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RMG-Py and CanTherm Documentation, Release 2.2.0

RMG is an automatic chemical reaction mechanism generator that constructs kinetic models composed of elementary
chemical reaction steps using a general understanding of how molecules react. This documentation is for the newer
Python version of RMG that we call RMG-Py.

I want to. . . Resource
analyze models & search databases RMG website resources (no download needed)
make transition state theory calculations Run Cantherm with the Canterm User’s Guide
create mechanisms automatically Download RMG with the RMG User’s Guide
post an issue with RMG GitHub issues page
contribute to RMG project RMG developer’s wiki

CanTherm is developed and distributed as part of RMG-Py, but can be used as a stand-alone application for Ther-
mochemistry, Transition State Theory, and Master Equation chemical kinetics calculations. Its user guide is also
included.

The last section of this documentation covers some of the more in depth theory behind RMG and CanTherm.

Please visit http://reactionmechanismgenerator.github.io/RMG-Py/ for the most up to date documentation and source
code. You may refer to the separate RMG-Py API Reference document to view the details of RMG-Py’s modules and
subpackages.
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CHAPTER

ONE

RMG USER’S GUIDE

For any questions related to RMG and its usage and installation, please post an issue at https://github.com/
ReactionMechanismGenerator/RMG-Py/issues and the RMG developers will get back to you as soon as we can. You
can also search for your problem on the issues page to see if there are already solutions in development. Alternatively,
you can email us at rmg_dev@mit.edu.

1.1 Introduction

Reaction Mechanism Generator (RMG) is an automatic chemical reaction mechanism generator that constructs
kinetic models composed of elementary chemical reaction steps using a general understanding of how molecules
react. This version is written in Python, and called RMG-Py.

1.1.1 License

RMG is an open source program, available to the general public free of charge. The primary RMG code is distributed
under the terms of the MIT/X11 License. However, RMG has a number of dependencies of various licenses, some of
which may be more restrictive. It is the user’s responsibility to ensure these licenses have been obtained.

Copyright (c) 2002-2018 Prof. William H. Green (whgreen@mit.edu),
Prof. Richard H. West (r.west@neu.edu) and the RMG Team (rmg_dev@mit.edu)

Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the 'Software'),
to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED 'AS IS', WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.
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1.2 Overview of Features

Thermodynamics estimation using group additivity. Group additivity based on Benson’s groups provide fast and
reliable thermochemistry estimates. A standalone utility for estimating heat of formation, entropy, and heat
capacity is also included.

Rate-based model enlargement Reactions are added to the model based on their rate, fastest first.

Rate-based termination. The model enlargement stops when all excluded reactions are slower than a given threshold.
This provides a controllable error bound on the kinetic model that is generated.

Extensible libraries Ability to include reaction models on top of the provided reaction families.

Pressure-dependent reaction networks. Dissociation, combination, and isomerization reactions have the potential
to have rate coefficients that are dependent on both temperature and pressure, and RMG is able to estimate both
for networks of arbitrary complexity with a bounded error.

Simultaneous mechanism generation for several conditions. Concurrent generation of a reaction mechanism over
multiple temperature and pressure conditions. Mechanisms generated this way are valid over a range of reaction
conditions.

Dynamic simulation to a target conversion or time. Often the desired simulation time is not known a priori, so a
target conversion is preferred.

Transport properties estimation using group additivity The Lennard-Jones sigma and epsilon parameters are es-
timated using empirical correlations (based on a species’ critical properties and acentric factor). The critical
properties are estimated using a group-additivity approach; the acentric factor is also estimated using empirical
correlations. A standalone application for estimating these parameters is provided, and the output is stored in
CHEMKIN-readable format.

1.3 Installation

Note: It is recommended that RMG be installed with Python 2.7, although it has been previously tested that Python
2.5 and 2.6 may also work. Dependency issues render it incompatible with Python 3.x releases.

For any questions related to RMG and its usage and installation, please post an issue at https://github.com/
ReactionMechanismGenerator/RMG-Py/issues and the RMG developers will get back to you as soon as we can. You
can also search for your problem on the issues page to see if there are already solutions in development. Alternatively,
you can email us at rmg_dev@mit.edu

1.3.1 For Basic Users: Binary Installation Using Anaconda

It is highly recommended to use the Python platform Anaconda to perform the installation of RMG-Py. A binary
installation is recommended for users who want to use RMG out of the box, and are not interested in changing or
recompiling the RMG code or making many additions to RMG’s thermodynamic and kinetics databases.

Binary Installation Using Anaconda for Unix-Based Systems: Linux and Mac OSX

• Download and install the Anaconda Python Platform for Python 2.7 (make sure not to install Python 3.0+, which
is incompatible with RMG). When prompted to append Anaconda to your PATH, select or type Yes.

4 Chapter 1. RMG User’s Guide
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• Install both RMG and the RMG-database binaries through the Terminal. Dependencies will be installed auto-
matically. It is safest to make a new Anaconda environment for RMG and its dependencies. Type the following
command into the Terminal to create the new environment named ‘rmg_env’ containing the latest stable version
of the RMG program and its database.

conda create -c rmg --name rmg_env rmg rmgdatabase

Whenever you wish to use it you must first activate the environment:

source activate rmg_env

• Optional: If you wish to use the QMTP interface with MOPAC to run quantum mechanical calculations for
improved thermochemistry estimates of cyclic species, please obtain a legal license through the MOPAC License
Request Form. Once you have it, type the following into your Terminal

mopac password_string_here

• You may now run an RMG test job. Save the Minimal Example Input File to a local directory. Use the Terminal
to run your RMG job inside that folder using the following command

rmg.py input.py

You may now use RMG-Py, CanTherm, as well as any of the Standalone Modules included in the RMG-Py package.

Updating your binary installation of RMG in Linux or Mac OSX

If you had previously installed a binary version of the RMG package, you may check and update your installation to
the latest stable version available on Anaconda by typing the following command on the Terminal

source activate rmg_env
conda update rmg rmgdatabase -c rmg

Binary Installation Using Anaconda for Windows

• Download and install the Anaconda Python Platform for Python 2.7 (make sure not to install Python 3.0+,
which is incompatible with RMG). We recommend changing the default install path to C:\Anaconda\ in order
to avoid spaces in the install path and be easily accessible. It is recommended to append Anaconda to your
PATH as well as setting it as your default Python executable. All other settings can remain as their defaults.

1.3. Installation 5
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• Now we want to install both RMG and the RMG-database binaries via the command prompt. Dependencies
will be installed automatically. It is safest to make a new Anaconda environment for RMG and all its dependen-
cies. Open a command prompt (either by finding it in your Program Files or by searching for cmd.exe. You
may need to run the command prompt as an administrator: to do this open up a file explorer and navigate to
C:\Windows\System32 and find the file cmd.exe; right click on this file and select “run as administrator”)
and type the following to create the new environment named ‘rmg_env’ containing the latest stable version of
the RMG program and its database.

conda create -c rmg --name rmg_env rmg rmgdatabase

• Whenever you wish to use it you must first activate the environment in the command prompt by typing:

activate rmg_env

• Optional: If you wish to use the QMTP interface with MOPAC to run quantum mechanical calculations for
improved thermochemistry estimates of cyclic species, please obtain a legal license through the MOPAC Li-
cense Request Form.Once you have it, type the following into your command prompt (while the environment is
activated)

mopac password_string_here

• Now you must set the RMG environment variable in Windows to allow your system to find the RMG python
files more easily.

• If you set any new environment variables, you must now close and reopen the command prompt so that those
environment variables can be refreshed and used.

• You may now run an RMG test job. Save the Minimal Example Input File to a local directory. Use the command
prompt to run your RMG job inside that folder by using the following command

6 Chapter 1. RMG User’s Guide
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activate rmg_env
python %RMGPy%\rmg.py input.py

You may now use RMG-Py, CanTherm, as well as any of the Standalone Modules included in the RMG-Py package.

Updating your binary installation of RMG for Windows

If you had previously installed a binary version of the RMG package, you may check and update your installation to
the latest stable version available on Anaconda by typing the following command in a Command Prompt

source activate rmg_env
conda update rmg rmgdatabase -c rmg

Setting up Windows Environment Variables for RMG

Setting environment variables in Windows allows for easier shortcutting and usage of RMG scripts and packages.

Setting the RMGPy variable

• If you have a search bar available in your start menu, search for “environment variables” and select “Edit envi-
ronment variables for your account”. Alternatively, navigate to this settings window by first going to “Control
Panel > System”, then clicking “Advanced system settings”.

• Once the “System Properties” window opens, click on “Environment Variables. . . ” in the “Advanced” tab.

1.3. Installation 7
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• Once the “Environment Variables” window opens, click on “New” under the “User variables”.
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• Set a new variable with the name RMGPy with the appropriate value directed at your RMG path.

If you installed the binary version of RMG, the environment value should be set to:

C:\Anaconda\envs\rmg_env\Scripts\

where C:\Anaconda can be replaced by wherever your Anaconda was installed.

Your screen might look like this:

If you are installing RMG by source, you can similarly set your RMGPy variable to the source directory, such as

C:\Code\RMG-Py

• Click “Ok” on all screens to confirm the changes.

Note: If you set any new environment variables, you must close and reopen any command prompts previously open

1.3. Installation 9
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before the changes can take effect.

Optional: Setting a Permanent Anaconda Environment for RMG

If you use Anaconda solely for RMG, it may be more convenient to set your PATH variable to be permanently directed
to the RMG environment. This will allow you to run RMG easily without having to type activate rmg_env in the
command prompt every time.

Similarly to setting the environment variable for RMGPy, go to “Edit environment variables for your account” and click
edit on the PATH variable. Replace the paths containing the Anaconda main directory with the RMG environment in
Anaconda.

For example a path such as

C:\Anaconda\Scripts\

should be changed to:

C:\Anaconda\envs\rmg_env\Scripts\

Note that C:\Anaconda should be wherever your Anaconda was installed.

1.3.2 For Developers: Installation by Source Using Anaconda Environment

RMG-Py can now be built by source using the Anaconda Python Platform to assist in installing all necessary depen-
dencies. This is recommended for a developer who may be altering the RMG source code or someone who expects
to manipulate the databases extensively. You will also be able to access the latest source code updates and patches
through Github.

Installation by Source Using Anaconda Environment for Unix-based Systems: Linux and Mac OSX

• Download and install the Anaconda Python Platform for Python 2.7 (make sure not to install Python 3.0+,
which is incompatible with RMG). When prompted to append Anaconda to your PATH, select or type Yes.
Install the Anaconda folder inside your home directory (typically /home/YourUsername/ in Linux and /
Users/YourUsername in Mac).

• Install Git, the open source version control package through the Terminal. For Mac OS X: Git is already
packages with OS X 10.9 or later, but requires installation of Xcode’s Command Line Tools. Skip the git
installation and run it through the terminal, where you will be prompted to install the Command Line Tools if
they are not already installed.

sudo apt-get install git

• Install the latest versions of RMG and RMG-database through cloning the source code via Git. Make sure to
start in an appropriate local directory where you want both RMG-Py and RMG-database folders to exist.

git clone https://github.com/ReactionMechanismGenerator/RMG-Py.git
git clone https://github.com/ReactionMechanismGenerator/RMG-database.git

• Now create the anaconda environment for RMG-Py

For Linux users:

10 Chapter 1. RMG User’s Guide
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cd RMG-Py
conda env create -f environment_linux.yml

For Mac users:

cd RMG-Py
conda env create -f environment_mac.yml

• Compile RMG-Py after activating the anaconda environment

source activate rmg_env
make

• Modify environment variables. Add RMG-Py to the PYTHONPATH to ensure that you can access RMG mod-
ules from any folder. Modify your ~/.bashrc file by adding the following line

export PYTHONPATH=$PYTHONPATH:YourFolder/RMG-Py/

NOTE: Make sure to change YourFolder to the path leading to the RMG-Py code. Not doing so will lead to an
error stating that python cannot find the module rmgpy.

• If you wish to always be able to run RMG-Py, you can modify the anaconda path to point to the RMG environ-
ment. Modify the following line in your ~/.bashrc file

export PATH=~/anaconda/bin:$PATH

by changing it to the following line

export PATH=~/anaconda/envs/rmg_env/bin:$PATH

be sure to either close and reopen your terminal to refresh your environment variables, or type the following
command

source ~/.bashrc

• Optional: If you wish to use the QMTP interface with MOPAC to run quantum mechanical calculations for
improved thermochemistry estimates of cyclic species, please obtain a legal license through the MOPAC License
Request Form. Once you have it, type the following into your Terminal

mopac password_string_here

You may now use RMG-Py, CanTherm, as well as any of the Standalone Modules included in the RMG-Py package.

Test Suite

There are a number of basic tests you can run on the newly installed RMG. It is recommended to run them regularly
to ensure the code and databases are behaving normally.

• Unit test suite: this will run all the unit tests in the rmgpy package

cd RMG-Py
make test

• Database test suite: this will run the database unit tests to ensure that groups, rate rules, and libraries are well
formed

1.3. Installation 11
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cd RMG-Py
make test-database

Running Examples

A number of basic examples can be run immediately. Additional example input files can be found in the RMG-Py/
examples folder. Please read more on Example Input Files in the documentation.

• Minimal Example: this will run an Ethane pyrolysis model. It should take less than a minute to complete. The
results will be in the RMG-Py/testing/minimal folder:

cd RMG-Py
make eg1

• Hexadiene Example: this will run a Hexadiene model with pressure dependence and QMTP. Note that you
must have MOPAC installed for this to run. The results will be in the RMG-Py/testing/hexadiene folder:

cd RMG-Py
make eg2

• Liquid Phase Example: this will run a liquid phase RMG model. The results will be in the RMG-Py/testing/
liquid_phase folder

cd RMG-Py
make eg3

• ThermoEstimator Example: this will run the Thermo Estimation Module on a few molecules. Note that
you must have MOPAC installed for this to run completely. The results will be in the RMG-Py/testing/
thermoEstimator folder

cd RMG-Py
make eg4

Installation by Source Using Anaconda Environment for Windows

• Download and install the Anaconda Python Platform for Python 2.7 (make sure not to install Python 3.0+,
which is incompatible with RMG). We recommend changing the default install path to C:\Anaconda\ in order
to avoid spaces in the install path and be easily accessible. It is recommended to append Anaconda to your
PATH as well as setting it as your default Python executable. All other settings can remain as their defaults.

12 Chapter 1. RMG User’s Guide
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• Install Git, the open source version control package. When asked, append Git tools to your Command Prompt.
It is also recommended to commit Unix-style line endings:

1.3. Installation 13
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• Open Git CMD or a command prompt (either by finding it in your Program Files or by searching for cmd.exe.
You may have to run the command prompt as an administrator. To do so right click on cmd.exe. and select
Run as Administrator). Install the latest versions of RMG and RMG-database through cloning the source code
via Git. Make sure to start in an appropriate local directory where you want both RMG-Py and RMG-database
folders to exist. We recommend creating a folder such as C:\Code\

git clone https://github.com/ReactionMechanismGenerator/RMG-Py.git
git clone https://github.com/ReactionMechanismGenerator/RMG-database.git

• Create and activate the RMG Anaconda environment

cd RMG-Py
conda env create -f environment_windows.yml
activate rmg_env

Every time you open a new command prompt and want to complie or use RMG, you must reactivate this
environment by typing

activate rmg_env

• Now you can compile RMG-Py

cd RMG-Py
mingw32-make

14 Chapter 1. RMG User’s Guide
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• Now it is recommended to modify your system’s environment variables. Please see Setting the RMG environment
variable in Windows for more information.

Additionally, set the PYTHONPATH environment variable to the path of your RMG-Py source folder to ensure
that you can access RMG modules from any python prompt. The prompt might look like this:

• If you set any new environment variables, you must now close and reopen the command prompt so that those
environment variables can be refreshed and used.

• Optional: If you wish to use the QMTP interface with MOPAC to run quantum mechanical calculations for
improved thermochemistry estimates of cyclic species, please obtain a legal license through the MOPAC License
Request Form. Once you have it, type the following into your command prompt

mopac password_string_here

You may now use RMG-Py, CanTherm, as well as any of the Standalone Modules included in the RMG-Py package.

Test Suite

There are a number of basic tests you can run on the newly installed RMG. It is recommended to run them regularly
to ensure the code and databases are behaving normally.

• Unit test suite: this will run all the unit tests in the rmgpy package

cd RMG-Py
mingw32-make test

• Database test suite: this will run the database unit tests to ensure that groups, rate rules, and libraries are well
formed

1.3. Installation 15
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cd RMG-Py
mingw32-make test-database

Running Examples

A number of basic examples can be run immediately. Additional example input files can be found in the
RMG-Py\examples folder. Please read more on Example Input Files in the documentation.

• Minimal Example: this will run an Ethane pyrolysis model. It should take less than a minute to complete. The
results will be in the RMG-Py\testing\minimal folder:

cd RMG-Py
mingw32-make eg1

• Hexadiene Example: this will run a Hexadiene model with pressure dependence and QMTP. Note that you
must have MOPAC installed for this to run. The results will be in the RMG-Py\testing\hexadiene folder:

cd RMG-Py
mingw32-make eg2

• Liquid Phase Example: this will run a liquid phase RMG model. The results will be in the
RMG-Py\testing\liquid_phase folder

cd RMG-Py
mingw32-make eg3

• ThermoEstimator Example: this will run the Thermo Estimation Module on a few molecules. Note
that you must have MOPAC installed for this to run completely. The results will be in the
RMG-Py\testing\thermoEstimator folder

cd RMG-Py
mingw32-make eg4

Updating the RMG-Py Source Code

It is recommended to keep yourself up to date with the latest patches and bug fixes by RMG developers, which is
maintained on the official repository at https://github.com/ReactionMechanismGenerator/RMG-Py/ You can view the
latest changes by viewing the commits tab on the repository. To update your source code, you can “pull” the latest
changes from the official repo by typing the following command in the Command Prompt

cd RMG-Py
git pull https://github.com/ReactionMechanismGenerator/RMG-Py.git master

We also recommend updating the RMG-database regularly. The repo itself can be found at https://github.com/
ReactionMechanismGenerator/RMG-database/

cd RMG-database
git pull https://github.com/ReactionMechanismGenerator/RMG-database.git master

For more information about how to use the Git workflow to make changes to the source code, please refer to the handy
Git Tutorial
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https://github.com/ReactionMechanismGenerator/RMG-Py/
https://github.com/ReactionMechanismGenerator/RMG-database/
https://github.com/ReactionMechanismGenerator/RMG-database/
http://git-scm.com/docs/gittutorial


RMG-Py and CanTherm Documentation, Release 2.2.0

1.3.3 For Developers: Direct Installation by Source without Anaconda

The installation approach in this section is not recommended and also not maintained by RMG developer team. This
is only a record for people who cannot use Anaconda.

Linux Installation

RMG-Py and all of its dependencies may be easily installed through a short series of Terminal commands. The
instructions listed below were written for Ubuntu 12.04 and should generally apply to other distributions.

Warning: This installation method is no longer actively maintained, and is not guaranteed to work as written.

• Install compilers and libraries:

sudo apt-get install git g++ gfortran python-dev liblapack-dev
sudo apt-get install python-openbabel python-setuptools python-pip

• After creating a Github account, generate your public key:

cd ~; ssh-keygen # press enter to save to the default directory
# create a password if desired

cat .ssh/id_rsa.pub

Copy this public key to your Github profile.

• Install dependencies:

sudo apt-get install libpng-dev libfreetype6-dev graphviz

sudo pip install numpy # install NumPy before other packages

sudo pip install scipy cython nose matplotlib quantities sphinx psutil xlwt

cd ~
git clone https://github.com/ReactionMechanismGenerator/PyDAS.git
git clone https://github.com/ReactionMechanismGenerator/PyDQED.git
cd PyDAS; make F77=gfortran; sudo make install; cd ..
cd PyDQED; make F77=gfortran; sudo make install; cd ..

• Install RDKit

Full installation instructions: http://code.google.com/p/rdkit/wiki/GettingStarted Be sure to build it with InChI
support. Here’s a synopsis:

cd ~
sudo apt-get install flex bison build-essential python-numpy cmake python-dev sqlite3
sudo apt-get install libsqlite3-dev libboost-dev libboost-python-dev libboost-regex-dev
git clone https://github.com/rdkit/rdkit.git
cd rdkit
export RDBASE=`pwd`
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$RDBASE/lib
export PYTHONPATH=$PYTHONPATH:$RDBASE
cd External/INCHI-API
./download-inchi.sh
cd ../../
mkdir build
cd build
cmake .. -DRDK_BUILD_INCHI_SUPPORT=ON

(continues on next page)
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(continued from previous page)

make
make install

You’ll need various environment variables set (you may want to add these to your .bash_profile file), eg.:

export RDBASE=$HOME/rdkit # CHECK THIS (maybe you put RDKit somewhere else)
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$RDBASE/lib
export PYTHONPATH=$PYTHONPATH:$RDBASE # (or some other way to make sure it's on your
→˓Python path)

• The following dependencies are also required for core RMG functions and must be installed from source before
building RMG:

pyrdl: RingDecomposerLib, used for ring perception. Download from https://github.com/rareylab/
RingDecomposerLib. Requires CMAKE to compile.

lpsolve: Mixed integer linear programming solver. Download from https://sourceforge.net/projects/lpsolve/.
Python extension also required.

• Install RMG-Py:

cd ~
git clone https://github.com/ReactionMechanismGenerator/RMG-database.git
git clone https://github.com/ReactionMechanismGenerator/RMG-Py.git
sudo pip install -r RMG-Py/requirements.txt
cd RMG-Py
make

• Run an example:

python rmg.py examples/rmg/minimal/input.py

Verify your installation by opening the resulting output.html file under the “examples/rmg/minimal” directory.

You can also use the Makefile targets to test and run examples:

make test
make eg1
make eg2

• Compiling RMG-Py with Sensitivity Analysis:

Running sensitivity analysis in RMG-Py requires the prerequisite DASPK solver and DASPK compiled wrapper
in PyDAS. To do so first compile daspk in PyDAS and agree to download the daspk31.tgz file when prompted.

cd PyDAS/
make
make install

Then compile RMG-Py normally. It will automatically be compiled with sensitivity analysis if DASPK is found.

cd RMG-Py
make clean-solver
make

Note that using this option will allow RMG to both run with and without sensitivity.
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MacOS X Installation

There are a number of dependencies for RMG-Py. This page will guide you through installing them. You will need
the Command Line Tools for XCode. If you are not using Anaconda to install RMG-Py, we highly recommend the
Homebrew package manager. The following instructions assume that you have installed Homebrew and its require-
ments. We recommend using a Virtual Environment for your Python packages, but this is optional (without it you may
need to add sudo before some commands to solve permission errors).

You will also need gfortran, Python, Numpy and Scipy. We typically install them using homebrew-python but other
methods may work as well.

Warning: This installation method is no longer actively maintained, and is not guaranteed to work as written.

• For example:

brew tap homebrew/python
brew install numpy
brew install scipy
brew install matplotlib --with-cairo --with-ghostscript --with-ticl-tk --with-pyqt --with-
→˓pygtk --withgtk3

• Install git if you don’t already have it (you may also like some graphical interfaces like mxcl’s GitX or GitHub
for Mac):

brew update
brew install git

• Optional (but recommended for Nitrogen-chemistry nomenclature): install OpenBabel:

brew install open-babel --with-python --HEAD

• Install RDKit:

brew tap rdkit/rdkit
brew install rdkit --with-inchi
brew link --overwrite rdkit

You’ll need to set an environment variable to use it, eg. put this in your ~/.bash_profile file:

export RDBASE=/usr/local/share/RDKit

• The following dependencies are also required for core RMG functions and must be installed from source before
building RMG:

pyrdl: RingDecomposerLib, used for ring perception. Download from https://github.com/rareylab/
RingDecomposerLib. Requires CMAKE to compile.

lpsolve: Mixed integer linear programming solver. Download from https://sourceforge.net/projects/lpsolve/.
Python extension also required.

• Make a directory to put everything in:

mkdir ~/Code

• Get the RMG-Py source code and the RMG-database from GitHub:

cd ~/Code
git clone https://github.com/ReactionMechanismGenerator/RMG-database.git
git clone https://github.com/ReactionMechanismGenerator/RMG-Py.git
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• Install the Python dependencies listed in the RMG-Py/requirements.txt file using pip (do easy_install
pip if you don’t already have it):

pip install -r RMG-Py/requirements.txt

• Get and build PyDQED:

cd ~/Code
git clone https://github.com/ReactionMechanismGenerator/PyDQED.git
cd PyDQED
export LIBRARY_PATH=$(dirname $(gfortran -print-file-name=libgfortran.a))
make
make install

• Get and build PyDAS:

cd ~/Code
git clone https://github.com/ReactionMechanismGenerator/PyDAS.git
cd PyDAS
export LIBRARY_PATH=$(dirname $(gfortran -print-file-name=libgfortran.a))
make
make install

• Build RMG-Py:

cd ~/Code/RMG-Py
make -j4

• Run an example:

cd ~/Code/RMG-Py/
python rmg.py examples/rmg/minimal/input.py

Verify your installation by opening the resulting output.html file under the “examples/rmg/minimal” directory.

You can also use the Makefile targets to test and run examples:

cd ~/Code/RMG-Py/
make test
make eg1
make eg2

To run with on-the-fly Quantum Mechanics calculations, you will also need to install MOPAC or Gaussian, then run
make QM.

1.3.4 Dependencies

Please visit the page below for detailed information on all of RMG’s dependencies and their license restrictions

Dependencies

List of Dependencies

Briefly, RMG depends on the following packages, almost all of which can be found in the RMG anaconda channel as
binary packages.
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• boost: portable C++ source libraries

• cairo: a 2D vector graphics library with support for multiple backends including image buffers, PNG,
PostScript, PDF, and SVG file output. Used for molecular diagram generation

• cairocffi: a set of Python bindings and object-oriented API for cairo

• coverage: code coverage measurement for Python

• cython: compiling Python modules to C for speed up

• ffmpeg: (optional) used to encode videos, necessary for generating video flux diagrams

• gaussian: (optional) commerical software program for quantum mechanical calculations. Must be installed
separately.

• gcc: GNU compiler collection for C,C++, and Fortran. (MinGW is used in windows)

• gprof2dot: converts Python profiling output to a dot graph

• graphviz: generating flux diagrams

• jinja2: Python templating language for html rendering

• jupyter: (optional) for using IPython notebooks

• lpsolve: mixed integer linear programming solver, used for resonance structure generation. Must also install
Python extension.

• markupsafe: implements XML/HTML/XHTML markup safe strings for Python

• matplotlib: library for making plots

• mock: for unit-testing

• mopac: semi-empirical software package for QM calculations

• muq: (optional) MIT Uncertainty Quantification library, used for global uncertainty analysis

• networkx: (optional) network analysis for reaction-path analysis IPython notebook

• nose: advanced unit test controls

• numpy: fast matrix operations

• openbabel: chemical toolbox for speaking the many languages of chemical data

• psutil: system utilization diagnostic tool

• pydas: differential algebraic system solver

• pydot: interface to Dot graph language

• pydqed: constrained nonlinear optimization

• pyparsing: a general parsing module for python

• pyrdl: RingDecomposerLib for graph ring perception

• pyzmq: Python bindings for zeroMQ

• quantities: unit conversion

• rdkit: open-source cheminformatics toolkit

• scipy: fast mathematical toolkit

• scoop: parallelization of Python code

• setuptools: for packaging Python projects
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• sphinx: documentation generation

• symmetry: calculating symmetry numbers of chemical point groups

• xlwt: generating Excel output files

License Restrictions on Dependencies

All of RMG’s dependencies except the ones listed below are freely available and compatible with RMG’s open source
MIT license (though the specific nature of their licenses vary).

• pydas: The DAE solvers used in the simulations come from Linda Petzold’s research group at UCSB. For run-
ning sensitivity analysis in RMG, the DASPK 3.1 solver is required, which “is subject to copyright restrictions”
for non-academic use. Please visit their website for more details. To run RMG without this restriction, one may
switch to compiling with the DASSL solver instead in RMG, which is “available in the public domain.”

If you wish to do on-the-fly quantum chemistry calculations of thermochemistry (advisable for fused cyclic species in
particular, where the ring corrections to group additive estimates are lacking), the then you will need the third-party
software for the QM calculations:

• gaussian: Gaussian03 and Gaussian09 are currently supported and commercially available. See http://www.
gaussian.com for more details.

• mopac MOPAC can be found at http://openmopac.net/. Though it is not free for industrial use, it is free for
non-profit and academic research use.

1.3.5 Installation FAQ

This section collects frequently asked questions on installation of RMG.

FAQ collection

• Got an error of Segmentation fault:11 after installing RMG on my machine?

Segmentation fault is a typical error in C code, caused by a program trying to read or write an
illegal memory location, i.e. one it is not allowed to access. The most common cause in RMG is a
conflict between two different versions of a shared library. RMG has some dependencies which are
written in C++, e.g. rdkit, openbabel. If you compile one of these with a different version of some
compiler library, or you compile RMG using one version and run it with another, you will often get
a Segmentation fault. Chances are those packages are not up to date, or maybe your environmental
variable PATH is messed up so that the wrong version of something is being found. Please see one
example from a user having same Segmentation fault issue.

• How can I install RMG-Py without Anaconda?

Usually we don’t recommend installing RMG-Py without Anaconda because it takes longer and is
easier to get trouble with package management. But one still can try direct installation on Linux
or MacOS by following Linux instruction or MacOS instruction. The RMG team does not use this
install approach internally any more, so these instructions are not actively maintained.

• Windows binary installation gives WindowsError: [Error 5]?

Error 5 is access is denied, so this is either a permissions error, or an issue with the Windows file
lock. These posts suggest rebooting the computer (in case it’s a file lock), and running the anaconda
prompt, from which you run conda create -c rmg --name rmg_env rmg rmgdatabase, as
an administrator (in case it’s a permissions error). Please checkout one example from a user having
Windows binary installation issue.
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• I get something like IOError: [Errno 13] Permission denied: 'C:\\RMG.log'

You do not have permission to write to the log file. Try running the RMG from a different folder that
you do have write permission to, such as within your user’s documents directory, or else try running
the command prompt as an Administrator (so that you have write permission everywhere). See for
example issue #817.

If you have any other errors please report them by opening an issue, and for general questions ask in the RMG-Py chat
room.

1.4 Creating Input Files

The syntax and parameters within an RMG input file are explained below. We recommend trying to build your
first input file while referencing one of the Example Input Files. Alternatively, you can use our web form found at
http://rmg.mit.edu/input to assist in creating an input file.

1.4.1 Syntax

The format of RMG-Py input.py is based on Python syntax.

Each section is made up of one or more function calls, where parameters are specified as text strings, numbers, or
objects. Text strings must be wrapped in either single or double quotes.

1.4.2 Datasources

This section explains how to specify various reaction and thermo data sources in the input file.

Thermo Libraries

By default, RMG will calculate the thermodynamic properties of the species from Benson additivity formulas. In
general, the group-additivity results are suitably accurate. However, if you would like to override the default settings,
you may specify the thermodynamic properties of species in the ThermoLibrary. When a species is specified in
the ThermoLibrary, RMG will automatically use those thermodynamic properties instead of generating them from
Benson’s formulas. Multiple libraries may be created, if so desired. The order in which the thermo libraries are
specified is important: If a species appears in multiple thermo libraries, the first instance will be used.

Now in RMG, you have two types of thermo libraries: gas and liquid thermo libraries. As species thermo in liquid
phase depends on the solvent, those libraries can only be used in liquid phase simulation with the corresponding
solvent. Gas phase thermo library can be used either in gas phase simulation or in liquid phase simulation. (see more
details on the two thermo library types and how to use thermo librairies in liquid phase simulation)

Please see Section editing thermo database for more details. In general, it is best to leave the ThermoLibrary set to
its default value. In particular, the thermodynamic properties for H and H2 must be specified in one of the primary
thermo libraries as they cannot be estimated by Benson’s method.

