2

)︂3/2

where 𝜎 is the symmetry number of the spherical top. Note that the above differs from the nonlinear rotor
partition function by a factor of 𝜋.

getDensityOfStates(self, ndarray Elist, ndarray densStates0=None)→ ndarray
Return the density of states 𝜌(𝐸) 𝑑𝐸 at the specified energies Elist in J/mol above the ground state. If an
initial density of states densStates0 is given, the rotor density of states will be convoluted into these states.

getEnthalpy(self, double T)→ double
Return the enthalpy in J/mol for the degree of freedom at the specified temperature T in K.

getEntropy(self, double T)→ double
Return the entropy in J/mol*K for the degree of freedom at the specified temperature T in K.

getHeatCapacity(self, double T)→ double
Return the heat capacity in J/mol*K for the degree of freedom at the specified temperature T in K.

getLevelDegeneracy(self, int J)→ int
Return the degeneracy of level J.

getLevelEnergy(self, int J)→ double
Return the energy of level J in kJ/mol.

getPartitionFunction(self, double T)→ double
Return the value of the partition function 𝑄(𝑇) at the specified temperature T in K.

getSumOfStates(self, ndarray Elist, ndarray sumStates0=None)→ ndarray
Return the sum of states 𝑁(𝐸) at the specified energies Elist in J/mol above the ground state. If an initial
sum of states sumStates0 is given, the rotor sum of states will be convoluted into these states.

inertia
The moment of inertia of the rotor.

quantum
quantum: ‘bool’

rotationalConstant
The rotational constant of the rotor.

symmetry
symmetry: ‘int’

rmgpy.statmech.HarmonicOscillator

class rmgpy.statmech.HarmonicOscillator(frequencies=None, quantum=True)
A statistical mechanical model of a set of one-dimensional independent harmonic oscillators. The attributes are:

Attribute Description
frequencies The vibrational frequencies of the oscillators
quantum True to use the quantum mechanical model, False to use the classical model

108 Chapter 1. RMG API Reference

RMG-Py API Reference, Release 1.0.3

In the majority of chemical applications, the energy levels of the harmonic oscillator are of similar magnitude to
𝑘B𝑇 , requiring a quantum mechanical treatment. Fortunately, the harmonic oscillator has an analytical quantum
mechanical solution.

Many vibrational motions are well-described as one-dimensional quantum harmonic oscillators. The time-
independent Schrodinger equation for such an oscillator is given by

− ℎ̄2

2𝑚

𝜕2

𝜕𝑥2
Ψ(𝑥) +

1

2
𝑚𝜔2𝑥2Ψ(𝑥) = 𝐸Ψ(𝑥)

where 𝑚 is the total mass of the particle. The harmonic potential results in quantized solutions to the above with
the following energy levels:

𝐸𝑛 =

(︂
𝑛 +

1

2

)︂
ℎ̄𝜔 𝑛 = 0, 1, 2, . . .

Above we have introduced 𝑛 as the quantum number. Note that, even in the ground state (𝑛 = 0), the harmonic
oscillator has an energy that is not zero; this energy is called the zero-point energy.

The harmonic oscillator partition function is obtained by summing over the above energy levels:

𝑄vib(𝑇) =

∞∑︁
𝑛=0

exp

(︃
−
(︀
𝑛 + 1

2

)︀
ℎ̄𝜔

𝑘B𝑇

)︃

This summation can be evaluated explicitly to give a closed-form analytical expression for the vibrational parti-
tion function of a quantum harmonic oscillator:

𝑄vib(𝑇) =
𝑒−ℎ̄𝜔/2𝑘B𝑇

1 − 𝑒−ℎ̄𝜔/𝑘B𝑇

In RMG the convention is to place the zero-point energy in with the ground-state energy of the system instead
of the numerator of the vibrational partition function, which gives

𝑄vib(𝑇) =
1

1 − 𝑒−ℎ̄𝜔/𝑘B𝑇

The energy levels of the harmonic oscillator in chemical systems are often significant compared to the tem-
perature of interest, so we usually use the quantum result. However, the classical limit is provided here for
completeness:

𝑄cl
vib(𝑇) =

𝑘B𝑇

ℎ̄𝜔

frequencies
The vibrational frequencies of the oscillators.

getDensityOfStates(self, ndarray Elist, ndarray densStates0=None)→ ndarray
Return the density of states 𝜌(𝐸) 𝑑𝐸 at the specified energies Elist in J/mol above the ground state. If an
initial density of states densStates0 is given, the rotor density of states will be convoluted into these states.

getEnthalpy(self, double T)→ double
Return the enthalpy in J/mol for the degree of freedom at the specified temperature T in K.

getEntropy(self, double T)→ double
Return the entropy in J/mol*K for the degree of freedom at the specified temperature T in K.

getHeatCapacity(self, double T)→ double
Return the heat capacity in J/mol*K for the degree of freedom at the specified temperature T in K.

1.14. Statistical mechanics (rmgpy.statmech) 109

RMG-Py API Reference, Release 1.0.3

getPartitionFunction(self, double T)→ double
Return the value of the partition function 𝑄(𝑇) at the specified temperature T in K.

getSumOfStates(self, ndarray Elist, ndarray sumStates0=None)→ ndarray
Return the sum of states 𝑁(𝐸) at the specified energies Elist in J/mol above the ground state. If an initial
sum of states sumStates0 is given, the rotor sum of states will be convoluted into these states.

quantum
quantum: ‘bool’

Torsional degrees of freedom

class rmgpy.statmech.HinderedRotor(inertia=None, symmetry=1, barrier=None, fourier=None, rota-
tionalConstant=None, quantum=False, semiclassical=True)

A statistical mechanical model of a one-dimensional hindered rotor. The attributes are:

Attribute Description
inertia The moment of inertia of the rotor
rotationalConstant The rotational constant of the rotor
symmetry The symmetry number of the rotor
fourier The 2𝑥𝑁 array of Fourier series coefficients
barrier The barrier height of the cosine potential
quantum True to use the quantum mechanical model, False to use the classical model
semiclassical True to use the semiclassical correction, False otherwise

Note that the moment of inertia and the rotational constant are simply two ways of representing the same
quantity; only one of these can be specified independently.

The Schrodinger equation for a one-dimensional hindered rotor is given by

− ℎ̄2

2𝐼

𝑑2

𝑑𝜑2
Ψ(𝜑) + 𝑉 (𝜑)Ψ(𝜑) = 𝐸Ψ(𝜑)

where 𝐼 is the reduced moment of inertia of the torsion and 𝑉 (𝜑) describes the potential of the torsion. There
are two common forms for the potential: a simple cosine of the form

𝑉 (𝜑) =
1

2
𝑉0 (1 − cos𝜎𝜑)

where 𝑉0 is the barrier height and 𝜎 is the symmetry number, or a more general Fourier series of the form

𝑉 (𝜑) = 𝐴 +

𝐶∑︁
𝑘=1

(𝑎𝑘 cos 𝑘𝜑 + 𝑏𝑘 sin 𝑘𝜑)

where 𝐴, 𝑎𝑘 and 𝑏𝑘 are fitted coefficients. Both potentials are typically defined such that the minimum of the
potential is zero and is found at 𝜑 = 0.

For either the cosine or Fourier series potentials, the energy levels of the quantum hindered rotor must be
determined numerically. The cosine potential does permit a closed-form representation of the classical partition
function, however:

𝑄cl
hind(𝑇) =

(︂
2𝜋𝐼𝑘B𝑇

ℎ2

)︂1/2
2𝜋

𝜎
exp

(︂
− 𝑉0

2𝑘B𝑇

)︂
𝐼0

(︂
𝑉0

2𝑘B𝑇

)︂
A semiclassical correction to the above is usually required to provide a reasonable estiamate of the partition
function:

𝑄semi
hind(𝑇) =

𝑄quant
vib (𝑇)

𝑄cl
vib(𝑇)

𝑄cl
hind(𝑇)

=
ℎ𝜈

𝑘B𝑇

1

1 − exp (−ℎ𝜈/𝑘B𝑇)

(︂
2𝜋𝐼𝑘B𝑇

ℎ2

)︂1/2
2𝜋

𝜎
exp

(︂
− 𝑉0

2𝑘B𝑇

)︂
𝐼0

(︂
𝑉0

2𝑘B𝑇

)︂

110 Chapter 1. RMG API Reference

RMG-Py API Reference, Release 1.0.3

Above we have defined 𝜈 as the vibrational frequency of the hindered rotor:

𝜈 ≡ 𝜎

2𝜋

√︂
𝑉0

2𝐼

barrier
The barrier height of the cosine potential.

energies
energies: numpy.ndarray

fitCosinePotentialToData(self, ndarray angle, ndarray V)
Fit the given angles in radians and corresponding potential energies in J/mol to the cosine potential. For
best results, the angle should begin at zero and end at 2𝜋, with the minimum energy conformation having
a potential of zero be placed at zero angle. The fit is attempted at several possible values of the symmetry
number in order to determine which one is correct.

fitFourierPotentialToData(self, ndarray angle, ndarray V)
Fit the given angles in radians and corresponding potential energies in J/mol to the Fourier series potential.
For best results, the angle should begin at zero and end at 2𝜋, with the minimum energy conformation
having a potential of zero be placed at zero angle.

fourier
The 2𝑥𝑁 array of Fourier series coefficients.

frequency
frequency: ‘double’

getDensityOfStates(self, ndarray Elist, ndarray densStates0=None)→ ndarray
Return the density of states 𝜌(𝐸) 𝑑𝐸 at the specified energies Elist in J/mol above the ground state. If an
initial density of states densStates0 is given, the rotor density of states will be convoluted into these states.

getEnthalpy(self, double T)→ double
Return the enthalpy in J/mol for the degree of freedom at the specified temperature T in K.

getEntropy(self, double T)→ double
Return the entropy in J/mol*K for the degree of freedom at the specified temperature T in K.

getFrequency(self)→ double
Return the frequency of vibration in cm^-1 corresponding to the limit of harmonic oscillation.

getHamiltonian(self, int Nbasis)→ ndarray
Return the to the Hamiltonian matrix for the hindered rotor for the given number of basis functions Nbasis.
The Hamiltonian matrix is returned in banded lower triangular form and with units of J/mol.

getHeatCapacity(self, double T)→ double
Return the heat capacity in J/mol*K for the degree of freedom at the specified temperature T in K.

getLevelDegeneracy(self, int J)→ int
Return the degeneracy of level J.

getLevelEnergy(self, int J)→ double
Return the energy of level J in J.

getPartitionFunction(self, double T)→ double
Return the value of the partition function 𝑄(𝑇) at the specified temperature T in K.

getPotential(self, double phi)→ double
Return the value of the hindered rotor potential 𝑉 (𝜑) in J/mol at the angle phi in radians.

1.14. Statistical mechanics (rmgpy.statmech) 111

RMG-Py API Reference, Release 1.0.3

getSumOfStates(self, ndarray Elist, ndarray sumStates0=None)→ ndarray
Return the sum of states 𝑁(𝐸) at the specified energies Elist in J/mol above the ground state. If an initial
sum of states sumStates0 is given, the rotor sum of states will be convoluted into these states.

inertia
The moment of inertia of the rotor.

quantum
quantum: ‘bool’

rotationalConstant
The rotational constant of the rotor.

semiclassical
semiclassical: ‘bool’

solveSchrodingerEquation(self, int Nbasis=401)→ ndarray
Solves the one-dimensional time-independent Schrodinger equation to determine the energy levels of a
one-dimensional hindered rotor with a Fourier series potential using Nbasis basis functions. For the pur-
poses of this function it is usually sufficient to use 401 basis functions (the default). Returns the energy
eigenvalues of the Hamiltonian matrix in J/mol.

symmetry
symmetry: ‘int’

rmgpy.statmech.schrodinger

The rmgpy.statmech.schrodinger module contains functionality for working with the Schrodinger equation and
its solution. In particular, it contains functions for using the energy levels and corresponding degeneracies obtained
from solving the Schrodinger equation to compute various thermodynamic and statistical mechanical properties, such
as heat capacity, enthalpy, entropy, partition function, and the sum and density of states.

rmgpy.statmech.schrodinger.convolve(ndarray rho1, ndarray rho2)
Return the convolution of two arrays rho1 and rho2.

rmgpy.statmech.schrodinger.convolveBS(ndarray Elist, ndarray rho0, double energy, int degener-
acy=1)

Convolve a molecular degree of freedom into a density or sum of states using the Beyer-Swinehart (BS) direct
count algorithm. This algorithm is suitable for unevenly-spaced energy levels in the array of energy grains Elist
(in J/mol), but assumes the solution of the Schrodinger equation gives evenly-spaced energy levels with spacing
energy in kJ/mol and degeneracy degeneracy.

rmgpy.statmech.schrodinger.convolveBSSR(ndarray Elist, ndarray rho0, energy, degener-
acy=unitDegeneracy, int n0=0)

Convolve a molecular degree of freedom into a density or sum of states using the Beyer-Swinehart-Stein-
Rabinovitch (BSSR) direct count algorithm. This algorithm is suitable for unevenly-spaced energy levels in both
the array of energy grains Elist (in J/mol) and the energy levels corresponding to the solution of the Schrodinger
equation.

rmgpy.statmech.schrodinger.getDensityOfStates(ndarray Elist, energy, degener-
acy=unitDegeneracy, int n0=0, ndarray
densStates0=None)→ ndarray

Return the values of the dimensionless density of states 𝜌(𝐸) 𝑑𝐸 for a given set of energies Elist in J/mol above
the ground state using an initial density of states densStates0. The solution to the Schrodinger equation is given
using functions energy and degeneracy that accept as argument a quantum number and return the corresponding
energy in J/mol and degeneracy of that level. The quantum number always begins at n0 and increases by ones.