For example, if you wish to use the GRI-Mech 3.0 mechanism [GRIMech3.0] as a ThermoLibrary in your model, the
syntax will be:

thermoLibraries = ['primaryThermoLibrary','GRI-Mech3.0']

This library is located in the $RMG/RMG-database/input/thermo/libraries directory. All “Locations” for the
ThermoLibrary field must be with respect to the $RMG/RMG-database/input/thermo/libraries directory.
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Note: Checks during the initialization are maid to avoid users to use “liquid thermo librairies” in gas phase simulations
or to use “liquid phase libraries” obtained in another solvent that the one defined in the input file in liquid phase
simulations.

Reaction Libraries

The next section of the input.py file specifies which, if any, Reaction Libraries should be used. When a reaction
library is specified, RMG will first use the reaction library to generate all the relevant reactions for the species in the
core before going through the reaction templates. Unlike the Seed Mechanism, reactions present in a Reaction Library
will not be included in the core automatically from the start.

You can specify your own reaction library in the location section. In the following example, the user has created a
reaction library with a few additional reactions specific to n-butane, and these reactions are to be used in addition to
the Glarborg C3 library:

reactionLibraries = [('Glarborg/C3',False)],

The keyword False/True permits user to append all unused reactions (= kept in the edge) from this library to the
chemkin file. True means those reactions will be appended. Using just the string inputs would lead to a default value
of False. In the previous example, this would look like:

reactionLibraries = ['Glarborg/C3'],

The reaction libraries are stored in $RMG-database/input/kinetics/libraries/ and the Location: should be
specified relative to this path.

Because the units for the Arrhenius parameters are given in each mechanism, the different mechanisms can have
different units.

Note: While using a Reaction Library the user must be careful enough to provide all instances of a particular reaction
in the library file, as RMG will ignore all reactions generated by its templates. For example, suppose you supply
the Reaction Library with butyl_1 –> butyl_2. Although RMG would find two unique instances of this reaction
(via a three- and four-member cyclic Transition State), RMG would only use the rate coefficient supplied by you in
generating the mechanism.

RMG will not handle irreversible reactions correctly, if supplied in a Reaction Library.

Seed Mechanisms

The next section of the input.py file specifies which, if any, Seed Mechanisms should be used. If a seed mechanism
is passed to RMG, every species and reaction present in the seed mechanism will be placed into the core, in addition
to the species that are listed in the List of species section.

For details of the kinetics libraries included with RMG that can be used as a seed mechanism, see Reaction Libraries.

You can specify your own seed mechanism in the location section. Please note that the oxidation library should not be
used for pyrolysis models. The syntax for the seed mechanisms is similar to that of the primary reaction libraries.

seedMechanisms = ['GRI-Mech3.0']

The seed mechanisms are stored in RMG-database/input/kinetics/libraries/
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As the units for the Arrhenius parameters are given in each mechanism, different mechanisms can have different units.
Additionally, if the same reaction occurs more than once in the combined mechanism, the instance of it from the first
mechanism in which it appears is the one that gets used.

Kinetics Depositories

Kinetics depositories store reactions which can be used for rate estimation. Depositories are divided by the sources
of the data. Currently, RMG database has two depositories. The main depository is training which contains reactions
from various sources. This depository is loaded by default and can be disabled by adding ‘!training’ to the list of de-
positories. The NIST depository contains reactions taken from NIST’s gas kinetics database. The kineticsDepositories
argument in the input file accepts a list of strings describing which depositories to include.:

kineticsDepositories = ['training']

Kinetics Families

In this section users can specify the particular reaction families that they wish to use to generate their model. This can
be specified with any combination of specific families and predefined sets from RMG-database/input/families/
recommended.py.

For example, you can use only the H_Abstraction family to build the model:

kineticsFamilies = 'H_Abstraction'

You can also specify multiple families in a list:

kineticsFamilies = ['H_Abstraction', 'Disproportionation', 'R_Recombination']

To use a predefined set, simply specify its name:

kineticsFamilies = 'default'

You can use a mix of predefined sets and kinetics families:

kineticsFamilies = ['default', 'SubstitutionS']

It is also possible to request the inverse of a particular list:

kineticsFamilies = ['!default', '!SubstitutionS']

This will load all kinetics families except the ones in 'default' and 'SubstitutionS'.

Finally, you can also specify 'all' or 'none', which may be useful in certain cases.

Kinetics Estimator

The last section is specifying that RMG is estimating kinetics of reactions from rate rules. For more details on how
kinetic estimations is working check Kinetics Estimation:

kineticsEstimator = 'rate rules'

The following is an example of a database block, based on above chosen libraries and options:
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database(
thermoLibraries = ['primaryThermoLibrary', 'GRI-Mech3.0'],
reactionLibraries = [('Glarborg/C3',False)],
seedMechanisms = ['GRI-Mech3.0'],
kineticsDepositories = ['training'],
kineticsFamilies = 'defult',
kineticsEstimator = 'rate rules',

)

1.4.3 List of species

Species to be included in the core at the start of your RMG job are defined in the species block. The label, reactive or
inert, and structure of each reactant must be specified.

The label field will be used throughout your mechanism to identify the species. Inert species in the model can be
defined by setting reactive to be False. Reaction families will no longer be applied to these species, but reactions of
the inert from libraries and seed mechanisms will still be considered. For all other species the reactive status must be
set as True. The structure of the species can be defined using either by using SMILES or adjacencyList.

The following is an example of a typical species item, based on methane using SMILE or adjacency list to define the
structure:

species(
label='CH4',
reactive=True,
structure=SMILES("C"),

)

species(
label='CH4',
reactive=True,
structure=adjacencyList(

"""
1 C 0
"""

)

1.4.4 Reaction System

Every reaction system we want the model to be generated at must be defined individually. Currently, RMG can only
model constant temperature and pressure systems. Future versions will allow for variable temperature and pressure.
To define a reaction system we need to define the temperature, pressure and initial mole fractions of the reactant
species. The initial mole fractions are defined using the label for the species in the species block. Reaction system
simulations terminate when one of the specified termination criteria are satisfied. Termination can be specied to occur
at a specific time, at a specific conversion of a given initial species or to occur at a given terminationRateRatio, which
is the characteristic flux in the system at that time divided by the maximum characteristic flux observed so far in the
system (measure of how much chemistry is happening at a moment relative to the main chemical process).

The following is an example of a simple reactor system:

simpleReactor(
temperature=(1350,'K'),
pressure=(1.0,'bar'),
initialMoleFractions={

(continues on next page)
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(continued from previous page)

"CH4": 0.104,
"H2": 0.0156,
"N2": 0.8797,

},
terminationConversion={

'CH4': 0.9,
},
terminationTime=(1e0,'s'),
terminationRateRatio=0.01,
sensitivity=['CH4','H2'],
sensitivityThreshold=0.001,

)

Troubleshooting tip: if you are using a goal conversion rather than time, the reaction systems may reach equilibrium
below the goal conversion, leading to a job that cannot converge physically. Therefore it is may be necessary to reduce
the goal conversion or set a goal reaction time.

For sensitivity analysis, RMG-Py must be compiled with the DASPK solver, which is done by default but has some
dependency restrictions. (See License Restrictions on Dependencies for more details.) The sensitivity and sensitiv-
ityThrehold are optional arguments for when the user would like to conduct sensitivity analysis with respect to the
reaction rate coefficients for the list of species given for sensitivity.

Sensitivity analysis is conducted for the list of species given for sensitivity argument in the input file. The nor-
malized concentration sensitivities with respect to the reaction rate coefficients dln(C_i)/dln(k_j) are saved to a csv
file with the file name sensitivity_1_SPC_1.csv with the first index value indicating the reactor system and the
second naming the index of the species the sensitivity analysis is conducted for. Sensitivities to thermo of individual
species is also saved as semi normalized sensitivities dln(C_i)/d(G_j) where the units are given in 1/(kcal mol-1).
The sensitivityThreshold is set to some value so that only sensitivities for dln(C_i)/dln(k_j) > sensitivityThreshold or
dlnC_i/d(G_j) > sensitivityThreshold are saved to this file.

Note that in the RMG job, after the model has been generated to completion, sensitivity analysis will be conducted in
one final simulation (sensitivity is not performed in intermediate iterations of the job).

Advanced Setting: Range Based Reactors

Under this setting rather than using reactors at fixed points, reaction conditions are sampled from a range of conditions.
Conditions are chosen using a weighted stochastic grid sampling algorithm. An implemented objective function
measures how desirable it is to sample from a point condition (T, P, concentrations) based on prior run conditions
(weighted by how recent they were and how many objects they returned). Each iteration this objective function is
evaluated at a grid of points spaning the reactor range (the grid has 20^N points where N is the number of dimensions).
The grid values are then normalized to one and a grid point is chosen with probability equal to its normalized objective
function value. Then a random step of maximum length sqrt(2)/2 times the distance between grid points is taken from
that grid point to give the chosen condition point. The random numbers are seeded so that this does not make the
algorithm non-deterministic.

These variable condition reactors run a defined number of times (nSims) each reactor cycle. Use of these reactors
tends to improve treatment of reaction conditions that otherwise would be between reactors and reduce the number
of simulations needed by focusing on reaction conditions at which the model terminates earlier. An example with
sensitivity analysis at a specified reaction condition is available below:

simpleReactor(
temperature=[(1000,'K'),(1500,'K')],
pressure=[(1.0,'bar'),(10.0,'bar')],
nSims=12,

(continues on next page)
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initialMoleFractions={
"ethane": [0.05,0.15],
"O2": 0.1,
"N2": 0.9,
},
terminationConversion={
'ethane': 0.1,
},
terminationTime=(1e1,'s'),
sensitivityTemperature = (1000,'K'),
sensitivityPressure = (10.0,'bar'),
sensitivityMoleFractions = {"ethane":0.1,"O2":0.9},
sensitivity=["ethane","O2"],
sensitivityThreshold=0.001,
balanceSpecies = "N2",
)

Note that increasing nSims improves convergence over the entire range, but convergence is only guaranteed at the
last set of nSims reaction conditions. Theoretically if nSims is set high enough the RMG model converges over the
entire interval. Except at very small values for nSims the convergence achieved is usually as good or superior to that
achieved using the same number of evenly spaced fixed reactors.

If there is a particular reaction condition you expect to converge more slowly than the rest of the range there is virtually
no cost to using a single condition reactor (or a ranged reactor at a smaller range) at that condition and a ranged reactor
with a smaller value for nSims. This is because the fixed reactor simulations will almost always be useful and keep
the overall RMG job from terminating while the ranged reactor samples the faster converging conditions.

What you should actually set nSims to is very system dependent. The value you choose should be at least 2 + N where
N is the number of dimensions the reactor spans (T=>N=1, T and P=>N=2, etc. . . ). There may be benefits to setting
it as high as 2 + 5N. The first should give you convergence over most of the interval that is almost always better than
the same number of fixed reactors. The second should get you reasonably close to convergence over the entire range
for N <= 2.

For gas phase reactors if normalization of the ranged mole fractions is undesirable (eg. perhaps a specific species mole
fractions needs to be kept constant) one can use a balanceSpecies. When a balanceSpecies is used instead of
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normalizing the mole fractions the concentration of the defined balanceSpecies is adjusted to maintain an overall
mole fraction of one. This ensures that all species except the balanceSpecies have mole fractions within the range
specified.

1.4.5 Simulator Tolerances

The next two lines specify the absolute and relative tolerance for the ODE solver, respectively. Common values for
the absolute tolerance are 1e-15 to 1e-25. Relative tolerance is usually 1e-4 to 1e-8:

simulator(
atol=1e-16,
rtol=1e-8,
sens_atol=1e-6,
sens_rtol=1e-4,

)

The sens_atol and sens_rtol are optional arguments for the sensitivity absolute tolerance and sensitivity relative
tolerances, respectively. They are set to a default value of 1e-6 and 1e-4 respectively unless the user specifies otherwise.
They do not apply when sensitivity analysis is not conducted.

1.4.6 Model Tolerances

Model tolerances dictate how species get included in the model. For more information, see the theory behind how
RMG builds models using the Flux-based Algorithm. For running an initial job, it is recommended to only change
the toleranceMoveToCore and toleranceInterruptSimulation values to an equivalent desired value. We
find that typically a value between 0.01 and 0.05 is best. If your model cannot converge within a few hours, more
advanced settings such as reaction filtering or pruning can be turned on to speed up your simulation at a slight risk of
omitting chemistry.

model(
toleranceMoveToCore=0.1,
toleranceInterruptSimulation=0.1,

)

• toleranceMoveToCore indicates how high the edge flux ratio for a species must get to enter the core model.
This tolerance is designed for controlling the accuracy of final model.

• toleranceInterruptSimulation indicates how high the edge flux ratio must get to interrupt the simulation
(before reaching the terminationConversion or terminationTime). This value should be set to be equal
to toleranceMoveToCore unless the advanced pruning feature is desired.

Advanced Setting: Speed Up by Filtering Reactions

For generating models for larger molecules, RMG-Py may have trouble converging because it must find reactions on
the order of (𝑛𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛 𝑠𝑖𝑡𝑒𝑠)

𝑛𝑠𝑝𝑒𝑐𝑖𝑒𝑠 . Thus it can be further sped up by pre-filtering reactions that are added to the
model. This modification to the algorithm does not react core species together until their concentrations are deemed
high enough. It is recommended to turn on this flag when the model does not converge with normal parameter settings.
See Filtering Reactions within the Flux-based Algorithm. for more details.

model(
toleranceMoveToCore=0.1,
toleranceInterruptSimulation=0.1,
filterReactions=True,

(continues on next page)
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filterThreshold=5e8,
)

Additional parameters:

• filterReactions: set to True if reaction filtering is turned on. By default it is set to False.

• filterThreshold: click here for more description about its effect. Default: 5e8

Advanced Setting: Speed Up by Pruning

For further speed-up, it is also possible to perform mechanism generation with pruning of “unimportant” edge species
to reduce memory usage.

A typical set of parameters for pruning is:

model(
toleranceMoveToCore=0.5,
toleranceInterruptSimulation=1e8,
toleranceKeepInEdge=0.05,
maximumEdgeSpecies=200000,
minCoreSizeForPrune=50,
minSpeciesExistIterationsForPrune=2,
)

Additional parameters:

• toleranceKeepInEdge indicates how low the edge flux ratio for a species must be to keep on the edge. This
should be set to zero, which is its default.

• maximumEdgeSpecies indicates the upper limit for the size of the edge. The default value is set to 1000000
species.

• minCoreSizeForPrune ensures that a minimum number of species are in the core before pruning occurs, in
order to avoid pruning the model when it is far away from completeness. The default value is set to 50 species.

• minSpeciesExistIterationsForPrune is set so that the edge species stays in the job for at least that many
iterations before it can be pruned. The default value is 2 iterations.

Recommendations:

We recommend setting toleranceKeepInEdge to not be larger than 10% of toleranceMoveToCore, based on a
pruning case study. In order to always enable pruning, toleranceInterruptSimulation should be set as a high
value, e.g. 1e8. maximumEdgeSpecies can be adjusted based on user’s RAM size. Usually 200000 edge species
would cause memory shortage of 8GB computer, setting maximumEdgeSpecies = 200000 (or lower values) could
effectively prevent memory crash.

Additional Notes:

Note that when using pruning, RMG will not prune unless all reaction systems reach the goal reaction time or
conversion without exceeding the toleranceInterruptSimulation. Therefore, you may find that RMG is
not pruning even though the model edge size exceeds maximumEdgeSpecies, or an edge species has flux be-
low the toleranceKeepInEdge. This is a safety check within RMG to ensure that species are not pruned too
early, resulting in inaccurate chemistry. In order to increase the likelihood of pruning you can try increasing
toleranceInterruptSimulation to an arbitrarily high value.

As a contrast, a typical set of parameters for non-pruning is:
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model(
toleranceKeepInEdge=0,
toleranceMoveToCore=0.5,
toleranceInterruptSimulation=0.5,

)

where toleranceKeepInEdge is always 0, meaning all the edge species will be kept in edge since all the edge
species have positive flux. toleranceInterruptSimulation equals to toleranceMoveToCore so that ODE
simulation get interrupted once discovering a new core species. Because the ODE simulation is always interrupted, no
pruning is performed.

Please find more details about the theory behind pruning at Pruning Theory.

Advanced Setting: Thermodynamic Pruning

Thermodynamic pruning is an alternative to flux pruning that does not require a given simulation to complete to remove
excess species. The thermodynamic criteria is calculated by determining the minimum and maximum Gibbs energies
of formation (Gmin and Gmax) among species in the core. If the Gibbs energy of formation of a given species is G
the value of the criteria is (G-Gmax)/(Gmax-Gmin). All of the Gibbs energies are evaluated at the highest temperature
used in all of the reactor systems. This means that a value of 0.2 for the criterion implies that it will not add species
that have Gibbs energies of formation greater than 20% of the core Gibbs energy range greater than the maximum
Gibbs energy of formation within the core.

For example

model(
toleranceMoveToCore=0.5,
toleranceInterruptSimulation=0.5,
toleranceThermoKeepSpeciesInEdge=0.5,
maximumEdgeSpecies=200000,
minCoreSizeForPrune=50,
)

Advantages over flux pruning:

Species are removed immediately if they violate tolerance Completing a simulation is unnecessary for this pruning so
there is no need to waste time setting the interrupt tolerance higher than the movement tolerance. Will always maintain
the correct maximumEdgeSpecies.

Primary disadvantage:

Since we determine whether to add species primarily based on flux, at tight tolerances this is more likely to kick out
species RMG might otherwise have added to core.

Advanced Setting: Taking Multiple Species At A Time

Taking multiple objects (species, reactions or pdepNetworks) during a given simulation can often decrease your overall
model generation time over only taking one. For this purpose there is a maxNumObjsPerIter parameter that allows
RMG to take that many species, reactions or pdepNetworks from a given simulation. This is done in the order they
trigger their respective criteria.

You can also set terminateAtMaxObjects=True to cause it to terminate when it has the maximum number of
objects allowed rather than waiting around until it hits an interrupt tolerance. This avoids additional simulation time,
but will also make it less likely to finish simulations, which can affect flux pruning.

For example
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model(
toleranceKeepInEdge=0.0,
toleranceMoveToCore=0.1,
toleranceInterruptSimulation=0.3,
maxNumObjsPerIter=2,
terminateAtMaxObjects=True,

)

Note that this can also result in larger models, however, sometimes these larger models (from taking more than one
object at a time) pick up chemistry that would otherwise have been missed.

Advanced Setting: Dynamics Criterion

While the flux criterion works very well for identifying new species that have high flux and therefore will likely be
high throughput or high concentration species, it provides few automatic guarantees about how well a given model
will accurately represent the concentrations of the involved species. The dynamics criterion is more complex than the
flux criterion, but in general it is a measure of how much impact a given reaction will have on the concentrations of
core species. A more detailed explanation is available in the theory section: Dynamics Criterion.

Reasonable values for the dynamics criterion range typically between 2-30.

For example

model(
toleranceMoveToCore=0.1,
toleranceInterruptSimulation=0.1,
toleranceMoveEdgeReactionToCore=10.0,
toleranceMoveEdgeReactionToCoreInterrupt=5.0,

)

Note that it is highly recommended to use the dynamics criterion only alongside the flux criterion and not by itself.

Advanced Setting: Surface Algorithm

One common issue with the dynamics criterion is that it treats all core species equally as discussed in our theory
section: Dynamics Criterion. Because of this, if the dynamics criterion is set too low it enters a feedback loop where
it adds species and then since it can’t get those species’ concentrations right it adds more species and so on. In order
to avoid this feedback loop the surface algorithm was developed. It creates a new partition called the surface that is
considered part of the core. We will refer to the part of the core that is not part of the surface as the bulk core. When
operating without the dynamics criterion everything moves from edge to the bulk core as usual; however the dynamics
criterion is managed differently. When using the surface algorithm most reactions pulled in by the dynamics criterion
enter the surface instead of the bulk core. However, unlike movement to bulk core a constraint is placed on movement
to the surface. Any reaction moved to the surface must have either both reactants or both products in the bulk core.
This prevents the dynamics criterion from pulling in reactions to get the concentrations of species in the surface right
avoiding the feedback loop. To avoid important species being trapped in the surface we also add criteria for movement
from surface to bulk core based on flux or dynamics criterion.

For example

model(
toleranceMoveToCore=0.1,
toleranceInterruptSimulation=0.1,
toleranceMoveEdgeReactionToCore=30.0,
toleranceMoveEdgeReactionToCoreInterrupt=5.0,
toleranceMoveEdgeReactionToSurface=10.0,

(continues on next page)
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toleranceMoveSurfaceSpeciesToCore=.01,
toleranceMoveSurfaceReactionToCore=5.0,

)

1.4.7 On the fly Quantum Calculations

This block is used when quantum mechanical calculations are desired to determine thermodynamic parameters. These
calculations are only run if the molecule is not included in a specified thermo library. The onlyCyclics option,
if True, only runs these calculations for cyclic species. In this case, group additive estimates are used for all other
species.

Molecular geometries are estimated via RDKit [RDKit]. Either MOPAC (2009 and 2012) or GAUSSIAN (2003 and
2009) can be used with the semi-empirical pm3, pm6, and pm7 (pm7 only available in MOPAC2012), specified in
the software and method blocks. A folder can be specified to store the files used in these calculations, however if not
specified this defaults to a QMfiles folder in the output folder.

The calculations are also only run on species with a maximum radical number set by the user. If a molecule has a
higher radical number, the molecule is saturated with hydrogen atoms, then quantum mechanical calculations with
subsequent hydrogen bond incrementation is used to determine the thermodynamic parameters.

The following is an example of the quantum mechanics options

quantumMechanics(
software='mopac',
method='pm3',
fileStore='QMfiles',
scratchDirectory = None,
onlyCyclics = True,
maxRadicalNumber = 0,
)

1.4.8 Pressure Dependence

This block is used when the model should account for pressure dependent rate coefficients. RMG can estimate pres-
sure dependence kinetics based on Modified Strong Collision and Reservoir State methods. The former
utilizes the modified strong collision approach of Chang, Bozzelli, and Dean [Chang2000], and works reasonably
well while running more rapidly. The latter utilizes the steady-state/reservoir-state approach of Green and Bhatti
[Green2007], and is more theoretically sound but more expensive.

The following is an example of pressure dependence options

pressureDependence(
method='modified strong collision',
maximumGrainSize=(0.5,'kcal/mol'),
minimumNumberOfGrains=250,
temperatures=(300,2000,'K',8),
pressures=(0.01,100,'bar',5),
interpolation=('Chebyshev', 6, 4),
maximumAtoms=16,

)

The various options are as follows:
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Method used for estimating pressure dependent kinetics

To specify the modified strong collision approach, this item should read

method='Modified Strong Collision'

To specify the reservoir state approach, this item should read

method='Reservoir State'

For more information on the two methods, consult the following resources :

Grain size and minimum number of grains

Since the 𝑘(𝐸) requires discretization in the energy space, we need to specify the number of energy grains to use when
solving the Master Equation. The default value for the minimum number of grains is 250; this was selected to balance
the speed and accuracy of the Master Equation solver method. However, for some pressure-dependent networks, this
number of energy grains will result in the pressure-dependent 𝑘(𝑇, 𝑃 ) being greater than the high-P limit

maximumGrainSize=(0.5,'kcal/mol')
minimumNumberOfGrains=250

Temperature and pressure for the interpolation scheme

To generate the 𝑘(𝑇, 𝑃 ) interpolation model, a set of temperatures and pressures must be used. RMG can do this
automatically, but it must be told a few parameters. We need to specify the limits of the temperature and pressure for
the fitting of the interpolation scheme and the number of points to be considered in between this limit. For typical
combustion model temperatures of the experiments range from 300 - 2000 K and pressure 1E-2 to 100 bar

temperatures=(300,2000,'K',8)
pressures=(0.01,100,'bar',5)

Interpolation scheme

To use logarithmic interpolation of pressure and Arrhenius interpolation for temperature, use the line

interpolation=('PDepArrhenius',)

The auxillary information printed to the Chemkin chem.inp file will have the “PLOG” format. Refer to Section 3.5.3
of the CHEMKIN_Input.pdf document and/or Section 3.6.3 of the CHEMKIN_Theory.pdf document. These files are
part of the CHEMKIN manual.

To fit a set of Chebyshev polynomials on inverse temperature and logarithmic pressure axes mapped to [-1,1], specify
‘’Chebyshev’ interpolation. You should also specify the number of temperature and pressure basis functions by adding
the appropriate integers. For example, the following specifies that six basis functions in temperature and four in
pressure should be used

interpolation=('Chebyshev', 6, 4)

The auxillary information printed to the Chemkin chem.inp file will have the “CHEB” format. Refer to Section 3.5.3
of the CHEMKIN_Input.pdf document and/or Section 3.6.4 of the CHEMKIN_Theory.pdf document.
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Regarding the number of polynomial coeffients for Chebyshev interpolated rates, plese refer to the rmgpy.kinetics.
Chebyshev documentation. The number of pressures and temperature coefficents should always be smaller than the
respective number of user-specified temperatures and pressures.

Maximum size of adduct for which pressure dependence kinetics be generated

By default pressure dependence is run for every system that might show pressure dependence, i.e. every isomerization,
dissociation, and association reaction. In reality, larger molecules are less likely to exhibit pressure-dependent behavior
than smaller molecules due to the presence of more modes for randomization of the internal energy. In certain cases
involving very large molecules, it makes sense to only consider pressure dependence for molecules smaller than some
user-defined number of atoms. This is specified e.g. using the line

maximumAtoms=16

to turn off pressure dependence for all molecules larger than the given number of atoms (16 in the above example).

1.4.9 Miscellaneous Options

Miscellaneous options:

options(
name='Seed',
generateSeedEachIteration=True,
saveSeedToDatabase=True,
units='si',
saveRestartPeriod=(1,'hour'),
generateOutputHTML=True,
generatePlots=False,
saveSimulationProfiles=True,
verboseComments=False,
saveEdgeSpecies=True,
keepIrreversible=True,
trimolecularProductReversible=False,

)

The name field is the name of any generated seed mechanisms

Setting generateSeedEachIteration to True tells RMG to save and update a seed mechanism and thermo library
during the current run

Setting saveSeedToDatabase to True tells RMG (if generating a seed) to also save that seed mechanism and thermo
library directly into the database

The units field is set to si. Currently there are no other unit options.

The saveRestartPeriod indictes how frequently you wish to save restart files. For very large/long RMG jobs, this
process can take a significant amount of time. In such cases, the user may wish to increase the time period for saving
these restart files.

Setting generateOutputHTML to True will let RMG know that you want to save 2-D images (png files in the local
species folder) of all species in the generated core model. It will save a visualized HTML file for your model
containing all the species and reactions. Turning this feature off by setting it to False may save memory if running
large jobs.

Setting generatePlots to True will generate a number of plots describing the statistics of the RMG job, including
the reaction model core and edge size and memory use versus execution time. These will be placed in the output
directory in the plot/ folder.
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Setting saveSimulationProfiles to True will make RMG save csv files of the simulation in .csv files in the
solver/ folder. The filename will be simulation_1_26.csv where the first number corresponds to the reaciton
system, and the second number corresponds to the total number of species at the point of the simulation. Therefore, the
highest second number will indicate the latest simulation that RMG has complete while enlarging the core model. The
information inside the csv file will provide the time, reactor volume in m^3, as well as mole fractions of the individual
species.

Setting verboseComments to True will make RMG generate chemkin files with complete verbose commentary for
the kinetic and thermo parameters. This will be helpful in debugging what values are being averaged for the kinetics.
Note that this may produce very large files.

Setting saveEdgeSpecies to True will make RMG generate chemkin files of the edge reactions in addition to the
core model in files such as chem_edge.inp and chem_edge_annotated.inp files located inside the chemkin
folder. These files will be helpful in viewing RMG’s estimate for edge reactions and seeing if certain reactions one
expects are actually in the edge or not.

Setting keepIrreversible to True will make RMG import library reactions as is, whether they are reversible or
irreversible in the library. Otherwise, if False (default value), RMG will force all library reactions to be reversible,
and will assign the forward rate from the relevant library.

Setting trimolecularProductReversible to False will not allow families with three products to react in the
reverse direction. Default is True.

1.4.10 Species Constraints

RMG can generate mechanisms with a number of optional species constraints, such as total number of carbon atoms
or electrons per species. These are applied to all of RMG’s reaction families.

generatedSpeciesConstraints(
allowed=['input species','seed mechanisms','reaction libraries'],
maximumCarbonAtoms=10,
maximumOxygenAtoms=2,
maximumNitrogenAtoms=2,
maximumSiliconAtoms=2,
maximumSulfurAtoms=2,
maximumHeavyAtoms=10,
maximumRadicalElectrons=2,
maximumSingletCarbenes=1,
maximumCarbeneRadicals=0,
maximumIsotopicAtoms=2,
allowSingletO2 = False,

)

An additional flag allowed can be set to allow species from either the input file, seed mechanisms, or reaction
libraries to bypass these constraints. Note that this should be done with caution, since the constraints will still apply
to subsequent products that form.

Note that under all circumstances all forbidden species will still be banned unless they are manually removed from the
database. See Kinetics Database for more information on forbidden groups.

By default, the allowSingletO2 flag is set to False. See Representing Oxygen for more information.

1.4.11 Staging

It is now possible to concatenate different model and simulator blocks into the same run in stages. Any given stage
will terminate when the RMG run terminates and then the current group of model and simulator parameters will be
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switched out with the next group and the run will continue until that stage terminates. Once the last stage terminates
the run ends normally. This is currently enabled only for the model and simulator blocks.

There must be the same number of each of these blocks (although only having one simulator block and many model
blocks is enabled as well) and RMG will enter each stage these define in the order they were put in the input file.

To enable easier manipulation of staging a new parameter in the model block was developed maxNumSpecies that
is the number of core species at which that stage (or if it is the last stage the entire model generation process) will
terminate.

For example

model(
toleranceKeepInEdge=0.0,
toleranceMoveToCore=0.1,
toleranceInterruptSimulation=0.1,
maximumEdgeSpecies=100000,
maxNumSpecies=100

)

1.5 Example Input Files

Perhaps the best way to learn the input file syntax is by example. To that end, a number of example input files and
their corresponding output have been given in the examples directory. Two of the RMG jobs are shown below.

1.5.1 Ethane pyrolysis (Minimal)

This is the minimal example file characterizing a very basic system for ethane pyrolysis and should run quickly if
RMG is set up properly. It does not include any calculation of pressure-dependent reaction rates.

# Data sources
database(

thermoLibraries = ['primaryThermoLibrary'],
reactionLibraries = [],
seedMechanisms = [],
kineticsDepositories = ['training'],
kineticsFamilies = 'default',
kineticsEstimator = 'rate rules',

)

# List of species
species(

label='ethane',
reactive=True,
structure=SMILES("CC"),

)

# Reaction systems
simpleReactor(

temperature=(1350,'K'),
pressure=(1.0,'bar'),
initialMoleFractions={

"ethane": 1.0,
},
terminationConversion={

(continues on next page)
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'ethane': 0.9,
},
terminationTime=(1e6,'s'),

)

simulator(
atol=1e-16,
rtol=1e-8,

)

model(
toleranceKeepInEdge=0.0,
toleranceMoveToCore=0.1,
toleranceInterruptSimulation=0.1,
maximumEdgeSpecies=100000,

)

options(
units='si',
saveRestartPeriod=None,
generateOutputHTML=True,
generatePlots=False,
saveEdgeSpecies=True,
saveSimulationProfiles=True,

)

1.5.2 1,3-hexadiene pyrolysis

This example models the pyrolysis of 1,3-hexadiene and demonstrates the effect of turning on the pressure-dependence
module within RMG.