112 Chapter 1. RMG API Reference

RMG-Py API Reference, Release 1.0.3

rmgpy.statmech.schrodinger.getEnthalpy(double T, energy, degeneracy=unitDegeneracy, int n0=0,
int nmax=10000, double tol=1e-12)→ double

Return the value of the dimensionless enthalpy 𝐻(𝑇)/𝑅𝑇 at a given temperature T in K. The solution to the
Schrodinger equation is given using functions energy and degeneracy that accept as argument a quantum number
and return the corresponding energy in J/mol and degeneracy of that level. The quantum number always begins
at n0 and increases by ones. You can also change the relative tolerance tol and the maximum allowed value of
the quantum number nmax.

rmgpy.statmech.schrodinger.getEntropy(double T, energy, degeneracy=unitDegeneracy, int n0=0,
int nmax=10000, double tol=1e-12)→ double

Return the value of the dimensionless entropy 𝑆(𝑇)/𝑅 at a given temperature T in K. The solution to the
Schrodinger equation is given using functions energy and degeneracy that accept as argument a quantum number
and return the corresponding energy in J/mol and degeneracy of that level. The quantum number always begins
at n0 and increases by ones. You can also change the relative tolerance tol and the maximum allowed value of
the quantum number nmax.

rmgpy.statmech.schrodinger.getHeatCapacity(double T, energy, degeneracy=unitDegeneracy, int
n0=0, int nmax=10000, double tol=1e-12) → dou-
ble

Return the value of the dimensionless heat capacity 𝐶v(𝑇)/𝑅 at a given temperature T in K. The solution to
the Schrodinger equation is given using functions energy and degeneracy that accept as argument a quantum
number and return the corresponding energy in J/mol and degeneracy of that level. The quantum number always
begins at n0 and increases by ones. You can also change the relative tolerance tol and the maximum allowed
value of the quantum number nmax.

rmgpy.statmech.schrodinger.getPartitionFunction(double T, energy, degener-
acy=unitDegeneracy, int n0=0, int
nmax=10000, double tol=1e-12)→ double

Return the value of the partition function 𝑄(𝑇) at a given temperature T in K. The solution to the Schrodinger
equation is given using functions energy and degeneracy that accept as argument a quantum number and return
the corresponding energy in J/mol and degeneracy of that level. The quantum number always begins at n0 and
increases by ones. You can also change the relative tolerance tol and the maximum allowed value of the quantum
number nmax.

rmgpy.statmech.schrodinger.getSumOfStates(ndarray Elist, energy, degeneracy=unitDegeneracy,
int n0=0, ndarray sumStates0=None)→ ndarray

Return the values of the sum of states 𝑁(𝐸) for a given set of energies Elist in J/mol above the ground state
using an initial sum of states sumStates0. The solution to the Schrodinger equation is given using functions
energy and degeneracy that accept as argument a quantum number and return the corresponding energy in J/mol
and degeneracy of that level. The quantum number always begins at n0 and increases by ones.

rmgpy.statmech.schrodinger.unitDegeneracy(n)

rmgpy.statmech.Conformer

class rmgpy.statmech.Conformer(E0=None, modes=None, spinMultiplicity=1, opticalIsomers=1, num-
ber=None, mass=None, coordinates=None)

A representation of an individual molecular conformation. The attributes are:

Attribute Description
E0 The ground-state energy (including zero-point energy) of the conformer
modes A list of the molecular degrees of freedom
spinMultiplicity The degeneracy of the electronic ground state
opticalIsomers The number of optical isomers
number An array of atomic numbers of each atom in the conformer
mass An array of masses of each atom in the conformer
coordinates An array of 3D coordinates of each atom in the conformer

1.14. Statistical mechanics (rmgpy.statmech) 113

RMG-Py API Reference, Release 1.0.3

Note that the spinMultiplicity reflects the electronic mode of the molecular system.

E0
The ground-state energy (including zero-point energy) of the conformer.

coordinates
An array of 3D coordinates of each atom in the conformer.

getActiveModes(self, bool activeJRotor=False, bool activeKRotor=True)→ list
Return a list of the active molecular degrees of freedom of the molecular system.

getCenterOfMass(self, atoms=None)→ ndarray
Calculate and return the [three-dimensional] position of the center of mass of the conformer in m. If a list
atoms of atoms is specified, only those atoms will be used to calculate the center of mass. Otherwise, all
atoms will be used.

getDensityOfStates(self, ndarray Elist)→ ndarray
Return the density of states 𝜌(𝐸) 𝑑𝐸 at the specified energies Elist above the ground state.

getEnthalpy(self, double T)→ double
Return the enthalpy in J/mol for the system at the specified temperature T in K.

getEntropy(self, double T)→ double
Return the entropy in J/mol*K for the system at the specified temperature T in K.

getFreeEnergy(self, double T)→ double
Return the Gibbs free energy in J/mol for the system at the specified temperature T in K.

getHeatCapacity(self, double T)→ double
Return the heat capacity in J/mol*K for the system at the specified temperature T in K.

getInternalReducedMomentOfInertia(self, pivots, top1)→ double
Calculate and return the reduced moment of inertia for an internal torsional rotation around the axis defined
by the two atoms in pivots. The list top1 contains the atoms that should be considered as part of the rotating
top; this list should contain the pivot atom connecting the top to the rest of the molecule. The procedure
used is that of Pitzer 1, which is described as 𝐼(2,3) by East and Radom 2. In this procedure, the molecule
is divided into two tops: those at either end of the hindered rotor bond. The moment of inertia of each top
is evaluated using an axis passing through the center of mass of both tops. Finally, the reduced moment of
inertia is evaluated from the moment of inertia of each top via the formula

1

𝐼(2,3)
=

1

𝐼1
+

1

𝐼2

getMomentOfInertiaTensor(self)→ ndarray
Calculate and return the moment of inertia tensor for the conformer in kg*m^2. If the coordinates are not
at the center of mass, they are temporarily shifted there for the purposes of this calculation.

getNumberDegreesOfFreedom(self)
Return the number of degrees of freedom in a species object, which should be 3N, and raises an exception
if it is not.

getPartitionFunction(self, double T)→ double
Return the partition function 𝑄(𝑇) for the system at the specified temperature T in K.

getPrincipalMomentsOfInertia(self)
Calculate and return the principal moments of inertia and corresponding principal axes for the conformer.
The moments of inertia are in kg*m^2, while the principal axes have unit length.

1 Pitzer, K. S. J. Chem. Phys. 14, p. 239-243 (1946).
2 East, A. L. L. and Radom, L. J. Chem. Phys. 106, p. 6655-6674 (1997).

114 Chapter 1. RMG API Reference

RMG-Py API Reference, Release 1.0.3

getSumOfStates(self, ndarray Elist)→ ndarray
Return the sum of states 𝑁(𝐸) at the specified energies Elist in kJ/mol above the ground state.

getSymmetricTopRotors(self)
Return objects representing the external J-rotor and K-rotor under the symmetric top approximation. For
nonlinear molecules, the J-rotor is a 2D rigid rotor with a rotational constant 𝐵 determined as the geometric
mean of the two most similar rotational constants. The K-rotor is a 1D rigid rotor with a rotational constant
𝐴 − 𝐵 determined by the difference between the remaining molecular rotational constant and the J-rotor
rotational constant.

getTotalMass(self, atoms=None)→ double
Calculate and return the total mass of the atoms in the conformer in kg. If a list atoms of atoms is specified,
only those atoms will be used to calculate the center of mass. Otherwise, all atoms will be used.

mass
An array of masses of each atom in the conformer.

modes
modes: list

number
An array of atomic numbers of each atom in the conformer.

opticalIsomers
opticalIsomers: ‘int’

spinMultiplicity
spinMultiplicity: ‘int’

1.15 Thermodynamics (rmgpy.thermo)

The rmgpy.thermo subpackage contains classes that represent various thermodynamic models of heat capacity.

1.15.1 Heat capacity models

Class Description
ThermoData A heat capacity model based on a set of discrete heat capacity points
Wilhoit A heat capacity model based on the Wilhoit polynomial
NASA A heat capacity model based on a set of NASA polynomials
NASAPolynomial A heat capacity model based on a single NASA polynomial

rmgpy.thermo.ThermoData

class rmgpy.thermo.ThermoData(Tdata=None, Cpdata=None, H298=None, S298=None, Cp0=None,
CpInf=None, Tmin=None, Tmax=None, E0=None, comment=’‘)

A heat capacity model based on a set of discrete heat capacity data points. The attributes are:

1.15. Thermodynamics (rmgpy.thermo) 115

RMG-Py API Reference, Release 1.0.3

Attribute Description
Tdata An array of temperatures at which the heat capacity is known
Cpdata An array of heat capacities at the given temperatures
H298 The standard enthalpy of formation at 298 K
S298 The standard entropy at 298 K
Cp0 The heat capacity at zero temperature
CpInf The heat capacity at infinite temperature
Tmin The minimum temperature at which the model is valid, or zero if unknown or undefined
Tmax The maximum temperature at which the model is valid, or zero if unknown or undefined
E0 The energy at zero Kelvin (including zero point energy)
comment Information about the model (e.g. its source)

Cp0
The heat capacity at zero temperature.

CpInf
The heat capacity at infinite temperature.

Cpdata
An array of heat capacities at the given temperatures.

E0
The ground state energy (J/mol) at zero Kelvin, including zero point energy, or None if not yet specified.

H298
The standard enthalpy of formation at 298 K.

S298
The standard entropy of formation at 298 K.

Tdata
An array of temperatures at which the heat capacity is known.

Tmax
The maximum temperature at which the model is valid, or None if not defined.

Tmin
The minimum temperature at which the model is valid, or None if not defined.

comment
comment: str

discrepancy(self, HeatCapacityModel other)→ double
Return some measure of how dissimilar self is from other.

The measure is arbitrary, but hopefully useful for sorting purposes. Discrepancy of 0 means they are
identical

getEnthalpy(self, double T)→ double
Return the enthalpy in J/mol at the specified temperature T in K.

getEntropy(self, double T)→ double
Return the entropy in J/mol*K at the specified temperature T in K.

getFreeEnergy(self, double T)→ double
Return the Gibbs free energy in J/mol at the specified temperature T in K.

getHeatCapacity(self, double T)→ double
Return the constant-pressure heat capacity in J/mol*K at the specified temperature T in K.

116 Chapter 1. RMG API Reference

RMG-Py API Reference, Release 1.0.3

isIdenticalTo(self, HeatCapacityModel other)→ bool
Returns True if self and other report very similar thermo values for heat capacity, enthalpy, entropy, and
free energy over a wide range of temperatures, or False otherwise.

isSimilarTo(self, HeatCapacityModel other)→ bool
Returns True if self and other report similar thermo values for heat capacity, enthalpy, entropy, and free
energy over a wide range of temperatures, or False otherwise.

isTemperatureValid(self, double T)→ bool
Return True if the temperature T in K is within the valid temperature range of the thermodynamic data,
or False if not. If the minimum and maximum temperature are not defined, True is returned.

toNASA(self, double Tmin, double Tmax, double Tint, bool fixedTint=False, bool weighting=True, int
continuity=3)→ NASA

Convert the object to a NASA object. You must specify the minimum and maximum temperatures of the fit
Tmin and Tmax in K, as well as the intermediate temperature Tint in K to use as the bridge between the
two fitted polynomials. The remaining parameters can be used to modify the fitting algorithm used:

•fixedTint - False to allow Tint to vary in order to improve the fit, or True to keep it fixed

•weighting - True to weight the fit by 𝑇−1 to emphasize good fit at lower temperatures, or False to
not use weighting

•continuity - The number of continuity constraints to enforce at Tint:

–0: no constraints on continuity of 𝐶p(𝑇) at Tint

–1: constrain 𝐶p(𝑇) to be continous at Tint

–2: constrain 𝐶p(𝑇) and 𝑑𝐶p

𝑑𝑇 to be continuous at Tint

–3: constrain 𝐶p(𝑇), 𝑑𝐶p

𝑑𝑇 , and 𝑑2𝐶p

𝑑𝑇 2 to be continuous at Tint

–4: constrain 𝐶p(𝑇), 𝑑𝐶p

𝑑𝑇 , 𝑑2𝐶p

𝑑𝑇 2 , and 𝑑3𝐶p

𝑑𝑇 3 to be continuous at Tint

–5: constrain 𝐶p(𝑇), 𝑑𝐶p

𝑑𝑇 , 𝑑2𝐶p

𝑑𝑇 2 , 𝑑3𝐶p

𝑑𝑇 3 , and 𝑑4𝐶p

𝑑𝑇 4 to be continuous at Tint

Note that values of continuity of 5 or higher effectively constrain all the coefficients to be equal and should
be equivalent to fitting only one polynomial (rather than two).

Returns the fitted NASA object containing the two fitted NASAPolynomial objects.

toWilhoit(self)→ Wilhoit
Convert the Benson model to a Wilhoit model. For the conversion to succeed, you must have set the Cp0
and CpInf attributes of the Benson model.

rmgpy.thermo.Wilhoit

class rmgpy.thermo.Wilhoit(Cp0=None, CpInf=None, a0=0.0, a1=0.0, a2=0.0, a3=0.0, H0=None,
S0=None, B=None, Tmin=None, Tmax=None, comment=’‘)

A heat capacity model based on the Wilhoit equation. The attributes are:

1.15. Thermodynamics (rmgpy.thermo) 117

RMG-Py API Reference, Release 1.0.3

Attribute Description
Cp0 The heat capacity at zero temperature
CpInf The heat capacity at infinite temperature
a0 The zeroth-order Wilhoit polynomial coefficient
a1 The first-order Wilhoit polynomial coefficient
a2 The second-order Wilhoit polynomial coefficient
a3 The third-order Wilhoit polynomial coefficient
H0 The integration constant for enthalpy (not H at T=0)
S0 The integration constant for entropy (not S at T=0)
E0 The energy at zero Kelvin (including zero point energy)
B The Wilhoit scaled temperature coefficient in K
Tmin The minimum temperature in K at which the model is valid, or zero if unknown or undefined
Tmax The maximum temperature in K at which the model is valid, or zero if unknown or undefined
comment Information about the model (e.g. its source)

The Wilhoit polynomial is an expression for heat capacity that is guaranteed to give the correct limits at zero
and infinite temperature, and gives a very reasonable shape to the heat capacity profile in between:

𝐶p(𝑇) = 𝐶p(0) + [𝐶p(∞) − 𝐶p(0)] 𝑦2

[︃
1 + (𝑦 − 1)

3∑︁
𝑖=0

𝑎𝑖𝑦
𝑖

]︃

Above, 𝑦 ≡ 𝑇/(𝑇 +𝐵) is a scaled temperature that ranges from zero to one based on the value of the coefficient
𝐵, and 𝑎0, 𝑎1, 𝑎2, and 𝑎3 are the Wilhoit polynomial coefficients.

The enthalpy is given by

𝐻(𝑇) = 𝐻0 + 𝐶p(0)𝑇 + [𝐶p(∞) − 𝐶p(0)]𝑇⎧⎨⎩
[︃

2 +

3∑︁
𝑖=0

𝑎𝑖

]︃ [︂
1

2
𝑦 − 1 +

(︂
1

𝑦
− 1

)︂
ln

𝑇

𝑦

]︂
+ 𝑦2

3∑︁
𝑖=0

𝑦𝑖

(𝑖 + 2)(𝑖 + 3)

3∑︁
𝑗=0

𝑓𝑖𝑗𝑎𝑗

⎫⎬⎭
where 𝑓𝑖𝑗 = 3 + 𝑗 if 𝑖 = 𝑗, 𝑓𝑖𝑗 = 1 if 𝑖 > 𝑗, and 𝑓𝑖𝑗 = 0 if 𝑖 < 𝑗.

The entropy is given by

𝑆(𝑇) = 𝑆0 + 𝐶p(∞) ln𝑇 − [𝐶p(∞) − 𝐶p(0)]

[︃
ln 𝑦 +

(︃
1 + 𝑦

3∑︁
𝑖=0

𝑎𝑖𝑦
𝑖

2 + 𝑖

)︃
𝑦

]︃

The low-temperature limit 𝐶p(0) is 3.5𝑅 for linear molecules and 4𝑅 for nonlinear molecules.
The high-temperature limit 𝐶p(∞) is taken to be [3𝑁atoms − 1.5]𝑅 for linear molecules and
[3𝑁atoms − (2 + 0.5𝑁rotors)]𝑅 for nonlinear molecules, for a molecule composed of 𝑁atoms atoms and 𝑁rotors

internal rotors.

B
The Wilhoit scaled temperature coefficient.

Cp0
The heat capacity at zero temperature.

CpInf
The heat capacity at infinite temperature.

E0
The ground state energy (J/mol) at zero Kelvin, including zero point energy.

For the Wilhoit class, this is calculated as the Enthalpy at 0.001 Kelvin.

118 Chapter 1. RMG API Reference

RMG-Py API Reference, Release 1.0.3

H0
The integration constant for enthalpy.

NB. this is not equal to the enthlapy at 0 Kelvin, which you can access via E0

S0
The integration constant for entropy.

Tmax
The maximum temperature at which the model is valid, or None if not defined.

Tmin
The minimum temperature at which the model is valid, or None if not defined.

a0
a0: ‘double’

a1
a1: ‘double’

a2
a2: ‘double’

a3
a3: ‘double’

comment
comment: str

copy(self)→ Wilhoit
Return a copy of the Wilhoit object.

discrepancy(self, HeatCapacityModel other)→ double
Return some measure of how dissimilar self is from other.

The measure is arbitrary, but hopefully useful for sorting purposes. Discrepancy of 0 means they are
identical

fitToData(self, ndarray Tdata, ndarray Cpdata, double Cp0, double CpInf, double H298, double S298,
double B0=500.0)

Fit a Wilhoit model to the data points provided, allowing the characteristic temperature B to vary so
as to improve the fit. This procedure requires an optimization, using the fminbound function in the
scipy.optimize module. The data consists of a set of heat capacity points Cpdata in J/mol*K at a given
set of temperatures Tdata in K, along with the enthalpy H298 in kJ/mol and entropy S298 in J/mol*K at
298 K. The linearity of the molecule, number of vibrational frequencies, and number of internal rotors
(linear, Nfreq, and Nrotors, respectively) is used to set the limits at zero and infinite temperature.

fitToDataForConstantB(self, ndarray Tdata, ndarray Cpdata, double Cp0, double CpInf, double
H298, double S298, double B)

Fit a Wilhoit model to the data points provided using a specified value of the characteristic temperature
B. The data consists of a set of dimensionless heat capacity points Cpdata at a given set of temperatures
Tdata in K, along with the dimensionless heat capacity at zero and infinite temperature, the dimensionless
enthalpy H298 at 298 K, and the dimensionless entropy S298 at 298 K.

getEnthalpy(self, double T)→ double
Return the enthalpy in J/mol at the specified temperature T in K.

getEntropy(self, double T)→ double
Return the entropy in J/mol*K at the specified temperature T in K.

getFreeEnergy(self, double T)→ double
Return the Gibbs free energy in J/mol at the specified temperature T in K.

1.15. Thermodynamics (rmgpy.thermo) 119

RMG-Py API Reference, Release 1.0.3

getHeatCapacity(self, double T)→ double
Return the constant-pressure heat capacity in J/mol*K at the specified temperature T in K.

isIdenticalTo(self, HeatCapacityModel other)→ bool
Returns True if self and other report very similar thermo values for heat capacity, enthalpy, entropy, and
free energy over a wide range of temperatures, or False otherwise.

isSimilarTo(self, HeatCapacityModel other)→ bool
Returns True if self and other report similar thermo values for heat capacity, enthalpy, entropy, and free
energy over a wide range of temperatures, or False otherwise.

isTemperatureValid(self, double T)→ bool
Return True if the temperature T in K is within the valid temperature range of the thermodynamic data,
or False if not. If the minimum and maximum temperature are not defined, True is returned.

toNASA(self, double Tmin, double Tmax, double Tint, bool fixedTint=False, bool weighting=True, int
continuity=3)→ NASA

Convert the Wilhoit object to a NASA object. You must specify the minimum and maximum temperatures
of the fit Tmin and Tmax in K, as well as the intermediate temperature Tint in K to use as the bridge
between the two fitted polynomials. The remaining parameters can be used to modify the fitting algorithm
used:

•fixedTint - False to allow Tint to vary in order to improve the fit, or True to keep it fixed

•weighting - True to weight the fit by 𝑇−1 to emphasize good fit at lower temperatures, or False to
not use weighting

•continuity - The number of continuity constraints to enforce at Tint:

–0: no constraints on continuity of 𝐶p(𝑇) at Tint

–1: constrain 𝐶p(𝑇) to be continous at Tint

–2: constrain 𝐶p(𝑇) and 𝑑𝐶p

𝑑𝑇 to be continuous at Tint

–3: constrain 𝐶p(𝑇), 𝑑𝐶p

𝑑𝑇 , and 𝑑2𝐶p

𝑑𝑇 2 to be continuous at Tint

–4: constrain 𝐶p(𝑇), 𝑑𝐶p

𝑑𝑇 , 𝑑2𝐶p

𝑑𝑇 2 , and 𝑑3𝐶p

𝑑𝑇 3 to be continuous at Tint

–5: constrain 𝐶p(𝑇), 𝑑𝐶p

𝑑𝑇 , 𝑑2𝐶p

𝑑𝑇 2 , 𝑑3𝐶p

𝑑𝑇 3 , and 𝑑4𝐶p

𝑑𝑇 4 to be continuous at Tint

Note that values of continuity of 5 or higher effectively constrain all the coefficients to be equal and should
be equivalent to fitting only one polynomial (rather than two).

Returns the fitted NASA object containing the two fitted NASAPolynomial objects.

toThermoData(self)→ ThermoData
Convert the Wilhoit model to a ThermoData object.

rmgpy.thermo.NASA

class rmgpy.thermo.NASA(polynomials=None, Tmin=None, Tmax=None, E0=None, comment=’‘)
A heat capacity model based on a set of one, two, or three NASAPolynomial objects. The attributes are:

Attribute Description
polynomials The list of NASA polynomials to use in this model
Tmin The minimum temperature in K at which the model is valid, or zero if unknown or undefined
Tmax The maximum temperature in K at which the model is valid, or zero if unknown or undefined
E0 The energy at zero Kelvin (including zero point energy)
comment Information about the model (e.g. its source)

120 Chapter 1. RMG API Reference

RMG-Py API Reference, Release 1.0.3

The NASA polynomial is another representation of the heat capacity, enthalpy, and entropy using seven or nine
coefficients a = [𝑎−2 𝑎−1 𝑎0 𝑎1 𝑎2 𝑎3 𝑎4 𝑎5 𝑎6]. The relevant thermodynamic parameters are evaluated via the
expressions

𝐶p(𝑇)

𝑅
= 𝑎−2𝑇

−2 + 𝑎−1𝑇
−1 + 𝑎0 + 𝑎1𝑇 + 𝑎2𝑇

2 + 𝑎3𝑇
3 + 𝑎4𝑇

4

𝐻(𝑇)

𝑅𝑇
= −𝑎−2𝑇

−2 + 𝑎−1𝑇
−1 ln𝑇 + 𝑎0 +

1

2
𝑎1𝑇 +

1

3
𝑎2𝑇

2 +
1

4
𝑎3𝑇

3 +
1

5
𝑎4𝑇

4 +
𝑎5
𝑇

𝑆(𝑇)

𝑅
= −1

2
𝑎−2𝑇

−2 − 𝑎−1𝑇
−1 + 𝑎0 ln𝑇 + 𝑎1𝑇 +

1

2
𝑎2𝑇

2 +
1

3
𝑎3𝑇

3 +
1

4
𝑎4𝑇

4 + 𝑎6

In the seven-coefficient version, 𝑎−2 = 𝑎−1 = 0.

As simple polynomial expressions, the NASA polynomial is faster to evaluate when compared to the Wilhoit
model; however, it does not have the nice physical behavior of the Wilhoit representation. Often multiple NASA
polynomials are used to accurately represent the thermodynamics of a system over a wide temperature range.

E0
The ground state energy (J/mol) at zero Kelvin, including zero point energy, or None if not yet specified.

Tmax
The maximum temperature at which the model is valid, or None if not defined.

Tmin
The minimum temperature at which the model is valid, or None if not defined.

changeBaseEnthalpy(self, double deltaH)→ NASA
Add deltaH in J/mol to the base enthalpy of formation H298 and return the modified NASA object.

comment
comment: str

discrepancy(self, HeatCapacityModel other)→ double
Return some measure of how dissimilar self is from other.

The measure is arbitrary, but hopefully useful for sorting purposes. Discrepancy of 0 means they are
identical

getEnthalpy(self, double T)→ double
Return the dimensionless enthalpy 𝐻(𝑇)/𝑅𝑇 at the specified temperature T in K.

getEntropy(self, double T)→ double
Return the dimensionless entropy 𝑆(𝑇)/𝑅 at the specified temperature T in K.

getFreeEnergy(self, double T)→ double
Return the dimensionless Gibbs free energy 𝐺(𝑇)/𝑅𝑇 at the specified temperature T in K.

getHeatCapacity(self, double T)→ double
Return the dimensionless constant-pressure heat capacity 𝐶p(𝑇)/𝑅 at the specified temperature T in K.

isIdenticalTo(self, HeatCapacityModel other)→ bool
Returns True if self and other report very similar thermo values for heat capacity, enthalpy, entropy, and
free energy over a wide range of temperatures, or False otherwise.

isSimilarTo(self, HeatCapacityModel other)→ bool
Returns True if self and other report similar thermo values for heat capacity, enthalpy, entropy, and free
energy over a wide range of temperatures, or False otherwise.

1.15. Thermodynamics (rmgpy.thermo) 121

RMG-Py API Reference, Release 1.0.3

isTemperatureValid(self, double T)→ bool
Return True if the temperature T in K is within the valid temperature range of the thermodynamic data,
or False if not. If the minimum and maximum temperature are not defined, True is returned.

poly1
poly1: rmgpy.thermo.nasa.NASAPolynomial

poly2
poly2: rmgpy.thermo.nasa.NASAPolynomial

poly3
poly3: rmgpy.thermo.nasa.NASAPolynomial

polynomials
The set of one, two, or three NASA polynomials.

selectPolynomial(self, double T)→ NASAPolynomial

toThermoData(self, double Cp0=0.0, double CpInf=0.0)→ ThermoData
Convert the Wilhoit model to a ThermoData object.

toWilhoit(self, double Cp0, double CpInf)→ Wilhoit
Convert a MultiNASA object multiNASA to a Wilhoit object. You must specify the linearity of the
molecule linear, the number of vibrational modes Nfreq, and the number of hindered rotor modes Nrotors
so the algorithm can determine the appropriate heat capacity limits at zero and infinite temperature.

Here is an example of a NASA entry:

entry(
index = 2,
label = "octane",
molecule =

"""
1 C 0 {2,S}
2 C 0 {1,S} {3,S}
3 C 0 {2,S} {4,S}
4 C 0 {3,S} {5,S}
5 C 0 {4,S} {6,S}
6 C 0 {5,S} {7,S}
7 C 0 {6,S} {8,S}
8 C 0 {7,S}
""",

thermo = NASA(
polynomials = [

NASAPolynomial(coeffs=[1.25245480E+01,-1.01018826E-02,2.21992610E-04,-2.84863722E-07,1.12410138E-10,-2.98434398E+04,-1.97109989E+01], Tmin=(200,'K'), Tmax=(1000,'K')),
NASAPolynomial(coeffs=[2.09430708E+01,4.41691018E-02,-1.53261633E-05,2.30544803E-09,-1.29765727E-13,-3.55755088E+04,-8.10637726E+01], Tmin=(1000,'K'), Tmax=(6000,'K')),

],
Tmin = (200,'K'),
Tmax = (6000,'K'),

),
reference = Reference(authors=["check on burcat"], title='burcat', year="1999", url="http://www.me.berkeley.edu/gri-mech/version30/text30.html"),
referenceType = "review",
shortDesc = u"""""",
longDesc =

u"""

""",
)

122 Chapter 1. RMG API Reference

RMG-Py API Reference, Release 1.0.3

rmgpy.thermo.NASAPolynomial

class rmgpy.thermo.NASAPolynomial(coeffs=None, Tmin=None, Tmax=None, E0=None, comment=’‘)
A heat capacity model based on the NASA polynomial. Both the seven-coefficient and nine-coefficient varia-
tions are supported. The attributes are:

Attribute Description
coeffs The seven or nine NASA polynomial coefficients
Tmin The minimum temperature in K at which the model is valid, or zero if unknown or undefined
Tmax The maximum temperature in K at which the model is valid, or zero if unknown or undefined
E0 The energy at zero Kelvin (including zero point energy)
comment Information about the model (e.g. its source)

The NASA polynomial is another representation of the heat capacity, enthalpy, and entropy using seven or nine
coefficients a = [𝑎−2 𝑎−1 𝑎0 𝑎1 𝑎2 𝑎3 𝑎4 𝑎5 𝑎6]. The relevant thermodynamic parameters are evaluated via the
expressions

𝐶p(𝑇)

𝑅
= 𝑎−2𝑇

−2 + 𝑎−1𝑇
−1 + 𝑎0 + 𝑎1𝑇 + 𝑎2𝑇

2 + 𝑎3𝑇
3 + 𝑎4𝑇

4

𝐻(𝑇)

𝑅𝑇
= −𝑎−2𝑇

−2 + 𝑎−1𝑇
−1 ln𝑇 + 𝑎0 +

1

2
𝑎1𝑇 +

1

3
𝑎2𝑇

2 +
1

4
𝑎3𝑇

3 +
1

5
𝑎4𝑇

4 +
𝑎5
𝑇

𝑆(𝑇)

𝑅
= −1

2
𝑎−2𝑇

−2 − 𝑎−1𝑇
−1 + 𝑎0 ln𝑇 + 𝑎1𝑇 +

1

2
𝑎2𝑇

2 +
1

3
𝑎3𝑇

3 +
1

4
𝑎4𝑇

4 + 𝑎6

In the seven-coefficient version, 𝑎−2 = 𝑎−1 = 0.

As simple polynomial expressions, the NASA polynomial is faster to evaluate when compared to the Wilhoit
model; however, it does not have the nice physical behavior of the Wilhoit representation. Often multiple NASA
polynomials are used to accurately represent the thermodynamics of a system over a wide temperature range;
the NASA class is available for this purpose.

E0
The ground state energy (J/mol) at zero Kelvin, including zero point energy, or None if not yet specified.

Tmax
The maximum temperature at which the model is valid, or None if not defined.

Tmin
The minimum temperature at which the model is valid, or None if not defined.

c0
c0: ‘double’

c1
c1: ‘double’

c2
c2: ‘double’

c3
c3: ‘double’

c4
c4: ‘double’

c5
c5: ‘double’

1.15. Thermodynamics (rmgpy.thermo) 123

RMG-Py API Reference, Release 1.0.3

c6
c6: ‘double’

changeBaseEnthalpy(self, double deltaH)
Add deltaH in J/mol to the base enthalpy of formation H298.

cm1
cm1: ‘double’

cm2
cm2: ‘double’

coeffs
The set of seven or nine NASA polynomial coefficients.

comment
comment: str

discrepancy(self, HeatCapacityModel other)→ double
Return some measure of how dissimilar self is from other.

The measure is arbitrary, but hopefully useful for sorting purposes. Discrepancy of 0 means they are
identical

getEnthalpy(self, double T)→ double
Return the enthalpy in J/mol at the specified temperature T in K.

getEntropy(self, double T)→ double
Return the entropy in J/mol*K at the specified temperature T in K.

getFreeEnergy(self, double T)→ double
Return the Gibbs free energy in J/mol at the specified temperature T in K.

getHeatCapacity(self, double T)→ double
Return the constant-pressure heat capacity in J/mol*K at the specified temperature T in K.

isIdenticalTo(self, HeatCapacityModel other)→ bool
Returns True if self and other report very similar thermo values for heat capacity, enthalpy, entropy, and
free energy over a wide range of temperatures, or False otherwise.

isSimilarTo(self, HeatCapacityModel other)→ bool
Returns True if self and other report similar thermo values for heat capacity, enthalpy, entropy, and free
energy over a wide range of temperatures, or False otherwise.

isTemperatureValid(self, double T)→ bool
Return True if the temperature T in K is within the valid temperature range of the thermodynamic data,
or False if not. If the minimum and maximum temperature are not defined, True is returned.