# Data sources
database(

thermoLibraries = ['primaryThermoLibrary', 'GRI-Mech3.0'],
reactionLibraries = [],
seedMechanisms = [],
kineticsDepositories = ['training'],
kineticsFamilies = 'default',
kineticsEstimator = 'rate rules',

)

# Constraints on generated species
generatedSpeciesConstraints(

maximumRadicalElectrons = 2,
)

# List of species
species(

label='HXD13',
reactive=True,
structure=SMILES("C=CC=CCC"),

)
species(

label='CH4',
reactive=True,

(continues on next page)
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structure=SMILES("C"),
)
species(

label='H2',
reactive=True,
structure=adjacencyList(

"""
1 H u0 p0 {2,S}
2 H u0 p0 {1,S}
"""),

)
species(

label='N2',
reactive=False,
structure=InChI("InChI=1/N2/c1-2"),

)

# Reaction systems
simpleReactor(

temperature=(1350,'K'),
pressure=(1.0,'bar'),
initialMoleFractions={

"HXD13": 6.829e-4,
"CH4": 0.104,
"H2": 0.0156,
"N2": 0.8797,

},
terminationConversion={

'HXD13': 0.9,
},
terminationTime=(1e0,'s'),

)

simulator(
atol=1e-16,
rtol=1e-8,

)

model(
toleranceKeepInEdge=0.0,
toleranceMoveToCore=0.5,
toleranceInterruptSimulation=0.5,
maximumEdgeSpecies=100000

)

quantumMechanics(
software='mopac',
method='pm3',
# fileStore='QMfiles', # relative to where it is run. Defaults within the output folder.
scratchDirectory = None, # not currently used
onlyCyclics = True,
maxRadicalNumber = 0,
)

pressureDependence(
method='modified strong collision',
maximumGrainSize=(0.5,'kcal/mol'),

(continues on next page)
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minimumNumberOfGrains=250,
temperatures=(300,2000,'K',8),
pressures=(0.01,100,'bar',5),
interpolation=('Chebyshev', 6, 4),

)

options(
units='si',
saveRestartPeriod=(1,'hour'),
generateOutputHTML=False,
generatePlots=False,

)

1.5.3 Commented input file

This is a fully commented input file with all optional blocks for new users to better understand the options of rmg
input files

# Data sources
database(

# overrides RMG thermo calculation of RMG with these values.
# libraries found at http://rmg.mit.edu/database/thermo/libraries/
# if species exist in multiple libraries, the earlier libraries overwrite the
# previous values
thermoLibraries=['BurkeH2O2', 'primaryThermoLibrary', 'DFT_QCI_thermo', 'CBS_QB3_1dHR'],
# overrides RMG kinetics estimation if needed in the core of RMG.
# list of libraries found at http://rmg.mit.edu/database/kinetics/libraries/
# libraries can be input as either a string or tuple of form ('library_name',True/False)
# where a `True` indicates that all unused reactions will be automatically added
# to the chemkin file at the end of the simulation. Placing just string values
# defaults the tuple to `False`. The string input is sufficient in almost
# all situations
reactionLibraries=[('C3', False)],
# seed mechanisms are reactionLibraries that are forced into the initial mechanism
# in addition to species listed in this input file.
# This is helpful for reducing run time for species you know will appear in
# the mechanism.
seedMechanisms=['BurkeH2O2inN2', 'ERC-FoundationFuelv0.9'],
# this is normally not changed in general RMG runs. Usually used for testing with
# outside kinetics databases
kineticsDepositories='default',
# lists specific families used to generate the model. 'default' uses a list of
# families from RMG-Database/input/families/recommended.py
# a visual list of families is available in PDF form at RMG-database/families
kineticsFamilies='default',
# specifies how RMG calculates rates. currently, the only option is 'rate rules'
kineticsEstimator='rate rules',

)

# List of species
# list initial and expected species below to automatically put them into the core mechanism.
# 'structure' can utilize method of SMILES("put_SMILES_here"),
# adjacencyList("""put_adj_list_here"""), or InChI("put_InChI_here")
# for molecular oxygen, use the smiles string [O][O] so the triplet form is used
species(

(continues on next page)
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label='butane',
reactive=True, # this parameter is optional if true
structure=SMILES("CCCC"),

)
species(

label='O2',
structure=SMILES("[O][O]"),

)
species(

label='N2',
reactive=False,
structure=adjacencyList("""
1 N u0 p1 c0 {2,T}
2 N u0 p1 c0 {1,T}
"""),

)
# You can list species not initially in reactor to make sure RMG includes them in the mechanism
species(

label='QOOH',
reactive=True,
structure=SMILES("OOCC[CH]C")

)
species(

label='CO2',
reactive=True,
structure=SMILES("O=C=O")

)

# Reaction systems
# currently RMG models only constant temperature and pressure as homogeneous batch reactors.
# two options are: simpleReactor for gas phase or liquidReactor for liquid phase
# use can use multiple reactors in an input file for each condition you want to test.
simpleReactor(

# specifies reaction temperature with units
temperature=(700, 'K'),
# specifies reaction pressure with units
pressure=(10.0, 'bar'),
# list initial mole fractions of compounds using the label from the 'species' label.
# RMG will normalize if sum/=1
initialMoleFractions={

"N2": 4,
"O2": 1,
"butane": 1. / 6.5,

},
# the following two values specify when to determine the final output model
# only one must be specified
# the first condition to be satisfied will terminate the process
terminationConversion={

'butane': .99,
},
terminationTime=(40, 's'),
# the next two optional values specify how RMG computes sensitivities of
# rate coefficients with respect to species concentrations.
# sensitivity contains a list of species' labels to conduct sensitivity analysis on.
# sensitvityThreshold is the required sensitiviy to be recorded in the csv output file
# sensitivity=['CH4'],
# sensitivityThreshold=0.0001,

(continues on next page)
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)

# liquidReactor(
# temperature=(500, 'K'),
# initialConcentrations={
# "N2": 4,
# "O2": 1,
# "CO": 1,
# },
# terminationConversion=None,
# terminationTime=(3600, 's'),
# sensitivity=None,
# sensitivityThreshold=1e-3
# )
# liquid reactors also have solvents, you can specify one solvent
# list of solvents available at : http://rmg.mit.edu/database/solvation/libraries/solvent/
# solvation('water')

# determines absolute and relative tolerances for ODE solver and sensitivities.
# normally this doesn't cause many issues and is modified after other issues are
# ruled out
simulator(

atol=1e-16,
rtol=1e-8,
# sens_atol=1e-6,
# sens_rtol=1e-4,

)

# used to add species to the model and to reduce memory usage by removing unimportant
→˓additional species.
# all relative values are normalized by a characteristic flux at that time point
model(

# determines the relative flux to put a species into the core.
# A smaller value will result in a larger, more complex model
# when running a new model, it is recommended to start with higher values and then decrease

→˓to converge on the model
toleranceMoveToCore=0.1,
# comment out the next three terms to disable pruning
# determines the relative flux needed to not remove species from the model.
# Lower values will keep more species and utilize more memory
toleranceKeepInEdge=0.01,
# determines when to stop a ODE run to add a species.
# Lower values will improve speed.
# if it is too low, may never get to the end simulation to prune species.
toleranceInterruptSimulation=1,
# number of edge species needed to accumulate before pruning occurs
# larger values require more memory and will prune less often
maximumEdgeSpecies=100000,
# minimum number of core species needed before pruning occurs.
# this prevents pruning when kinetic model is far away from completeness
minCoreSizeForPrune=50,
# make sure that the pruned edge species have existed for a set number of RMG iterations.
# the user can specify to increase it from the default value of 2
minSpeciesExistIterationsForPrune=2,
# filter the reactions during the enlarge step to omit species from reacting if their
# concentration are deemed to be too low
filterReactions=False,

(continues on next page)
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# for bimolecular reactions, will only allow them to react if
# filterThreshold*C_A*C_B > toleranceMoveToCore*characteristic_rate
# and if filterReactions=True
filterThreshold=1e8,

)

options(
# provides a name for the seed mechanism produced at the end of an rmg run default is 'Seed'
name='SeedName',
# if True every iteration it saves the current model as libraries/seeds
# (and deletes the old one)
# Unlike HTML this is inexpensive time-wise
# note a seed mechanism will be generated at the end of a completed run and some incomplete
# runs even if this is set as False
generateSeedEachIteration=True,
# If True the mechanism will also be saved directly as kinetics and thermo libraries in the

→˓database
saveSeedToDatabase=False,
# only option is 'si'
units='si',
# how often you want to save restart files.
# takes significant amount of time. comment out if you don't want to save
saveRestartPeriod=None,
# Draws images of species and reactions and saves the model output to HTML.
# May consume extra memory when running large models.
generateOutputHTML=True,
# generates plots of the RMG's performance statistics. Not helpful if you just want a model.
generatePlots=False,
# saves mole fraction of species in 'solver/' to help you create plots
saveSimulationProfiles=False,
# gets RMG to output comments on where kinetics were obtained in the chemkin file.
# useful for debugging kinetics but increases memory usage of the chemkin output file
verboseComments=False,
# gets RMG to generate edge species chemkin files. Uses lots of memory in output.
# Helpful for seeing why some reaction are not appearing in core model.
saveEdgeSpecies=False,
# Sets a time limit in the form DD:HH:MM:SS after which the RMG job will stop. Useful for

→˓profiling on jobs that
# do not converge.
# wallTime = '00:00:00',
# Forces RMG to import library reactions as reversible (default). Otherwise, if set to True,

→˓ RMG will import library
# reactions while keeping the reversibility as as.
keepIrreversible=False,
# Allows families with three products to react in the diverse direction (default).
trimolecularProductReversible=True,

)

# optional module allows for correction to unimolecular reaction rates at low pressures and/or
→˓temperatures.
pressureDependence(

# two methods available: 'modified strong collision' is faster and less accurate than
→˓'reservoir state'

method='modified strong collision',
# these two categories determine how fine energy is descretized.
# more grains increases accuracy but takes longer
maximumGrainSize=(0.5, 'kcal/mol'),

(continues on next page)
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minimumNumberOfGrains=250,
# the conditions for the rate to be output over
# parameter order is: low_value, high_value, units, internal points
temperatures=(300, 2200, 'K', 2),
pressures=(0.01, 100, 'bar', 3),
# The two options for interpolation are 'PDepArrhenius' (no extra arguments) and
# 'Chebyshev' which is followed by the number of basis sets in
# Temperature and Pressure. These values must be less than the number of
# internal points specified above
interpolation=('Chebyshev', 6, 4),
# turns off pressure dependence for molecules with number of atoms greater than the number

→˓specified below
# this is due to faster internal rate of energy transfer for larger molecules
maximumAtoms=15,

)

# optional block adds constraints on what RMG can output.
# This is helpful for improving the efficiency of RMG, but wrong inputs can lead to many errors.
generatedSpeciesConstraints(

# allows exceptions to the following restrictions
allowed=['input species', 'seed mechanisms', 'reaction libraries'],
# maximum number of each atom in a molecule
maximumCarbonAtoms=4,
maximumOxygenAtoms=7,
maximumNitrogenAtoms=0,
maximumSiliconAtoms=0,
maximumSulfurAtoms=0,
# max number of non-hydrogen atoms
# maximumHeavyAtoms=20,
# maximum radicals on a molecule
maximumRadicalElectrons=1,
# maximum number of singlet carbenes (lone pair on a carbon atom) in a molecule
maximumSingletCarbenes=1,
# maximum number of radicals on a molecule with a singlet carbene
# should be lower than maximumRadicalElectrons in order to have an effect
maximumCarbeneRadicals=0,
# If this is false or missing, RMG will throw an error if the more less-stable form of O2

→˓is entered
# which doesn't react in the RMG system. normally input O2 as triplet with SMILES [O][O]
# allowSingletO2=False,
# maximum allowed number of non-normal isotope atoms:
# maximumIsotopicAtoms=2,

)

# optional block allows thermo to be estimated through quantum calculations
# quantumMechanics(
# # the software package for calculations...can use 'mopac' or 'gaussian' if installed
# software='mopac',
# # methods available for calculations. 'pm2' 'pm3' or 'pm7' (last for mopac only)
# method='pm3',
# # where to store calculations
# fileStore='QMfiles',
# # where to store temporary run files
# scratchDirectory=None,
# # onlyCyclics allows linear molecules to be calculated using bensen group addivity....
→˓need to verify
# onlyCyclics=True,

(continues on next page)
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# # how many radicals should be utilized in the calculation.
# # If the amount of radicals is more than this, RMG will use hydrogen bond incrementation
→˓method
# maxRadicalNumber=0,
# )

1.6 Running a Job

Running RMG job is easy and under different situations you might want add additional flag as the following examples.

Basic run:

python rmg.py input.py

Run with a restart file (restart file should be located in same folder as input.py):

python rmg.py input.py -r

Run with CPU profiling:

python rmg.py input.py -p

We recommend you make a job-specific directory for each RMG simulation. Some jobs can take quite a while to
complete, so we also recommend using a job scheduler (if working in an linux environment).

The instructions below describe more special cases for running an RMG job.

1.6.1 Running RMG in parallel with SLURM

RMG has the capability to run using multiple cores. Here is an example job submission script for an RMG-Py job
with a SLURM scheduler

The job named min_par reserves 24 CPUs on a single node (-np 24), but uses only 12 workers (= 12 CPUs) in
parallel during the RMG-Py simulation.

Make sure that:

• the queue named debug exists on your SLURM scheduler.

• you modify the path to the parent folder of the RMG-Py installation folder

• you have an anaconda environment named rmg_env that contains RMG-Py’s dependencies

• the working directory from which you launched the job contains the RMG-Py input file input.py

-v adds verbosity to the output log file.

#!/bin/bash
#SBATCH -p debug
#SBATCH -J min_par
#SBATCH -n 24

hosts=$(srun bash -c hostname)

WORKERS=12

(continues on next page)
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RMG_WS=/path/to/RMG/parent/folder
export PYTHONPATH=$PYTHONPATH:$RMG_WS/RMG-Py/

source activate rmg_env
python -m scoop -n $WORKERS --host $hosts -v $RMG_WS/RMG-Py/rmg.py input.py
source deactivate

1.6.2 Running RMG in parallel with SGE

RMG has the capability to run using multiple cores. Here is an example using the SGE scheduler.

In order to help understand, the example job is also named min_par reserving 24 CPUs on a single node (#$ -pe
singlenode 24), but uses only 12 workers (= 12 CPUs) in parallel during the RMG-Py simulation.

Make sure that:

• the queue named normal exists on your SGE scheduler

• you modify the path to the parent folder of the RMG-Py installation folder

• you have an anaconda environment named rmg_env that contains RMG-Py’s dependencies

• the working directory from which you launched the job contains the RMG-Py input file input.py

-v adds verbosity to the output log file

#! /bin/bash

#$ -o job.log
#$ -l normal
#$ -N min_par
#$ -pe singlenode 24

WORKERS=12

RMG_WS=/path/to/RMG/parent/folder
export PYTHONPATH=$PYTHONPATH:$RMG_WS/RMG-Py/

source activate rmg_env
python -m scoop --tunnel -n $WORKERS -v $RMG_WS/RMG-Py/rmg.py input.py

source deactivate

1.7 Analyzing the Output Files

You will see that a sucessfully executed RMG job will create multiple output files and folders: output.html (if
generateOutputHTML=True is specified) /chemkin /pdep /plot /solver /species restart.pkl RMG.log

1.7.1 The Chemkin Folder

The /chemkin folder will likely have a large number of chemkin formatted files. In general, these can be disregarded,
as you will be mainly interested in chem.inp, the chemkin formatted input file with a species list, thermochemical
database, and a list of elementary reactions. All of inp files appended with numbers are those that have been generated
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by RMG as it runs and the mechanism is still in progress of enlarging. chem_annotated.inp is provided as a
means to help make sense of species syntax and information sources (i.e., how RMG estimated indivual kinetic and
thermodynmic parameters). In addition, a species dictionary, species_dictionary.txt, is generated containing
all the species in your mechanism in the format of an adjacency list. Either chemkin file, in addition to the dictionary,
may be used as inputs in the tools section of this website to better visualize the species and reactions. Alternatively,
if the input option generateOutputHTML= is set to True, you will be able to visualize 2D images of all species and
reactions in your mechanism as image files and in an html file, output.html. Once you are able to visualize the
mechanism, several useful tools exist. For example, in the Reaction Details section, you’ll see the following with
check-box fields beside them:

• Kinetics

• Comments

• Chemkin strings

If you check the last box, chemkin strings, you can then search for strings corresponding to seemingly nonsensi-
cal named species (e.g. S(1234)) that may show up in any analyses/simulations you perform (e.g., with Cantera or
Chemkin). Further, under Reaction Families, you can selectively view the reactions that been generated based on a
particular RMG reaction family or library.

1.7.2 The Species Folder

If generateOutputHTML=True is specified as an RMG input option, the species folder will be populated with png
files with 2D pictures of each species in your final mechanism. Otherwise, it will contain no files, or files generated
from pressure dependent jobs.

1.7.3 The Pdep Folder

The /pdep folder will contain files associated with the pressure-dependent reactions that RMG has generated, if you
requested such a job. These files are formatted as input files for CanTherm, which can be run independently. This can
be useful if one wants to visualize the potential energy surface corresponding to any particular network.

1.7.4 The Solver Folder

RMG currently includes a solver for isothermal batch reactors. This is in fact a critical part of the model enlargement
algorithm. If you have included simulations in your input file, the solutions will be located in /solver. You will
probably only be interested in the files with the largest number tags.

1.8 Guidelines for Building a Model

RMG has been designed to build kinetic models for gas phase pyrolysis and combustion of organic molecules made
of C, H, O and S. By kinetic model, we mean a set of reactions and associated kinetics that represent the chemical
transformations occurring in the system of interest. These systems could be the combustion of fuels, pyrolysis of
hydrocarbon feedstocks, etc. The total number of reactions and species typically required to describe some of these
processes can run into the thousands making these models difficult and error-prone to build manually. This is the main
motivation behind using software like RMG that build such models automatically in a systematic reproducible manner.

In RMG, the user is expected to provide an input file specifying the conditions (temperature, pressure, etc.) under
which one desires to develop kinetic models. The following are some tips for setting up your input/condition file.
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1.8.1 Start with a good seed mechanism

RMG is a useful tool in elucidating important pathways in a given process but may not capture certain special reaction
types which may be specific to the system you are interested in. However, if you already have a good idea of these
reactions that are important and are not available in the standard RMG library, you can create a ‘seed mechanism’ and
include it in the input file to RMG. This will directly include these in the model core and add other reactions from
the RMG library on top of it using our rate based algorithm. (Similarly, you can specify your own thermodynamic
parameters for species using thermochemistry libraries which are similar in concept to seed mechanisms. In order to
build these libraries, you will need to specify all species in the RMG adjacency list format.) In a combustion system,
RMG tends to do a decent job filling in the termination and propagation steps of a mechanism if it is guided with
the initiation and chain branching steps using a seed mechanism. Ideally, RMG should be able to find all the right
chemistry through our kinetics database but holes in current kinetic databases can make this task difficult. A good
seed mechanism can address this issue for the system of interest and also reduce the size, cost and time taken to arrive
at a converged model.

1.8.2 Setting up the right termination criterion

Start with a relatively large tolerance (such as 0.1) when building your first model to make sure that RMG can converge
the model to completion without any hiccups, then begin tightening the tolerance if you are able to converge the initial
model. For large molecules such as tetradecane (C14), even a tolerance of 0.1 may be too tight for RMG to work with
and lead to convergence problems. Note that a good seed mechanism allows for faster convergence.

1.8.3 Restricting the number of carbon atoms, oxygen atoms, and radical sites per
species

Options to tune the maximum number of carbon or oxygen atoms, or number of radical sites per species can be
specified at the beginning of the condition file. In most systems, we do not expect large contributions from species
with more than 1 radical center (i.e. biradicals, etc.) to affect the overall chemistry, thus it may be useful to limit the
maximum number of radicals to 2 (to allow for O2). The same applies for the maximum number of oxygens you want
to allow per species. Restricting the number of carbon atoms in each species may also be worthwhile to prevent very
large molecules from being generated if many such species appear in your model. Using any of these options requires
some prior knowledge of the chemistry in your system. It is recommended that an initial model be generated without
turning these options on. If many unlikely species show up in your model (or if your model has trouble converging
and is generating many unlikely species on the edge), you can begin tuning these options to produce a better model.

1.8.4 Adding key species into the initial condition file

Sometimes, chain branching reactions like dissociation of ROOH species do not make it to the core directly because
if their fluxes are very small and the tolerance is not tight enough. In these cases, seeding the condition file with
these species (with zero concentration) is helpful. By adding these species to the initial set of species in the condition
file, the reactions involving those species will be automatically added to the core. (Putting these reactions in the seed
mechanism has the same effect.) Thus, if a species is known to be a part of your system and RMG is having trouble
incorporating it within your model, it should be added to the condition file with 0.0 set as the concentration.

1.8.5 Starting with a single molecule when generating a model for a mixture

For modeling the combustion of fuel mixtures, you may want to start with determining their composition and starting
with a kinetic study of the dominant compound. It is possible to model the combustion of fuel mixtures but they are
more challenging as well as harder to converge in RMG because RMG will automatically generate all cross reactions
between the reacting species and intermedites. Starting with single species is always a good idea and is also useful
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when thinking about fuel mixtures. In order to build a better background in chemical kinetic model development and
validation, please look at a recent paper from our group on butanol combustion available here. This should give you
some idea about how RMG can be put to use for the species of interest to you.

1.9 Standalone Modules

There are several standalone modules that can be run separately from RMG. These scripts can be found in the RMG-Py/
scripts folder, unless mentioned otherwise.

1.9.1 HTML Chemkin Output

The script, generateChemkinHTML.py, will create a formatted HTML page displaying all of the species and reac-
tions in a given Chemkin file. Thermo and kinetics parameters are also displayed, along with any comments if the
Chemkin file was generated by RMG.

This script gives the same output as turning on generateOutputHTML in the options section of the RMG input file.
However, having using that setting can increase the memory usage and computation time for large jobs, so this script
provides an option for generating the HTML file after job completion.

To use this script, you need a Chemkin input file and an RMG species dictionary. The syntax is as follows:

python importChemkinLibrary.py [-h, -f] CHEMKIN DICTIONARY [OUTPUT]

Positional arguments:

CHEMKIN The path to the Chemkin file
DICTIONARY The path to the RMG dictionary file
OUTPUT Location to save the output files, defaults to the current directory

Optional arguments:

-h, --help Show help message and exit
-f, --foreign Not an RMG generated Chemkin file

This method is also available to use with a web browser from the RMG website: Convert Chemkin File.

1.9.2 Model Comparison

The script diffModels compares two RMG generated models to determine their differences. To use this method you
will need the chemkin and species dictionary outputs from RMG. These can be found in the chemkin folder from the
directory of the input.py file used for the RMG run. The syntax is as follows:

python diffModels.py CHEMKIN1 SPECIESDICT1 --thermo1 THERMO1 CHEMKIN2 SPECIESDICT2 --thermo2
→˓THERMO2 --web

where CHEMKIN represents the chemkin input file (chem00XX.inp), SPECIESDICT is the species diectionary from
RMG (species_dictionary.txt) and the optional --thermo flag can be used to add separate thermo CHEMKIN
files THERMO. The numbers (1 and 2) represent which model to each file is from. The optional --web flag is used for
running this script through the RMG-website.

Running the script without any optional flags looks like:

python diffModels.py CHEMKIN1 SPECIESDICT1 CHEMKIN2 SPECIESDICT2
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Output of each comparison is printed, and the method then produces a html file (diff.html) for easy viewing of the
comparison.

This method is also available to use with a web browser from the RMG website: Model Comparison Tool.

1.9.3 Merging Models

This script combines up to 5 RMG models together. The thermo and kinetics from common species and reactions is
taken from the first model with the commonality. To better understand the difference in two models, use diffModels.py.
To use this method type:

python mergeModels.py --model1 chemkin1 speciesdict1 --model2 chemkin2 speciesdict2

where chemkin specifies the chemkin input file from the RMG run and speciesdict represents the species dictio-
nary from the RMG run. These can be found in the chemkin folder from the directory of the input.py file used for
the RMG run. The numbers are for different models that you want to merge. To merge more than two files, you can
add --model3 chemkin3 speciesdict3. Up to 5 models can be merged together this way

Running this method will create a new species dictionary (species_dictionary.txt) and chemkin input file (chem.inp)
in the parent directory of the terminal.

This method is also available to use with a web browser from the RMG website: Model Merge Tool.

1.9.4 Generate Reactions

The script generateReactions.py generates reactions between all species mentioned in an input file. To call this method
type:

python generateReactions.py Input_File

where Input_File is a file similar to a general RMG input file which contains all the species for RMG to generate
reactions between. An example file is placed in $RMGPy/examples/generateReactions/input.py

# Data sources for kinetics
database(

thermoLibraries = ['BurkeH2O2','primaryThermoLibrary','DFT_QCI_thermo','CBS_QB3_1dHR'],
reactionLibraries = [],
seedMechanisms = [],
kineticsDepositories = 'default',
#this section lists possible reaction families to find reactioons with
kineticsFamilies = ['!Intra_Disproportionation','!Substitution_O'],
kineticsEstimator = 'rate rules',

)

# List all species you want reactions between
species(

label='ethane',
reactive=True,
structure=SMILES("CC"),

)

species(
label='H',
reactive=True,
structure=SMILES("[H]"),

)

(continues on next page)
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species(
label='butane',
reactive=True,
structure=SMILES("CCCC"),

)

# you must list reactor conditions (though this may not effect the output)
simpleReactor(

temperature=(650,'K'),
pressure=(10.0,'bar'),
initialMoleFractions={

"ethane": 1,
},
terminationConversion={

'butane': .99,
},
terminationTime=(40,'s'),

)

#optional module if you want to get pressure dependent kinetics.

#pressureDependence(
# method='modified strong collision',
# maximumGrainSize=(0.5,'kcal/mol'),
# minimumNumberOfGrains=250,
# temperatures=(300,2200,'K',2),
# pressures=(0.01,100,'bar',3),
# interpolation=('Chebyshev', 6, 4),
# maximumAtoms=15,
#)

#optional module if you want to limit species produced in reactions.

#generatedSpeciesConstraints(
# allowed=['input species','seed mechanisms','reaction libraries'],
# maximumCarbonAtoms=4,
# maximumOxygenAtoms=7,
# maximumNitrogenAtoms=0,
# maximumSiliconAtoms=0,
# maximumSulfurAtoms=0,
# maximumHeavyAtoms=20,
# maximumRadicalElectrons=1,
#)

This method will produce an output.html file in the directory of input.py which contains the all the reactions
produced between the species.

This method is also available to use with a web browser from the RMG website: Populate Reactions.

1.9.5 Simulation and Sensitivity Analysis

For sensitivity analysis, RMG-Py must be compiled with the DASPK solver, which is done by default but has some
dependency restrictions. (See License Restrictions on Dependencies for more details.) Sensitivity analysis or a simu-
lation (without sensitivity) can be conducted in a standalone system for an existing kinetics model in Chemkin format.
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To run a simulation and/or sensitivity analysis, use the simulate module in RMG-Py/scripts:

python simulate.py input.py chem.inp species_dictionary.txt

where chem.inp is the CHEMKIN file and the species_dictionary.txt contains the dictionary of species asso-
ciated with the CHEMKIN file. input.py is an input file similar to one used for an RMG job but does not generate a
RMG job. See the following input.py example file found under the $RMGPy/examples/sensitivity/input.py
folder

# Data sources
database(

thermoLibraries = ['primaryThermoLibrary'],
reactionLibraries = [],
seedMechanisms = [],
kineticsDepositories = ['training'],
kineticsFamilies = ['!Intra_Disproportionation','!Substitution_O'],
kineticsEstimator = 'rate rules',

)

# Constraints on generated species
generatedSpeciesConstraints(

maximumRadicalElectrons = 2,
)

# List of species
species(

label='ethane',
reactive=True,
structure=SMILES("CC"),

)

# Reaction systems
simpleReactor(

temperature=(1350,'K'),
pressure=(1.0,'bar'),
initialMoleFractions={

"ethane": 1.0,
},
terminationConversion={

'ethane': 0.9,
},
terminationTime=(1e6,'s'),
sensitivity=['ethane'],
sensitivityThreshold=0.01,

)

simulator(
atol=1e-16,
rtol=1e-8,
sens_atol=1e-6,
sens_rtol=1e-4,

)

model(
toleranceKeepInEdge=0.0,
toleranceMoveToCore=0.1,
toleranceInterruptSimulation=0.1,
maximumEdgeSpecies=100000

(continues on next page)
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)

options(
units='si',
saveRestartPeriod=None,
saveSimulationProfiles=False,
generateOutputHTML=False,
generatePlots=False,

)

The names of species named in the input file must coincide with the names specified in the CHEMKIN file.

Other options that can be specified for the simulate.py scripts are:

--no-dlim Turn off diffusion-limited rates for LiquidReactor
-f, --foreign Not an RMG generated Chemkin file (will be checked for duplicates)

Sensitivity analysis is conducted for the list of species given for the sensitivity argument in the input file. The
normalized concentration sensitivities with respect to the reaction rate coefficients dln(C_i)/dln(k_j) are saved to a csv
file with the file name sensitivity_1_SPC_1.csv with the first index value indicating the reactor system and the
second naming the index of the species the sensitivity analysis is conducted for. Sensitivities to thermo of individual
species is also saved as semi normalized sensitivities dln(C_i)/d(G_j) where the units are given in 1/(kcal mol-1).
The sensitivityThreshold is set to some value so that only sensitivities for dln(C_i)/dln(k_j) > sensitivityThreshold or
dlnC_i/d(G_j) > sensitivityThreshold are saved to this file.

1.9.6 Generating Flux Diagrams

The script, generateFluxDiagrams.py, will create a movie out of a completed RMG model that shows intercon-
nected arrows between species that represent fluxes.

To use this method, you just need a Chemkin input file and an RMG species dictionary. The syntax is as follows:

python generateFluxDiagram.py [-h] [--java] [--no-dlim] [-s SPECIES] [-f]
[-n N] [-e N] [-c TOL] [-r TOL] [-t S]
INPUT CHEMKIN DICTIONARY [CHEMKIN_OUTPUT]

Positional arguments:

INPUT RMG input file
CHEMKIN Chemkin file
DICTIONARY RMG dictionary file
CHEMKIN_OUTPUT Chemkin output file

Optional arguments:

-h, --help show this help message and exit
--java process RMG-Java model
--no-dlim Turn off diffusion-limited rates
-s DIR, --species DIR Path to folder containing species images
-f, --foreign Not an RMG generated Chemkin file (will be checked for duplicates)
-n N, --maxnode N Maximum number of nodes to show in diagram
-e N, --maxedge N Maximum number of edges to show in diagram
-c TOL, --conctol TOL Lowest fractional concentration to show
-r TOL, --ratetol TOL Lowest fractional species rate to show
-t S, --tstep S Multiplicative factor to use between consecutive time points
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This method is also available to use with a web browser from the RMG website: Generate Flux Diagram.

1.9.7 Thermo Estimation Module

The thermo estimation module can be run stand-alone. An example input file for this module is shown below:

database(
thermoLibraries = ['primaryThermoLibrary', 'GRI-Mech3.0']

)

species(
label='Cineole',
structure=SMILES('CC12CCC(CC1)C(C)(C)O2'),

)

quantumMechanics(
software='mopac',#mopac or gaussian
method='pm3',#pm3, pm6, pm7
fileStore='QMfiles', # defaults to inside the output folder.
onlyCyclics = True,#True, False
maxRadicalNumber = 0, # 0, 1

)

The database block is used to specify species thermochemistry libraries. Multiple libraries may be created, if so
desired. The order in which the thermo libraries are specified is important: If a species appears in multiple thermo
libraries, the first instance will be used.