124 Chapter 1. RMG API Reference

BIBLIOGRAPHY

[1932Wigner] E.Wigner. Phys. Rev. 40, p. 749-759 (1932). doi:10.1103/PhysRev.40.749

[1959Bell] R. P. Bell. Trans. Faraday Soc. 55, p. 1-4 (1959). doi:10.1039/TF9595500001

[Gilbert1990] R. G. Gilbert and S. C. Smith. Theory of Unimolecular and Recombination Reactions. Blackwell Sci.
(1990).

[Baer1996] T. Baer and W. L. Hase. Unimolecular Reaction Dynamics. Oxford University Press (1996).

[Holbrook1996] K. A. Holbrook, M. J. Pilling, and S. H. Robertson. Unimolecular Reactions. Second Edition. John
Wiley and Sons (1996).

[Forst2003] W. Forst. Unimolecular Reactions: A Concise Introduction. Cambridge University Press (2003).

[Pilling2003] M. J. Pilling and S. H. Robertson. Annu. Rev. Phys. Chem. 54, p. 245-275 (2003).
doi:10.1146/annurev.physchem.54.011002.103822

125

http://dx.doi.org/10.1103/PhysRev.40.749
http://dx.doi.org/10.1039/TF9595500001
http://dx.doi.org/10.1146/annurev.physchem.54.011002.103822

RMG-Py API Reference, Release 1.0.3

126 Bibliography

PYTHON MODULE INDEX

r
rmgpy.cantherm, 3
rmgpy.chemkin, 7
rmgpy.constants, 10
rmgpy.data, 11
rmgpy.kinetics, 36
rmgpy.molecule, 54
rmgpy.molecule.adjlist, 73
rmgpy.pdep, 76
rmgpy.qm, 83
rmgpy.quantity, 87
rmgpy.reaction, 90
rmgpy.rmg, 94
rmgpy.solver, 97
rmgpy.species, 98
rmgpy.statmech, 101
rmgpy.statmech.schrodinger, 112
rmgpy.thermo, 115

127

RMG-Py API Reference, Release 1.0.3

128 Python Module Index

INDEX

A
A (rmgpy.kinetics.Arrhenius attribute), 38
a0 (rmgpy.thermo.Wilhoit attribute), 119
a1 (rmgpy.thermo.Wilhoit attribute), 119
a2 (rmgpy.thermo.Wilhoit attribute), 119
a3 (rmgpy.thermo.Wilhoit attribute), 119
addAtom() (rmgpy.molecule.Group method), 70
addAtom() (rmgpy.molecule.Molecule method), 64
addBond() (rmgpy.molecule.Group method), 70
addBond() (rmgpy.molecule.Molecule method), 64
addEdge() (rmgpy.molecule.graph.Graph method), 57
addEdge() (rmgpy.molecule.Group method), 70
addEdge() (rmgpy.molecule.Molecule method), 64
addVertex() (rmgpy.molecule.graph.Graph method), 57
addVertex() (rmgpy.molecule.Group method), 70
addVertex() (rmgpy.molecule.Molecule method), 64
alpha (rmgpy.kinetics.Troe attribute), 51
ancestors() (rmgpy.data.base.Database method), 13
ancestors() (rmgpy.data.statmech.StatmechDepository

method), 19
ancestors() (rmgpy.data.statmech.StatmechGroups

method), 24
ancestors() (rmgpy.data.statmech.StatmechLibrary

method), 26
ancestors() (rmgpy.data.thermo.ThermoDepository

method), 31
ancestors() (rmgpy.data.thermo.ThermoGroups method),

32
ancestors() (rmgpy.data.thermo.ThermoLibrary method),

34
applyAction() (rmgpy.molecule.Atom method), 62
applyAction() (rmgpy.molecule.Bond method), 63
applyAction() (rmgpy.molecule.GroupAtom method), 69
applyAction() (rmgpy.molecule.GroupBond method), 70
ArrayQuantity (class in rmgpy.quantity), 89
Arrhenius (class in rmgpy.kinetics), 38
arrhenius (rmgpy.kinetics.MultiArrhenius attribute), 40
arrhenius (rmgpy.kinetics.MultiPDepArrhenius attribute),

44
arrhenius (rmgpy.kinetics.PDepArrhenius attribute), 43
arrheniusHigh (rmgpy.kinetics.Lindemann attribute), 49
arrheniusHigh (rmgpy.kinetics.Troe attribute), 51

arrheniusLow (rmgpy.kinetics.Lindemann attribute), 49
arrheniusLow (rmgpy.kinetics.ThirdBody attribute), 47
arrheniusLow (rmgpy.kinetics.Troe attribute), 51
Atom (class in rmgpy.molecule), 61
AtomType (class in rmgpy.molecule), 59

B
B (rmgpy.thermo.Wilhoit attribute), 118
barrier (rmgpy.statmech.HinderedRotor attribute), 111
Bond (class in rmgpy.molecule), 63

C
c0 (rmgpy.thermo.NASAPolynomial attribute), 123
c1 (rmgpy.thermo.NASAPolynomial attribute), 123
c2 (rmgpy.thermo.NASAPolynomial attribute), 123
c3 (rmgpy.thermo.NASAPolynomial attribute), 123
c4 (rmgpy.thermo.NASAPolynomial attribute), 123
c5 (rmgpy.thermo.NASAPolynomial attribute), 123
c6 (rmgpy.thermo.NASAPolynomial attribute), 123
calculate() (rmgpy.qm.symmetry.SymmetryJob method),

85
calculateAtomSymmetryNumber() (in module

rmgpy.molecule.symmetry), 75
calculateAxisSymmetryNumber() (in module

rmgpy.molecule.symmetry), 75
calculateBondSymmetryNumber() (in module

rmgpy.molecule.symmetry), 75
calculateCp0() (rmgpy.molecule.Molecule method), 64
calculateCp0() (rmgpy.species.Species method), 99
calculateCpInf() (rmgpy.molecule.Molecule method), 64
calculateCpInf() (rmgpy.species.Species method), 99
calculateCyclicSymmetryNumber() (in module

rmgpy.molecule.symmetry), 76
calculateMicrocanonicalRateCoefficient()

(rmgpy.reaction.Reaction method), 91
calculateSymmetryNumber() (in module

rmgpy.molecule.symmetry), 76
calculateSymmetryNumber() (rmgpy.molecule.Molecule

method), 64
calculateTSTRateCoefficient() (rmgpy.reaction.Reaction

method), 91
calculateTunnelingFactor() (rmgpy.kinetics.Eckart

method), 54

129

RMG-Py API Reference, Release 1.0.3

calculateTunnelingFactor() (rmgpy.kinetics.Wigner
method), 53

calculateTunnelingFactor()
(rmgpy.species.TransitionState method),
100

calculateTunnelingFunction() (rmgpy.kinetics.Eckart
method), 54

calculateTunnelingFunction() (rmgpy.kinetics.Wigner
method), 53

calculateTunnelingFunction()
(rmgpy.species.TransitionState method),
100

canTST() (rmgpy.reaction.Reaction method), 91
changeBaseEnthalpy() (rmgpy.thermo.NASA method),

121
changeBaseEnthalpy() (rmgpy.thermo.NASAPolynomial

method), 124
changeRate() (rmgpy.kinetics.Arrhenius method), 39
changeRate() (rmgpy.kinetics.Chebyshev method), 46
changeRate() (rmgpy.kinetics.Lindemann method), 49
changeRate() (rmgpy.kinetics.MultiArrhenius method),

40
changeRate() (rmgpy.kinetics.MultiPDepArrhenius

method), 44
changeRate() (rmgpy.kinetics.PDepArrhenius method),

43
changeRate() (rmgpy.kinetics.ThirdBody method), 47
changeRate() (rmgpy.kinetics.Troe method), 51
changeT0() (rmgpy.kinetics.Arrhenius method), 39
Chebyshev (class in rmgpy.kinetics), 45
checkForInChiKeyCollision()

(rmgpy.qm.qmverifier.QMVerifier method), 85
clearLabeledAtoms() (rmgpy.molecule.Group method),

70
clearLabeledAtoms() (rmgpy.molecule.Molecule

method), 64
cm1 (rmgpy.thermo.NASAPolynomial attribute), 124
cm2 (rmgpy.thermo.NASAPolynomial attribute), 124
coeffs (rmgpy.kinetics.Chebyshev attribute), 46
coeffs (rmgpy.thermo.NASAPolynomial attribute), 124
comment (rmgpy.kinetics.Arrhenius attribute), 39
comment (rmgpy.kinetics.Chebyshev attribute), 46
comment (rmgpy.kinetics.KineticsData attribute), 38
comment (rmgpy.kinetics.Lindemann attribute), 49
comment (rmgpy.kinetics.MultiArrhenius attribute), 40
comment (rmgpy.kinetics.MultiPDepArrhenius attribute),

44
comment (rmgpy.kinetics.PDepArrhenius attribute), 43
comment (rmgpy.kinetics.PDepKineticsData attribute),

41
comment (rmgpy.kinetics.ThirdBody attribute), 47
comment (rmgpy.kinetics.Troe attribute), 51
comment (rmgpy.thermo.NASA attribute), 121

comment (rmgpy.thermo.NASAPolynomial attribute),
124

comment (rmgpy.thermo.ThermoData attribute), 116
comment (rmgpy.thermo.Wilhoit attribute), 119
computeGroupAdditivityThermo()

(rmgpy.data.thermo.ThermoDatabase method),
29

Conformer (class in rmgpy.statmech), 113
connectTheDots() (rmgpy.molecule.Molecule method),

64
containsLabeledAtom() (rmgpy.molecule.Group

method), 70
containsLabeledAtom() (rmgpy.molecule.Molecule

method), 64
convolve() (in module rmgpy.statmech.schrodinger), 112
convolveBS() (in module rmgpy.statmech.schrodinger),

112
convolveBSSR() (in module

rmgpy.statmech.schrodinger), 112
coordinates (rmgpy.statmech.Conformer attribute), 114
copy() (rmgpy.molecule.Atom method), 62
copy() (rmgpy.molecule.Bond method), 63
copy() (rmgpy.molecule.graph.Edge method), 57
copy() (rmgpy.molecule.graph.Graph method), 57
copy() (rmgpy.molecule.graph.Vertex method), 56
copy() (rmgpy.molecule.Group method), 70
copy() (rmgpy.molecule.GroupAtom method), 69
copy() (rmgpy.molecule.GroupBond method), 70
copy() (rmgpy.molecule.Molecule method), 64
copy() (rmgpy.quantity.ArrayQuantity method), 90
copy() (rmgpy.quantity.ScalarQuantity method), 89
copy() (rmgpy.reaction.Reaction method), 92
copy() (rmgpy.species.Species method), 99
copy() (rmgpy.thermo.Wilhoit method), 119
countInternalRotors() (rmgpy.molecule.Molecule

method), 64
Cp0 (rmgpy.thermo.ThermoData attribute), 116
Cp0 (rmgpy.thermo.Wilhoit attribute), 118
Cpdata (rmgpy.thermo.ThermoData attribute), 116
CpInf (rmgpy.thermo.ThermoData attribute), 116
CpInf (rmgpy.thermo.Wilhoit attribute), 118

D
Database (class in rmgpy.data.base), 13
decrementLonePairs() (rmgpy.molecule.Atom method),

62
decrementOrder() (rmgpy.molecule.Bond method), 63
decrementRadical() (rmgpy.molecule.Atom method), 62
degreeP (rmgpy.kinetics.Chebyshev attribute), 46
degreeT (rmgpy.kinetics.Chebyshev attribute), 46
deleteHydrogens() (rmgpy.molecule.Molecule method),

64
descendants() (rmgpy.data.base.Database method), 13

130 Index

RMG-Py API Reference, Release 1.0.3

descendants() (rmgpy.data.statmech.StatmechDepository
method), 19

descendants() (rmgpy.data.statmech.StatmechGroups
method), 25

descendants() (rmgpy.data.statmech.StatmechLibrary
method), 27

descendants() (rmgpy.data.thermo.ThermoDepository
method), 31

descendants() (rmgpy.data.thermo.ThermoGroups
method), 33

descendants() (rmgpy.data.thermo.ThermoLibrary
method), 35

descendTree() (rmgpy.data.base.Database method), 13
descendTree() (rmgpy.data.statmech.StatmechDepository

method), 19
descendTree() (rmgpy.data.statmech.StatmechGroups

method), 24
descendTree() (rmgpy.data.statmech.StatmechLibrary

method), 26
descendTree() (rmgpy.data.thermo.ThermoDepository

method), 31
descendTree() (rmgpy.data.thermo.ThermoGroups

method), 32
descendTree() (rmgpy.data.thermo.ThermoLibrary

method), 34
DirectFit (class in rmgpy.data.statmechfit), 22
discrepancy() (rmgpy.kinetics.Arrhenius method), 39
discrepancy() (rmgpy.kinetics.Chebyshev method), 46
discrepancy() (rmgpy.kinetics.KineticsData method), 38
discrepancy() (rmgpy.kinetics.Lindemann method), 49
discrepancy() (rmgpy.kinetics.MultiArrhenius method),

40
discrepancy() (rmgpy.kinetics.MultiPDepArrhenius

method), 44
discrepancy() (rmgpy.kinetics.PDepArrhenius method),

43
discrepancy() (rmgpy.kinetics.PDepKineticsData

method), 41
discrepancy() (rmgpy.kinetics.ThirdBody method), 48
discrepancy() (rmgpy.kinetics.Troe method), 52
discrepancy() (rmgpy.thermo.NASA method), 121
discrepancy() (rmgpy.thermo.NASAPolynomial method),

124
discrepancy() (rmgpy.thermo.ThermoData method), 116
discrepancy() (rmgpy.thermo.Wilhoit method), 119
draw() (rmgpy.molecule.Molecule method), 64
draw() (rmgpy.reaction.Reaction method), 92

E
E0 (rmgpy.statmech.Conformer attribute), 114
E0 (rmgpy.thermo.NASA attribute), 121
E0 (rmgpy.thermo.NASAPolynomial attribute), 123
E0 (rmgpy.thermo.ThermoData attribute), 116
E0 (rmgpy.thermo.Wilhoit attribute), 118

E0_prod (rmgpy.kinetics.Eckart attribute), 54
E0_reac (rmgpy.kinetics.Eckart attribute), 54
E0_TS (rmgpy.kinetics.Eckart attribute), 54
Ea (rmgpy.kinetics.Arrhenius attribute), 39
Eckart (class in rmgpy.kinetics), 53
Edge (class in rmgpy.molecule.graph), 57
efficiencies (rmgpy.kinetics.Chebyshev attribute), 46
efficiencies (rmgpy.kinetics.Lindemann attribute), 49
efficiencies (rmgpy.kinetics.MultiPDepArrhenius at-

tribute), 44
efficiencies (rmgpy.kinetics.PDepArrhenius attribute), 43
efficiencies (rmgpy.kinetics.PDepKineticsData attribute),

41
efficiencies (rmgpy.kinetics.ThirdBody attribute), 48
efficiencies (rmgpy.kinetics.Troe attribute), 52
Element (class in rmgpy.molecule), 59
energies (rmgpy.statmech.HinderedRotor attribute), 111
Entry (class in rmgpy.data.base), 15
equals() (rmgpy.quantity.ArrayQuantity method), 90
equals() (rmgpy.quantity.ScalarQuantity method), 89
equivalent() (rmgpy.molecule.Atom method), 62
equivalent() (rmgpy.molecule.AtomType method), 60
equivalent() (rmgpy.molecule.Bond method), 63
equivalent() (rmgpy.molecule.graph.Edge method), 57
equivalent() (rmgpy.molecule.graph.Vertex method), 56
equivalent() (rmgpy.molecule.GroupAtom method), 69
equivalent() (rmgpy.molecule.GroupBond method), 70
estimateRadicalThermoViaHBI()

(rmgpy.data.thermo.ThermoDatabase method),
29

estimateThermoViaGroupAdditivity()
(rmgpy.data.thermo.ThermoDatabase method),
29

F
findCp0andCpInf() (rmgpy.data.thermo.ThermoDatabase

method), 29
findIsomorphism() (rmgpy.molecule.graph.Graph

method), 57
findIsomorphism() (rmgpy.molecule.Group method), 71
findIsomorphism() (rmgpy.molecule.Molecule method),

64
findIsomorphism() (rmgpy.molecule.vf2.VF2 method),

59
findSubgraphIsomorphisms()

(rmgpy.molecule.graph.Graph method), 57
findSubgraphIsomorphisms() (rmgpy.molecule.Group

method), 71
findSubgraphIsomorphisms() (rmgpy.molecule.Molecule

method), 65
findSubgraphIsomorphisms() (rmgpy.molecule.vf2.VF2

method), 59
fitCosinePotentialToData()

(rmgpy.statmech.HinderedRotor method),

Index 131

RMG-Py API Reference, Release 1.0.3

111
fitFourierPotentialToData()

(rmgpy.statmech.HinderedRotor method),
111

fitStatmechDirect() (in module rmgpy.data.statmechfit),
21

fitStatmechPseudo() (in module rmgpy.data.statmechfit),
21

fitStatmechPseudoRotors() (in module
rmgpy.data.statmechfit), 21

fitStatmechToHeatCapacity() (in module
rmgpy.data.statmechfit), 21

fitToData() (rmgpy.kinetics.Arrhenius method), 39
fitToData() (rmgpy.kinetics.Chebyshev method), 46
fitToData() (rmgpy.kinetics.PDepArrhenius method), 43
fitToData() (rmgpy.thermo.Wilhoit method), 119
fitToDataForConstantB() (rmgpy.thermo.Wilhoit

method), 119
fixBarrierHeight() (rmgpy.reaction.Reaction method), 92
fixDiffusionLimitedA() (rmgpy.reaction.Reaction

method), 92
fourier (rmgpy.statmech.HinderedRotor attribute), 111
frequencies (rmgpy.statmech.HarmonicOscillator at-

tribute), 109
frequency (rmgpy.kinetics.Eckart attribute), 54
frequency (rmgpy.kinetics.Wigner attribute), 53
frequency (rmgpy.statmech.HinderedRotor attribute), 111
fromAdjacencyList() (in module rmgpy.molecule.adjlist),

75
fromAdjacencyList() (rmgpy.molecule.Group method),

71
fromAdjacencyList() (rmgpy.molecule.Molecule

method), 65
fromAdjacencyList() (rmgpy.species.Species method), 99
fromAugmentedInChI() (rmgpy.molecule.Molecule

method), 65
fromInChI() (rmgpy.molecule.Molecule method), 65
fromSMARTS() (rmgpy.molecule.Molecule method), 65
fromSMILES() (rmgpy.molecule.Molecule method), 65
fromSMILES() (rmgpy.species.Species method), 99
fromXYZ() (rmgpy.molecule.Molecule method), 65

G
generate3dTS() (rmgpy.reaction.Reaction method), 92
generateFrequencies() (rmgpy.data.statmech.GroupFrequencies

method), 15
generateOldLibraryEntry()

(rmgpy.data.statmech.StatmechGroups
method), 25

generateOldLibraryEntry()
(rmgpy.data.statmech.StatmechLibrary
method), 27

generateOldLibraryEntry()
(rmgpy.data.thermo.ThermoGroups method),

33
generateOldLibraryEntry()

(rmgpy.data.thermo.ThermoLibrary method),
35

generateOldTree() (rmgpy.data.base.Database method),
13

generateOldTree() (rmgpy.data.statmech.StatmechDepository
method), 19

generateOldTree() (rmgpy.data.statmech.StatmechGroups
method), 25

generateOldTree() (rmgpy.data.statmech.StatmechLibrary
method), 27

generateOldTree() (rmgpy.data.thermo.ThermoDepository
method), 31

generateOldTree() (rmgpy.data.thermo.ThermoGroups
method), 33

generateOldTree() (rmgpy.data.thermo.ThermoLibrary
method), 35

generatePairs() (rmgpy.reaction.Reaction method), 92
generateResonanceIsomers() (rmgpy.species.Species

method), 99
generateReverseRateCoefficient()

(rmgpy.reaction.Reaction method), 92
getActiveModes() (rmgpy.statmech.Conformer method),

114
getAllCycles() (rmgpy.molecule.graph.Graph method),

57
getAllCycles() (rmgpy.molecule.Group method), 71
getAllCycles() (rmgpy.molecule.Molecule method), 65
getAllCyclicVertices() (rmgpy.molecule.graph.Graph

method), 57
getAllCyclicVertices() (rmgpy.molecule.Group method),

71
getAllCyclicVertices() (rmgpy.molecule.Molecule

method), 65
getAllPolycyclicVertices() (rmgpy.molecule.graph.Graph

method), 57
getAllPolycyclicVertices() (rmgpy.molecule.Group

method), 71
getAllPolycyclicVertices() (rmgpy.molecule.Molecule

method), 65
getAllThermoData() (rmgpy.data.thermo.ThermoDatabase

method), 29
getAtomType() (in module rmgpy.molecule), 60
getBond() (rmgpy.molecule.Group method), 71
getBond() (rmgpy.molecule.Molecule method), 65
getBonds() (rmgpy.molecule.Group method), 71
getBonds() (rmgpy.molecule.Molecule method), 65
getCenterOfMass() (rmgpy.statmech.Conformer

method), 114
getConversionFactorFromSI()

(rmgpy.quantity.ArrayQuantity method),
90

132 Index

RMG-Py API Reference, Release 1.0.3

getConversionFactorFromSI()
(rmgpy.quantity.ScalarQuantity method),
89

getConversionFactorToSI()
(rmgpy.quantity.ArrayQuantity method),
90

getConversionFactorToSI()
(rmgpy.quantity.ScalarQuantity method),
89

getDensityOfStates() (in module
rmgpy.statmech.schrodinger), 112

getDensityOfStates() (rmgpy.species.Species method), 99
getDensityOfStates() (rmgpy.species.TransitionState

method), 100
getDensityOfStates() (rmgpy.statmech.Conformer

method), 114
getDensityOfStates() (rmgpy.statmech.HarmonicOscillator

method), 109
getDensityOfStates() (rmgpy.statmech.HinderedRotor

method), 111
getDensityOfStates() (rmgpy.statmech.IdealGasTranslation

method), 103
getDensityOfStates() (rmgpy.statmech.KRotor method),

106
getDensityOfStates() (rmgpy.statmech.LinearRotor

method), 104
getDensityOfStates() (rmgpy.statmech.NonlinearRotor

method), 105
getDensityOfStates() (rmgpy.statmech.SphericalTopRotor

method), 108
getEdge() (rmgpy.molecule.graph.Graph method), 58
getEdge() (rmgpy.molecule.Group method), 71
getEdge() (rmgpy.molecule.Molecule method), 65
getEdges() (rmgpy.molecule.graph.Graph method), 58
getEdges() (rmgpy.molecule.Group method), 71
getEdges() (rmgpy.molecule.Molecule method), 65
getEffectiveColliderEfficiencies()

(rmgpy.kinetics.Chebyshev method), 46
getEffectiveColliderEfficiencies()

(rmgpy.kinetics.Lindemann method), 49
getEffectiveColliderEfficiencies()

(rmgpy.kinetics.MultiPDepArrhenius method),
44

getEffectiveColliderEfficiencies()
(rmgpy.kinetics.PDepArrhenius method),
43

getEffectiveColliderEfficiencies()
(rmgpy.kinetics.PDepKineticsData method), 41

getEffectiveColliderEfficiencies()
(rmgpy.kinetics.ThirdBody method), 48

getEffectiveColliderEfficiencies() (rmgpy.kinetics.Troe
method), 52

getEffectivePressure() (rmgpy.kinetics.Chebyshev
method), 46

getEffectivePressure() (rmgpy.kinetics.Lindemann
method), 50

getEffectivePressure() (rmgpy.kinetics.MultiPDepArrhenius
method), 44

getEffectivePressure() (rmgpy.kinetics.PDepArrhenius
method), 43

getEffectivePressure() (rmgpy.kinetics.PDepKineticsData
method), 41

getEffectivePressure() (rmgpy.kinetics.ThirdBody
method), 48

getEffectivePressure() (rmgpy.kinetics.Troe method), 52
getElement() (in module rmgpy.molecule), 59
getEnthalpiesOfReaction() (rmgpy.reaction.Reaction

method), 92
getEnthalpy() (in module rmgpy.statmech.schrodinger),

112
getEnthalpy() (rmgpy.species.Species method), 99
getEnthalpy() (rmgpy.species.TransitionState method),

100
getEnthalpy() (rmgpy.statmech.Conformer method), 114
getEnthalpy() (rmgpy.statmech.HarmonicOscillator

method), 109
getEnthalpy() (rmgpy.statmech.HinderedRotor method),

111
getEnthalpy() (rmgpy.statmech.IdealGasTranslation

method), 103
getEnthalpy() (rmgpy.statmech.KRotor method), 106
getEnthalpy() (rmgpy.statmech.LinearRotor method), 104
getEnthalpy() (rmgpy.statmech.NonlinearRotor method),

105
getEnthalpy() (rmgpy.statmech.SphericalTopRotor

method), 108
getEnthalpy() (rmgpy.thermo.NASA method), 121
getEnthalpy() (rmgpy.thermo.NASAPolynomial method),

124
getEnthalpy() (rmgpy.thermo.ThermoData method), 116
getEnthalpy() (rmgpy.thermo.Wilhoit method), 119
getEnthalpyOfReaction() (rmgpy.reaction.Reaction

method), 92
getEntriesToSave() (rmgpy.data.base.Database method),

13
getEntriesToSave() (rmgpy.data.statmech.StatmechDepository

method), 19
getEntriesToSave() (rmgpy.data.statmech.StatmechGroups

method), 25
getEntriesToSave() (rmgpy.data.statmech.StatmechLibrary

method), 27
getEntriesToSave() (rmgpy.data.thermo.ThermoDepository

method), 31
getEntriesToSave() (rmgpy.data.thermo.ThermoGroups

method), 33
getEntriesToSave() (rmgpy.data.thermo.ThermoLibrary

method), 35

Index 133

RMG-Py API Reference, Release 1.0.3

getEntropiesOfReaction() (rmgpy.reaction.Reaction
method), 92

getEntropy() (in module rmgpy.statmech.schrodinger),
113

getEntropy() (rmgpy.species.Species method), 99
getEntropy() (rmgpy.species.TransitionState method),

100
getEntropy() (rmgpy.statmech.Conformer method), 114
getEntropy() (rmgpy.statmech.HarmonicOscillator

method), 109
getEntropy() (rmgpy.statmech.HinderedRotor method),

111
getEntropy() (rmgpy.statmech.IdealGasTranslation

method), 103
getEntropy() (rmgpy.statmech.KRotor method), 106
getEntropy() (rmgpy.statmech.LinearRotor method), 104
getEntropy() (rmgpy.statmech.NonlinearRotor method),

105
getEntropy() (rmgpy.statmech.SphericalTopRotor

method), 108
getEntropy() (rmgpy.thermo.NASA method), 121
getEntropy() (rmgpy.thermo.NASAPolynomial method),

124
getEntropy() (rmgpy.thermo.ThermoData method), 116
getEntropy() (rmgpy.thermo.Wilhoit method), 119
getEntropyOfReaction() (rmgpy.reaction.Reaction

method), 92
getEquilibriumConstant() (rmgpy.reaction.Reaction

method), 92
getEquilibriumConstants() (rmgpy.reaction.Reaction

method), 92
getFingerprint() (rmgpy.molecule.Molecule method), 65
getFormula() (rmgpy.molecule.Molecule method), 65
getFreeEnergiesOfReaction() (rmgpy.reaction.Reaction

method), 93
getFreeEnergy() (rmgpy.species.Species method), 99
getFreeEnergy() (rmgpy.species.TransitionState method),

100
getFreeEnergy() (rmgpy.statmech.Conformer method),

114
getFreeEnergy() (rmgpy.thermo.NASA method), 121
getFreeEnergy() (rmgpy.thermo.NASAPolynomial

method), 124
getFreeEnergy() (rmgpy.thermo.ThermoData method),

116
getFreeEnergy() (rmgpy.thermo.Wilhoit method), 119
getFreeEnergyOfReaction() (rmgpy.reaction.Reaction

method), 93
getFrequency() (rmgpy.statmech.HinderedRotor method),

111
getFrequencyGroups() (rmgpy.data.statmech.StatmechGroups

method), 25
getHamiltonian() (rmgpy.statmech.HinderedRotor

method), 111

getHeatCapacity() (in module
rmgpy.statmech.schrodinger), 113

getHeatCapacity() (rmgpy.species.Species method), 99
getHeatCapacity() (rmgpy.species.TransitionState

method), 100
getHeatCapacity() (rmgpy.statmech.Conformer method),

114
getHeatCapacity() (rmgpy.statmech.HarmonicOscillator

method), 109
getHeatCapacity() (rmgpy.statmech.HinderedRotor

method), 111
getHeatCapacity() (rmgpy.statmech.IdealGasTranslation

method), 103
getHeatCapacity() (rmgpy.statmech.KRotor method), 107
getHeatCapacity() (rmgpy.statmech.LinearRotor

method), 104
getHeatCapacity() (rmgpy.statmech.NonlinearRotor

method), 105
getHeatCapacity() (rmgpy.statmech.SphericalTopRotor

method), 108
getHeatCapacity() (rmgpy.thermo.NASA method), 121
getHeatCapacity() (rmgpy.thermo.NASAPolynomial

method), 124
getHeatCapacity() (rmgpy.thermo.ThermoData method),

116
getHeatCapacity() (rmgpy.thermo.Wilhoit method), 119
getInternalReducedMomentOfInertia()

(rmgpy.statmech.Conformer method), 114
getLabeledAtom() (rmgpy.molecule.Group method), 71
getLabeledAtom() (rmgpy.molecule.Molecule method),

66
getLabeledAtoms() (rmgpy.molecule.Group method), 71
getLabeledAtoms() (rmgpy.molecule.Molecule method),