Please see Section Thermo Database for details on editing the thermo library. In general, it is best to leave the
ThermoLibrary set to its default value. In particular, the thermodynamic properties for H and H2 must be specified in
one of the primary thermo libraries as they cannot be estimated by Benson’s method.

For example, if you wish to use the GRI-Mech 3.0 mechanism [GRIMech3.0] as a ThermoLibrary in your model, the
syntax will be:

thermoLibraries = ['primaryThermoLibrary','GRI-Mech3.0']

This library is located in the RMG-database/input/thermo/libraries directory. All “Locations” for the Ther-
moLibrary field must be with respect to the RMG-database/input/thermo/libraries directory.

The optional quantumMechanics block is used when quantum mechanical calculations are desired to determine
thermodynamic parameters. These calculations are only run if the molecule is not included in a specified thermo
library. The software option accepts either the mopac or gaussian string. The method option refers to the level-of-
theory, which can either be pm3,‘‘pm6‘‘, or pm7. A folder can be specified to store the files used in these calculations,
however if not specified this defaults to a QMfiles folder in the output folder. The onlyCyclics option, if True,
only runs these calculations for cyclic species. In this case, group contribution estimates are used for all other species.
The calculations are also only run on species with a maximum radical number set by the user. If a molecule has a
higher radical number, the molecule is saturated with hydrogen atoms, then quantum mechanical calculations with
subsequent hydrogen bond incrementation is used to determine the thermodynamic parameters.

Submitting a job is easy:

python thermoEstimator.py input.py

We recommend you make a job-specific directory for each thermoEstimator simulation.

You can also specify that an RMG-style thermo library be saved upon completion:
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python thermoEstimator.py -l input.py

Note that the RMG website also provides thermo estimation through the Molecule Search.

1.9.8 Convert FAME to CanTherm Input File

This module is utilized to convert FAME file types (used in RMG-Java) to CanTherm objects (used in RMG-Py) for
pressure dependent calculations.

FAME is an early version of the pdep code in CanTherm written in Fortran and used by RMG-Java. This script enables
importing FAME input files into CanTherm. Note that it is mostly designed to load the FAME input files generated
automatically by RMG-Java, and may not load hand-crafted FAME input files. If you specify a moleculeDict, then
this script will use it to associate the species with their structures.

python convertFAME.py fame_object

where fame_object is the FAME file used to be converted into the CanTherm object.

Some additional options involve adding an RMG dictionary to process with the file. The syntax for this is

python convertFAME.py -d RMG_dictionary.txt fame_object

where RMG_dictionary.txt is the dictionary to process with the file.

A max energy cuttoff is also possible when converting the file formats.

python convertFAME.py -d RMG_dictionary.txt -x value units value units fame_object

where value represents the max energy amount and units represents its units

1.9.9 Database Scripts

This section details usage for scripts available in RMG-database/scripts folder.

evansPolanyi.py

This script will generate an Evans-Polanyi plot for a single kinetics depository.

Usage:

python evansPolanyi.py [-h] DEPOSITORY

Positional arguments:

DEPOSITORY the depository to use

Optional arguments:

-h, --help show help message and exit
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exportKineticsLibraryToChemkin.py

This script exports an individual RMG-Py kinetics library to a chemkin and dictionary file. Thermo is taken from
RMG’s estimates and libraries. In order to use more specific thermo, you must tweak the thermoLibraries and estima-
tors in use when loading the database. The script will save the chem.inp and species_dictionary.txt files in the local
directory.

Usage:

python exportKineticsLibrarytoChemkin.py [-h] LIBRARYNAME

Positional arguments:

LIBRARYNAME the libraryname of the RMG-Py format kinetics library

Optional arguments:

-h, --help show help message and exit

exportOldDatabase.py

This script exports the database to the old RMG-Java format. The script requires two command-line arguments: the
path to the database to import, and the path to save the old RMG-Java database to.

Usage:

python exportOldDatabase.py OUTPUT

Positional arguments:

OUTPUT path to the directory where the RMG-Java database should be saved

importChemkinLibrary.py

This script imports a chemkin file (along with RMG dictionary) from a local directory and saves a set of RMG-Py
kinetics library and thermo library files. These py files are automatically added to the input/kinetics/libraries and
input/thermo/libraries folder under the user-specified name for the chemkin library.

Usage:

python importChemkinLibrary.py [-h] CHEMKIN DICTIONARY NAME

Positional arguments:

CHEMKIN The path of the chemkin file
DICTIONARY The path of the RMG dictionary file
NAME Name of the chemkin library to be saved

Optional arguments:

-h, --help show help message and exit
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importJavaKineticsLibrary.py

This script imports an individual RMG-Java kinetics library from a local directory and saves the output kinetics library
py file into a path of the user’s choosing. This library will be automatically added to the ‘libraryname’ folder in the
input/kinetics/libraries directory and can be used directly as an RMG-Py kinetics library.

Usage:

python importJavaKineticsLibrary.py [-h] INPUT LIBRARYNAME

Positional arguments:

INPUT the input path of the RMG-Java kinetics library directory
LIBRARYNAME the libraryname for the RMG-Py format kinetics library

Optional arguments:

-h, --help show help message and exit

importJavaThermoLibrary.py

This script imports an individual RMG-Java themo library from a local directory and saves the output thermo li-
brary py file into a path of the user’s choosing. This library will be automatically saved to libraryname.py in the
input/thermo/libraries directory and can be used directly as an RMG-Py thermo library.

Usage:

python importJavaThermoLibrary.py [-h] INPUT LIBRARYNAME

Positional arguments:

INPUT the input path of the RMG-Java thermo library directory
LIBRARYNAME the libraryname for the RMG-Py format thermo library

Optional arguments:

-h, --help show help message and exit

importOldDatabase.py

This script imports an RMG-Java database from the output directory and saves it in the input directory. Only recom-
mended for use in extreme circumstances.

Usage:

python importOldDatabase.py [-h] INPUT OUTPUT

Positional arguments:

INPUT the input path of the RMG-Java database directory
LIBRARYNAME output path for the desired RMG-Py database directory

Optional arguments:

-h, --help show help message and exit
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1.9.10 Standardize Model Species Names

This script enables the automatic renaming of species names of of two or more Chemkin files (and associated species
dictionaries) so that they use consistent, matching names. Simply pass the paths of the Chemkin files and species
dictionaries on the command-line, e.g.:

python standardizeModelSpeciesNames.py --model1 /path/to/chem1.inp /path/to/species_dictionary1.
→˓txt --model2 /path/to/chem2.inp /path/to/species_dictionary2.txt

The resulting files are saved as chem1.inp and species_dictionary1.txt, chem2.inp,
species_dictionary2.txt and so forth (depending on how many models you want to standardize) and
will be saved in the execution directory.

1.9.11 Reaction Reduction in an RMG Job

This script is located at RMG-Py/rmgpy/reduction/main.py instead of the usual RMG-Py/scripts folder.

RMG’s method of generating reactions between all species in a core mechanism and including them in the resulting
model is a robust process to obtain all chemistry. However, the huge number of cross reactions lead to a non-sparse
matrix, which can increase computational time when using the resulting models in other simulations.

To help reduce the complexity of RMG produced mechanisms, a mechanism reduction script was written that elimi-
nates unimportant reactions up to a set threshold. Though this method will reduce number of reactions and guarantee
target species concentrations at the given conditions are minimally affected, no guarantee is given that it will result in
optimally reduced mechanism.

To reduce an RMG job, you will need an additional file reduction_input.py. This file contains two terms that
tell the reduction algorithm what to do. The example file located in rmgpy/reduction/test_data/minimal/
chemkin is written as followed.

targets = ['ethane', 'C']
tolerance = .05

targets is a list of species labels whose concentration change should be minimized, and tolerance is the percent
change the user can tolerate at the end of simulation. In the above example, this would be 5%. Higher values of
tolerance lead to fewer final reactions with more error in output rates.

To run a simulation, type

python $RMG/rmgpy/reduction/main.py input.py reduction_input.py chem_annotated.inp species_

→˓dictionary.txt

A command line interface to the reduction driver script is contained in rmgpy/reduction/main.py. It accepts four
files:

• input.py: RMG-Py input file containing the settings to evaluate state variables.

• reduction_input.py: Reduction input file containing the target variables and associated error tolerances to
allow in the reduced model

• chem_annotated.inp: the reaction mechanism to reduce.

• species_dictionary.txt: the species dictionary associated with the reaction mechanism to reduce.

The algorithm will reduce the number of reactions until the tolerance is no longer met. If everything goes as
planned, a chem_reduced.inp is generated containing the reduced mechanism. In addition, a number of files
chem_reduced_{i}.inp are created and correspond to the intermediate reduced mechanisms. They can be used
in place of the final reduced model, in case the reduction algorithm does not terminate normally.

58 Chapter 1. RMG User’s Guide



RMG-Py and CanTherm Documentation, Release 2.2.0

You can go to $RMG/examples/reduction to try this module.

Background

The reduction algorithm computes the ratio of species reaction rate (𝑟𝑖𝑗) to the total rate of formation/consumption
(𝑅𝑖) of all species i, and compares this ratio to a tolerance (𝜖), with values of epsilon between 0 and 1. If the ratio of
a reaction is greater than epsilon it is deemed important for the species in question. When a reaction is not important
for a single species, at any given time between t=0 and the user-defined end time, then it is deemed unimportant for
the given system. As a result, the reaction is removed from the mechanism.

The value of epsilon is determined by an optimization algorithm that attempts to reduce the model as much as possible
given the constraints of the user-defined target variables. A logarithmic bisection optimization algorithm is used to
provide guesses for the value of epsilon based on the two previous guesses that undershoot and overshoot the user-
defined relative deviation of the target variables

A value of 5% for the relative deviation of the target variable implies that the mole fraction of the target variable at the
end time of the batch reactor simulation as computed by the reduced mechanism may deviate up to 5% w.r.t. to the
mole fraction of the target variable at the end time of the batch reactor simulation as computed by the full mechanism.

1.9.12 Isotopes

Describing isotopes in adjacency lists

Isotopic enrichment can be indicated in a molecular structure’s adjacency list. The example below is methane with an
isotopically labeled carbon of isotope number 13, which is indicated with i13:

1 C u0 p0 c0 i13 {2,S} {3,S} {4,S} {5,S}
2 H u0 p0 c0 {1,S}
3 H u0 p0 c0 {1,S}
4 H u0 p0 c0 {1,S}
5 H u0 p0 c0 {1,S}

Running the RMG isotopes algorithm

The isotopes script is located in the folder scripts. To run the algorithm, ensure the RMG packages are loaded and
type:

python /path/to/rmg/scripts/isotopes.py /path/to/input/file.py

The input file is identical to a standard RMG input file and should contain the conditions you want to run (unless you
are inputting an already completed RMG model). Without any options, the script will run the original RMG input
file to generate a model. Once the RMG job is finished, it will create new species for all isotopologues of previously
generated species and then generate all reactions between the isotopologues.

Some arguments can be used to alter the behavior of the script. If you already have a model (which includes atom
mapping in RMG’s format) which you would like to add isotope labels to, you can use the option --original path/
to/model/directory with the desired model files stored within with structure chemkin/chem_annotated.inp
and chemkin/species_dictionary.txt. With this option, the isotope script will use the specified model instead
of re-running an RMG job.

If you only desire the reactions contained in the specific RMG job, you can add --useOriginalReactions in
addition to --original. This will create a full set of isotopically labeled versions of the reactions you input and
avoid a time-consuming generate reactions proceedure.
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The arguement --maximumIsotopicAtoms [integer] limits the number of enriched atoms in any isotopologue in
the model. This is beneficial for decreasing model size, runtime of model creation and runtime necessary for analysis.

Adding kinetic isotope effects which are described in this paper can be obtained through the argument
--kineticIsotopeEffect simple. Currently this is the only supported method, though this can be extended
to other effects.

If you have a desired output folder, --output output_folder_name can direct all output files to the specified
folder. The default is to create a folder named ‘iso’.

There are some limitations in what can be used in isotope models. In general, RMG Reaction libraries and other
methods of kinetic estimation that do not involve atom mapping to reaction recipes are not compatible (though they
can be functional if all isotopologues are included in the reaction library). The algorithm also does not function with
pressure dependent mechanisms generated by RMG, and has only been tested for gas phase kinetics. This algorithm
currently only works for Carbon-13 enrichments.

Following the generation, a number of diagnostics check model accuracy. Isotopologues are checked to ensure their
symmetries are consistent. Then, the reaction path degeneracy among reactions differing only in isotope labeling is
checked to ensure it is consistent with the symmetry values of reactions. If one of these checks throws a warning,
the model will likely exhibit non-natural fluctuations in enrichment ten to one hundred times larger than from non-
hydrogen kinetic isotope effects.

Output from script

The isotope generation script will output two files inside the nested folders iso/chemkin, unless --output is spec-
ified. The file species_dictionary.txt lists the structure of all isotopologue using the RMG adjacency list struc-
ture. The other file of importance chem_annotated.inp is a chemkin input file containing elements, species, thermo,
and reactions of the entire system.

1.10 Species Representation

Species objects in RMG contain a variety of attributes, including user given names, thermochemistry, as well as
structural isomers. See the rmgpy.species.Species class documentation for more information.

RMG considers each species to be unique, and comprised of a set of molecular structural isomers, including resonance
isomers. RMG uses the list of resonance isomers to compare whether two species are the same. Each molecular
structure is stored in RMG using graph representations, using vertices and edges, where the vertices are the atoms and
the edges are the bonds. This form of representation is known as an adjacency list. For more information on adjacency
lists, see the rmgpy.molecule.adjlist page.

Species objects in the input file can also be constructed using other common representations such as SMILES,
SMARTS, and InChIs. The following can all be used to represent the methane species:

species(
label='CH4',
reactive=True,
structure=SMILES("C"),

)

Replacing the structure with any of the following representations will also produce the same species:

structure=adjacencyList("
1 C u0 p0 c0 {2,S} {3,S} {4,S} {5,S}
2 H u0 p0 c0 {1,S}
3 H u0 p0 c0 {1,S}

(continues on next page)
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(continued from previous page)

4 H u0 p0 c0 {1,S}
5 H u0 p0 c0 {1,S}
"),

structure=SMARTS("[CH4]"),

structure=SMILES("C"),

structure=InChI("InChI=1S/CH4/h1H4"),

To quickly generate any adjacency list, or to generate an adjacency list from other types of molecular representations
such as SMILES, InChI, or even common species names, use the Molecule Search tool found here: http://rmg.mit.
edu/molecule_search

1.10.1 Representing Oxygen

Special care should be taken when constructing a mechanism that involves molecular oxygen. The ground electronic
state of molecular oxygen, 3Σ−

𝑔 , does not contain a double bond, but instead a single bond and two lone electrons. In
RMG’s adjaceny list notation the ground state of oxygen is represented as

1 O u1 p2 {2,S}
2 O u1 p2 {1,S}

You should use the above adjacency list to represent molecular oxygen in your condition files, seed mechanisms, etc.
The triplet form is 22 kcal/mol more stable than the first singlet excited state, 1∆𝑔 , which does contain a double bond.
The adjacency list for singlet oxygen is

1 O u0 p2 {2,D}
2 O u0 p2 {1,D}

Selecting the correct structure for oxygen is important, as the reactions generated from a double bond are significantly
different than those generated from a radical or diradical. For example, the reaction

CH4 + O2 → CH3 + HO2

would occur for both triplet and singlet oxygen, but in entirely different families. For triplet oxygen the above repre-
sents a hydrogen abstraction, while for singlet oxygen it represents the reverse of a disproportionation reaction.

The RMG databases have been modified to make all of the oxygen-related chemistry that was present in RMG
databases consistent with the single-bonded biradical representation.

Conversion between triplet and singlet forms is possible through the primary reaction library OxygenSingTrip; the
reactions involved are very slow, however, and are likely to be absent from any mechanisms generated. At this point,
no other reactions of singlet oxygen have been included in RMG.

In order to allow the singlet form of O2 to be used in RMG, please allow it explicitly by setting allowSingletO2 to
True in the generateSpeciesConstraints section of the RMG input file.

generatedSpeciesConstraints(
allowSingletO2 = True,

)
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1.11 Group Representation

Group representations are used to represent molecular substructures within RMG. These are commonly used for iden-
tifying functional groups for use in both the thermo and kinetic databases.

For syntax of how to define groups, see rmgpy.molecule.adjlist.

1.12 Databases

RMG has databases storing thermochemistry and kinetics data. These databases can be visualized on the RMG website
here: http://rmg.mit.edu/database/

1.12.1 Introduction

This section describes some of the general characteristics of RMG’s databases.

Group Definitions

The main section in many of RMG’s databases are the ‘group’ definitions. Groups are adjacency lists that describe
structures around the reacting atoms. Between the adjacency list’s index number and atom type, a starred number is
inserted if the atom is a reacting atom.

Because groups typically do not describe entire molecules, atoms may appear to be lacking full valency. When this
occurs, the omitted bonds are allowed to be anything. An example of a primary carbon group from H-Abstraction
is shown below. The adjacency list defined on the left matches any of the three drawn structures on the right (the
numbers correspond to the index from the adjacency list).

Atom types describe atoms in group definitions. The table below shows all atoms types in RMG.
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Atom Type Chemical Element Bonding
R Any No requirements
R!H Any except hydrogen No requirements
H Hydrogen No requirements
C Carbon No requirements
Ca Carbon Atomic carbon with two lone pairs and no bonds
Cs Carbon Up to four single bonds
Csc Carbon Up to three single bonds, charged +1
Cd Carbon One double bond (to any atom other than O or S), up to two single bonds
Cdc Carbon One double bond, up to one single bond, charged +1
CO Carbon One double bond to an oxygen atom, up to two single bonds
CS Carbon One double bond to an sulfur atom, up to two single bonds
Cdd Carbon Two double bonds
Ct Carbon One triple bond, up to one single bond
Cb Carbon Two benzene bonds, up tp one single bond
Cbf Carbon Three benzene bonds (fused aromatics)
C2s Carbon One lone pair, up to two single bonds
C2sc Carbon One lone pair, up to three single bonds, charged -1
C2d Carbon One lone pair, one double bond
C2dc Carbon One lone pair, one double bond, up to one single bond, charge -1
C2tc Carbon One lone pair, one triple bond, charged -1
N Nitrogen No requirements
N0sc Nitrogen Three lone pairs, up to one single bond, charged -2
N1s Nitrogen Two lone pairs, up to one single bond
N1sc Nitrogen Two lone pairs, up to two single bonds, charged -1
N1dc Nitrogen Two lone pairs, one double bond, charged -1
N3s Nitrogen One lone pair, up to three single bonds
N3d Nitrogen One lone pair, one double bond, up to one single bond
N3t Nitrogen One lone pair, one triple bond
N3b Nitrogen One lone pair, two aromatic bonds
N5sc Nitrogen No lone pairs, up to four single bonds, charged +1
N5dc Nitrogen No lone pairs, one double bond, up to two single bonds, charged +1
N5ddc Nitrogen No lone pairs, two double bonds, charged +1
N5dddc Nitrogen No lone pairs, three double bonds, charged -1
N5t Nitrogen No lone pairs, one triple bond, up to two single bonds
N5tc Nitrogen No lone pairs, one triple bond, up to one single bond, charged +1
N5b Nitrogen No lone pairs, two aromatic bonds, up to one single bond
O Oxygen No requirements
Oa Oxygen Atomic oxygen with three lone pairs and no bonds
O0sc Oxygen Three lone pairs, up to one single bond, charged -1
O0dc Oxygen Three lone pairs, one double bond, charged -2
O2s Oxygen Two lone pairs, up to two single bonds
O2sc Oxygen Two lone pairs, up to one single bond, charged +1
O2d Oxygen Two lone pairs, one double bond
O4sc Oxygen One lone pair, up to three single bonds, charged +1
O4dc Oxygen One lone pair, one double bond, up to one single bond, charged +1
O4tc Oxygen One lone pair, one triple bond, charged +1
Si Silicon No requirements
Sis Silicon Up to four single bonds
Sid Silicon One double bond (not to O), up to two single bonds
SiO Silicon One double bond to an oxygen atom, up to two single bonds

Continued on next page
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Table 1 – continued from previous page
Atom Type Chemical Element Bonding
Sidd Silicon Two double bonds
Sit Silicon One triple bond, up to one single bond
Sib Silicon Two benzene bonds, up tp one single bond
Sibf Silicon Three benzene bonds (fused aromatics)
S Sulfur No requirements
Sa Sulfur Atomic sulfur with three lone pairs and no bonds
S0sc Sulfur Three lone pairs, up to once single bond, charged -1
S2s Sulfur Two lone pairs, up to two single bonds
S2sc Sulfur Two lone pairs, up to three single bonds, charged -1/+1
S2d Sulfur Two lone pairs, one double bond
S2dc Sulfur Two lone pairs, one to two double bonds, up to one single bond, charged -1
S2tc Sulfur Two lone pairs, one triple bond, charged -1
S4s Sulfur One lone pair, up to four single bonds
S4sc Sulfur One lone pair, up to five single bonds, charged -1/+1
S4d Sulfur One lone pair, one double bond, up to two single bonds
S4dd Sulfur One lone pair, two double bonds
S4dc Sulfur One lone pair, one to three double bonds, up to three single bonds, charged -1/+1
S4b Sulfur One lone pair, two aromatic bonds
S4t Sulfur One lone pair, one triple bond, up to one single bond
S4tdc Sulfur One lone pair, one to two triple bonds, up to two double bonds, up to two single bonds, charged -1/+1
S6s Sulfur No lone pairs, up to six single bonds
S6sc Sulfur No lone pairs, up to seven single bonds, charged -1/+1
S6d Sulfur No lone pairs, one double bond, up to four single bonds
S6dd Sulfur No lone pairs, two double bonds, up to two single bonds
S6ddd Sulfur No lone pairs, up to three double bonds
S6dc Sulfur No lone pairs, one to to three double bonds, up to five single bonds, charged -1/-1
S6t Sulfur No lone pairs, one triple bond, up to three single bonds
S6td Sulfur No lone pairs, one triple bond, one double bond, up to one single bond
S6tt Sulfur No lone pairs, two triple bonds
S6tdc Sulfur No lone pairs, one to two triple bonds, up to two double bonds, up to four single bonds, charged -1/-1
Cl Chlorine No requirements
Cl1s Chlorine Three lone pairs, zero to one single bonds
I Iodine No requirements
I1s Iodine Three lone pairs, zero to one single bonds
He Helium No requirements, nonreactive
Ne Neon No requirements, nonreactive
Ar Argon No requirements, nonreactive

Additionally, groups can also be defined as unions of other groups. For example,:

label="X_H_or_Xrad_H",
group=OR{X_H, Xrad_H},

Forbidden Groups

Forbidden groups can be defined to ban structures globally in RMG or to ban pathways in a specific kinetic family.

Globally forbidden structures will ban all reactions containing either reactants or products that are forbidden. These
groups are stored in in the file located at RMG-database/input/forbiddenStructures.py.
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To ban certain specific pathways in the kinetics families, a forbidden group must be created, like the following group
in the intra_H_migration family:

forbidden(
label = "bridged56_1254",
group =

"""
1 *1 C 1 {2,S} {6,S}
2 *4 C 0 {1,S} {3,S} {7,S}
3 C 0 {2,S} {4,S}
4 *2 C 0 {3,S} {5,S} {8,S}
5 *5 C 0 {4,S} {6,S} {7,S}
6 C 0 {1,S} {5,S}
7 C 0 {2,S} {5,S}
8 *3 H 0 {4,S}
""",

shortDesc = u"""""",
longDesc =

u"""

""",
)

Forbidden groups should be placed inside the groups.py file located inside the specific kinetics family’s folder
RMG-database/input/kinetics/family_name/ alongside normal group entries. The starred atoms in the for-
bidden group ban the specified reaction recipe from occurring in matched products and reactants.

In addition for forbidding groups, there is the option of forbidding specific molecules or species. Forbidding a molecule
will prevent that exact structure from being generated, while forbidding a species will prevent any of its resonance
structures from being generated. To specify a forbidden molecule or species, simply replace the group keyword with
molecule or species:

# This forbids a molecule
forbidden(

label = "C_quintet",
molecule =

"""
multiplicity 5
1 C u4 p0
""",

shortDesc = u"""""",
longDesc =

u"""

""",
)

# This forbids a species
forbidden(

label = "C_quintet",
species =

"""
multiplicity 5
1 C u4 p0
""",

shortDesc = u"""""",
longDesc =

u"""

(continues on next page)
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(continued from previous page)

""",
)

Hierarchical Trees

Groups are ordered into the nodes of a hierarchical trees which is written at the end of groups.py. The root node of
each tree is the most general group with the reacting atoms required for the family. Descending from the root node are
more specific groups. Each child node is a subset of the parent node above it.

A simplified example of the trees for H-abstraction is shown below. The indented text shows the syntax in groups.py
and a schematic is given underneath.

Individual groups only describe part of the reaction. To describe an entire reaction we need one group from each tree,
which we call node templates or simply templates. (C_pri, O_pri_rad), (H2, O_sec_rad), and (X_H, Y_rad) are all
valid examples of templates. Templates can be filled in with kinetic parameters from the training set or rules.

1.12.2 Thermo Database

This section describes the general usage of RMG’s thermochemistry databases. Thermochemical data in RMG is
reported using three different quantities:

1. Standard heat capacity data 𝐶𝑜
𝑝(𝑇 ) as a function of temperature 𝑇

2. Standard enthalpy of formation at 298K ∆𝑓𝐻
𝑜(298𝐾)

3. Standard entropy at 298K 𝑆𝑜(298𝐾)

A heat capacity model based on the Wilhoit equation is used for inter- and extrapolation of the heat capacity data as a
function of temperature.
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Libraries

Library types

Two types of thermo libraries are available in RMG: “gas phase” and “liquid thermo” libraries respectively identified
thanks to the absence or presence of the keyword solvent = “solvent_name” in the header of a thermo library. Here is
an example of a liquid thermo library header:

name = "example_liquid_thermo_library"
solvent = "octane"
shortDesc = u"test"
longDesc = u"""

In this example the library name is “example_liquid_thermo_library” and thermo data provided was obtained in octane
solvent. The only difference between gas phase and liquid phase thermo libraries is made through this keyword, the
rest of the library is similar to gas phase.

Note: You can only provide one solvent per library and users should pay attention to not mix thermo of species
obtained in different solvent in a same library. RMG will raise an error if users try to load a liquid thermo library
obtained in another solvent that the one provided in input file. (in the example provided here, this liquid thermo library
can only be used in liquid phase simulation with octane as solvent. RMG will also raise an error if user try to use
liquid phase thermo library in gas phase simulations.

Species thermochemistry libraries

The folder RMG-database/input/thermo/libraries/ in RMG-database is the location to store species thermo-
chemistry libraries. Each particularly library is stored in a file with the extension .py, e.g. ‘DFT_QCI_thermo.py’.

An example of a species thermochemistry entry is shown here below:

entry(
index = 1,
label = "H2",
molecule =

"""
1 H 0 0 {2,S}
2 H 0 0 {1,S}
""",

thermo = ThermoData(
Tdata = ([300,400,500,600,800,1000,1500],'K'),
Cpdata = ([6.948,6.948,6.949,6.954,6.995,7.095,7.493],'cal/(mol*K)'),
H298 = (0,'kcal/mol'),
S298 = (31.095,'cal/(mol*K)'),

),
shortDesc = u"""""",
longDesc =

u"""

""",
)

The text above describes the first entry in the library (index = 1), labeled ‘H2’, through the adjacency list representation.
Heat capacity data (‘Cpdata’) is described at 7 different temperatures, along with the standard enthalpy of formation
at 298K (‘H298’), and the standard entropy at 298K (‘S298’).
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According to the thermo classes availble in RMG, you can provide different thermo data: NASA, thermodata (as
shown above), wilhoit or NASAPolynomial.

Groups

The folder RMG-database/input/thermo/groups/ in RMG-database is the location to store group contribution
databases. Each particularly type of group contribution is stored in a file with the extension .py, e.g. ‘groups.py’:

file Type of group contribution
gauche.py 1,4-gauche non-nearest neighbor interactions (NNIs)
group.py group additive values (GAVs)
int15.py 1,5-repulsion non-nearest neighbor interactions (NNIs)
other.py other non-nearest neighbor interactions (NNIs)
polycyclic.py polycyclic ring corrections (RSCs)
radical.py hydrogen bond increments (HBIs)
ring.py monocyclic ring corrections (RSCs)

Like many other entities in RMG, the database of each type of group contribution is organized in a hierarchical tree,
and is defined at the bottom of the database file. E.g.:

tree(
"""
L1: R

L2: C
L3: Cbf

L4: Cbf-CbCbCbf
L4: Cbf-CbCbfCbf
L4: Cbf-CbfCbfCbf

L3: Cb
L4: Cb-H
L4: Cb-Os
L4: Cb-S2s
L4: Cb-C

L5: Cb-Cs
L5: Cb-Cds

L6: Cb-(Cds-Od)
...

More information on hierarchical tree structures in RMG can be found here: Introduction.

Group additive values (GAV)

An example of a GAV entry in group.py is shown here below:

entry(
index = 3,
label = "Cbf-CbCbCbf",
group =

"""
1 * Cbf 0 {2,B} {3,B} {4,B}
2 Cb 0 {1,B}
3 Cb 0 {1,B}
4 Cbf 0 {1,B}

(continues on next page)
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(continued from previous page)

""",
thermo = ThermoData(

Tdata = ([300,400,500,600,800,1000,1500],'K'),
Cpdata = ([3.01,3.68,4.2,4.61,5.2,5.7,6.2],'cal/(mol*K)',

'+|-', [0.1,0.1,0.1,0.1,0.1,0.1,0.1]),
H298 = (4.8,'kcal/mol','+|-',0.17),
S298 = (-5,'cal/(mol*K)','+|-',0.1),

),
shortDesc = u"""Cbf-CbfCbCb STEIN and FAHR; J. PHYS. CHEM. 1985, 89, 17, 3714""",
longDesc =

u"""
Taken from STEIN and FAHR; J. PHYS. CHEM. 1985, 89, 17, 3714
""",
)

The text above describes a GAV “Cbf-CbCbCbf”, with the central atom denoted by the asterisk in the adjacency list
representation. Uncertainty margins are added in the data, after the unit specification. A short description ‘shortDesc’
specifies the origin of the data.

Ring Strain Corrections (RSC)

RMG distinguishes between monocyclic and polycyclic ring correction databases.

Monocyclic RSCs are used for molecules that contain one single ring. An example of a monocyclic RSC entry in
ring.py is shown here below:

entry(
index = 1,
label = "Cyclopropane",
group =

"""
1 * Cs 0 {2,S} {3,S}
2 Cs 0 {1,S} {3,S}
3 Cs 0 {1,S} {2,S}
""",

thermo = ThermoData(
Tdata = ([300,400,500,600,800,1000,1500],'K'),
Cpdata = ([-3.227,-2.849,-2.536,-2.35,-2.191,-2.111,-1.76],'cal/(mol*K)'),
H298 = (27.53,'kcal/mol'),
S298 = (32.0088,'cal/(mol*K)'),

),
shortDesc = u"""Cyclopropane ring BENSON""",
longDesc =

u"""

""",
)

A molecule may have two or more fused rings that mutually interact. In that case, a polycyclic ring strain correc-
tion may be more adequate. RMG identifies molecules with fused ring systems and subsequently searches through
polycyclic.py to identify an adequate RSC.