66
getLevelDegeneracy() (rmgpy.statmech.HinderedRotor

method), 111
getLevelDegeneracy() (rmgpy.statmech.KRotor method),

107
getLevelDegeneracy() (rmgpy.statmech.LinearRotor

method), 104
getLevelDegeneracy() (rmgpy.statmech.SphericalTopRotor

method), 108
getLevelEnergy() (rmgpy.statmech.HinderedRotor

method), 111
getLevelEnergy() (rmgpy.statmech.KRotor method), 107
getLevelEnergy() (rmgpy.statmech.LinearRotor method),

104
getLevelEnergy() (rmgpy.statmech.SphericalTopRotor

method), 108
getMolecularWeight() (rmgpy.molecule.Molecule

method), 66
getMomentOfInertiaTensor()

(rmgpy.statmech.Conformer method), 114
getNetCharge() (rmgpy.molecule.Molecule method), 66

134 Index

RMG-Py API Reference, Release 1.0.3

getNumAtoms() (rmgpy.molecule.Molecule method), 66
getNumberDegreesOfFreedom()

(rmgpy.statmech.Conformer method), 114
getNumberOfRadicalElectrons()

(rmgpy.molecule.Molecule method), 66
getOtherVertex() (rmgpy.molecule.Bond method), 63
getOtherVertex() (rmgpy.molecule.graph.Edge method),

57
getOtherVertex() (rmgpy.molecule.GroupBond method),

70
getPartitionFunction() (in module

rmgpy.statmech.schrodinger), 113
getPartitionFunction() (rmgpy.species.Species method),

99
getPartitionFunction() (rmgpy.species.TransitionState

method), 100
getPartitionFunction() (rmgpy.statmech.Conformer

method), 114
getPartitionFunction() (rmgpy.statmech.HarmonicOscillator

method), 109
getPartitionFunction() (rmgpy.statmech.HinderedRotor

method), 111
getPartitionFunction() (rmgpy.statmech.IdealGasTranslation

method), 103
getPartitionFunction() (rmgpy.statmech.KRotor method),

107
getPartitionFunction() (rmgpy.statmech.LinearRotor

method), 104
getPartitionFunction() (rmgpy.statmech.NonlinearRotor

method), 105
getPartitionFunction() (rmgpy.statmech.SphericalTopRotor

method), 108
getPossibleStructures() (rmgpy.data.base.LogicOr

method), 17
getPotential() (rmgpy.statmech.HinderedRotor method),

111
getPrincipalMomentsOfInertia()

(rmgpy.statmech.Conformer method), 114
getRadicalAtoms() (rmgpy.molecule.Molecule method),

66
getRadicalCount() (rmgpy.molecule.Molecule method),

66
getRateCoefficient() (rmgpy.kinetics.Arrhenius method),

39
getRateCoefficient() (rmgpy.kinetics.Chebyshev

method), 46
getRateCoefficient() (rmgpy.kinetics.KineticsData

method), 38
getRateCoefficient() (rmgpy.kinetics.Lindemann

method), 50
getRateCoefficient() (rmgpy.kinetics.MultiArrhenius

method), 40
getRateCoefficient() (rmgpy.kinetics.MultiPDepArrhenius

method), 44

getRateCoefficient() (rmgpy.kinetics.PDepArrhenius
method), 43

getRateCoefficient() (rmgpy.kinetics.PDepKineticsData
method), 41

getRateCoefficient() (rmgpy.kinetics.ThirdBody method),
48

getRateCoefficient() (rmgpy.kinetics.Troe method), 52
getRateCoefficient() (rmgpy.reaction.Reaction method),

93
getSmallestSetOfSmallestRings()

(rmgpy.molecule.graph.Graph method), 58
getSmallestSetOfSmallestRings()

(rmgpy.molecule.Group method), 71
getSmallestSetOfSmallestRings()

(rmgpy.molecule.Molecule method), 66
getSpecies() (rmgpy.data.base.Database method), 13
getSpecies() (rmgpy.data.statmech.StatmechDepository

method), 19
getSpecies() (rmgpy.data.statmech.StatmechGroups

method), 25
getSpecies() (rmgpy.data.statmech.StatmechLibrary

method), 27
getSpecies() (rmgpy.data.thermo.ThermoDepository

method), 31
getSpecies() (rmgpy.data.thermo.ThermoGroups

method), 33
getSpecies() (rmgpy.data.thermo.ThermoLibrary

method), 35
getStatmechData() (rmgpy.data.statmech.StatmechDatabase

method), 18
getStatmechData() (rmgpy.data.statmech.StatmechGroups

method), 25
getStatmechDataFromDepository()

(rmgpy.data.statmech.StatmechDatabase
method), 18

getStatmechDataFromGroups()
(rmgpy.data.statmech.StatmechDatabase
method), 18

getStatmechDataFromLibrary()
(rmgpy.data.statmech.StatmechDatabase
method), 18

getStoichiometricCoefficient() (rmgpy.reaction.Reaction
method), 93

getSumOfStates() (in module
rmgpy.statmech.schrodinger), 113

getSumOfStates() (rmgpy.species.Species method), 100
getSumOfStates() (rmgpy.species.TransitionState

method), 100
getSumOfStates() (rmgpy.statmech.Conformer method),

114
getSumOfStates() (rmgpy.statmech.HarmonicOscillator

method), 110
getSumOfStates() (rmgpy.statmech.HinderedRotor

method), 111

Index 135

RMG-Py API Reference, Release 1.0.3

getSumOfStates() (rmgpy.statmech.IdealGasTranslation
method), 103

getSumOfStates() (rmgpy.statmech.KRotor method), 107
getSumOfStates() (rmgpy.statmech.LinearRotor method),

104
getSumOfStates() (rmgpy.statmech.NonlinearRotor

method), 105
getSumOfStates() (rmgpy.statmech.SphericalTopRotor

method), 108
getSymmetricTopRotors() (rmgpy.statmech.Conformer

method), 115
getSymmetryNumber() (rmgpy.molecule.Molecule

method), 66
getSymmetryNumber() (rmgpy.species.Species method),

100
getThermoData() (rmgpy.data.thermo.ThermoDatabase

method), 29
getThermoDataFromDepository()

(rmgpy.data.thermo.ThermoDatabase method),
29

getThermoDataFromGroups()
(rmgpy.data.thermo.ThermoDatabase method),
29

getThermoDataFromLibraries()
(rmgpy.data.thermo.ThermoDatabase method),
29

getThermoDataFromLibrary()
(rmgpy.data.thermo.ThermoDatabase method),
30

getTotalMass() (rmgpy.statmech.Conformer method),
115

getUncertainty() (rmgpy.quantity.ScalarQuantity
method), 89

getUncertaintyType() (rmgpy.quantity.ScalarQuantity
method), 89

getURL() (rmgpy.molecule.Molecule method), 66
getURL() (rmgpy.reaction.Reaction method), 93
getValue() (rmgpy.quantity.ScalarQuantity method), 89
Graph (class in rmgpy.molecule.graph), 57
Group (class in rmgpy.molecule), 70
GroupAtom (class in rmgpy.molecule), 69
GroupBond (class in rmgpy.molecule), 70
GroupFrequencies (class in rmgpy.data.statmech), 15

H
H0 (rmgpy.thermo.Wilhoit attribute), 118
H298 (rmgpy.thermo.ThermoData attribute), 116
HarmonicOscillator (class in rmgpy.statmech), 108
harmonicOscillator_d_heatCapacity_d_freq() (in module

rmgpy.data.statmechfit), 21
harmonicOscillator_heatCapacity() (in module

rmgpy.data.statmechfit), 21
hasAtom() (rmgpy.molecule.Group method), 71
hasAtom() (rmgpy.molecule.Molecule method), 66

hasBond() (rmgpy.molecule.Group method), 71
hasBond() (rmgpy.molecule.Molecule method), 66
hasEdge() (rmgpy.molecule.graph.Graph method), 58
hasEdge() (rmgpy.molecule.Group method), 72
hasEdge() (rmgpy.molecule.Molecule method), 66
hasStatMech() (rmgpy.species.Species method), 100
hasTemplate() (rmgpy.reaction.Reaction method), 93
hasThermo() (rmgpy.species.Species method), 100
hasVertex() (rmgpy.molecule.graph.Graph method), 58
hasVertex() (rmgpy.molecule.Group method), 72
hasVertex() (rmgpy.molecule.Molecule method), 66
highPlimit (rmgpy.kinetics.Chebyshev attribute), 46
highPlimit (rmgpy.kinetics.Lindemann attribute), 50
highPlimit (rmgpy.kinetics.MultiPDepArrhenius at-

tribute), 45
highPlimit (rmgpy.kinetics.PDepArrhenius attribute), 43
highPlimit (rmgpy.kinetics.PDepKineticsData attribute),

42
highPlimit (rmgpy.kinetics.ThirdBody attribute), 48
highPlimit (rmgpy.kinetics.Troe attribute), 52
HinderedRotor (class in rmgpy.statmech), 110
hinderedRotor_d_heatCapacity_d_barr() (in module

rmgpy.data.statmechfit), 21
hinderedRotor_d_heatCapacity_d_freq() (in module

rmgpy.data.statmechfit), 21
hinderedRotor_heatCapacity() (in module

rmgpy.data.statmechfit), 21

I
IdealGasTranslation (class in rmgpy.statmech), 102
incrementLonePairs() (rmgpy.molecule.Atom method),

62
incrementOrder() (rmgpy.molecule.Bond method), 63
incrementRadical() (rmgpy.molecule.Atom method), 62
inertia (rmgpy.statmech.HinderedRotor attribute), 112
inertia (rmgpy.statmech.KRotor attribute), 107
inertia (rmgpy.statmech.LinearRotor attribute), 105
inertia (rmgpy.statmech.NonlinearRotor attribute), 106
inertia (rmgpy.statmech.SphericalTopRotor attribute),

108
initialize() (rmgpy.data.statmechfit.DirectFit method), 22
initialize() (rmgpy.data.statmechfit.PseudoFit method),

23
initialize() (rmgpy.data.statmechfit.PseudoRotorFit

method), 22
inputFilePath (rmgpy.qm.symmetry.SymmetryJob at-

tribute), 86
is_equal() (rmgpy.molecule.Molecule method), 67
isAromatic() (rmgpy.molecule.Molecule method), 66
isAssociation() (rmgpy.reaction.Reaction method), 93
isAtomInCycle() (rmgpy.molecule.Molecule method), 66
isBalanced() (rmgpy.reaction.Reaction method), 93
isBenzene() (rmgpy.molecule.Bond method), 63
isBondInCycle() (rmgpy.molecule.Molecule method), 67

136 Index

RMG-Py API Reference, Release 1.0.3

isCarbon() (rmgpy.molecule.Atom method), 62
isCyclic() (rmgpy.molecule.graph.Graph method), 58
isCyclic() (rmgpy.molecule.Group method), 72
isCyclic() (rmgpy.molecule.Molecule method), 67
isDissociation() (rmgpy.reaction.Reaction method), 93
isDouble() (rmgpy.molecule.Bond method), 63
isEdgeInCycle() (rmgpy.molecule.graph.Graph method),

58
isEdgeInCycle() (rmgpy.molecule.Group method), 72
isEdgeInCycle() (rmgpy.molecule.Molecule method), 67
isHydrogen() (rmgpy.molecule.Atom method), 62
isIdentical() (rmgpy.molecule.Group method), 72
isIdenticalTo() (rmgpy.kinetics.Arrhenius method), 39
isIdenticalTo() (rmgpy.kinetics.Chebyshev method), 46
isIdenticalTo() (rmgpy.kinetics.KineticsData method), 38
isIdenticalTo() (rmgpy.kinetics.Lindemann method), 50
isIdenticalTo() (rmgpy.kinetics.MultiArrhenius method),

40
isIdenticalTo() (rmgpy.kinetics.MultiPDepArrhenius

method), 45
isIdenticalTo() (rmgpy.kinetics.PDepArrhenius method),

43
isIdenticalTo() (rmgpy.kinetics.PDepKineticsData

method), 42
isIdenticalTo() (rmgpy.kinetics.ThirdBody method), 48
isIdenticalTo() (rmgpy.kinetics.Troe method), 52
isIdenticalTo() (rmgpy.thermo.NASA method), 121
isIdenticalTo() (rmgpy.thermo.NASAPolynomial

method), 124
isIdenticalTo() (rmgpy.thermo.ThermoData method), 116
isIdenticalTo() (rmgpy.thermo.Wilhoit method), 120
isIsomerization() (rmgpy.reaction.Reaction method), 93
isIsomorphic() (rmgpy.molecule.graph.Graph method),

58
isIsomorphic() (rmgpy.molecule.Group method), 72
isIsomorphic() (rmgpy.molecule.Molecule method), 67
isIsomorphic() (rmgpy.molecule.vf2.VF2 method), 59
isIsomorphic() (rmgpy.reaction.Reaction method), 93
isIsomorphic() (rmgpy.species.Species method), 100
isLinear() (rmgpy.molecule.Molecule method), 67
isMappingValid() (rmgpy.molecule.graph.Graph

method), 58
isMappingValid() (rmgpy.molecule.Group method), 72
isMappingValid() (rmgpy.molecule.Molecule method),

67
isNitrogen() (rmgpy.molecule.Atom method), 62
isNonHydrogen() (rmgpy.molecule.Atom method), 62
isOxygen() (rmgpy.molecule.Atom method), 62
isPressureDependent() (rmgpy.kinetics.Arrhenius

method), 39
isPressureDependent() (rmgpy.kinetics.Chebyshev

method), 46
isPressureDependent() (rmgpy.kinetics.KineticsData

method), 38

isPressureDependent() (rmgpy.kinetics.Lindemann
method), 50

isPressureDependent() (rmgpy.kinetics.MultiArrhenius
method), 40

isPressureDependent() (rmgpy.kinetics.MultiPDepArrhenius
method), 45

isPressureDependent() (rmgpy.kinetics.PDepArrhenius
method), 43

isPressureDependent() (rmgpy.kinetics.PDepKineticsData
method), 42

isPressureDependent() (rmgpy.kinetics.ThirdBody
method), 48

isPressureDependent() (rmgpy.kinetics.Troe method), 52
isPressureValid() (rmgpy.kinetics.Chebyshev method), 47
isPressureValid() (rmgpy.kinetics.Lindemann method),

50
isPressureValid() (rmgpy.kinetics.MultiPDepArrhenius

method), 45
isPressureValid() (rmgpy.kinetics.PDepArrhenius

method), 43
isPressureValid() (rmgpy.kinetics.PDepKineticsData

method), 42
isPressureValid() (rmgpy.kinetics.ThirdBody method), 48
isPressureValid() (rmgpy.kinetics.Troe method), 52
isRadical() (rmgpy.molecule.Molecule method), 67
isSimilarTo() (rmgpy.kinetics.Arrhenius method), 39
isSimilarTo() (rmgpy.kinetics.Chebyshev method), 47
isSimilarTo() (rmgpy.kinetics.KineticsData method), 38
isSimilarTo() (rmgpy.kinetics.Lindemann method), 50
isSimilarTo() (rmgpy.kinetics.MultiArrhenius method),