An example of a polycyclic RSC entry in polycyclic.py is shown here below:
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entry(
index = 2,
label = "norbornane",
group =

"""
1 * Cs 0 {3,S} {4,S} {7,S}
2 Cs 0 {3,S} {5,S} {6,S}
3 Cs 0 {1,S} {2,S}
4 Cs 0 {1,S} {5,S}
5 Cs 0 {2,S} {4,S}
6 Cs 0 {2,S} {7,S}
7 Cs 0 {1,S} {6,S}
""",

thermo = ThermoData(
Tdata = ([300,400,500,600,800,1000,1500],'K'),
Cpdata = ([-4.5,-3.942,-3.291,-2.759,-2.08,-1.628,-0.898],'cal/(mol*K)'),
H298 = (16.14,'kcal/mol'),
S298 = (53.47,'cal/(mol*K)'),

),
shortDesc = u"""""",
longDesc =

u"""

""",
)

Hydrogen Bond Increments (HBI)

An example of a HBI entry in radical.py is shown here below:

entry(
index = 4,
label = "CH3",
group =

"""
1 * C 1 {2,S} {3,S} {4,S}
2 H 0 {1,S}
3 H 0 {1,S}
4 H 0 {1,S}
""",

thermo = ThermoData(
Tdata = ([300,400,500,600,800,1000,1500],'K'),
Cpdata = ([0.71,0.34,-0.33,-1.07,-2.43,-3.54,-5.43],'cal/(mol*K)'),
H298 = (104.81,'kcal/mol','+|-',0.1),
S298 = (0.52,'cal/(mol*K)'),

),
shortDesc = u"""Calculated in relation to methane from NIST values""",
longDesc =

u"""

""",
)
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Non-nearest neighbor interactions

The majority of the NNIs groups pertain to small enthalpy of formation corrections. Only a very limited number
include entropy or heat capacity corrections. The database other.py contains cis-, ortho- and ketene-corrections.

An example of a NNI entry in gauche.py is shown here below:

entry(
index = 11,
label = "Cs(Cs(CsCsR)Cs(CsCsR)RR)",
group =

"""
1 * Cs 0 {2,S} {3,S} {4,S} {5,S}
2 Cs 0 {1,S} {6,S} {7,S} {8,S}
3 Cs 0 {1,S} {9,S} {10,S} {11,S}
4 {Cd,Cdd,Ct,Cb,Cbf,Os,CO,H} 0 {1,S}
5 {Cd,Cdd,Ct,Cb,Cbf,Os,CO,H} 0 {1,S}
6 Cs 0 {2,S}
7 Cs 0 {2,S}
8 {Cd,Cdd,Ct,Cb,Cbf,Os,CO,H} 0 {2,S}
9 Cs 0 {3,S}
10 Cs 0 {3,S}
11 {Cd,Cdd,Ct,Cb,Cbf,Os,CO,H} 0 {3,S}
""",

thermo = ThermoData(
Tdata = ([300,400,500,600,800,1000,1500],'K'),
Cpdata = ([0,0,0,0,0,0,0],'cal/(mol*K)'),
H298 = (0.8,'kcal/mol'),
S298 = (0,'cal/(mol*K)'),

),
shortDesc = u"""""",
longDesc =

u"""

""",
)

1.12.3 Kinetics Database

This section describes the general usage of RMG’s kinetic database. See Modifying the Kinetics Database for instruc-
tions on modifying the database.

Pressure independent reaction rates in RMG are calculated using a modified Arrhenius equation, designating the
reaction coefficient as 𝑘(𝑇 ) at temperature 𝑇 .

𝑘(𝑇 ) = 𝐴

(︂
𝑇

𝑇0

)︂𝑛

𝑒−(𝐸0+𝛼Δ𝐻𝑟𝑥𝑛)/(𝑅𝑇 )

𝑅 is the universal gas constant. The kinetic parameters determining the rate coefficient are:

• 𝐴: the pre-exponential A-factor

• 𝑇0: the reference temperature

• 𝑛: the temperature exponent

• 𝐸0: the activation energy for a thermoneutral reaction (a barrier height intrinsic to the kinetics family)
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• 𝛼: the Evans-Polanyi coefficient (characterizes the position of the transition state along the reaction coordinate,
0 ≤ 𝛼 ≤ 1)

• ∆𝐻𝑟𝑥𝑛: the enthalpy of reaction

When Evans-Polanyi corrections are used, ∆𝐻𝑟𝑥𝑛 is calculated using RMG’s thermo database, instead of being spec-
ified in the kinetic database. When Evans-Polanyi corrections are not used, ∆𝐻𝑟𝑥𝑛 and 𝛼 are set to zero, and 𝐸0 is
the activation energy of the reaction.

Libraries

Kinetic libraries delineate kinetic parameters for specific reactions. RMG always chooses to use kinetics from libraries
over families. If multiple libraries contain the same reaction, then precedence is given to whichever library is listed
first in the input.py file.

For combustion mechanisms, you should always use at least one small-molecule combustion library, such as the pre-
packaged BurkeH2O2 and/or FFCM1 for natural gas. The reactions contained in these libraries are poorly estimated
by kinetic families and are universally important to combustion systems.

Kinetic libraries should also be used in the cases where:

• A set of reaction rates were optimized together

• You know the reaction rate is not generalizable to similar species (perhaps due to catalysis or aromatic structures)

• No family exists for the class of reaction

• You are not confident about the accuracy of kinetic parameters

Below is a list of pre-packaged kinetics library reactions in RMG:

Library Description
1989_Stewart_2CH3_to_C2H5_H Chemically Activated Methyl Recombination to Ethyl (2CH3 -> C2H5 + H)
2001_Tokmakov_H_Toluene_to_CH3_Benzene H + Toluene = CH3 + Benzene
2005_Senosiain_OH_C2H2 pathways on the OH + acetylene surface
2006_Joshi_OH_CO pathways on OH + CO = HOCO = H + CO2 surface
2009_Sharma_C5H5_CH3_highP Cyclopentadienyl + CH3 in high-P limit
2015_Buras_C2H3_C4H6_highP Vinyl + 1,3-Butadiene and other C6H9 reactions in high-P limit
biCPD_H_shift Sigmatropic 1,5-H shifts on biCPD PES
BurkeH2O2inArHe Comprehensive H2/O2 kinetic model in Ar or He atmosphere
BurkeH2O2inN2 Comprehensive H2/O2 kinetic model in N2 atmosphere
C2H4+O_Klipp2017 C2H4 + O intersystem crossing reactions, probably important for all C/H/O combustion
C10H11 Cyclopentadiene pyrolysis in the presence of ethene
C3 Cyclopentadiene pyrolysis in the presence of ethene
C6H5_C4H4_Mebel Formation Mechanism of Naphthalene and Indene
Chernov Soot Formation with C1 and C2 Fuels (aromatic reactions only)
CurranPentane Ignition of pentane isomers
Dooley Methyl formate (contains several mechanisms)
ERC-FoundationFuelv0.9 Small molecule combustio (natural gas)
Ethylamine Ethylamine pyrolysis and oxidation
FFCM1(-) Foundational Fuel Chemistry Model Version 1.0 (excited species removed)
First_to_Second_Aromatic_Ring/2005_Ismail_C6H5_C4H6_highP Phenyl + 1,3-Butadiene and other C10H11 reactions in high-P limit
First_to_Second_Aromatic_Ring/2012_Matsugi_C3H3_C7H7_highP Propargyl + Benzyl and other C10H10 reactions in high-P limit
First_to_Second_Aromatic_Ring/2016_Mebel_C9H9_highP C9H9 reactions in high-P limit
First_to_Second_Aromatic_Ring/2016_Mebel_C10H9_highP C10H9 reactions in high-P limit
First_to_Second_Aromatic_Ring/2016_Mebel_Indene_CH3_highP CH3 + Indene in high-P limit

Continued on next page
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Table 2 – continued from previous page
Library Description
First_to_Second_Aromatic_Ring/2017_Buras_C6H5_C3H6_highP Phenyl + Propene and other C9H11 reactions in high-P limit
First_to_Second_Aromatic_Ring/2017_Mebel_C6H4C2H_C2H2_highP C10H7 HACA reactions in high-P limit
First_to_Second_Aromatic_Ring/2017_Mebel_C6H5_C2H2_highP C8H7 HACA reactions in high-P limit
First_to_Second_Aromatic_Ring/2017_Mebel_C6H5_C4H4_highP Phenyl + Vinylacetylene and other C10H9 reactions in high-P limit
First_to_Second_Aromatic_Ring/2017_Mebel_C6H5C2H2_C2H2_highP C10H9 HACA reactions in high-P limit
First_to_Second_Aromatic_Ring/phenyl_diacetylene_effective Effective Phenyl + Diacetylene rates to Benzofulvenyl and 2-Napthyl
Fulvene_H Cyclopentadiene pyrolysis in the presence of ethene
GRI-HCO The HCO <=> H + CO reaction
GRI-Mech3.0 Gas Research Institute natural gas mechanism optimized for 1 atm (discontinued Feb. 2000)
GRI-Mech3.0-N GRI-Mech3.0 including nitrogen chemistry (NOx from N2)
Glarborg Mechanisms by P. Glarborg, assorted by carbon number
JetSurF2.0 Jet Surrogate Fuel model up tp C12 (excited species removed)
Klippenstein_Glarborg2016 Methane oxidation at high pressures and intermediate temperatures
Lai_Hexylbenzene Alkylaromatic reactions for hexylbenzene
Mebel_C6H5_C2H2 Pathways from benzene to naphthalene
Mebel_Naphthyl Reactions of naphthyl-1 and naphthyl-2
Methylformate Methyl formate
Narayanaswamy Oxidation of substituted aromatic species (aromatic reactions only)
Nitrogen_Dean_and_Bozzelli Combustion Chemistry of Nitrogen
Nitrogen_Glarborg_Gimenez_et_al High pressure C2H4 oxidation with nitrogen chemistry
Nitrogen_Glarborg_Lucassen_et_al Fuel-nitrogen conversion in the combustion of small amines
Nitrogen_Glarborg_Zhang_et_al Premixed nitroethane flames at low pressure
NOx important NOx related reactions, e.g., thermal & prompt NO, N2O
NOx/LowT Low temperature kinetics (~<1000K) for selected reactions from the NOx library
OxygenSingTrip Reactions of singlet and triplet oxygen
SOx important SOx related reactions, e.g., H-S, C-S, SOx
Sulfur/DMDS Dimethyl disulfide (CH3SSCH3)
Sulfur/DMS Dimethyl disulfide (CH3SSCH3)
Sulfur/DTBS Di-tert-butyl Sulfide (C4H9SSC4H9)
Sulfur/GlarborgBozzelli SO2 effect on moist CO oxidation with and without NO
Sulfur/GlarborgH2S H2S oxidation at high pressures
Sulfur/GlarborgMarshall OCS chemistry
Sulfur/GlarborgNS Interactions between nitrogen and sulfur species in combustion
Sulfur/Hexanethial_nr Hexyl sulfide (C6H13SC6H13) + hexadecane (C16H34)
Sulfur/Sendt Small sulfur molecule
Sulfur/TP_Song Thiophene (C4H4S, aromatic)
Sulfur/Thial_Hydrolysis Thioformaldehyde (CH2S) and thioacetaldehyde (C2H4S) to COS and CO2
TEOS Organic oxidized silicone
c-C5H5_CH3_Sharma Cyclopentadienyl + CH3
combustion_core Leeds University natural gas mechanism (contains versions 2-5)
fascella Cyclopentadienyl + acetyl
kislovB Formation of indene in combustion
naphthalene_H Cyclopentadiene pyrolysis in the presence of ethene Part 1
vinylCPD_H Cyclopentadiene pyrolysis in the presence of ethene Part 2

Families

Allowable reactions in RMG are divided up into classes called reaction families. All reactions not listed in a kinetic
library have their kinetic parameters estimated from the reaction families.
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Each reaction family contains the files:

• groups.py containing the recipe, group definitions, and hierarchical trees

• training.py containing a training set for the family

• rules.py containing kinetic parameters for rules

There are currently 58 reaction families in RMG:

1,2-Birad_to_alkene

1,2_Insertion_carbene

1,2_Insertion_CO

1,2_shiftC
1,2_shiftS

1,3_Insertion_CO2
1,3_Insertion_ROR
1,3_Insertion_RSR

1,4_Cyclic_birad_scission

1,4_Linear_birad_scission

1+2_Cycloaddition

2+2_cycloaddition_CCO

2+2_cycloaddition_Cd

2+2_cycloaddition_CO

2+2_cycloaddition_CS

6_membered_central_C-C_shift
Continued on next page
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Table 3 – continued from previous page

Birad_recombination

Birad_R_Recombination

CO_Disproportionation

Concerted_Intra_Diels_alder_monocyclic_1,2_shiftH

Cyclic_Ether_Formation

Cyclic_Thioether_Formation

Cyclopentadiene_scission

Diels_alder_addition

Disproportionation

H_Abstraction

HO2_Elimination_from_PeroxyRadical

Intra_2+2_cycloaddition_Cd

Intra_5_membered_conjugated_C=C_C=C_addition

Intra_Diels_alder_monocyclic

Intra_Disproportionation

Intra_ene_reaction

intra_H_migration
Continued on next page
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Table 3 – continued from previous page

intra_NO2_ONO_conversion

intra_OH_migration

Intra_R_Add_Endocyclic

Intra_R_Add_Exocyclic
Intra_R_Add_Exo_scission

Intra_R_Add_ExoTetCyclic

Intra_Retro_Diels_alder_bicyclic

Intra_RH_Add_Endocyclic

Intra_RH_Add_Exocyclic

intra_substitutionCS_cyclization
intra_substitutionCS_isomerization

intra_substitutionS_cyclization
intra_substitutionS_isomerization
ketoenol

Korcek_step1

Korcek_step2

lone_electron_pair_bond
Continued on next page
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R_Addition_COm

R_Addition_CSm

R_Addition_MultipleBond

R_Recombination
Singlet_Carbene_Intra_Disproportionation

Singlet_Val6_to_triplet

Substitution_O

SubstitutionS

Recipe

The recipe can be found near the top of groups.py and describes the changes in bond order and radicals that occur
during the reaction. Reacting atoms are labelled with a starred number. Shown below is the recipe for the H-abstraction
family.

The table below shows the possible actions for recipes. The arguments are given in the curly braces as shown above.
For the order of bond change in the Change_Bond action, a -1 could represent a triple bond changing to a double bond
while a +1 could represent a single bond changing to a double bond.

Action Argument1 Argument2 Argument3
Break_Bond First bonded atom Type of bond Second bonded atom
Form_Bond First bonded atom Type of bond Second bonded atom
Change_Bond First bonded atom Order of bond change Second bonded atom
Gain_Radical Specified atom Number of radicals
Lose_Radical Specified atom Number of radicals

Change_Bond order cannot be directly used on benzene bonds. During generation, aromatic species are kekulized to
alternating double and single bonds such that reaction families can be applied. However, RMG cannot properly handle
benzene bonds written in the kinetic group definitions.
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Training Set vs Rules

The training set and rules both contain trusted kinetics that are used to fill in templates in a family. The training
set contains kinetics for specific reactions, which are then matched to a template. The kinetic rules contain kinetic
parameters that do not necessarily correspond to a specific reaction, but have been generalized for a template.

When determining the kinetics for a reaction, a match for the template is searched for in the kinetic database. The
three cases in order of decreasing reliability are:

1. Reaction match from training set

2. Node template exact match using either training set or rules

3. Node template estimate averaged from children nodes

Both training sets and reaction libraries use the observed rate, but rules must first be divided by the degeneracy of the
reaction. For example, the reaction CH4 + OH –> H2O + CH3 has a reaction degeneracy of 4. If one performed an
experiment or obtained this reaction rate using Cantherm (applying the correct symmetry), the resultant rate parameters
would be entered into libraries and training sets unmodified. However a kinetic rule created for this reaction must have
its A-factor divided by 4 before being entered into the database.

The reaction match from training set is accurate within the documented uncertainty for that reaction. A template exact
match is usually accurate within about one order of magnitude. When there is no kinetics available for for the template
in either the training set or rules, the kinetics are averaged from the children nodes as an estimate. In these cases, the
kinetic parameters are much less reliable. For more information on the estimation algorithm see Kinetics Estimation.

The training set can be modified in training.py and the rules can be modified in rules.py. For more information on
modification see Adding Training Reactions and Adding Kinetic Rules.

1.12.4 Database Modification

Note that the RMG-Py database is written in Python code where line indentations determine the scope. When modi-
fying the database, be sure to preserve all line indentations shown in the examples.

Modifying the Thermo Database

Creating Thermo Libraries

Adding Thermo Groups

Adding Thermo to the Depository

Modifying the Kinetics Database

For the casual user, it is recommended to use either a kinetic library or add to the training set instead of modifying the
kinetic groups.

Put kinetic parameters into a kinetic library when:

• A set of reaction rates were optimized together

• You know the reaction rate is not generalizable to similar species (perhaps due to catalysis or aromatic structures)

• No family exists for the class of reaction

• You are not confident about the accuracy of kinetic parameters
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Put kinetic parameters into the training set when:

• You are confident on the accurcy of the kinetic parameter

• You wish for the reaction to be generalized to similar reactions in your mechanism

Adding Reaction Family

There are several places in the RMG-database and RMG-Py source code where reaction family details are hard-coded.
You should check all these when you create a new reaction family. Here are some of the places:

• RMG-database/input/kinetics/families/[family name]

– add folder for your family name

– create groups.py, rules.py and a template folder with species dictionary and reactions.py.

– fill the files with rate data that you plan to use.

– Many tools exist to help with the conversion process:

* convertKineticsLibraryToTrainingReactions.ipynb in RMG-database/scripts

* importChemkinLibrary.py in RMG-database/scripts

• rmgpy.data.kinetics.family

– applyRecipe: swapping the atom labels (eg. *1 and *2) around

– getReactionPairs: figuring out which species becomes which for flux analyses

– __generateReactions: correcting degeneracy eg. dividing by 2 for radical recombination

• rmgpy.data.kinetics.rules

– processOldLibraryEntry: determining units when importing RMG-Java database

– getAllRules: for radical recombination add reverse templates

• rmgpy.data.kinetics.groups

– getReactionTemplate: for radical recombination duplicate the template

• RMG-database/input/kinetics/families/recommended.py

– allows the usage of the database with the recommended families.

Creating Kinetics Libraries

To add a reaction library, simply create a folder bearing the library’s name under RMG-database/input/kinetics/
libraries. You’ll need to create two files: dictionary.txt and reactions.py. The dictionary file contains the
Adjacency lists for all relevant species (can be generated using the Molecule Search function of the rmg website, while
the reactions file specifies the kinetics. To conform to RMG’s format, simply copy and modify an existing library.

At the top of the reactions file fill in the name and short (one line) and long descriptions. The name must be identical
to the folder’s name. Then list the kinetics entries, each with a unique index number.

There are two flags relevant for pressure dependent library reactions that one should consider using:

1. elementary_high_p: Should be set to True for elementary unimolecular reactions (with only one reactant and/or
product) with a kinetics entry that has information about the high pressure kinetics, i.e., Troe or Lindemann, PDepAr-
rhenius or Chebyshev that are defined up to at least 100 bar, or Arrhenius that represents the high pressure limit (i.e.,
not the measured rate at some low or medium experimental pressure). If set to True, RMG will use the high pressure
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limit rate when constructing pressure-dependent networks. The kinetics entry of the original library reaction will only
be updated if it is an Arrhenius type (will be replaced with either PDepArrhenius or Chebyshev, as specified in the
pressureDependent block of the input file). If set to False (the default value), RMG will not use the high pressure
limit rate in network exploration, and will not convert Arrhenius kinetics of library reactions that have no template (a
corresponding reaction family) into a pressure-dependent form.

2. allow_pdep_route: If set to True and RMG discovers a pressure-dependent reaction with the same reactants and
products, the latter will be considered in addition to the library reaction. This is useful for cases when more than one
pathway connects the same reactants and products, and some of these pathways are well-skipping reactions. If set to
False (the default value), similar network reactions will not be considered in the model generation.

The following formats are accepted as kinetics entries:

Arrhenius of the form 𝑘(𝑇 ) = 𝐴
(︁

𝑇
𝑇0

)︁𝑛

exp
(︀
− 𝐸a

𝑅𝑇

)︀
(see Arrhenius Class for details):

entry(
index = 1,
label = "H + O2 <=> O + OH",
degeneracy = 1,
kinetics = Arrhenius(A=(9.841e+13, 'cm^3/(mol*s)'), n=0, Ea=(15310, 'cal/mol'), T0=(1, 'K')),
shortDesc = u"This is a short description limited to one line, e.g. 'CBS-QB3'",
longDesc = u"""This is a long description, unlimited by number of lines.
These descriptions can be added to every kinetics type.""")

MultiArrhenius is the sum of multiple Arrhenius expressions (all apply to the same temperature range) (see MultiAr-
rhenius Class for details):

entry(
index = 2,
label = "O + H2 <=> H + OH",
degeneracy = 1,

duplicate = True,
kinetics = MultiArrhenius(

arrhenius = [Arrhenius(A=(3.848e+12, 'cm^3/(mol*s)'), n=0, Ea=(7950, 'cal/mol'), T0=(1,
→˓'K')),

Arrhenius(A=(6.687e+14, 'cm^3/(mol*s)'), n=0, Ea=(19180, 'cal/mol'), T0=(1, 'K'))]))

ThirdBody for pressure dependent reactions of the sort H2 + M <=> H + H + M. efficiencies are optional and
specify the factor by which the rate is multiplies if the mentioned species is the third body collider. Note that for
complex efficiency behaviour, an efficiency of 0 can be set, and a seperate specific reaction can be defined (see
ThirdBody Class for details):

entry(
index = 3,
label = "H2 <=> H + H",
degeneracy = 1,
kinetics = ThirdBody(

arrheniusLow = Arrhenius(A=(4.58e+19, 'cm^3/(mol*s)'), n=-1.4, Ea=(104390, 'cal/mol'),
→˓T0=(1, 'K')),

efficiencies = {'[Ar]': 0, 'N#N': 1.01, '[H][H]': 2.55, 'O': 12.02, '[C-]#[O+]': 1.95,
→˓'O=C=O': 3.83, 'C': 2.00, 'C=O': 2.50, 'CO': 3.00, 'CC': 3.00}))

entry(
index = 4,
label = "H2 + Ar <=> H + H + Ar",
degeneracy = 1,
kinetics = Arrhenius(A=(5.176e+18, 'cm^3/(mol*s)'), n= 1.1, Ea=(104390, 'cal/mol'), T0=(1, 'K
→˓')))
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Troe for pressure dependent reactions (see Troe Class for details):

entry(
index = 5,
label = "H + O2 <=> HO2",
degeneracy = 1,
kinetics = Troe(

arrheniusHigh = Arrhenius(A=(4.565e+12, 'cm^3/(mol*s)'), n=0.44, Ea=(0, 'cal/mol'),
→˓T0=(1, 'K')),

arrheniusLow = Arrhenius( A=(6.37e+20, 'cm^6/(mol^2*s)'), n = -1.72, Ea = (525, 'cal/mol
→˓'), T0 = (1, 'K')),

alpha=0.5, T3=(30, 'K'), T1=(90000, 'K'), T2=(90000, 'K'),
efficiencies = {'[Ar]': 0.6, '[He]': 0.71, 'N#N': 0.96, '[H][H]': 1.87, '[O][O]': 0.75,

→˓'O': 15.81, '[C-]#[O+]': 1.90, 'O=C=O': 3.45, 'C': 2.00, 'C=O': 2.50, 'CO': 3.00, 'CC': 3.00}
→˓))

Lindemann (see Lindemann Class for details):

entry(
index = 6,
label = "CO + O <=> CO2",
degeneracy = 1,
kinetics = Lindemann(

arrheniusHigh = Arrhenius(A=(1.88e+11, 'cm^3/(mol*s)'), n=0, Ea=(2430, 'cal/mol'),
→˓T0=(1, 'K')),

arrheniusLow = Arrhenius(A = (1.4e+21, 'cm^6/(mol^2*s)'), n = -2.1, Ea = (5500, 'cal/mol
→˓'), T0 = (1, 'K')),

efficiencies = {'[Ar]': 0.87, '[He]': 2.50, 'O': 12.00, '[C-]#[O+]': 1.90, 'O=C=O': 3.
→˓80, 'C': 2.00, 'C=O': 2.50, 'CO': 3.00, 'CC': 3.00}))

PDepArrhenius where each Arrhenius expression corresponds to a different pressure, as specified. Allowed pressure
units are Pa, bar, atm, torr, psi, mbar (see PDepArrhenius Class for details):

entry(
index = 7,
label = "HCO <=> H + CO",
degeneracy = 1,
kinetics = PDepArrhenius(

pressures = ([1, 10, 20, 50, 100], 'atm'),
arrhenius = [

Arrhenius(A=(9.9e+11, 's^-1'), n=-0.865, Ea=(16755, 'cal/mol'), T0=(1, 'K')),
Arrhenius(A=(7.2e+12, 's^-1'), n=-0.865, Ea=(16755, 'cal/mol'), T0=(1, 'K')),
Arrhenius(A=(1.3e+13, 's^-1'), n=-0.865, Ea=(16755, 'cal/mol'), T0=(1, 'K')),
Arrhenius(A=(2.9e+13, 's^-1'), n=-0.865, Ea=(16755, 'cal/mol'), T0=(1, 'K')),
Arrhenius(A=(5.3e+13, 's^-1'), n=-0.865, Ea=(16755, 'cal/mol'), T0=(1, 'K'))]))

MultiPDepArrhenius (see MultiPDepArrhenius Class for details):

entry(
index = 8,
label = "N2H2 <=> NNH + H",
degeneracy = 1,
duplicate = True,
kinetics = MultiPDepArrhenius(

arrhenius = [
PDepArrhenius(

pressures = ([0.1, 1, 10], 'atm'),
arrhenius = [

(continues on next page)
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(continued from previous page)

Arrhenius(A=(5.6e+36, '1/s'), n=-7.75, Ea=(70250.4, 'cal/mol'), T0=(1, 'K
→˓')),

Arrhenius(A=(1.8e+40, '1/s'), n=-8.41, Ea=(73390, 'cal/mol'), T0=(1, 'K')),
Arrhenius(A=(3.1e+41, '1/s'), n=-8.42, Ea=(76043, 'cal/mol'), T0=(1, 'K

→˓'))]),
PDepArrhenius(

pressures = ([0.1, 1, 10], 'atm'),
arrhenius = [

Arrhenius(A=(1.6e+37, '1/s'), n=-7.94, Ea=(70757, 'cal/mol'), T0=(1, 'K')),
Arrhenius(A=(2.6e+40, '1/s'), n=-8.53, Ea=(72923, 'cal/mol'), T0=(1, 'K')),
Arrhenius(A=(1.3e+44, '1/s'), n=-9.22, Ea=(77076, 'cal/mol'), T0=(1, 'K

→˓'))])]))

Chebyshev (see Chebyshev Class for details):

entry(
index = 9,
label = "CH3 + OH <=> CH2(S) + H2O",
degeneracy = 1,
kinetics = Chebyshev(

coeffs = [
[12.4209, -0.799241, -0.299133, -0.0143012],
[0.236291, 0.856853, 0.246313, -0.0463755],
[-0.0827561, 0.0457236, 0.105699, 0.057531],
[-0.049145, -0.0760609, -0.0214574, 0.0247001],
[-0.00664556, -0.0412733, -0.0308561, -0.00959838],
[0.0111919, -0.00649914, -0.0106088, -0.0137528],

],
kunits='cm^3/(mol*s)', Tmin=(300, 'K'), Tmax=(3000, 'K'), Pmin=(0.0013156, 'atm'),

→˓Pmax=(131.56, 'atm')))

Adding a specific collider

Only the Troe and Lindemann pressure dependent formats could be defined with a specific species as a third body
collider, if needed. For example:

entry(
index = 10,
label = "SO2 + O <=> SO3",
degeneracy = 1,
kinetics = Troe(

arrheniusHigh = Arrhenius(A=(3.7e+11, 'cm^3/(mol*s)'), n=0, Ea=(1689, 'cal/mol'), T0=(1,
→˓ 'K')),

arrheniusLow = Arrhenius(A=(2.4e+27, 'cm^6/(mol^2*s)'), n=-3.6, Ea=(5186, 'cal/mol'),
→˓T0=(1, 'K')),

alpha = 0.442, T3=(316, 'K'), T1=(7442, 'K'), efficiencies={'O=S=O': 10, 'O': 10, 'O=C=O
→˓': 2.5, 'N#N': 0}))

entry(
index = 11,
label = "SO2 + O (+N2) <=> SO3 (+N2)",
degeneracy = 1,
kinetics = Troe(

arrheniusHigh = Arrhenius(A=(3.7e+11, 'cm^6/(mol^2*s)'), n=0, Ea=(1689, 'cal/mol'),
→˓T0=(1, 'K')),

(continues on next page)
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arrheniusLow = Arrhenius(A=(2.9e+27, 'cm^9/(mol^3*s)'), n=-3.58, Ea=(5206, 'cal/mol'),
→˓T0=(1, 'K')),

alpha=0.43, T3=(371, 'K'), T1=(7442, 'K'), efficiencies={}))

Adding New Kinetic Groups and Rate Rules

Decide on a Template

First you need to know the template for your reaction to decide whether or not to create new groups:

1. Type your reaction into the kinetics search at http://rmg.mit.edu/database/kinetics/search/

2. Select the correct reaction

3. In the results search for “(RMG-Py rate rules)” and select that link. The kinetic family listed is the family of
interest.

4. Scroll to the bottom and look at the end of the long description. There may be very long description of the
averaging scheme, but the template for the reaction is the very last one listed:

Now you must determine whether the chosen template is appropriate. A good rule of thumb is to see if the all
neighbours of the reacting atoms are as specified as possible. For example, assume your species is ethanol
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and RMG suggests the group:

label = "C_sec",
group =
"""
1 *1 Cs 0 {2,S} {3,S} {4,S}
2 *2 H 0 {1,S}
3 R!H 0 {1,S}
4 R!H 0 {1,S}
""",

If you use the suggested groups you will not capture the effect of the alcohol group. Therefore it is better to make a
new group.

label = "C/H2/CsO",
group =
"""
1 *1 Cs 0 {2,S} {3,S} {4,S} {5,S}
2 *2 H 0 {1,S}
3 H 0 {1,S}
4 O 0 {1,S}
5 Cs 0 {1,S}
""",

If you have determined the suggested groups is appropriate, skip to Adding Training Reactions or Adding Kinetic
Rules. Otherwise proceed to the next section for instructions on creating the new group.

Creating a New Group

In the family’s groups.py, you will need to add an entry of the format:

entry(
index = 61,
label = "C_sec",
group =

"""
1 *1 Cs 0 {2,S} {3,S} {4,S} {5,S}
2 *2 H 0 {1,S}
3 C 0 {1,S}
4 H 0 {1,S}
5 R!H 0 {1,S}
""",

kinetics = None,
reference = None,
referenceType = "",
shortDesc = u"""""",
longDesc = u"""""",

)
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• The index can be any number not already present in the set

• The label is the name of the group.

• The group is the group adjacency list with the starred reacting atoms.

• The other attributes do not need to be filled for a group

Next, you must enter your new group into the tree. At the bottom of groups.py you will find the trees. Place your
group in the appropriate position. In the example given in the previous section, the new group would be added under
the C_sec.

L1: X_H
L2: H2
L2: Cs_H

L3: C_pri
L3: C_sec

L4: C/H2/CsO
L3: C_ter

Adding Kinetic Rules

Rules give generalized kinetic parameters for a specific node template. In most cases, your kinetic parameters describe
a specific reaction in which case you will want to add your reaction to the training set.