40
isSimilarTo() (rmgpy.kinetics.MultiPDepArrhenius

method), 45
isSimilarTo() (rmgpy.kinetics.PDepArrhenius method),

43
isSimilarTo() (rmgpy.kinetics.PDepKineticsData

method), 42
isSimilarTo() (rmgpy.kinetics.ThirdBody method), 48
isSimilarTo() (rmgpy.kinetics.Troe method), 52
isSimilarTo() (rmgpy.thermo.NASA method), 121
isSimilarTo() (rmgpy.thermo.NASAPolynomial method),

124
isSimilarTo() (rmgpy.thermo.ThermoData method), 117
isSimilarTo() (rmgpy.thermo.Wilhoit method), 120
isSingle() (rmgpy.molecule.Bond method), 63
isSpecificCaseOf() (rmgpy.molecule.Atom method), 62
isSpecificCaseOf() (rmgpy.molecule.AtomType method),

60
isSpecificCaseOf() (rmgpy.molecule.Bond method), 63
isSpecificCaseOf() (rmgpy.molecule.graph.Edge

method), 57
isSpecificCaseOf() (rmgpy.molecule.graph.Vertex

method), 56

Index 137

RMG-Py API Reference, Release 1.0.3

isSpecificCaseOf() (rmgpy.molecule.GroupAtom
method), 69

isSpecificCaseOf() (rmgpy.molecule.GroupBond
method), 70

isSubgraphIsomorphic() (rmgpy.molecule.graph.Graph
method), 58

isSubgraphIsomorphic() (rmgpy.molecule.Group
method), 72

isSubgraphIsomorphic() (rmgpy.molecule.Molecule
method), 67

isSubgraphIsomorphic() (rmgpy.molecule.vf2.VF2
method), 59

isTemperatureValid() (rmgpy.kinetics.Arrhenius method),
39

isTemperatureValid() (rmgpy.kinetics.Chebyshev
method), 47

isTemperatureValid() (rmgpy.kinetics.KineticsData
method), 38

isTemperatureValid() (rmgpy.kinetics.Lindemann
method), 50

isTemperatureValid() (rmgpy.kinetics.MultiArrhenius
method), 40

isTemperatureValid() (rmgpy.kinetics.MultiPDepArrhenius
method), 45

isTemperatureValid() (rmgpy.kinetics.PDepArrhenius
method), 43

isTemperatureValid() (rmgpy.kinetics.PDepKineticsData
method), 42

isTemperatureValid() (rmgpy.kinetics.ThirdBody
method), 48

isTemperatureValid() (rmgpy.kinetics.Troe method), 52
isTemperatureValid() (rmgpy.thermo.NASA method),

121
isTemperatureValid() (rmgpy.thermo.NASAPolynomial

method), 124
isTemperatureValid() (rmgpy.thermo.ThermoData

method), 117
isTemperatureValid() (rmgpy.thermo.Wilhoit method),

120
isTriple() (rmgpy.molecule.Bond method), 63
isUncertaintyAdditive() (rmgpy.quantity.ArrayQuantity

method), 90
isUncertaintyAdditive() (rmgpy.quantity.ScalarQuantity

method), 89
isUncertaintyMultiplicative()

(rmgpy.quantity.ArrayQuantity method),
90

isUncertaintyMultiplicative()
(rmgpy.quantity.ScalarQuantity method),
89

isUnimolecular() (rmgpy.reaction.Reaction method), 93
isVertexInCycle() (rmgpy.molecule.graph.Graph

method), 58
isVertexInCycle() (rmgpy.molecule.Group method), 72

isVertexInCycle() (rmgpy.molecule.Molecule method),
67

K
kdata (rmgpy.kinetics.KineticsData attribute), 38
kdata (rmgpy.kinetics.PDepKineticsData attribute), 42
KineticsData (class in rmgpy.kinetics), 37
KRotor (class in rmgpy.statmech), 106
kunits (rmgpy.kinetics.Chebyshev attribute), 47

L
Lindemann (class in rmgpy.kinetics), 48
LinearRotor (class in rmgpy.statmech), 103
load() (rmgpy.data.base.Database method), 13
load() (rmgpy.data.statmech.StatmechDatabase method),

18
load() (rmgpy.data.statmech.StatmechDepository

method), 19
load() (rmgpy.data.statmech.StatmechGroups method),

25
load() (rmgpy.data.statmech.StatmechLibrary method),

27
load() (rmgpy.data.thermo.ThermoDatabase method), 30
load() (rmgpy.data.thermo.ThermoDepository method),

31
load() (rmgpy.data.thermo.ThermoGroups method), 33
load() (rmgpy.data.thermo.ThermoLibrary method), 35
loadDepository() (rmgpy.data.statmech.StatmechDatabase

method), 18
loadDepository() (rmgpy.data.thermo.ThermoDatabase

method), 30
loadGroups() (rmgpy.data.statmech.StatmechDatabase

method), 18
loadGroups() (rmgpy.data.thermo.ThermoDatabase

method), 30
loadLibraries() (rmgpy.data.statmech.StatmechDatabase

method), 18
loadLibraries() (rmgpy.data.thermo.ThermoDatabase

method), 30
loadOld() (rmgpy.data.base.Database method), 13
loadOld() (rmgpy.data.statmech.StatmechDatabase

method), 18
loadOld() (rmgpy.data.statmech.StatmechDepository

method), 19
loadOld() (rmgpy.data.statmech.StatmechGroups

method), 25
loadOld() (rmgpy.data.statmech.StatmechLibrary

method), 27
loadOld() (rmgpy.data.thermo.ThermoDatabase method),

30
loadOld() (rmgpy.data.thermo.ThermoDepository

method), 31
loadOld() (rmgpy.data.thermo.ThermoGroups method),

33

138 Index

RMG-Py API Reference, Release 1.0.3

loadOld() (rmgpy.data.thermo.ThermoLibrary method),
35

loadOldDictionary() (rmgpy.data.base.Database method),
13

loadOldDictionary() (rmgpy.data.statmech.StatmechDepository
method), 19

loadOldDictionary() (rmgpy.data.statmech.StatmechGroups
method), 25

loadOldDictionary() (rmgpy.data.statmech.StatmechLibrary
method), 27

loadOldDictionary() (rmgpy.data.thermo.ThermoDepository
method), 31

loadOldDictionary() (rmgpy.data.thermo.ThermoGroups
method), 33

loadOldDictionary() (rmgpy.data.thermo.ThermoLibrary
method), 35

loadOldLibrary() (rmgpy.data.base.Database method), 14
loadOldLibrary() (rmgpy.data.statmech.StatmechDepository

method), 19
loadOldLibrary() (rmgpy.data.statmech.StatmechGroups

method), 25
loadOldLibrary() (rmgpy.data.statmech.StatmechLibrary

method), 27
loadOldLibrary() (rmgpy.data.thermo.ThermoDepository

method), 31
loadOldLibrary() (rmgpy.data.thermo.ThermoGroups

method), 33
loadOldLibrary() (rmgpy.data.thermo.ThermoLibrary

method), 35
loadOldTree() (rmgpy.data.base.Database method), 14
loadOldTree() (rmgpy.data.statmech.StatmechDepository

method), 19
loadOldTree() (rmgpy.data.statmech.StatmechGroups

method), 25
loadOldTree() (rmgpy.data.statmech.StatmechLibrary

method), 27
loadOldTree() (rmgpy.data.thermo.ThermoDepository

method), 31
loadOldTree() (rmgpy.data.thermo.ThermoGroups

method), 33
loadOldTree() (rmgpy.data.thermo.ThermoLibrary

method), 35
LogicAnd (class in rmgpy.data.base), 17
LogicNode (class in rmgpy.data.base), 17
LogicOr (class in rmgpy.data.base), 17

M
makeLogicNode() (in module rmgpy.data.base), 17
mass (rmgpy.statmech.Conformer attribute), 115
mass (rmgpy.statmech.IdealGasTranslation attribute), 103
matchesMolecules() (rmgpy.reaction.Reaction method),

93
matchLogicOr() (rmgpy.data.base.LogicOr method), 17

matchNodeToChild() (rmgpy.data.base.Database
method), 14

matchNodeToChild() (rmgpy.data.statmech.StatmechDepository
method), 20

matchNodeToChild() (rmgpy.data.statmech.StatmechGroups
method), 25

matchNodeToChild() (rmgpy.data.statmech.StatmechLibrary
method), 27

matchNodeToChild() (rmgpy.data.thermo.ThermoDepository
method), 31

matchNodeToChild() (rmgpy.data.thermo.ThermoGroups
method), 33

matchNodeToChild() (rmgpy.data.thermo.ThermoLibrary
method), 35

matchNodeToNode() (rmgpy.data.base.Database
method), 14

matchNodeToNode() (rmgpy.data.statmech.StatmechDepository
method), 20

matchNodeToNode() (rmgpy.data.statmech.StatmechGroups
method), 25

matchNodeToNode() (rmgpy.data.statmech.StatmechLibrary
method), 27

matchNodeToNode() (rmgpy.data.thermo.ThermoDepository
method), 31

matchNodeToNode() (rmgpy.data.thermo.ThermoGroups
method), 33

matchNodeToNode() (rmgpy.data.thermo.ThermoLibrary
method), 35

matchNodeToStructure() (rmgpy.data.base.Database
method), 14

matchNodeToStructure()
(rmgpy.data.statmech.StatmechDepository
method), 20

matchNodeToStructure()
(rmgpy.data.statmech.StatmechGroups
method), 26

matchNodeToStructure()
(rmgpy.data.statmech.StatmechLibrary
method), 27

matchNodeToStructure()
(rmgpy.data.thermo.ThermoDepository
method), 32

matchNodeToStructure()
(rmgpy.data.thermo.ThermoGroups method),
33

matchNodeToStructure()
(rmgpy.data.thermo.ThermoLibrary method),
35

matchToStructure() (rmgpy.data.base.LogicAnd method),
17

matchToStructure() (rmgpy.data.base.LogicOr method),
17

merge() (rmgpy.molecule.graph.Graph method), 58
merge() (rmgpy.molecule.Group method), 72

Index 139

RMG-Py API Reference, Release 1.0.3

merge() (rmgpy.molecule.Molecule method), 67
modes (rmgpy.statmech.Conformer attribute), 115
Molecule (class in rmgpy.molecule), 63
MultiArrhenius (class in rmgpy.kinetics), 40
MultiPDepArrhenius (class in rmgpy.kinetics), 44

N
n (rmgpy.kinetics.Arrhenius attribute), 39
NASA (class in rmgpy.thermo), 120
NASAPolynomial (class in rmgpy.thermo), 123
NonlinearRotor (class in rmgpy.statmech), 105
number (rmgpy.statmech.Conformer attribute), 115

O
opticalIsomers (rmgpy.statmech.Conformer attribute),

115

P
parse() (rmgpy.qm.symmetry.SymmetryJob method), 86
parseOldLibrary() (rmgpy.data.base.Database method),

14
parseOldLibrary() (rmgpy.data.statmech.StatmechDepository

method), 20
parseOldLibrary() (rmgpy.data.statmech.StatmechGroups

method), 26
parseOldLibrary() (rmgpy.data.statmech.StatmechLibrary

method), 28
parseOldLibrary() (rmgpy.data.thermo.ThermoDepository

method), 32
parseOldLibrary() (rmgpy.data.thermo.ThermoGroups

method), 34
parseOldLibrary() (rmgpy.data.thermo.ThermoLibrary

method), 36
Pdata (rmgpy.kinetics.PDepKineticsData attribute), 41
PDepArrhenius (class in rmgpy.kinetics), 42
PDepKineticsData (class in rmgpy.kinetics), 41
Pmax (rmgpy.kinetics.Arrhenius attribute), 39
Pmax (rmgpy.kinetics.Chebyshev attribute), 46
Pmax (rmgpy.kinetics.KineticsData attribute), 37
Pmax (rmgpy.kinetics.Lindemann attribute), 49
Pmax (rmgpy.kinetics.MultiArrhenius attribute), 40
Pmax (rmgpy.kinetics.MultiPDepArrhenius attribute), 44
Pmax (rmgpy.kinetics.PDepArrhenius attribute), 42
Pmax (rmgpy.kinetics.PDepKineticsData attribute), 41
Pmax (rmgpy.kinetics.ThirdBody attribute), 47
Pmax (rmgpy.kinetics.Troe attribute), 51
Pmin (rmgpy.kinetics.Arrhenius attribute), 39
Pmin (rmgpy.kinetics.Chebyshev attribute), 46
Pmin (rmgpy.kinetics.KineticsData attribute), 37
Pmin (rmgpy.kinetics.Lindemann attribute), 49
Pmin (rmgpy.kinetics.MultiArrhenius attribute), 40
Pmin (rmgpy.kinetics.MultiPDepArrhenius attribute), 44
Pmin (rmgpy.kinetics.PDepArrhenius attribute), 43
Pmin (rmgpy.kinetics.PDepKineticsData attribute), 41

Pmin (rmgpy.kinetics.ThirdBody attribute), 47
Pmin (rmgpy.kinetics.Troe attribute), 51
PointGroup (class in rmgpy.qm.symmetry), 85
PointGroupCalculator (class in rmgpy.qm.symmetry), 85
poly1 (rmgpy.thermo.NASA attribute), 122
poly2 (rmgpy.thermo.NASA attribute), 122
poly3 (rmgpy.thermo.NASA attribute), 122
polynomials (rmgpy.thermo.NASA attribute), 122
pressures (rmgpy.kinetics.PDepArrhenius attribute), 44
processOldLibraryEntry()

(rmgpy.data.statmech.StatmechGroups
method), 26

processOldLibraryEntry()
(rmgpy.data.statmech.StatmechLibrary
method), 28

processOldLibraryEntry()
(rmgpy.data.thermo.ThermoGroups method),
34

processOldLibraryEntry()
(rmgpy.data.thermo.ThermoLibrary method),
36

pruneHeteroatoms() (rmgpy.data.thermo.ThermoDatabase
method), 30

PseudoFit (class in rmgpy.data.statmechfit), 23
PseudoRotorFit (class in rmgpy.data.statmechfit), 22

Q
QMVerifier (class in rmgpy.qm.qmverifier), 85
quantum (rmgpy.statmech.HarmonicOscillator attribute),

110
quantum (rmgpy.statmech.HinderedRotor attribute), 112
quantum (rmgpy.statmech.IdealGasTranslation attribute),

103
quantum (rmgpy.statmech.KRotor attribute), 107
quantum (rmgpy.statmech.LinearRotor attribute), 105
quantum (rmgpy.statmech.NonlinearRotor attribute), 106
quantum (rmgpy.statmech.SphericalTopRotor attribute),

108

R
Reaction (class in rmgpy.reaction), 91
removeAtom() (rmgpy.molecule.Group method), 72
removeAtom() (rmgpy.molecule.Molecule method), 67
removeBond() (rmgpy.molecule.Group method), 72
removeBond() (rmgpy.molecule.Molecule method), 67
removeEdge() (rmgpy.molecule.graph.Graph method), 58
removeEdge() (rmgpy.molecule.Group method), 72
removeEdge() (rmgpy.molecule.Molecule method), 67
removeVertex() (rmgpy.molecule.graph.Graph method),

58
removeVertex() (rmgpy.molecule.Group method), 72
removeVertex() (rmgpy.molecule.Molecule method), 67
resetConnectivityValues() (rmgpy.molecule.Atom

method), 62

140 Index

RMG-Py API Reference, Release 1.0.3

resetConnectivityValues() (rmgpy.molecule.graph.Graph
method), 58

resetConnectivityValues() (rmgpy.molecule.graph.Vertex
method), 56

resetConnectivityValues() (rmgpy.molecule.Group
method), 72

resetConnectivityValues() (rmgpy.molecule.GroupAtom
method), 69

resetConnectivityValues() (rmgpy.molecule.Molecule
method), 67

reverseThisArrheniusRate() (rmgpy.reaction.Reaction
method), 93

rmgpy.cantherm (module), 3
rmgpy.chemkin (module), 7
rmgpy.constants (module), 10
rmgpy.data (module), 11
rmgpy.kinetics (module), 36
rmgpy.molecule (module), 54
rmgpy.molecule.adjlist (module), 73
rmgpy.pdep (module), 76
rmgpy.qm (module), 83
rmgpy.quantity (module), 87
rmgpy.reaction (module), 90
rmgpy.rmg (module), 94
rmgpy.solver (module), 97
rmgpy.species (module), 98
rmgpy.statmech (module), 101
rmgpy.statmech.schrodinger (module), 112
rmgpy.thermo (module), 115
rotationalConstant (rmgpy.statmech.HinderedRotor at-

tribute), 112
rotationalConstant (rmgpy.statmech.KRotor attribute),

107
rotationalConstant (rmgpy.statmech.LinearRotor at-

tribute), 105
rotationalConstant (rmgpy.statmech.NonlinearRotor at-

tribute), 106
rotationalConstant (rmgpy.statmech.SphericalTopRotor

attribute), 108
run() (rmgpy.qm.symmetry.SymmetryJob method), 86

S
S0 (rmgpy.thermo.Wilhoit attribute), 119
S298 (rmgpy.thermo.ThermoData attribute), 116
saturate() (rmgpy.molecule.Molecule method), 68
save() (rmgpy.data.base.Database method), 14
save() (rmgpy.data.statmech.StatmechDatabase method),

18
save() (rmgpy.data.statmech.StatmechDepository

method), 20
save() (rmgpy.data.statmech.StatmechGroups method),

26
save() (rmgpy.data.statmech.StatmechLibrary method),

28

save() (rmgpy.data.thermo.ThermoDatabase method), 30
save() (rmgpy.data.thermo.ThermoDepository method),

32
save() (rmgpy.data.thermo.ThermoGroups method), 34
save() (rmgpy.data.thermo.ThermoLibrary method), 36
saveDepository() (rmgpy.data.statmech.StatmechDatabase

method), 18
saveDepository() (rmgpy.data.thermo.ThermoDatabase

method), 30
saveDictionary() (rmgpy.data.base.Database method), 14
saveDictionary() (rmgpy.data.statmech.StatmechDepository

method), 20
saveDictionary() (rmgpy.data.statmech.StatmechGroups

method), 26
saveDictionary() (rmgpy.data.statmech.StatmechLibrary

method), 28
saveDictionary() (rmgpy.data.thermo.ThermoDepository

method), 32
saveDictionary() (rmgpy.data.thermo.ThermoGroups

method), 34
saveDictionary() (rmgpy.data.thermo.ThermoLibrary

method), 36
saveEntry() (rmgpy.data.statmech.StatmechDepository

method), 20
saveEntry() (rmgpy.data.statmech.StatmechGroups

method), 26
saveEntry() (rmgpy.data.statmech.StatmechLibrary

method), 28
saveEntry() (rmgpy.data.thermo.ThermoDepository

method), 32
saveEntry() (rmgpy.data.thermo.ThermoGroups method),

34
saveEntry() (rmgpy.data.thermo.ThermoLibrary method),

36
saveGroups() (rmgpy.data.statmech.StatmechDatabase

method), 18
saveGroups() (rmgpy.data.thermo.ThermoDatabase

method), 30
saveLibraries() (rmgpy.data.statmech.StatmechDatabase

method), 18
saveLibraries() (rmgpy.data.thermo.ThermoDatabase

method), 30
saveOld() (rmgpy.data.base.Database method), 14
saveOld() (rmgpy.data.statmech.StatmechDatabase

method), 19
saveOld() (rmgpy.data.statmech.StatmechDepository

method), 20
saveOld() (rmgpy.data.statmech.StatmechGroups

method), 26
saveOld() (rmgpy.data.statmech.StatmechLibrary

method), 28
saveOld() (rmgpy.data.thermo.ThermoDatabase method),

30

Index 141

RMG-Py API Reference, Release 1.0.3

saveOld() (rmgpy.data.thermo.ThermoDepository
method), 32

saveOld() (rmgpy.data.thermo.ThermoGroups method),
34

saveOld() (rmgpy.data.thermo.ThermoLibrary method),
36

saveOldDictionary() (rmgpy.data.base.Database method),
14

saveOldDictionary() (rmgpy.data.statmech.StatmechDepository
method), 20

saveOldDictionary() (rmgpy.data.statmech.StatmechGroups
method), 26

saveOldDictionary() (rmgpy.data.statmech.StatmechLibrary
method), 28

saveOldDictionary() (rmgpy.data.thermo.ThermoDepository
method), 32

saveOldDictionary() (rmgpy.data.thermo.ThermoGroups
method), 34

saveOldDictionary() (rmgpy.data.thermo.ThermoLibrary
method), 36

saveOldLibrary() (rmgpy.data.base.Database method), 14
saveOldLibrary() (rmgpy.data.statmech.StatmechDepository

method), 20
saveOldLibrary() (rmgpy.data.statmech.StatmechGroups

method), 26
saveOldLibrary() (rmgpy.data.statmech.StatmechLibrary

method), 28
saveOldLibrary() (rmgpy.data.thermo.ThermoDepository

method), 32
saveOldLibrary() (rmgpy.data.thermo.ThermoGroups

method), 34
saveOldLibrary() (rmgpy.data.thermo.ThermoLibrary

method), 36
saveOldTree() (rmgpy.data.base.Database method), 14
saveOldTree() (rmgpy.data.statmech.StatmechDepository

method), 20
saveOldTree() (rmgpy.data.statmech.StatmechGroups

method), 26
saveOldTree() (rmgpy.data.statmech.StatmechLibrary

method), 28
saveOldTree() (rmgpy.data.thermo.ThermoDepository

method), 32
saveOldTree() (rmgpy.data.thermo.ThermoGroups

method), 34
saveOldTree() (rmgpy.data.thermo.ThermoLibrary

method), 36
ScalarQuantity (class in rmgpy.quantity), 89
selectPolynomial() (rmgpy.thermo.NASA method), 122
semiclassical (rmgpy.statmech.HinderedRotor attribute),

112
setLonePairs() (rmgpy.molecule.Atom method), 62
setSpinMultiplicity() (rmgpy.molecule.Atom method), 62
setUncertaintyType() (rmgpy.quantity.ScalarQuantity

method), 89

solve() (rmgpy.data.statmechfit.DirectFit method), 22
solve() (rmgpy.data.statmechfit.PseudoFit method), 24
solve() (rmgpy.data.statmechfit.PseudoRotorFit method),

23
solveSchrodingerEquation()

(rmgpy.statmech.HinderedRotor method),
112

sortAtoms() (rmgpy.molecule.Group method), 72
sortAtoms() (rmgpy.molecule.Molecule method), 68
sortVertices() (rmgpy.molecule.graph.Graph method), 58
sortVertices() (rmgpy.molecule.Group method), 73
sortVertices() (rmgpy.molecule.Molecule method), 68
Species (class in rmgpy.species), 98
SphericalTopRotor (class in rmgpy.statmech), 107
spinMultiplicity (rmgpy.statmech.Conformer attribute),

115
split() (rmgpy.molecule.graph.Graph method), 58
split() (rmgpy.molecule.Group method), 73
split() (rmgpy.molecule.Molecule method), 68
StatmechDatabase (class in rmgpy.data.statmech), 18
StatmechDepository (class in rmgpy.data.statmech), 19
StatmechGroups (class in rmgpy.data.statmech), 24
StatmechLibrary (class in rmgpy.data.statmech), 26
succesfulJobExists() (rmgpy.qm.qmverifier.QMVerifier

method), 85
symmetry (rmgpy.statmech.HinderedRotor attribute), 112
symmetry (rmgpy.statmech.KRotor attribute), 107
symmetry (rmgpy.statmech.LinearRotor attribute), 105
symmetry (rmgpy.statmech.NonlinearRotor attribute),

106
symmetry (rmgpy.statmech.SphericalTopRotor attribute),

108
SymmetryJob (class in rmgpy.qm.symmetry), 85

T
T0 (rmgpy.kinetics.Arrhenius attribute), 39
T1 (rmgpy.kinetics.Troe attribute), 51
T2 (rmgpy.kinetics.Troe attribute), 51
T3 (rmgpy.kinetics.Troe attribute), 51
Tdata (rmgpy.kinetics.KineticsData attribute), 37
Tdata (rmgpy.kinetics.PDepKineticsData attribute), 41
Tdata (rmgpy.thermo.ThermoData attribute), 116
ThermoData (class in rmgpy.thermo), 115
ThermoDatabase (class in rmgpy.data.thermo), 29
ThermoDepository (class in rmgpy.data.thermo), 31
ThermoGroups (class in rmgpy.data.thermo), 32
ThermoLibrary (class in rmgpy.data.thermo), 34
ThirdBody (class in rmgpy.kinetics), 47
Tmax (rmgpy.kinetics.Arrhenius attribute), 39
Tmax (rmgpy.kinetics.Chebyshev attribute), 46
Tmax (rmgpy.kinetics.KineticsData attribute), 37
Tmax (rmgpy.kinetics.Lindemann attribute), 49
Tmax (rmgpy.kinetics.MultiArrhenius attribute), 40
Tmax (rmgpy.kinetics.MultiPDepArrhenius attribute), 44

142 Index

RMG-Py API Reference, Release 1.0.3

Tmax (rmgpy.kinetics.PDepArrhenius attribute), 43
Tmax (rmgpy.kinetics.PDepKineticsData attribute), 41
Tmax (rmgpy.kinetics.ThirdBody attribute), 47
Tmax (rmgpy.kinetics.Troe attribute), 51
Tmax (rmgpy.thermo.NASA attribute), 121
Tmax (rmgpy.thermo.NASAPolynomial attribute), 123
Tmax (rmgpy.thermo.ThermoData attribute), 116
Tmax (rmgpy.thermo.Wilhoit attribute), 119
Tmin (rmgpy.kinetics.Arrhenius attribute), 39
Tmin (rmgpy.kinetics.Chebyshev attribute), 46
Tmin (rmgpy.kinetics.KineticsData attribute), 37
Tmin (rmgpy.kinetics.Lindemann attribute), 49
Tmin (rmgpy.kinetics.MultiArrhenius attribute), 40
Tmin (rmgpy.kinetics.MultiPDepArrhenius attribute), 44
Tmin (rmgpy.kinetics.PDepArrhenius attribute), 43
Tmin (rmgpy.kinetics.PDepKineticsData attribute), 41
Tmin (rmgpy.kinetics.ThirdBody attribute), 47
Tmin (rmgpy.kinetics.Troe attribute), 51
Tmin (rmgpy.thermo.NASA attribute), 121
Tmin (rmgpy.thermo.NASAPolynomial attribute), 123
Tmin (rmgpy.thermo.ThermoData attribute), 116
Tmin (rmgpy.thermo.Wilhoit attribute), 119
toAdjacencyList() (in module rmgpy.molecule.adjlist), 75
toAdjacencyList() (rmgpy.molecule.Group method), 73
toAdjacencyList() (rmgpy.molecule.Molecule method),

68
toAdjacencyList() (rmgpy.species.Species method), 100
toArrhenius() (rmgpy.kinetics.MultiArrhenius method),

40
toAugmentedInChI() (rmgpy.molecule.Molecule

method), 68
toAugmentedInChIKey() (rmgpy.molecule.Molecule

method), 68
toChemkin() (rmgpy.reaction.Reaction method), 93
toHTML() (rmgpy.kinetics.Arrhenius method), 39
toHTML() (rmgpy.kinetics.Chebyshev method), 47
toHTML() (rmgpy.kinetics.KineticsData method), 38
toHTML() (rmgpy.kinetics.Lindemann method), 50
toHTML() (rmgpy.kinetics.MultiArrhenius method), 41
toHTML() (rmgpy.kinetics.MultiPDepArrhenius

method), 45
toHTML() (rmgpy.kinetics.PDepArrhenius method), 44
toHTML() (rmgpy.kinetics.PDepKineticsData method),

42
toHTML() (rmgpy.kinetics.ThirdBody method), 48
toHTML() (rmgpy.kinetics.Troe method), 52
toInChI() (rmgpy.molecule.Molecule method), 68
toInChIKey() (rmgpy.molecule.Molecule method), 68
toNASA() (rmgpy.thermo.ThermoData method), 117
toNASA() (rmgpy.thermo.Wilhoit method), 120
toRDKitMol() (rmgpy.molecule.Molecule method), 68
toSingleBonds() (rmgpy.molecule.Molecule method), 68
toSMARTS() (rmgpy.molecule.Molecule method), 68
toSMILES() (rmgpy.molecule.Molecule method), 68

toThermoData() (rmgpy.thermo.NASA method), 122
toThermoData() (rmgpy.thermo.Wilhoit method), 120
toWilhoit() (rmgpy.thermo.NASA method), 122
toWilhoit() (rmgpy.thermo.ThermoData method), 117
TransitionState (class in rmgpy.species), 100
Troe (class in rmgpy.kinetics), 50

U
uniqueID (rmgpy.qm.symmetry.SymmetryJob attribute),

86
unitDegeneracy() (in module

rmgpy.statmech.schrodinger), 113
update() (rmgpy.molecule.Molecule method), 69
updateAtomTypes() (rmgpy.molecule.Molecule method),

69
updateCharge() (rmgpy.molecule.Atom method), 62
updateConnectivityValues()

(rmgpy.molecule.graph.Graph method), 59
updateConnectivityValues() (rmgpy.molecule.Group

method), 73
updateConnectivityValues() (rmgpy.molecule.Molecule

method), 69
updateFingerprint() (rmgpy.molecule.Group method), 73
updateLonePairs() (rmgpy.molecule.Molecule method),

69
updateMultiplicity() (rmgpy.molecule.Molecule method),

69

V
Vertex (class in rmgpy.molecule.graph), 56
VF2 (class in rmgpy.molecule.vf2), 59

W
Wigner (class in rmgpy.kinetics), 52
Wilhoit (class in rmgpy.thermo), 117
writeInputFile() (rmgpy.qm.symmetry.SymmetryJob

method), 86

Index 143

	RMG API Reference
	CanTherm (rmgpy.cantherm)
	Chemkin files (rmgpy.chemkin)
	Physical constants (rmgpy.constants)
	Database (rmgpy.data)
	Kinetics (rmgpy.kinetics)
	Molecular representations (rmgpy.molecule)
	Pressure dependence (rmgpy.pdep)
	QMTP (rmgpy.qm)
	Physical quantities (rmgpy.quantity)
	Reactions (rmgpy.reaction)
	Reaction mechanism generation (rmgpy.rmg)
	Reaction system simulation (rmgpy.solver)
	Species (rmgpy.species)
	Statistical mechanics (rmgpy.statmech)
	Thermodynamics (rmgpy.thermo)

	Bibliography
	Python Module Index
	Index