The rule must be added into rules.py in the form:

entry(
index = 150,
label = "C/H/Cs3;O_rad/NonDeO",
group1 =

"""
1 *1 Cs 0 {2,S} {3,S} {4,S} {5,S}
2 *2 H 0 {1,S}
3 Cs 0 {1,S}
4 Cs 0 {1,S}
5 Cs 0 {1,S}
""",

group2 =
"""
1 *3 O 1 {2,S}
2 O 0 {1,S}
""",

kinetics = ArrheniusEP(
A = (2800000000000.0, 'cm^3/(mol*s)', '*|/', 5),
n = 0,
alpha = 0,
E0 = (16.013, 'kcal/mol', '+|-', 1),
Tmin = (300, 'K'),
Tmax = (1500, 'K'),

),
reference = None,
referenceType = "",
rank = 5,
shortDesc = u"""Curran et al. [8] Rate expressions for H atom abstraction from fuels.""

→˓",
longDesc =

u"""

(continues on next page)
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[8] Curran, H.J.; Gaffuri, P.; Pit z, W.J.; Westbrook, C.K. Combust. Flame 2002, 129, 253.
Rate expressions for H atom abstraction from fuels.

pg 257 A Comprehensive Modelling Study of iso-Octane Oxidation, Table 1. Radical:HO2, Site:
→˓tertiary (c)

Verified by Karma James
""",
)

• The index can be any number not already used in rules.py.

• The label is the name of the rule.

• The groups must have the adjacency list of the respective groups. Between them they should have all starred
atoms from the recipe.

• The value and units of kinetic parameters must be given.

– Multiplicative uncertainty is given as '*\|/,' 5 meaning within a factor of 5

– Additive uncertainty is given as '+\|/-', 2 meaning plus or minus 2.

• Rank determines the priority of the rule when compared with other rules.

• The short description will appear in the annotated chemkin file.

• The long description only appears in the database.

Adding Training Reactions

If you know the kinetics of a specific reaction, rather than a rate rule for a template, you can add the kinetics to the
database training set. By default, RMG creates new rate rules from this training set, which in turn benefits the kinetics
of similar reactions. The new rate rules are formed by matching the reaction to the most most specific template nodes
within the reaction’s respective family. If you do not want the training depository reactions to create new rate rules in
the database, set the option for kineticsDepositories within the database field in your input file to

kineticsDepositories = ['!training'],

Currently, RMG’s rate rule estimates overrides all kinetics depository kinetics, including training reactions. Unless the
training reaction’s rate rule ranks higher than the existing node, it will not be used. If you want the training reaction to
override the rate rule estimates, you should put the reaction into a reaction library or seed mechanism.

The easiest way to add training reactions to the database is via the RMG website. First, search for the reaction
using http://rmg.mit.edu/database/kinetics/search/ . This will automatically search the existing RMG database for the
reaction, as well as identify the reaction family template that this reaction matches. If the reaction does not match
any family, then it cannot be added to the training reactions. Click the ‘Create training rate from average’ button
underneath the kinetics plot for the reaction and edit the kinetics and reference descriptions for the reaction. The atom
labels marking the reaction recipe actions (lose bond, add radical, etc.) will already be automatically labeled for you.
After editing the reaction data, write a short message for the reaction added under the ‘Summary of changes’ field,
then click ‘Save.’ You will need an account for the RMG website to make an entry.

Note: If you are entering the reaction in the reverse direction of the family, you must still label the reactants and
products with the atomLabels of the original reaction template. Otherwise, RMG will not be able to locate the nodes
in the group tree to match the reaction.
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Entries added in the reverse direction of the original template will use the current RMG job’s thermo database to
estimate the kinetics in the forward direction. Therefore this value can differ depending on the order of thermo
libraries used when running a job.

If adding the training reaction manually, first identify the reaction family of the reaction, then go to the family’s folder
in RMG-database/input/kinetics/families/. Create a new kinetics entry in the training.py file. Make
sure to apply the reaction recipe labels properly for the reactants and products.

Pitfalls

Be careful with the specificity when naming neighbouring atoms. On upper nodes, you should try to be general so that
you do not exclude reactions.

Sibling nodes must be exclusive from one another so that there is no question which group a molecule qualifies as.
However, you do not need to be exhaustive and list out every possibility.

Be sure to give errors whenever adding rules. If you don’t know the uncertainty, why do you trust the kinetics?

After you are done always check via populate reactions or the website, that your modifications are behaving the way
you expect.

Caveat regarding how rate rules are used by RMG and the rate parameters you input: because tunneling is important
for many chemical reactions, the rate of a reaction may not be easily represented by a bi-Arrhenius fit. 3-parameter
fits are more common. However, the resulting fit may report an ‘activation energy’ that is much different (possibly by
10+ kcals) than the the true barrier height. When RMG is assembling pressure-dependent networks, it will use barrier
heights from rate rules. This can lead to very inaccurate rate calculations. To avoid this issue, try to ensure that your
fitted arrhenius activation energy truly does reflect the reaction barrier height.

1.13 Thermochemistry Estimation

This section gives in-depth descriptions of the methods used for determining thermochemistry of species.

Thermochemistry of species is obtained via three possible ways:

1. Species thermochemistry libraries

2. Group contribution methods

3. On-the-fly Quantum-chemical calculation of Thermochemical Properties (QMTP)

1.13.1 Species thermochemistry libraries

These databases contain thermochemical parameters for species. In these databases each entry contains an unambigu-
ous definition of the species (through the adjacency list representation), along with a values for the thermochemistry
in a format that allows the evaluation of each thermodynamic variable as a function of temperature.

RMG is shipped with a number of species thermochemistry libraries, located in the ‘libraries’ folder of RMG-database.
More information on these species thermochemistry libraries can be found in Thermo Database.

1.13.2 Group contribution methods

When the thermochemistry of a species is not present in one of the available species thermochemistry libraries, RMG
needs to estimate thermochemistry. One way to do so, is by using group contribution methods that estimate the
thermochemistry of a molecule based on the sub-molecular fragments present in the molecule. The Benson group
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additivity framework is such an example of a group contribution method that has proven to provide accurate estimates
of the ideal gas thermochemistry for a large range of molecules.

Benson’s Group Additivity approach ([Benson1976]), divides a molecule into functional groups, and the contribution
of each functional group to the overall thermochemistry is included. For example, the molecule 2-methylnonane
consists of three types of groups:

• 1 tertiary carbon atom

• 6 secondary carbon atoms

• 3 primary carbon atoms

Thermochemistry for the molecule X is calculated by summing up the values for each of the contributions 𝐶𝑖. E.g.:

∆𝑓𝐻
𝑜
298(𝑋) =

∑︁
𝑖

𝐺𝐴𝑉 (𝐶𝑖)

The term ‘group additive value’ (GAV) denotes a polyvalent (ligancy > 1) monoatomic central atom 𝐶𝑖 surrounded by
its nearest-neighbor ligands.

Values for each central atomtype (e.g. “tertiary carbon atom”) and its surrounding ligands can be found in the thermo
group database, named group.py, of RMG. More information can be found here: Thermo Database.

NNIs

Besides the main group-centered (GAV) contributions, non-next-nearest neighbor interactions (NNI) may also be
important to take into account. NNIs are interactions between atoms separated by at least 2 atoms, such as alkane
1,4-gauche, alkane 1,5 (cf. figure), alkene 1,4-gauche, alkene single and double cis, ene-yne cis and ortho interactions.
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As a result, thermochemistry of the molecule X is determined as :

∆𝑓𝐻
𝑜
298(𝑋) =

∑︁
𝑖

𝐺𝐴𝑉 (𝐶𝑖) +
∑︁
𝑗

𝑁𝑁𝐼𝑗

RMG contains a database with NNIs, named gauche.py and int15.py. More information on the nature on the available
NNIs, and corresponding values can be found here: Thermo Database.

Ring Strain

To account for ring strain, ring strain corrections (RSC) were introduced. Because there is no obvious relation between
the RSC and the ring structure, a specific RSC is required for every type of ring. For example, due to the significant
ring strained induced in norbornane (cf. figure), a ring correction (RSC) needs to be added to the sum of the GAVs of
the individual carbon atoms:

As a result, thermochemistry of the molecule X is determined as :

∆𝑓𝐻
𝑜
298(𝑋) =

∑︁
𝑖

𝐺𝐴𝑉 (𝐶𝑖) + 𝑅𝑆𝐶
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RMG contains a database with single-ring corrections, ‘ring.py’ and polycyclic ring corrections, ‘polycyclic.py’. More
information on the nature on the available NNIs, and corresponding values can be found here: Thermo Database.

Hydrogen Bond Increment (HBI) method

Lay et al. [Lay] introduced the hydrogen bond increment (HBI) method to predict thermochemical properties of
radicals. In contrast to Benson’s method, the HBI method does not use the group-additivity concept. The HBI enthalpy
of formation of a radical (R*) is calculated from the enthalpy of formation of the corresponding parent molecule (R-H)
by adding a HBI to account for the loss of a hydrogen atom. Hence, for standard enthalpies of formation the HBI is
defined as

𝐻𝐵𝐼 = ∆𝑓𝐻
𝑜
298(𝑅*) − ∆𝑓𝐻

𝑜
298(𝑅−𝐻) = 𝐵𝐷𝐸(𝑅−𝐻) − ∆𝑓𝐻

𝑜
298(𝐻*)

with BDE the bond dissociation enthalpy of the R-H bond at the radical position. Similar expressions are valid for the
entropy and heat capacity.

As a result the thermochemistry of the radical is calculated as follows:

∆𝑓𝐻
𝑜
298(𝑅*) = 𝐻𝐵𝐼(∆𝑓𝐻

𝑜
298) + ∆𝑓𝐻

𝑜
298(𝑅−𝐻)

𝐶𝑜
𝑝(𝑅*) = 𝐻𝐵𝐼(𝐶𝑜

𝑝) + 𝐶𝑜
𝑝(𝑅−𝐻)

𝑆𝑜
298(𝑅*) = 𝐻𝐵𝐼(𝑆𝑜

298) + 𝑆𝑜
298(𝑅−𝐻)

The HBI method is the default method use to estimate thermochemistry of radicals. Thus, the effect of resonance
stabilization on the enthalpy of the radical will be accounted for through the corresponding HBI. For example, the HBI
labeled as “C=CC=CCJ” will account for the resonance present in 1,4-pentadien-3-yl radical.

The HBI method can be applied to a variety of saturated compound thermochemistry values. In RMG, library values
for saturated compounds are prioritized over group additivity values for saturated compounds. Note that if QMTP is
on, the QM saturated value will get priority over group additivty but library value will have priority over QM value.
This ensures that there is a systematic HBI correction for values used in the final model: if the saturated molecule
thermo uses a library as a source, the radical thermo applies the HBI correction to that same library value.

RMG contains a database for with HBIs, named radical.py. More information on the nature on the available HBIs, and
corresponding values can be found here: Thermo Database.

1.13.3 On-the-fly Quantum-chemical calculation of Thermochemical Properties
(QMTP)

An interface for performing on-the-fly quantum and force field calculations has been developed and integrated into
RMG to complement the species thermochemistry databases and group contribution methods [Magoon and Green]_.
This interface is particularly interesting for the estimation of thermochemistry of molecules that are not present in one
of the species thermochemistry databases, and which cannot be estimated with sufficient accuracy using the Benson
group additivity framework. This pertains specifically to polycyclic fused ring containing species, whose ring strain
cannot be modeled using the available ring corrections in RMG’s ring strain correction databases.

The QMTP interface involves a number of steps, summarized in the figure below.
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In a first step the connectivity representation is converted into a three-dimensional structure of the molecule through
the generation of 3D coordinates for the atoms in the molecule. This is accomplished using a combination of a
distance geometry method, followed by a optimization using the UFF force field available in RDKit [RDKit]. Next,
an input file is created containing the 3D atomic coordinates along with a number of keywords. This file is sent to a
computational chemistry package, either OpenMopac or Gaussian, that calculates the thermochemistry of the given
molecule “on-the-fly”. The keywords specify the type of calculation, and the level-of-theory. Finally, the calculated
thermochemistry data is sent back to RMG.

The QMTP calculation creates a folder ‘QMfiles’ that contains a number of files that are created during the process.
The filename of these files is a combination of the InChI key of the molecule, and a specific filename extension, e.g.

WEEGYLXZBRQIMU-UHFFFAOYSA.out is the output file produced by the QM package for the molecule cineole
(SMILES: CC12CCC(CC1)C(C)(C)O2), represented by the InChI key WEEGYLXZBRQIMU-UHFFFAOYSA.

The table belows shows an overview of the used file extensions and their meaning.

File extension Meaning
.mop MOPAC input
.out MOPAC output
.gjf Gaussian input
.log Gaussian output
.arc MOPAC input created by MOPAC
.crude.mol Mol file using crude, unrefined
.refined.mol Mol file using UFF refined geometry
.symm SYMMETRY input
.thermo thermochemistry output file

For efficiency reasons, RMG minimizes the number of QMTP calculations. As a result, prior to initializing a QMTP
routine, RMG checks whether the output files of a specific QMTP calculation are not already present in the QMfiles
folder. It does so by comparing the InChI key of the given species to the filenames of the files in the QMfiles folder. If
none of the InChI keys of the files correspond to the InChI key of the given species, RMG will initiate a new QMTP
calculation.

Supported QM packages, and levels of theory

The following table shows an overview of the computational chemistry packages and levels of theory that are currently
supported in the QMTP interface of RMG.

The MM4 force field software originates from Allinger and Lii. [Allinger].
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QM Package Supported Levels of Theory
OpenMopac semi-empirical (PM3, PM6, PM7)
Gaussian03 semi-empirical (PM3)
MM4 molecular mechanics (MM4)

1.13.4 Symmetry and Chirality

Symmetry

The notion of symmetry is an essential part of molecules. Molecular symmetry refers to the indistinguishable orien-
tations of a molecule and can be represented by molecular groups or a symmetry number. RMG uses a symmetry
number which is the number of superimposible configurations, which includes external symmetry and internal free
rotors, which is described by detail by [Benson]. This is macroscopically quantified as a decrease of the entropy S by
a term −𝑅 * 𝑙𝑛(𝜎) with R the universal gas constant and 𝜎 the global symmetry number, corresponding to the number
of indistinguishable orientations of the molecule.

In RMG, 𝜎 is calculated as the product of contributions of three symmetry center types : atoms, bonds and axes, cf.
below.

𝜎 =
∏︁
𝑖

𝜎𝑎𝑡𝑜𝑚,𝑖.
∏︁
𝑗

𝜎𝑏𝑜𝑛𝑑,𝑗 .
∏︁
𝑘

𝜎𝑎𝑥𝑖𝑠,𝑘

More information can be found in the Ph.D Thesis of Joanna Yu [Yu].

For molecules whose thermochemistry is calculated through group contribution techniques, the rotational symmetry
number is calculated through graph algorithms of RMG based on the above equation. If the thermochemistry is
calculated through the QMTP process, the external, rotational symmetry number is calculatedµ using the open-source
software SYMMETRY “Brute Force Symmetry Analyzer” [Patchkovskii]. This program uses the optimized three-
dimensional geometry and calculates the corresponding point group.

Chirality

RMG does not take stereochemistry into account, effectively assuming a racemic mixture of mirror image enantiomers.
As a result, a chirality contribution of +𝑅 * 𝑙𝑛(2) is included in the entropy of the molecule.

Chirality for molecules whose thermochemistry is determiend using group contribution techniques is detected using
graph algorithms similar to those used for determining the symmetry number. If the thermochemistry is calculated
through the QMTP process, chirality is detected using the point group information obtained via the software SYM-
METRY.

Chiral molecules belong to point groups that lack a superposable mirror image (i.e. point groups lacking 𝜎ℎ, 𝜎𝑑, 𝜎𝑣 ,
and 𝑆𝑛 symmetry elements).

In RMG, chirality is incorportated into the symmetry attribute by dividing the symmetry by two which will increase
entropy by +𝑅 * 𝑙𝑛(2). RMG currently checks for each chiral center, defined by 4 different groups attached to a
carbon, and halves the symmetry for each chiral center.

The effect of cis-trans isomers is currently not accounted for in RMG.
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1.13.5 References

1.14 Kinetics Estimation

This section gives in-depth descriptions of algorithms used for determining kinetic parameters. For general usage of
the kinetic database see Kinetics Database.

1.14.1 Priority of Kinetic Databases

When multiple sources are available for kinetic parameters, the following priority is followed:

1. Seed mechanisms (based on listed order in input.py)

2. Reaction libraries (based on listed order in input.py)

3. Matched training set reactions

4. Exact template matches from rules or matched training groups (based on rank)

5. Estimated averaged rules

In the case where multiple rules or training set reactions fall under the same template node, we use a user-defined rank
to determine the priority of kinetic parameters

Rank Example methods
Rank 1 Experiment/FCI
Rank 2 W4/HEAT with very good (2-d if necessary) rotors
Rank 3 CCSD(T)-F12/cc-PVnZ with n>2 or CCSD(T)-F12/CBS with good (2-d if necessary) rotors
Rank 4 CCSD(T)-F12/DZ, with good (2-d if necessary) rotors
Rank 5 CBS-QB3 with 1-d rotors
Rank 6 Double-hybrid DFT with 1-D rotors
Rank 7 Hybrid DFT (w/ dispersion) (rotors if necessary)
Rank 8 B3LYP & lower DFT (rotors if necessary)
Rank 9 Group Additivity
Rank 10 Direct Estimate/Guess
Rank 11 Average of Rates
Rank 0 General Estimate (Never used in generation)

The rank of 0 is assigned to kinetics that are generally default values for top level nodes that we have little faith in. It
is never used in generation and its value will in fact be overriden by averages of its child nodes, which generates an
averaged rate rule with rank 11.

Only non-zero rules are used in generation. A rank of 1 is assigned to the most trustworthy kinetics, while a rank of
10 is considered very poor. Thus, a rate rule of rank 3 will be given priority over a rate rule of rank 5.

Short Glossary:

FCI (Full Configuration Interaction): Exact solution to Schrodinger equation within the chosen basis set and Born-
Oppenheimer approximation; possible for about 12 electrons with reasonably sized basis set (cost grows factorially
with number of electrons).

Wn (Weizmann-n): Composite methods often with sub-kJ/mol accuracies; W1 is possible for about 9 heavy atoms;
W1 aims to reproduce CCSD(T)/CBS; W4 aims to reproduce CCSDTQ5/CBS.

HEAT (High Accuracy Extrapolated ab inito thermochemistry): Sub-kJ/mol accuracies; essentially CCSDTQ with
various corrections; similar in cost to Wn.
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CBS (Complete Basis Set): Typically obtained by extrapolating to the complete basis set limit, i.e., successive cc-
pVDZ, cc-pVTZ, cc-pVQZ, etc. calculations with some extrapolation formula.

CCSD(T)-F12: Coupled cluster with explicit electron correlation; chemical accuracy (1 kcal/mol) possible with
double-zeta basis sets.

1.14.2 Kinetic Families

To show the algorithm used by kinetic families, the following H-abstraction will be used an example

First the reacting atoms will be identified. Then, the family‘s trees will be descended as far as possible to give the
reaction‘s groups.

Using the sample tree shown above, the desired template is (C_sec, O_pri_rad). The algorithm will then search the
database for parameters for the template. If they are present, an exact match will be returned using the kinetics of that
template. Note that an exact match refers to the nodes (C_sec, O_pri_rad) and not the molecules (propane, OH).

There may not be an entry for (C_sec, O_pri_rad) in the database. In that case, the rule will attempt to “fall up” to
more general nodes:
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Now the preferred rule is (Cs_H, O_rad). If database contains parameters for this, those will be returned as an estimated
match.

If there is still no kinetics for the template, the entire set of children for Cs_H and O_rad will be checked. For this
example, this set would include every combination of {C_pri, C_sec, C_ter} with {O_pri_rad, O_sec_rad}. If any
these templates have kinetics, an average of their parameters will be returned as an estimated match. The average for
𝐴 is a geometric mean, while the average for 𝑛, 𝐸𝑎, and 𝛼 are arithmetic means.

If there are still no “sibling” kinetics, then the groups will continue to fall up to more and more general nodes. In the
worst case, the root nodes may be used.

A Full List of the Kinetics Families in RMG is available.

1.15 Liquid Phase Systems

To simulate liquids in RMG requires a module in your input file for liquid-phase:

solvation(
solvent='octane'

)

Your reaction system will also be different (liquidReactor rather than simpleReactor):

liquidReactor(
temperature=(500,'K'),
initialConcentrations={

"octane": (6.154e-3,'mol/cm^3'),
"oxygen": (4.953e-6,'mol/cm^3')

},
terminationTime=(5,'s'),
constantSpecies=['oxygen'],
sensitivity=['octane','oxygen'],
sensitivityThreshold=0.001,

)

To simulate the liquidReactor, one of the initial species / concentrations must be the solvent. If the solvent species does
not appear as the initial species, RMG run will stop and raise error. The solvent can be either reactive, or nonreactive.

In order for RMG to recognize the species as the solvent, it is important to use the latest version of the RMG-database,
whose solvent library contains solvent SMILES. If the latest database is used, RMG can determine whether the species
is the solvent by looking at its molecular structure (SMILES or adjacency list). If the old version of RMG-database
without the solvent SMILES is used, then RMG can recognize the species as the solvent only by its string name.
This means that if the solvent is named “octane” in the solvation block and it is named “n-octane” in the species
and initialConcentrations blocks, RMG will not be able to recognize them as the same solvent species and raise error
because the solvent is not listed as one of the initial species.

For liquid phase generation, you can provide a list of species for which one concentration is held constant over time
(Use the keyword constantSpecies=[] with species labels separated by ","). To generate meaningful liquid phase
oxidation mechanism, it is highly recommended to consider O2 as a constant species. To consider pyrolysis cases, it
is still possible to obtain a mechanism without this option. Expected results with Constant concentration option
can be summarized with those 3 cases respectively presenting a generation with 0, 1 (oxygen only) and 2 constant
species (oxygen and decane):
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As it creates a mass lost, it is recommended to avoid to put any products as a constant species.

For sensitivity analysis, RMG-Py must be compiled with the DASPK solver, which is done by default but has some
dependency restrictions. (See License Restrictions on Dependencies for more details.) Like for the simpleReactor, the
sensitivity and sensitivityThrehold are optional arguments for when the user would like to conduct sensitivity analysis
with respect to the reaction rate coefficients for the list of species given for sensitivity.

Sensitivity analysis is conducted for the list of species given for sensitivity argument in the input file. The nor-
malized concentration sensitivities with respect to the reaction rate coefficients dln(C_i)/dln(k_j) are saved to a csv
file with the file name sensitivity_1_SPC_1.csv with the first index value indicating the reactor system and the
second naming the index of the species the sensitivity analysis is conducted for. Sensitivities to thermo of individual
species is also saved as semi normalized sensitivities dln(C_i)/d(G_j) where the units are given in 1/(kcal mol-1).
The sensitivityThreshold is set to some value so that only sensitivities for dln(C_i)/dln(k_j) > sensitivityThreshold or
dlnC_i/d(G_j) > sensitivityThreshold are saved to this file.

Note that in the RMG job, after the model has been generated to completion, sensitivity analysis will be conducted in
one final simulation (sensitivity is not performed in intermediate iterations of the job).

Notes: sensitivity, sensitivityThreshold and constantSpecies are optionnal keywords.

1.15.1 Equation of state

Specifying a liquidReactor will have two effects:

1. disable the ideal gas law renormalization and instead rely on the concentrations you specified in the input file to
initialize the system.

2. prevent the volume from changing when there is a net stoichiometry change due to a chemical reaction (A = B
+ C).

1.15.2 Solvation thermochemistry

The next correction for liquids is solvation effects on the thermochemistry. By specifying a solvent in the input file,
we load the solvent parameters to use.

The free energy change associated with the process of transferring a molecule from the gas phase to the solvent phase
is defined as the free energy of solvation (∆G). Many different methods have been developed for computing solvation
energies among which continuum dielectric and force field based methods are popular. Not all of these methods are
easy to automate, and many are not robust i.e. they either fail or give unreasonable results for certain solute-solvent
pairs. CPU time and memory (RAM) requirements are also important considerations. A fairly accurate and fast
method for computing ∆G, which is used in RMG, is the LSER approach described below.
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Use of thermo libraries in liquid phase system

As it is for gas phase simulation, thermo libraries listed in the input files are checked first to find thermo for a given
species and return the first match. As it exists two types of thermo libraries, (more details on thermo libraries), thermo
of species matching a library in a liquid phase simulation is obtained following those two cases:

If library is a “liquid thermo library”, thermo data are directly used without applying solvation on it.

If library is a “gas thermo library”, thermo data are extracted and then corrections are applied on it using the LSER
method for this specific species-solvent system.

Note: Gas phase libraries can be declared first, liquid thermo libraries will still be tested first but the order will be
respected if several liquid libraries are provided.

Use of Abraham LSER to estimate thermochemistry

The Abraham LSER provides an estimate of the the partition coefficient (more specifically, the log (base 10) of the
partition coefficient) of a solute between the vapor phase and a particular solvent (Kvs) (also known as gas-solvent
partition coefficient) at 298 K:

log𝐾𝑣𝑠 = 𝑐 + 𝑒𝐸 + 𝑠𝑆 + 𝑎𝐴 + 𝑏𝐵 + 𝑙𝐿 (1.1)

The Abraham model is used in RMG to estimate ∆G which is related to the Kvs of a solute according to the following
expression:

𝐷𝑒𝑙𝑡𝑎𝐺 = −𝑅𝑇 ln𝐾𝑣𝑠

= −2.303𝑅𝑇 log𝐾𝑣𝑠

(1.2)

The variables in the Abraham model represent solute (E, S, A, B, V, L) and solvent descriptors (c, e, s, a, b, v, l) for
different interactions. The sS term is attributed to electrostatic interactions between the solute and the solvent (dipole-
dipole interactions related to solvent dipolarity and the dipole-induced dipole interactions related to the polarizability
of the solvent) [Vitha2006], [Abraham1999], [Jalan2010]. The lL term accounts for the contribution from cavity
formation and dispersion (dispersion interactions are known to scale with solute volume [Vitha2006], [Abraham1999].
The eE term, like the sS term, accounts for residual contributions from dipolarity/polarizability related interactions for
solutes whose blend of dipolarity/polarizability differs from that implicitly built into the S parameter [Vitha2006],
[Abraham1999], [Jalan2010]. The aA and bB terms account for the contribution of hydrogen bonding between the
solute and the surrounding solvent molecules. H-bonding interactions require two terms as the solute (or solvent) can
act as acceptor (donor) and vice versa. The descriptor A is a measure of the solute’s ability to donate a hydrogen
bond (acidity) and the solvent descriptor a is a measure of the solvent’s ability to accept a hydrogen bond. A similar
explanation applies to the bB term [Vitha2006], [Abraham1999], [Poole2009].

The solvent descriptors (c, e, s, a, b, l) are largely treated as regressed empirical coefficients. Parameters are provided
in RMG’s database for the following solvents:

1. acetonitrile

2. benzene

3. butanol

4. carbontet

5. chloroform

6. cyclohexane
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7. decane

8. dibutylether

9. dichloroethane

10. dimethylformamide

11. dimethylsulfoxide

12. dodecane

13. ethanol

14. ethylacetate

15. heptane

16. hexadecane

17. hexane

18. isooctane

19. nonane

20. octane

21. octanol

22. pentane

23. toluene

24. undecane

25. water

Group additivity method for solute descriptor estimation

Group additivity is a convenient way of estimating the thermochemistry for thousands of species sampled in a typical
mechanism generation job. Use of the Abraham Model in RMG requires a similar approach to estimate the solute
descriptors (A, B, E, L, and S). Platts et al. ([Platts1999]) proposed such a scheme employing a set of 81 molecular
fragments for estimating B, E, L, V and S and another set of 51 fragments for the estimation of A. Only those fragments
containing C, H and O are implemented in order to match RMG’s existing capabilities. The value of a given descriptor
for a molecule is obtained by summing the contributions from each fragment found in the molecule and the intercept
associated with that descriptor.

Mintz model for enthalpy of solvation

For estimating ∆G at temperatures other than 298 K, the enthalpy change associated with solvation, ∆H must be calcu-
lated separately and, along with ∆S, assumed to be independent of temperature. Recently, Mintz et al. ([Mintz2007],
[Mintz2007a], [Mintz2007b], [Mintz2007c], [Mintz2007d], [Mintz2008], [Mintz2008a], [Mintz2009]) have devel-
oped linear correlations similar to the Abraham model for estimating ∆H:

𝐷𝑒𝑙𝑡𝑎𝐻(298𝐾) = 𝑐′ + 𝑎′𝐴 + 𝑏′𝐵 + 𝑒′𝐸 + 𝑠′𝑆 + 𝑙′𝐿
(1.3)

where A, B, E, S and L are the same solute descriptors used in the Abraham model for the estimation of ∆G. The
lowercase coefficients c’, a’, b’, e’, s’ and l’ depend only on the solvent and were obtained by fitting to experimental
data. In RMG, this equation is implemented and together with ∆G(298 K) can be used to find ∆S(298 K). From this
data, ∆G at other temperatures is found by extrapolation.
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1.15.3 Diffusion-limited kinetics

The next correction for liquid-phase reactions is to ensure that bimolecular reactions do not exceed their diffusion lim-
its. The theory behind diffusive limits in the solution phase for bimolecular reactions is well established ([Rice1985])
and has been extended to reactions of any order ([Flegg2016]). The effective rate constant of a diffusion-limited
reaction is given by:

𝑘eff =
𝑘diff𝑘int

𝑘diff + 𝑘int
(1.4)

where kint is the intrinsic reaction rate, and kdiff is the diffusion-limited rate, which is given by:

𝑘diff =

[︃
𝑁∏︁
𝑖=2

𝐷̂
3/2
𝑖

]︃
4𝜋𝛼+1

Γ(𝛼)

(︂
𝜎√
∆𝑁

)︂2𝛼

(1.5)

where 𝛼=(3N-5)/2 and

𝐷̂𝑖 = 𝐷𝑖 +
1∑︀𝑖−1

𝑚 𝐷−1
𝑚

(1.6)

∆𝑁 =

∑︀𝑁
𝑖=1 𝐷

−1
𝑖∑︀

𝑖>𝑚(𝐷𝑖𝐷𝑚)−1
(1.7)

Di are the individual diffusivities and 𝜎 is the Smoluchowski radius, which would usually be fitted to experiment,
but RMG approximates it as the sum of molecular radii. RMG uses the McGowan method for estimating radii, and
diffusivities are estimated with the Stokes-Einstein equation using experimental solvent viscosities (eta (T)). In a
unimolecular to bimolecular reaction, for example, the forward rate constant (kf) can be slowed down if the reverse
rate (kr, eff) is diffusion-limited since the equilibrium constant (Keq) is not affected by diffusion limitations. In cases
where both the forward and the reverse reaction rates are multimolecular, both diffusive limits are estimated and RMG
uses the direction with the larger magnitude.

The viscosity of the solvent is calculated Pa.s using the solvent specified in the command line and a correlation for the
viscosity using parameters A, B, C, D, E:

ln 𝜂 = 𝐴 +
𝐵

𝑇
+ 𝐶 log 𝑇 + 𝐷𝑇𝐸 (1.8)

To build accurate models of liquid phase chemical reactions you will also want to modify your kinetics libraries or
correct gas-phase rates for intrinsic barrier solvation corrections (coming soon).

1.15.4 Example liquid-phase input file, no constant species

This is an example of an input file for a liquid-phase system:

# Data sources
database(

thermoLibraries = ['primaryThermoLibrary'],
reactionLibraries = [],
seedMechanisms = [],
kineticsDepositories = ['training'],
kineticsFamilies = 'default',
kineticsEstimator = 'rate rules',

)

# List of species
species(

(continues on next page)
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(continued from previous page)

label='octane',
reactive=True,
structure=SMILES("C(CCCCC)CC"),

)

species(
label='oxygen',
reactive=True,
structure=SMILES("[O][O]"),

)

# Reaction systems
liquidReactor(

temperature=(500,'K'),
initialConcentrations={

"octane": (6.154e-3,'mol/cm^3'),
"oxygen": (4.953e-6,'mol/cm^3')

},
terminationTime=(5,'s'),

)

solvation(
solvent='octane'

)

simulator(
atol=1e-16,
rtol=1e-8,

)

model(
toleranceKeepInEdge=1E-9,
toleranceMoveToCore=0.01,
toleranceInterruptSimulation=0.1,
maximumEdgeSpecies=100000

)

options(
units='si',
saveRestartPeriod=None,
generateOutputHTML=False,
generatePlots=False,
saveSimulationProfiles=True,

)

1.15.5 Example liquid-phase input file, with constant species

This is an example of an input file for a liquid-phase system with constant species:

# Data sources
database(

thermoLibraries = ['primaryThermoLibrary'],
reactionLibraries = [],
seedMechanisms = [],
kineticsDepositories = ['training'],

(continues on next page)
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(continued from previous page)

kineticsFamilies = 'default',
kineticsEstimator = 'rate rules',

)

# List of species
species(

label='octane',
reactive=True,
structure=SMILES("C(CCCCC)CC"),

)

species(
label='oxygen',
reactive=True,
structure=SMILES("[O][O]"),

)

# Reaction systems
liquidReactor(

temperature=(500,'K'),
initialConcentrations={

"octane": (6.154e-3,'mol/cm^3'),
"oxygen": (4.953e-6,'mol/cm^3')

},
terminationTime=(5,'s'),
constantSpecies=['oxygen'],

)

solvation(
solvent='octane'

)

simulator(
atol=1e-16,
rtol=1e-8,

)

model(
toleranceKeepInEdge=1E-9,
toleranceMoveToCore=0.01,
toleranceInterruptSimulation=0.1,
maximumEdgeSpecies=100000

)

options(
units='si',
saveRestartPeriod=None,
generateOutputHTML=False,
generatePlots=False,
saveSimulationProfiles=True,

)
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1.16 Frequently Asked Questions

For any other questions related to RMG and its usage and installation, please post an issue at https://github.com/
ReactionMechanismGenerator/RMG-Py/issues and the RMG developers will get back to you as soon as we can. You
can also search for your problem on the issues page to see if there are already solutions in development. Alternatively,
you can email us at rmg_dev@mit.edu.

1.16.1 Why can’t my adjacency lists be read any more?

The adjacency list syntax changed in July 2014. The minimal requirement for most translations is to prefix the number
of unpaired electrons with the letter u.

Example old syntax:

HXD13
1 C 0 {2,D}
2 C 0 {1,D} {3,S}
3 C 0 {2,S} {4,D}
4 C 0 {3,D} {5,S}
5 *1 C 0 {4,S} {6,S}
6 *2 C 0 {5,S}

Example new syntax:

HXD13
1 C u0 {2,D}
2 C u0 {1,D} {3,S}
3 C u0 {2,S} {4,D}
4 C u0 {3,D} {5,S}
5 *1 C u0 {4,S} {6,S}
6 *2 C u0 {5,S}

The new syntax, however, allows much greater flexibility, including definition of lone pairs, partial charges, wildcards,
and molecule multiplicities, and was necessary to allow us to add Nitrogen chemistry. See rmgpy.molecule.adjlist for
details of the new syntax.

1.17 Release Notes

1.17.1 RMG-Py Version 2.2.0

Date: July 5, 2018

• New features:

– New ring membership attribute added to atoms. Can be specified in group adjacency lists in order to
enforce ring membership of atoms during subgraph matching.

– Reactors now support specification of T, P, X ranges. Different conditions are sampled on each itera-
tion to optimally capture the full parameter space.

– New termination type! Termination rate ratio stops the simulation when the characteristic rate falls
to the specified fraction of the maximum characteristic rate. Currently not recommended for systems
with two-stage ignition.
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– New resonance transitions implemented for species with lone pairs (particularly N and S containing
species). A filtration algorithm was also added to select only the most representative structures.

– Formal support for trimolecular reaction families.

– New isotopes module allows post-processing of RMG mechanisms to generate a mechanism with
isotopic labeling.

• Changes:

– Library reactions can now be integrated into RMG pdep networks if the new elementary_high_p
attribute is True

– Library reactions may be duplicated by pdep reactions if the new allow_pdep_route attribute is True

– Jupyter notebook for adding new training reactions has been revamped and is now located at
ipython/kinetics_library_to_training.ipynb

– Syntax for recommended families has changed to set notation instead of dictionaries, old style still
compatible

– Ranking system for database entries expanded to new 0-11 system from the old 0-5 system

– Collision limit checking has been added for database entries

• Cantherm:

– Improved support for MolPro output files

– Added iodine support

– Automatically read spin multiplicity from quantum output

– Automatically assign frequency scale factor for supported model chemistries

– Plot calculated rates and thermo by default

– New sensitivity analysis feature analyzes sensitivity of reaction rates to isomer/TS energies in pdep
networks

• Fixes:

– Properly update charges when creating product templates in reaction families

– Excessive duplicate reactions from different resonance structures has been fixed (bug introduced in
2.1.3)

– Fixed rate calculation for MultiPdepArrhenius objects when member rates have different plists

• A more formal deprecation process is now being trialed. Deprecation warnings have been added to functions to be removed in version 2.3.0:

– All methods related to saving or reading RMG-Java databases and old-style adjacency lists

– The group additivity method for kinetics estimation (unrelated to thermo group additivity)

– The saveRestartPeriod option and the old method of saving restart files

1.17.2 RMG-database Version 2.2.0

Date: July 5, 2018

• Additions:

– New Intra_R_Add_Exo_Scission reaction family

– New 1,2_ShiftC reaction family
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– New reaction families for peroxide chemistry in liquid systems

* Korcek_step1_cat

* Bimolec_Hydroperoxide_Decomposition

* Peroxyl_Termination

* Peroxyl_Disproportionation

* Baeyer-Villiger_step1_cat

* Baeyer-Villiger_step2

* Baeyer-Villiger_step2_cat

– Numerous new training reactions added to many families

• Changes:

– New tree structure for Intra_R_Add_Endocyclic with consideration for cyclic species

– Multiple bond on ring is no longer allowed in Intra_R_Add_Exocyclic and should react in In-
tra_R_Add_Endocyclic instead

– Entry ranks rescaled to new 0-11 ranking system

– Global forbidden structures has been cleaned up, leading to significant performance improvement

• Fixes:

– Corrected shape indices in NOx2018 transport library

– Removed or corrected some kinetics entries based on collision limit check

1.17.3 RMG-Py Version 2.1.9

Date: May 1, 2018

• Cantherm:

– Atom counts are no longer necessary in input files and are automatically determined from geometries

– Custom atom energies can now be specified in input files

– Removed atom energies for a few ambiguous model chemistries

– Add atom energies for B3LYP/6-311+g(3df,2p)

• Changes:

– Refactored molecule.parser and molecule.generator modules into molecule.converter and
molecule.translator to improve code organization

– SMILES generation now outputs canonical SMILES

– Molecule.sortAtoms method restored for deterministic atom order

– PDep reactions which match an existing library reaction are no longer added to the model

• Fixes:

– Fix issue with reaction filter initiation when using seed mechanisms
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1.17.4 RMG-database Version 2.1.9

Date: May 1, 2018

• Chlorine:

– New Chlorinated_Hydrocarbons thermo library

– Added group additivity values and long distance corrections for chlorinated species

– Added chlorine groups and training reactions to H_Abstraction

• Additions:

– New NOx2018 kinetics, thermo, and transport libraries

– New N-S_interactions kinetics library

– New SulfurHaynes thermo library

– Added species to SOxNOx thermo library from quantum calculations

• Other changes:

– Renamed NOx and SOx kinetics libraries to PrimaryNitrogenLibrary and PrimarySulfurLibrary

– S2O2, SOO2, SO2O2, and N2SH were globally forbidden due to inability to optimize geometries

• Fixes:

– Corrected some A-factor units in Nitrogen_Dean_and_Bozzelli kinetics library

1.17.5 RMG-Py Version 2.1.8

Date: March 22, 2018

• New features:

– Chlorine and iodine atom types have been added, bringing support for these elements to RMG-
database

– Forbidden structures now support Molecule and Species definitions in addition to Group definitions

• Changes:

– Reaction pair generation will now fall back to generic method instead of raising an exception

– Removed sensitivity.py script since it was effectively a duplicate of simulate.py

– Thermo jobs in Cantherm now output a species dictionary

– Fitted atom energy corrections added for B3LYP/6-31g**

– Initial framework added for hydrogen bonding

– Renamed molepro module and associated classes to molpro (MolPro) to match actual spelling of the
program

– Chemkin module is now cythonized to improve performance

• Fixes:

– Allow delocalization of triradicals to prevent hysteresis in resonance structure generation

– Fix reaction comment parsing issue with uncertainty analysis

– Fix numerical issue causing a number of pressure dependent RMG jobs to crash

1.17. Release Notes 105



RMG-Py and CanTherm Documentation, Release 2.2.0

– Template reactions from seed mechanisms are now loaded as library reactions if the original family is
not loaded

– Fix issues with degeneracy calculation for identical reactants

1.17.6 RMG-database Version 2.1.8

Date: March 22, 2018

• Changes:

– Corrected name of JetSurf2.0 kinetics and thermo libraries to JetSurf1.0

– Added actual JetSurf2.0 kinetics and thermo libraries

– Updated thermo groups for near-aromatic radicals, including radical and polycyclic corrections

1.17.7 RMG-Py Version 2.1.7

Date: February 12, 2018

• Charged atom types:

– Atom types now have a charge attribute to cover a wider range of species

– New atom types added for nitrogen and sulfur groups

– Carbon and oxygen atom types renamed following new valence based naming scheme

• Ring perception:

– Ring perception methods in the Graph class now use RingDecomposerLib

– This includes the getSmallestSetOfSmallestRings methods and a newly added getRelevantCycles
method

– The set of relevant cycles is unique and generally more useful for chemical graphs

– This also fixes inaccuracies with the original SSSR method

• Other changes:

– Automatically load reaction libraries when using a seed mechanism

– Default kinetics estimator has been changed to rate rules instead of group additivity

– Kinetics families can now be set to be irreversible

– Model enlargement now occurs after each reactor simulation rather than after all of them

– Updated bond additivity corrections for CBS-QB3 in Cantherm

• Fixes:

– Do not print SMILES when raising AtomTypeError to avoid further exceptions

– Do not recalculate thermo if a species already has it

– Fixes to parsing of family names in seed mechanisms
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1.17.8 RMG-database Version 2.1.7

Date: February 12, 2018

• Charged atom types:

– Update adjlists with new atom types across the entire database

– Added sulfur groups to all relevant kinetics families

– New thermo group additivity values for sulfur/oxygen species

• Additions:

– Benzene bonds can now react in in R_Addition_MultipleBond

– Many new training reactions and groups added in R_Addition_MultipleBond

– New Singlet_Val6_to_triplet kinetics family

– New Sulfur GlarborgBozzelli kinetics and thermo libraries

– New Sulfur GlarborgMarshall kinetics and thermo libraries

– New Sulfur GlarborgH2S kinetics and thermo libraries

– New Sulfur GlarborgNS kinetics and thermo libraries

– New NOx and NOx/LowT kinetics libraries

– New SOx kinetics library

– New BurcatNS thermo library

– New SOxNOx thermo library

– New 2+2_cycloaddition_CS kinetics family

– New Cyclic_Thioether_Formation kinetics family

– New Lai_Hexylbenzene kinetics and thermo libraries

• Changes:

– 1,2-Birad_to_alkene family is now irreversible

– OxygenSingTrip kinetics library removed (replaced by Singlet_Val6_to_triplet family)

– Ozone is no longer forbidden

• Fixes:

– Corrected adjlist for phenyl radical in JetSurf2.0 and USC-Mech-ii

– Some singlet thermo groups relocated from radical.py to group.py

1.17.9 RMG-Py Version 2.1.6

Date: December 21, 2017

• Model resurrection:

– Automatically attempts to save simulation after encountering a DASPK error

– Adds species and reactions in order to modify model dynamics and fix the error

• New features:
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– Add functionality to read RCCSD(T)-F12 energies from MolPro log files

– Add liquidReactor support to flux diagram generation

• Other changes:

– Removed rmgpy.rmg.model.Species class and merged functionality into main rmgpy.species.Species
class

– Refactored parsing of RMG-generated kinetics comments from Chemkin files and fixed related issues

– Refactored framework for generating reactions to reduce code duplication

– Resonance methods renamed from generateResonanceIsomers to generate_resonance_structures
across all modules

– Raise CpInf to Cphigh for entropy calculations to prevent invalid results

• Fixes:

– Update sensitivity analysis to use ModelSettings and SimulatorSettings classes introduced in v2.1.5

– Fixed generate_reactions methods in KineticsDatabase to be directly usable again

– Fixed issues with aromaticity perception and generation of aromatic resonance structures

1.17.10 RMG-database Version 2.1.6

Date: December 21, 2017

• Additions:

– New training reactions added for [NH2] related H_Abstractions

– 14 new kinetics libraries related to aromatics formation (see RMG-database #222 for details)

• Other changes:

– Removed some global forbidden groups which are no longer needed

– Forbid CO and CS biradicals

– Updated lone_electron_pair_bond family and removed from recommended list

• Fixes:

– Fixed unit errors in some H_Abstraction and R_Addition_MultipleBond depositories

1.17.11 RMG-Py Version 2.1.5

Date: October 18, 2017

• New bicyclic formula:

– Estimates polycyclic corrections for unsaturated bicyclics by adjusting the correction for the saturated
version

– Can provide a decent estimate in many cases where there is not an exact match

• Other changes:

– Refactored simulation algorithm to properly add multiple objects per iteration

– Print equilibrium constant and reverse rate coefficient values when using Cantherm to calculate kinet-
ics
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– Speed up degeneracy calculation by reducing unnecessary operations

• Fixes:

– Loosen tolerance for bond order identification to account for floating point error

– Fixed uncertainty analysis to allow floats as bond orders

– Fixed some comment parsing issues in uncertainty analysis

– Added product structure atom relabeling for families added in RMG-database v2.1.5

– Fixed issue with automatic debugging of kinetics errors due to forbidden structures

1.17.12 RMG-database Version 2.1.5

Date: October 18, 2017

• Additions:

– New thermo groups added for species relevant in cyclopentadiene and natural gas pyrolysis

– Added C2H4+O_Klipp2017 kinetics library

• Fixes:

– Prevent charged carbenes from reacting in Singlet_Carbene_Intra_Disproportionation

– Updated H_Abstraction rates in ethylamine library and corresponding training reactions

1.17.13 RMG-Py Version 2.1.4

Date: September 08, 2017

• Accelerator tools:

– Dynamics criterion provides another method to expand the mechanism by adding reactions to the core

– Surface algorithm enables better control of species movement to the core when using the dynamics
criterion

– Multiple sets of model parameters can now be specified in a input file to allow different stages of
model generation

– A species number termination criterion can now be set to limit model size

– Multiple items can now be added per iteration to speed up model construction

– New ModelSettings and SimulatorSettings classes for storing input parameters

• New features:

– Kinetics libraries can now be automatically generated during RMG runs to be used as seeds for sub-
sequent runs

– Loading automatically generated seed mechanisms recreates the original template reaction objects to
allow restarting runs from the seed mechanism

– Carbene constraints can now be set in the species constraint block using maxSingletCarbenes and
maxCarbeneRadicals

– Chirality is now considered for determining symmetry numbers

– Thermodynamic pruning has been added to allow removal of edge species with unfavorable free
energy (beta)
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• Other changes:

– RMG-Py exception classes have been consolidated in the rmgpy.exceptions module

– Species labels will now inherit the label from a matched thermo library entry

– Sensitivity analysis is now available for LiquidReactor

• Fixes:

– Fixed sensitivity analysis following changes to the simulate method

– Add memory handling when generating collision matrix for pressure dependence

– Improved error checking for MOPAC

– Prevent infinite loops when retrieving thermo groups

• Known issues:

– Seed mechanisms cannot be loaded if the database settings are different from the original ones used
to generate the seed

1.17.14 RMG-database Version 2.1.4

Date: September 08, 2017

• New kinetics families for propargyl recombination route to benzene:

– Singlet_Carbene_Intra_Disproportionation

– Intra_5_membered_conjugated_C=C_C=C_addition

– Intra_Diels_alder_monocyclic

– Concerted_Intra_Diels_alder_monocyclic_1,2_shift

– Intra_2+2_cycloaddition_Cd

– Cyclopentadiene_scission

– 6_membered_central_C-C_shift

• Renamed kinetics families:

– Intra_Diels_Alder –> Intra_Retro_Diels_alder_bicyclic

– H_shift_cyclopentadiene –> Intra_ene_reaction

• Other additions:

– Klippenstein_Glarborg2016 kinetics and thermo libraries

– Group additivity values added for singlet carbenes, which are no longer forbidden

1.17.15 RMG-Py Version 2.1.3

Date: July 27, 2017

• Thermo central database:

– Framework for tracking and submitting species to a central database have been added

– Following species submission, the central database will queue and submit quantum chemistry jobs for
thermochemistry calculation
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– This is an initial step towards self-improving thermochemistry prediction

• Rotor handling in Cantherm:

– Free rotors can now be specified

– Limit number of terms used when fitting hinder rotor scans

– Fixed bug with ZPE calculation when using hindered rotors

• New reaction degeneracy algorithm:

– Use atom ID’s to distinguish degenerate reactions from duplicates due to other factors

– Degeneracy calculation now operates across all families rather than within each separately

– Multiple transition states are now identified based on template comparisons and kept as duplicate
reactions

• Nodal distances:

– Distances can now be assigned to trees in reaction families

– This enables better rate averages with multiple trees

– Fixed bug with finding the closest rate rule in the tree

• New features:

– Added methods for automatically writing RMG-database files

– New symmetry algorithm improves symmetry number calculations for resonant and cyclic species

– Group additivity algorithm updated to apply new long distance corrections

– Specific colliders can now be specified for pressure-dependent rates

– Very short superminimal example added (hydrogen oxidation) for checking basic RMG operation

– Cantera now outputs a Chemkin file which can be directly imported into Chemkin

• Fixes:

– Fixed bug with negative activation energies when using Evans-Polanyi rates

– Fixed walltime specification from command line when running RMG

– Fixes and unit tests added for diffusionLimited module

• Known issues:

– The multiple transition state algorithm can result in undesired duplicate reactions for reactants with
multiple resonance structures

1.17.16 RMG-database Version 2.1.3

Date: July 27, 2017

• Long-distance interaction thermo corrections:

– The gauche and int15 group files have been replaced by longDistanceInteraction_noncyclic

– New corrections for cyclic ortho/meta/para interactions are now available in longDistanceInterac-
tion_cyclic

• Changes:

– Oa_R_Recombination family renamed to Birad_R_Recombination
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– More training reactions added for sulfur species in H_Abstraction

– RMG-database tests have been moved to RMG-Py

1.17.17 RMG-Py Version 2.1.2

Date: May 18, 2017

• Improvements:

– New nitrogen atom types

– Kinetics libraries can now be specified as a list of strings in the input file

– New script to generate output HTML locally: generateChemkinHTML.py

– New kekulization module replaces RDKit for generating Kekule structures

– Benzene bonds can now be reacted in reaction families

– Removed cantherm.geometry module due to redundancy with statmech.conformer

• Fixes:

– Reaction direction is now more deterministic after accounting for floating point error

– Multiple bugs with resonance structure generation for aromatics have been addressed

1.17.18 RMG-database Version 2.1.2

Date: May 18, 2017

• Nitrogen improvements:

– Added ethylamine kinetics library

– Updated group additivity values for nitrogen species

– Added rate rules and training reactions for nitrogen species

• Additions:

– New CO_Disproportionation family

– Added CurranPentane kinetics and thermo libraries

• Fixes:

– Corrected some rates in FFCM1(-) to use MultiArrhenius kinetics

– Corrected a few adjlists in FFCM1(-)

1.17.19 RMG-Py Version 2.1.1

Date: April 07, 2017

• Uncertainty analysis:

– Local and global uncertainty analysis now available for RMG-generated models

– Global uncertainty analysis uses MIT Uncertainty Quantification library, currently only supported on
Linux systems

– Examples for each module are available in localUncertainty.ipynb and globalUncertainty.ipynb
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• Fixes:

– Clar structure generation no longer intercepts signals

– Fixes to SMILES generation

– Fix default spin state of [CH]

1.17.20 RMG-database Version 2.1.1

Date: April 07, 2017

• Additions:

– More species added to FFCM1(-) thermo library

• Changes:

– Improved handling of excited species in FFCM1(-) kinetics library

– Replaced Klippenstein H2O2 kinetics and thermo libraries with BurkeH2O2inN2 and
BurkeH2O2inArHe

• Fixes:

– Corrected adjlists for some species in JetSurf2.0 kinetics and thermo libraries (also renamed from
JetSurf0.2)

– Correct multiplicities for [C] and [CH] in multiple libraries ([C] from 5 to 3, [CH] from 4 to 2)

1.17.21 RMG-Py Version 2.1.0

Date: March 07, 2017

• Clar structure generation

– optimizes the aromatic isomer representations in RMG

– lays the foundations for future development of poly-aromatic kinetics reaction families

• Flux pathway analysis

– introduces an ipython notebook for post-generatation pathway analysis (ipython.
mechanism_analyzer.ipynb)

– visualizes reactions and provides flux statistics in a more transparent way

• Cantera mechanism

– automatically writes cantera version of RMG-generated mechanism at the end of RMG jobs

• Fixes bugs

– upgrades pruning to fix new memory leaks introduced by recent functionalities

– fixes the bug of duplicated species creation caused by getThermoData removing isomers unexpect-
edly

– fixes restart file generation and parsing problems and users can choose restart mode again

– upgrades bicyclic decomposition method such that more deterministic behaviors are ensured

– change bond order type to float from string to improve RMG’s symmetry calculation for species with
multiple resonance structures
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1.17.22 RMG-database Version 2.1.0

Date: March 07, 2017

• Several new kinetics libraries added

– FFCM-1

– JetSurF 0.2

– Chernov_aromatic_only

– Narayanaswamy_aromatic_only

– 1989_Stewart_2CH3_to_C2H5_H

– 2005_Senosiain_OH_C2H2

– 2006_Joshi_OH_CO

– C6H5_C4H4_Mebel

– c-C5H5_CH3_Sharma

• Several new thermochemistry libraries added

– FFCM-1

– JetSurF 0.2

– Chernov_aromatic_only

– Narayanaswamy_aromatic_only

• Improved kinetics tree accessibility

– adds database tests ensuring groups in the tree to be accessible

– improves definitions of group structures in the kinetics trees to ensure accessibility

• New oxygenates thermo groups are added based Paraskeva et al.

• Improved database tools

– convertKineticsLibraryToTrainingReactions.ipynb now can visualize groups of matched
rate rules that training reactions hit

– exportKineticsLibrarytoChemkin.py and importChemkinLibrary.py add more logging
information on reaction sources

1.17.23 RMG-Py Version 2.0.0

Date: September 16, 2016

This release includes several milestones of RMG project:

• Parallelization finally introduced in RMG:

– Generates reactions during enlarge step in parallel fashion (rmgpy.rmg.react)

– Enables concurrent computing for QMTP thermochemistry calculations (rmgpy.thermo.
thermoengine)

– Instructions of running RMG parallel mode can be found here for SLURM scheduler and here for
SGE scheduler.

• Polycyclic thermochemistry estimation improved:
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– Extends group additivity method for polycyclics and estimates polycyclics of any large sizes by a
heuristic method (bicyclics decomposition)

• New tree averaging for kinetics:

– Fixes previous issue of imcomplete generation of cross-level rate rules

– Implements Euclidean distance algorithm for the selection of the best rate rules to use in
estimateKinetics

– Streamlines storage of kinetics comments for averaged rules, which can be analyzed by
extractSourceFromComments

• Database entry accessibility tests:

– Adds entry accessibility tests for future entries (testing.databaseTest)

• Fixes bugs

– fluxdiagram generation is now fixed, one can use it to generate short video of fluxdigram evolution

– mac environment yml file is introduced to make sure smooth RMG-Py installation and jobs on mac

– fixes failure of checkForExistingSpecies for polyaromatics species

– fixes execution failure when both pruning and pDep are turned on

– fixes pDep irreversible reactions

– fixes issue of valency of Cbf atom by dynamic benzene bond order assignment

1.17.24 RMG-database Version 2.0.0

Date: September 16, 2016

In conjunction with the release of RMG-Py v2.0.0, an updated package for the RMG-database has also been released.
This release brings some new additions and fixes:

• Polycyclic thermochemistry estimation improved:

– polycyclic database reorganized and more entries added in systematic way (input.thermo.
groups.polycyclic)

• Database entry accessibility tests:

– Fixes existing inaccessible entries in solvation/statmech/thermo of RMG-database

1.17.25 RMG-Py Version 1.0.4

Date: March 28, 2016

• Cantera support in RMG (rmgpy.tools.canteraModel):

– Provides functions to help simulate RMG models using Cantera.

– Has capability to generate cantera conditions and convert CHEMKIN files to cantera models, or use
RMG to directly convert species and reactions objects to Cantera objects.

– Demonstrative example found in ipython/canteraSimulation.ipynb

• Module for regression testing of models generated by RMG (rmgpy.tools.observableRegression):

– Helps identify differences between two versions of models generated by RMG, using the “observ-
ables” that the user cares about.
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• Automatic plotting of simulations and sensitivities when generating models (rmgpy.tools.plot):

– Contains plotting classes useful for plotting simulations, sensitivities, and other data

– Automatic plotting of simulations in the job’s solver folder when saveSimulationProfiles is
set to True in the input file.

– Sensitivities for top 10 most sensitivie reactions and thermo now plotted automatically and stored in
the solver folder.

• Improved thermochemistry estimation (mostly for cyclics and polycyclics)

– Add rank as an additional attribute in thermo database entries to determine trustworthiness

• Bug fixes:

– Training reactions now load successfully regardless of generateSpeciesConstraints parameters

– Transport data is now saved correctly to CHEMKIN tran.dat file and also imports successfully

– Fixes appending of reactions to CHEMKIN file when reaction libraries are desired to be appended to
output

– Fixes writing of csv files for simulation and sensitivity results in Windows

– Fixes Reaction.draw() function to draw the entire reaction rather than a single species

1.17.26 RMG-Py Version 1.0.3

Date: February 4, 2016

This mini release contains the following updates:

• Pdep convergence issues in RMG-Py v1.0.2 are now fixed.

• RMG-database version information and anaconda binary version information is now recorded in RMG log file.

1.17.27 RMG-Py Version 1.0.2

Date: January 29, 2016

This new release adds several new features and bug fixes.

• Windows users can rejoice: RMG is now available in binary format on the Anaconda platform. Building by
source is also much easier now through the Anaconda managed python environment for dependencies. See the
updated Installation Page for more details

• Reaction filtering for speeding up model generation has now been added. It has been shown to speed up model
convergence by 7-10x. See more details about how to use it in your RMG job here. Learn more about the theory
and algorithm on the Rate-based Model Enlarging Algorithm page.

• The RMG native scripts are now organized under the rmgpy.tools submodule for developer ease and better
extensibility in external scripts.

• InChI conversion is now more robust for singlets and triplets, and augmented InChIs and InChI keys are now
possible with new radical electron, lone pair, and multiplicity flags.

• Output HTML for visualizing models are now cleaned up and also more functional, including features to dis-
play thermo comments, display enthalpy, entropy, and free energy of reaction, as well as filter reactions by
species. You can use this new visualization format either by running a job in RMG v1.0.2 or revisualizing your
CHEMKIN file and species dictionary using the visualization web tool.
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1.17.28 RMG-database Version 1.0.2

Date: January 29, 2016

In conjunction with the release of RMG-Py v1.0.2, an updated package for the RMG-database has also been released.
This release brings some new additions and fixes:

• New group additivity values for oxitene, oxerene, oexpane, and furan ring groups

• Improvements to sulfur chemistry:

– Restructuring of radical trees in the kinetics families SubstitutionS and
intra_substitutionCS_cyclization

– A reaction library for di-tert-butyl sulfide

• Improvements for the R_Addition_Multiple_Bond kinetics family through new rate rules for the addition
of allyl radical to double bonds in ethene, propene, and butene-like compounds, based on CBS-QB3 estimates
from K. Wang, S.M. Villano, A.M. Dean, “Reactions of allylic radicals that impact molecular weight growth
kinetics”, PCCP, 6255-6273 (2015).

• Several new thermodynamic and kinetics libraries for molecules associated with the pyrolysis of cyclopentadi-
ene in the presence of ethene, based off of calculations from the paper A.G. Vandeputte, S.S. Merchant, M.R.
Djokic, K.M. Van Geem, G.B. Marin, W. H. Green, “Detailed study of cyclopentadiene pyrolysis in the presence
of ethene: realistic pathways from C5H5 to naphthalene” (2016)
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1.19 How to Cite

Connie W. Gao, Joshua W. Allen, William H. Green, Richard H. West, “Reaction Mechanism Generator: Automatic
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CHAPTER

TWO

CANTHERM USER’S GUIDE

2.1 Introduction

CanTherm is a tool for computing the thermodynamic properties of chemical species and high-pressure-limit rate
coefficients for chemical reactions using the results of a quantum chemistry calculation. Thermodynamic properties
are computed using the rigid rotor-harmonic oscillator approximation with optional corrections for hindered internal
rotors. Kinetic parameters are computed using canonical transition state theory with optional tunneling correction.

CanTherm can also estimate pressure-dependent phenomenological rate coefficients 𝑘(𝑇, 𝑃 ) for unimolecular reaction
networks of arbitrary complexity. The approach is to first generate a detailed model of the reaction network using the
one-dimensional master equation, then apply one of several available model reduction methods of varying accuracy,
speed, and robustness to simplify the detailed model into a set of phenomenological rate coefficients. The result is a
set of 𝑘(𝑇, 𝑃 ) functions suitable for use in chemical reaction mechanisms. More information is available at Allen et
al..

CanTherm is developed and distributed as part of RMG-Py, but can be used as a stand-alone application for Thermo-
chemistry, Transition State Theory, and Master Equation chemical kinetics calculations.

CanTherm is written in the Python programming language to facilitate ease of development, installation, and use.

Additional theoretical background can be found at RMG’s Theory Guide and CanTherm’s Manual as well as the
manual’s supplement information.

2.1.1 License

CanTherm is provided as free, open source code under the terms of the MIT/X11 License. The full, official license is
reproduced below

Copyright (c) 2002-2018 Prof. William H. Green (whgreen@mit.edu),
Prof. Richard H. West (r.west@neu.edu) and the RMG Team (rmg_dev@mit.edu)

Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the 'Software'),
to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED 'AS IS', WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,

(continues on next page)
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(continued from previous page)

FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

2.2 Installation

2.2.1 Installing CanTherm

CanTherm can be obtained by installing the RMG-Py software, which includes all neccesary dependancies.

Instructions to install RMG-Py can be found at the RMG-Py Installation page.

Note that you’ll need to choose between the Basic User or Developer installation instructions that are specific to your
operating system. Modifying cantherm source code will require Developer installation. If you are only looking to run
the code, the Basic User installation will work.

2.3 Creating Input Files for Thermodynamics and High-Pressure
Limit Kinetics Computations

2.3.1 Syntax

The format of CanTherm input files is based on Python syntax. In fact, CanTherm input files are valid Python source
code, and this is used to facilitate reading of the file.

Each section is made up of one or more function calls, where parameters are specified as text strings, numbers, or
objects. Text strings must be wrapped in either single or double quotes.

The following is a list of all the components of a CanTherm input file for thermodynamics and high-pressure limit
kinetics computations:

Component Description
modelChemistry Level of theory from quantum chemical calculations
atomEnergies Dictionary of atomic energies at modelChemistry level
frequencyScaleFactor A factor by which to scale all frequencies
useHinderedRotors True (by default) if hindered rotors are used, False if not
useAtomCorrections True (by default) if atom corrections are used, False if not
useBondCorrections True if bond corrections are used, False (by default) if not
species Contains parameters for non-transition states
transitionState Contains parameters for transition state(s)
reaction Required for performing kinetic computations
statmech Loads statistical mechanics parameters
thermo Performs a thermodynamics computation
kinetics Performs a high-pressure limit kinetic computation

2.3.2 Model Chemistry

The first item in the input file should be a modelChemistry assignment with a string describing the model chemistry.
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CanTherm uses this information to adjust the computed energies to the usual gas-phase reference states by applying
atom, bond and spin-orbit coupling energy corrections. This is particularly important for thermo() calculations (see
below). Note that the user must specify under the species() function the type and number of bonds for CanTherm
to apply these corrections. The example below specifies CBS-QB3 as the model chemistry:

modelChemistry = "CBS-QB3"

Alternatively, the atomic energies at the modelChemistry level of theory can be directly specified in the input file by
providing a dictionary of these energies in the following format:

atomEnergies = {
'H': -0.499818,
'C': -37.78552,
'N': -54.520543,
'O': -74.987979,
'S': -397.658253,

}

The table below shows which model chemistries have atomization energy corrections (AEC), bond corrections (BC),
and spin orbit corrections (SOC). It also lists which elements are available for a given model chemistry.

Model Chemistry AEC BC SOC Freq Scale Supported Elements
'CBS-QB3' v v v v (0.990) H, C, N, O, P, S
'G3' v v H, C, N, O, P, S
'M08SO/MG3S*' v v H, C, N, O, P, S
'M06-2X/cc-pVTZ' v v v (0.955) H, C, N, O, P, S
'Klip_1' v v H, C, N, O
'Klip_2' uses QCI(tz,qz) values v v H, C, N, O
'Klip_3' uses QCI(dz,qz) values v v H, C, N, O
'Klip_2_cc' uses CCSD(T)(tz,qz) values v v H, C, O
'CCSD-F12/cc-pVDZ-F12' v v v (0.947) H, C, N, O
'CCSD(T)-F12/cc-pVDZ-F12_H-TZ' v v H, C, N, O
'CCSD(T)-F12/cc-pVDZ-F12_H-QZ' v v H, C, N, O
'CCSD(T)-F12/cc-pVnZ-F12', n = D,T,Q v v v v H, C, N, O, S
'CCSD(T)-F12/cc-pVDZ-F12_noscale' v v H, C, N, O
'CCSD(T)-F12/cc-pCVnZ-F12', n = D,T,Q v v v H, C, N, O
'CCSD(T)-F12/aug-cc-pVnZ', n = D,T,Q v v v H, C, N, O
'CCSD(T)-F12/cc-pVTZ-f12(-pp), v v H, C, N, O, S, I
'CCSD(T)/aug-cc-pVTZ(-pp), v v H, C, O, S, I
'B-CCSD(T)-F12/cc-pVnZ-F12', n = D,T,Q v v H, C, N, O, S
'B-CCSD(T)-F12/cc-pCVnZ-F12', n = D,T,Q v v H, C, N, O
'B-CCSD(T)-F12/aug-cc-pVnZ', n = D,T,Q v v H, C, N, O
'G03_PBEPBE_6-311++g_d_p' v v H, C, N, O
'MP2_rmp2_pVnZ', n = D,T,Q v v v H, C, N, O
'FCI/cc-pVnZ', n = D,T,Q v v C
'BMK/cbsb7' v v v H, C, N, O, P, S
'BMK/6-311G(2d,d,p)' v v v H, C, N, O, P, S
'B3LYP/6-311+G(3df,2p)' v v v v (0.967) H, C, N, O, P, S
'B3LYP/6-31G**' v v v (0.961) H, C, O, S

Notes:

• In 'M08SO/MG3S*' the grid size used in the [QChem] electronic structure calculation utilizes 75 radial points
and 434 angular points.
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• Refer to paper by Goldsmith et al. (Goldsmith, C. F.; Magoon, G. R.; Green, W. H., Database of Small Molecule
Thermochemistry for Combustion. J. Phys. Chem. A 2012, 116, 9033-9057) for definition of 'Klip_2'
(QCI(tz,qz)) and 'Klip_3' (QCI(dz,qz)).

If a model chemistry other than the ones in the above table is used, then the user should supply the corresponding
atomic energies (using atomEnergies) to get meaningful results. Bond corrections would not be applied in this case.

If a model chemistry or atomic energies are not available, then a kinetics job can still be run by setting
useAtomCorrections to False, in which case Cantherm will not raise an error for unknown elements. The user
should be aware that the resulting energies and thermodynamic quantities in the output file will not be meaningful, but
kinetics and equilibrium constants will still be correct.

2.3.3 Frequency Scale Factor

Frequency scale factors are empirically fit to experiment for different modelChemistry. Refer to NIST web-
site for values (http://cccbdb.nist.gov/vibscalejust.asp). For CBS-QB3, which is not included in the link above,
frequencyScaleFactor = 0.99 according to Montgomery et al. (J. Chem. Phys. 1999, 110, 2822–2827). The
frequency scale factor is automatically assigned according to the supplied modelChemistry, if available (see above
table). If not available automatically and not specified by the user, it will be assumed a unity value.

2.3.4 Species

Each species of interest must be specified using a species() function, which can be input in two different ways,
discussed in the separate subsections below:

1. By pointing to the output files of quantum chemistry calculations, which CanTherm will parse for the necessary
molecular properties

2. By directly entering the molecular properties

Within a single input file, both Option #1 and #2 may be used for different species.

Option #1: Automatically Parse Quantum Chemistry Calculation Output

For this option, the species() function only requires two parameters, as in the example below:

species('C2H6', 'C2H6.py')

The first parameter ('C2H6' above) is the species label, which can be referenced later in the input file. The second
parameter ('C2H6.py' above) points to the location of another python file containing details of the species. This file
will be referred to as the species input file.

The species input file accepts the following parameters:
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Parameter Re-
quired?

Description

bonds op-
tional

Type and number of bonds in the species

linear yes True if the molecule is linear, False if not
externalSymmetryyes The external symmetry number for rotation
spinMultiplicityyes The ground-state spin multiplicity (degeneracy)
opticalIsomersyes The number of optical isomers of the species
energy yes The ground-state 0 K atomization energy in Hartree (without zero-point energy) or The

path to the quantum chemistry output file containing the energy
geometry yes The path to the quantum chemistry output file containing the optimized geometry
frequencies yes The path to the quantum chemistry output file containing the computed frequencies
rotors op-

tional
A list of HinderedRotor() and/or FreeRotor() objects describing the hindered/free
rotors

The types and number of atoms in the species are automatically inferred from the quantum chemistry output and are
used to apply atomization energy corrections (AEC) and spin orbit corrections (SOC) for a given modelChemistry
(see Model Chemistry). If not interested in accurate thermodynamics (e.g., if only using kinetics()), then atom
corrections can be turned off by setting useAtomCorrections to False.

The bond parameter is used to apply bond corrections (BC) for a given modelChemistry.

Allowed bond types for the bonds parameter are, e.g., 'C-H', 'C-C', 'C=C', 'N-O', 'C=S', 'O=O', 'C#N'. . .

'O=S=O' is also allowed.

The order of elements in the bond correction label is not important. Use -/=/# to denote a single/double/triple bond,
respectively. For example, for formaldehyde we would write:

bonds = {'C=O': 1, 'C-H': 2}

The parameter linear only needs to be specified as either True or False. The parameters externalSymmetry,
spinMultiplicity and opticalIsomers only accept integer values. Note that externalSymmetry corresponds
to the number of unique ways in which the species may be rotated about an axis (or multiple axes) and still be
indistinguishable from its starting orientation (reflection across a mirror plane does not count as rotation about an
axis). For ethane, we would write:

linear = False

externalSymmetry = 6

spinMultiplicity = 1

opticalIsomers = 1

The energy parameter is a dictionary with entries for different modelChemistry. The entries can consist of either
floating point numbers corresponding to the 0 K atomization energy in Hartree (without zero-point energy correction),
or they can specify the path to a quantum chemistry calculation output file that contains the species’s energy. For
example:

energy = {
'CBS-QB3': Log('ethane_cbsqb3.log'),
'Klip_2': -79.64199436,
}

In this example, the CBS-QB3 energy is obtained from a Gaussian log file, while the Klip_2 energy is specified
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directly. The energy used will depend on what modelChemistry was specified in the input file. CanTherm can parse
the energy from a Gaussian, Molpro, or QChem log file, all using the same Log class, as shown below.

The input to the remaining parameters, geometry, frequencies and rotors, will depend on if hindered/free rotors
are included. Both cases are described below.

Without Hindered/Free Rotors

In this case, only geometry and frequencies need to be specified, and they can point to the same or different quan-
tum chemistry calculation output files. The geometry file contains the optimized geometry, while the frequencies
file contains the harmonic oscillator frequencies of the species in its optimized geometry. For example:

geometry = Log('ethane_cbsqb3.log')

frequencies = Log('ethane_freq.log')

In summary, in order to specify the molecular properties of a species by parsing the output of quantum chemistry
calculations, without any hindered/free rotors, the species() function in the input file should look like the following
example:

species('C2H6', 'C2H6.py')

and the species input file (C2H6.py in the example above) should look like the following:

bonds = {
'C-C': 1,
'C-H': 6,

}

linear = False

externalSymmetry = 6

spinMultiplicity = 1

opticalIsomers = 1

energy = {
'CBS-QB3': Log('ethane_cbsqb3.log'),
'Klip_2': -79.64199436,

}

geometry = Log('ethane_cbsqb3.log')

frequencies = Log('ethane_freq.log')

With Hindered/Free Rotors

In this case, geometry, frequencies and rotors need to be specified. The geometry and frequencies param-
eters must point to the same quantum chemistry calculation output file in this case. For example:

geometry = Log('ethane_freq.log')

frequencies = Log('ethane_freq.log')
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The geometry/frequencies log file must contain both the optimized geometry and the Hessian (matrix of partial
second derivatives of potential energy surface, also referred to as the force constant matrix), which is used to calcu-
late the harmonic oscillator frequencies. If Gaussian is used to generate the geometry/frequencies log file, the
Gaussian input file must contain the keyword iop(7/33=1), which forces Gaussian to output the complete Hessian.
Because the iop(7/33=1) option is only applied to the first part of the Gaussian job, the job must be a freq job
only (as opposed to an opt freq job or a composite method job like cbs-qb3, which only do the freq calculation
after the optimization). Therefore, the proper workflow for generating the geometry/frequencies log file using
Gaussian is:

1. Perform a geometry optimization.

2. Take the optimized geometry from step 1, and use it as the input to a freq job with the following input keywords:
#method basis-set freq iop(7/33=1)

The output of step 2 is the correct log file to use for geometry/frequencies.

rotors is a list of HinderedRotor() and/or FreeRotor() objects. Each HinderedRotor() object requires the
following parameters:

Parameter Description
scanLog The path to the Gaussian/Qchem log file, or a text file containing the scan energies
pivots The indices of the atoms in the hindered rotor torsional bond
top The indices of all atoms on one side of the torsional bond (including the pivot atom)
symmetry The symmetry number for the torsional rotation (number of indistinguishable energy minima)
fit Fit to the scan data. Can be either fourier, cosine or best (default).

scanLog can either point to a Log file, or simply a ScanLog, with the path to a text file summarizing the scan in the
following format:

Angle (radians) Energy (kJ/mol)
0.0000000000 0.0147251160
0.1745329252 0.7223109804
0.3490658504 2.6856059517

. .

. .

. .
6.2831853072 0.0000000000

The Energy can be in units of kJ/mol, J/mol, cal/mol, kcal/mol, cm^-1 or hartree.

The symmetry parameter will usually equal either 1, 2 or 3. Below are examples of internal rotor scans with these
commonly encountered symmetry numbers. First, symmetry = 3:
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Internal rotation of a methyl group is a common example of a hindered rotor with symmetry = 3, such as the one
above. As shown, all three minima (and maxima) have identical energies, hence symmetry = 3.

Similarly, if there are only two minima along the internal rotor scan, and both have identical energy, then symmetry
= 2, as in the example below:
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If any of the energy minima in an internal rotor scan are not identical, then the rotor has no symmetry (symmetry =
1), as in the example below:
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For the example above there are 3 local energy minima, 2 of which are identical to each other. However, the 3rd
minima is different from the other 2, therefore this internal rotor has no symmetry.

For practical purposes, when determining the symmetry number for a given hindered rotor simply check if the internal
rotor scan looks like the symmetry = 2 or 3 examples above. If it doesn’t, then most likely symmetry = 1.

Each FreeRotor() object requires the following parameters:

Parameter Description
pivots The indices of the atoms in the free rotor torsional bond
top The indices of all atoms on one side of the torsional bond (including the pivot atom)
symmetry The symmetry number for the torsional rotation (number of indistinguishable energy minima)

Note that a scanLog is not needed for FreeRotor() because it is assumed that there is no barrier to internal rotation.
Modeling an internal rotation as a FreeRotor() puts an upper bound on the impact of that rotor on the species’s
overall partition function. Modeling the same internal rotation as a Harmonic Oscillator (default if it is not specifed as
either a FreeRotor() or HinderedRotor()) puts a lower bound on the impact of that rotor on the species’s overall
partition function. Modeling the internal rotation as a HinderedRotor() should fall in between these two extremes.

To summarize, the species input file with hindered/free rotors should look like the following example (different options
for specifying the same rotors entry are commented out):

bonds = {
'C-C': 1,

(continues on next page)
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(continued from previous page)

'C-H': 6,
}

linear = False

externalSymmetry = 6

spinMultiplicity = 1

opticalIsomers = 1

energy = {
'CBS-QB3': Log('ethane_cbsqb3.log'),
'Klip_2': -79.64199436,

}

geometry = Log('ethane_freq.log')

frequencies = Log('ethane_freq.log')

rotors = [
HinderedRotor(scanLog=Log('ethane_scan_1.log'), pivots=[1,5], top=[1,2,3,4], symmetry=3,

→˓fit='best'),
#HinderedRotor(scanLog=ScanLog('C2H6_rotor_1.txt'), pivots=[1,5], top=[1,2,3,4], symmetry=3,

→˓ fit='best'),
#FreeRotor(pivots=[1,5], top=[1,2,3,4], symmetry=3),

]

Note that the atom labels identified within the rotor section should correspond to the indicated geometry.

Option #2: Directly Enter Molecular Properties

While it is usually more convenient to have CanTherm parse molecular properties from the output of quantum chem-
istry calculations (see Option #1: Automatically Parse Quantum Chemistry Calculation Output) there are instances
where an output file is not available and it is more convenient for the user to directly enter the molecular properties.
This is the case, for example, if the user would like to use calculations from literature, where the final calculated
molecular properties are often reported in a table (e.g., vibrational frequencies, rotational constants), but the actual
output files of the underlying quantum chemistry calculations are rarely provided.

For this option, there are a number of required parameters associated with the species() function

Parameter Re-
quired?

Description

label yes A unique string label used as an identifier
E0 yes The ground-state 0 K enthalpy of formation (including zero-point energy)
modes yes The molecular degrees of freedom (see below)
spinMultiplicity yes The ground-state spin multiplicity (degeneracy), sets to 1 by default if not

used
opticalIsomers yes The number of optical isomers of the species, sets to 1 by default if not used

The label parameter should be set to a string with the desired name for the species, which can be reference later in
the input file.
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label = 'C2H6'

The E0 ground state 0 K enthalpy of formation (including zero-point energy) should be given in the quantity format
(value, 'units'), using units of either kJ/mol, kcal/mol, J/mol, or cal/mol:

E0 = (100.725, 'kJ/mol')

Note that if CanTherm is being used to calculate the thermochemistry of the species, it is critical that the value of E0
is consistent with the definition above (0 K enthalpy of formation with zero-point energy). However, if the user is only
interested in kinetics, E0 can be defined on any arbitrary absolute energy scale, as long as the correct relative energies
between various species() and transitionState() are maintained. For example, it is common in literature for
the energy of some reactant(s) to be arbitrarily defined as zero, and the energies of all transition states, intermediates
and products are reported relative to that.

Also note that the value of E0 provided here will be used directly, i.e., no atom or bond corrections will be applied.

When specifying the modes parameter, define a list with the following types of degrees of freedom. To understand
how to define these degrees of freedom, please click on the links below:

Translational degrees of freedom

Class Description
IdealGasTranslation A model of three-dimensional translation of an ideal gas

Rotational degrees of freedom

Class Description
LinearRotor A model of two-dimensional rigid rotation of a linear molecule
NonlinearRotor A model of three-dimensional rigid rotation of a nonlinear molecule
KRotor A model of one-dimensional rigid rotation of a K-rotor
SphericalTopRotor A model of three-dimensional rigid rotation of a spherical top molecule

Vibrational degrees of freedom

Class Description
HarmonicOscillator A model of a set of one-dimensional harmonic oscillators

Note that the frequencies provided here will be used directly, i.e., the frequencyScaleFactor will not be ap-
plied.

Torsional degrees of freedom

Class Description
HinderedRotor A model of a one-dimensional hindered rotation
FreeRotor A model of a one-dimensional free rotation

The spinMultiplicity is defined using an integer, and is set to 1 if not indicated in the species() function.

spinMultiplicity = 1

Similarly, the opticalIsomers is also defined using an integer, and is set to 1 if not used in the species() function.

opticalIsomers = 1
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The following is an example of a typical species() function, based on ethane (different options for specifying the
same internal rotation are commented out):

species(
label = 'C2H6',
E0 = (100.725, 'kJ/mol'),
modes = [

IdealGasTranslation(mass=(30.0469, 'amu')),
NonlinearRotor(

inertia = ([6.27071, 25.3832, 25.3833], 'amu*angstrom^2'),
symmetry = 6,

),
HarmonicOscillator(

frequencies = ([818.917, 819.48, 987.099, 1206.81, 1207.06, 1396, 1411.35, 1489.78,
→˓1489.97, 1492.49, 1492.66, 2995.36, 2996.06, 3040.83, 3041, 3065.86, 3066.02], 'cm^-1'),

),
HinderedRotor(

inertia = (1.56768, 'amu*angstrom^2'),
symmetry = 3,
barrier = (11.2717, 'kJ/mol'),

),
#HinderedRotor(
#inertia = (1.56768, 'amu*angstrom^2'),
#symmetry = 3,
#fourier = (
# [
# [0.00458375, 0.000841648, -5.70271, 0.00602657, 0.0047446],
# [0.000726951, -0.000677255, 0.000207033, 0.000553307, -0.000503303],
# ],
# 'kJ/mol',
#),
#),
#FreeRotor(
# inertia = (1.56768, 'amu*angstrom^2'),
# symmetry = 3,
#),

],
spinMultiplicity = 1,
opticalIsomers = 1,

)

Note that the format of the species() function above is identical to the conformer() function output by CanTherm
in output.py. Therefore, the user could directly copy the conformer() output of a CanTherm job to another
CanTherm input file, change the name of the function to species() (or transitionState(), if appropriate, see
next section) and run a new CanTherm job in this manner. This can be useful if the user wants to easily switch a
species() function from Option #1 (parsing quantum chemistry calculation output) to Option #2 (directly enter
molecular properties).

2.3.5 Transition State

Transition state(s) are only required when performimg kinetics computations. Each transition state of interest must
be specified using a transitionState() function, which is analogous to the species() function described above.
Therefore, the transitionState() function may also be specified in two ways: Option #1: Automatically Parse
Quantum Chemistry Calculation Output and Option #2: Directly Enter Molecular Properties

The following is an example of a typical transitionState() function using Option #1:
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transitionState('TS', 'TS.py')

Just as for a species() function, the first parameter is the label for that transition state, and the second parameter
points to the location of another python file containing details of the transition state. This file will be referred to
as the transition state input file, and it accepts the same parameters as the species input file described in Option #1:
Automatically Parse Quantum Chemistry Calculation Output.

The following is an example of a typical transitionState() function using Option #2:

transitionState(
label = 'TS',
E0 = (267.403, 'kJ/mol'),
modes = [

IdealGasTranslation(mass=(29.0391, 'amu')),
NonlinearRotor(

inertia = ([6.78512, 22.1437, 22.2114], 'amu*angstrom^2'),
symmetry = 1,

),
HarmonicOscillator(

frequencies = ([412.75, 415.206, 821.495, 924.44, 982.714, 1024.16, 1224.21, 1326.
→˓36, 1455.06, 1600.35, 3101.46, 3110.55, 3175.34, 3201.88], 'cm^-1'),

),
],
spinMultiplicity = 2,
opticalIsomers = 1,
frequency = (-750.232, 'cm^-1'),

)

The only additional parameter required for a transitionState() function as compared to a species() function is
frequency, which is the imaginary frequency of the transition state needed to account for tunneling. Refer to Option
#2: Directly Enter Molecular Properties for a more detailed description of the other parameters.

2.3.6 Reaction

This is only required if you wish to perform a kinetics computation. Each reaction of interest must be specified using
a reaction() function, which accepts the following parameters:

Parameter Description
label A unique string label used as an identifier
reactants A list of strings indicating the labels of the reactant species
products A list of strings indicating the labels of the product species
transitionState The string label of the transition state
tunneling Method of estimating the quantum tunneling factor (optional)

The following is an example of a typical reaction function:

reaction(
label = 'H + C2H4 <=> C2H5',
reactants = ['H', 'C2H4'],
products = ['C2H5'],
transitionState = 'TS',
tunneling='Eckart'

)

Note: the quantum tunneling factor method that may be assigned is either 'Eckart' or 'Wigner'.

132 Chapter 2. CanTherm User’s Guide



RMG-Py and CanTherm Documentation, Release 2.2.0

2.3.7 Thermodynamics Computations

Use a thermo() function to make CanTherm execute the thermodynamic parameters computatiom for a species. Pass
the string label of the species you wish to compute the thermodynamic parameters for and the type of thermodynamics
polynomial to generate (either 'Wilhoit' or 'NASA'). A table of relevant thermodynamic parameters will also be
displayed in the output file.

Below is a typical thermo() execution function:

thermo('ethane', 'NASA')

2.3.8 Kinetics Computations

Use a kinetics() function to make CanTherm execute the high-pressure limit kinetic parameters computation for
a reaction. The 'label' string must correspond to that of a defined reaction() function. If desired, define a
temperature range and number of temperatures at which the high-pressure rate coefficient will be tabulated and saved
to the outupt file. The 3-parameter modified Arrhenius coefficients will automatically be fit to the computed rate
coefficients. The quantum tunneling factor will also be displayed.

Below is a typical kinetics() function:

kinetics(
label = 'H + C2H4 <=> C2H5',
Tmin = (400,'K'), Tmax = (1200,'K'), Tcount = 6,
)

If specific temperatures are desired, you may specify a list (Tlist = ([400,500,700,900,1100,1200],'K'))
instead of Tmin, Tmax, and Tcount.

This is also acceptable:

kinetics('H + C2H4 <=> C2H5')

If a sensitivity analysis is desired, simply add the conditions at which to calculate sensitivity coefficients in the follow-
ing format, e.g.:

kinetics(
label = 'HSOO <=> HOOS',
Tmin = (500,'K'), Tmax = (3000,'K'), Tcount = 15,
sensitivity_conditions = [(1000, 'K'), (2000, 'K')]

)

The output of a sensitivity analysis is saved into a sensitivity folder in the output directory. A text file, named
with the reaction label, delineates the semi-normalized sensitivity coefficients dln(k)/dE0 in units of mol/J at all
requested conditions. A horizontal bar figure is automatically generated per reaction with subplots for both the forward
and reverse direction at all conditions.

2.3.9 Examples

Perhaps the best way to learn the input file syntax is by example. To that end, a number of example input files and
their corresponding output have been given in the examples directory.
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2.3.10 Troubleshooting and FAQs

1) The network that CanTherm generated and the resulting pdf file show abnormally large absolute values. What’s
going on?

This can happen if the number of atoms and atom types is not properly defined or consistent in your input
file(s).

2.3.11 CanTherm User Checklist

Using cantherm, or any rate theory package for that matter, requires careful consideration and management of a large
amount of data, files, and input parameters. As a result, it is easy to make a mistake somewhere. This checklist was
made to minimize such mistakes for users:

• Do correct paths exist for pointing to the files containing the electronic energies, molecular geometries and
vibrational frequencies?

For calculations involving pressure dependence:

• Does the network pdf look reasonable? That is, are the relative energies what you expect based on the input?

For calculations using internal hindered rotors:

• Did you check to make sure the rotor has a reasonable potential (e.g., visually inspect the automatically generated
rotor pdf files)?

• Within your input files, do all specified rotors point to the correct files?

• Do all of the atom label indices correspond to those in the file that is read by Log?

• Why do the fourier fits look so much different than the results of the ab initio potential energy scan calculations?
This is likely because the initial scan energy is not at a minimum. One solution is to simply shift the potential
with respect to angle so that it starts at zero and, instead of having CanTherm read a Qchem or Gaussian output
file, have CanTherm point to a ‘ScanLog’ file. Another problem can arise when the potential at 2*pi is also not
[close] to zero.

2.4 Creating Input Files for Pressure Dependent Calculations

2.4.1 Syntax

There are four parts to a pressure-dependent calculation input file, giving the species, transition states, path reactions,
reaction network, and algorithm parameters. The species section must come before the reaction section. Before
discussing each of these sections, a brief word on the general input file syntax will be given.

The format of CanTherm input files is based on Python syntax. In fact, CanTherm input files are valid Python source
code, and this is used to facilitate reading of the file.

Each section is made up of one or more function calls, where parameters are specified as text strings, numbers, or
objects. Text strings must be wrapped in either single or double quotes.

The following is a list of all the components of a CanTherm input file for pressure-dependent calculations:
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Component Description
modelChemistry Level of theory from quantum chemical calculations
atomEnergies Dictionary of atomic energies at modelChemistry level
frequencyScaleFactor A factor by which to scale all frequencies
useHinderedRotors True if hindered rotors are used, False if not
useAtomCorrections True if atom corrections are used, False if not
useBondCorrections True if bond corrections are used, False if not
species Contains parameters for non-transition states
transitionState Contains parameters for transition state(s)
reaction Required for performing kinetic computations
network Divides species into reactants, isomers, products and bath gases
pressureDependence Defines parameters necessary for solving master equation
statmech Loads statistical mechanics parameters
thermo Performs a thermodynamics computation
kinetics Performs a high-pressure limit kinetic computation

Note that many of the functions in the table above overlap with the functions available for thermodynamics and
high-pressure limit kinetics computations. For most of these overlapping functions, the input is identical. Important
differences are mentioned in the sections below.

2.4.2 Model Chemistry

The first item in the input file should be a modelChemistry assignment with a string describing the model chemistry.

CanTherm uses this information to adjust the computed energies to the usual gas-phase reference states by applying
atom, bond and spin-orbit coupling energy corrections. This is particularly important for thermo() calculations (see
below). Note that the user must specify under the species() function the type and number of bonds for CanTherm
to apply these corrections. The example below specifies CBS-QB3 as the model chemistry:

modelChemistry = "CBS-QB3"

Alternatively, the atomic energies at the modelChemistry level of theory can be directly specified in the input file by
providing a dictionary of these energies in the following format:

atomEnergies = {
'H': -0.499818,
'C': -37.78552,
'N': -54.520543,
'O': -74.987979,
'S': -397.658253,

}

Whether or not atomization energy corrections (AEC), bond corrections (BC), and spin orbit corrections (SOC); and
which elements are available for a given model chemistry is described under High-Pressure Limit: Model Chemistry

2.4.3 Frequency Scale Factor

Frequency scale factors are empirically fit to experiment for different modelChemistry. Refer to NIST web-
site for values (http://cccbdb.nist.gov/vibscalejust.asp). For CBS-QB3, which is not included in the link above,
frequencyScaleFactor = 0.99 according to Montgomery et al. (J. Chem. Phys. 1999, 110, 2822–2827).
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2.4.4 Species Parameters

Each species in the network must be specified using a species() function. This includes all unimolecular isomers,
bimolecular reactants and products, and the bath gas(es). A species that appears in multiple bimolecular channels need
only be specified with a single species() function.

The input to the species() function for a pressure-dependent calculation is the same as for a thermodynamic or
high-pressure limit kinetics calculation, with the addition of a few extra parameters needed to describe collisional
energy transfer. There are two options for providing input to the species() function, which are described in the
subsections below:

1. By pointing to the output files of quantum chemistry calculations, which CanTherm will parse for the necessary
molecular properties

2. By directly entering the molecular properties

Within a single input file, both Option #1 and #2 may be used.

Regardless of which option is used to specify molecular properties (e.g., vibrational frequencies, rotational constants)
in the species() function, the four parameters listed below (mostly relating to the collisional energy transfer model)
are always specified in the same way.

Parameter Required? Description
structure all species except bath gases A chemical structure for the species defined using either

SMILES or InChI
molecularWeight all species The molecular weight, if not given it is calculated based on

the structure
collisionModel unimolecular isomers and

bath gases
Transport data for the species

energyTransferModelunimolecular isomers Assigned with SingleExponentialDown model

The structure parameter is defined by either SMILES or InChI. For instance, either representation is acceptable for
the acetone molecule:

structure = SMILES('CC(C)=O')

structure = adjacencyList("""1 C u0 p0 c0 {2,S} {5,S} {6,S} {7,S}
2 C u0 p0 c0 {1,S} {3,S} {4,D}
3 C u0 p0 c0 {2,S} {8,S} {9,S} {10,S}
4 O u0 p2 c0 {2,D}
5 H u0 p0 c0 {1,S}
6 H u0 p0 c0 {1,S}
7 H u0 p0 c0 {1,S}
8 H u0 p0 c0 {3,S}
9 H u0 p0 c0 {3,S}
10 H u0 p0 c0 {3,S}""")

structure = InChI('InChI=1S/C3H6O/c1-3(2)4/h1-2H3')

The molecularWeight parameter should be defined in the quantity format (value, 'units') , for example:

molecularWeight = (44.04, 'g/mol')

If the molecularWeight parameter is not given, it is calculated by CanTherm based on the chemical structure.

The collisionModel is defined for unimolecular isomers with the transport data using a TransportData object:
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collisionModel = TransportData(sigma=(3.70,'angstrom'), epsilon=(94.9,'K'))

sigma and epsilon are Lennard-Jones parameters, which can be estimated using the Joback method on the RMG
website.

The energyTransferModel model available is a SingleExponentialDown.

• SingleExponentialDown - Specify alpha0, T0 and n for the average energy transferred in a deactiving
collision

⟨∆𝐸down⟩ = 𝛼0

(︂
𝑇

𝑇0

)︂𝑛

An example of a typical energyTransferModel function is:

energyTransferModel = SingleExponentialDown(
alpha0 = (0.5718,'kcal/mol'),
T0 = (300,'K'),
n = 0.85,

)

Parameters for the single exponential down model of collisional energy transfer are usually obtained from analogous
systems in literature. For example, if the user is interested in a pressure-dependent network with overall molecu-
lar formula C7H8, the single exponential down parameters for toluene in helium availabe from literature could be
used for all unimolecular isomers in the network (assuming helium is the bath gas). One helpful literature source
for calculated exponential down parameters is the following paper: http://www.sciencedirect.com/science/article/pii/
S1540748914001084#s0060

The following subsections describe how the remaining molecular properties can be input to the species() function
using either Option #1 or #2 mentioned above.

Option #1: Automatically Parse Quantum Chemistry Calculation Output

For this option, the species() function only requires two parameters in addition to the four parameters in the table
above, as shown in the example below:

species('acetylperoxy',''acetylperoxy.py',
structure = SMILES('CC(=O)O[O]'),
molecularWeight = (75.04,"g/mol"),
collisionModel = TransportData(sigma=(5.09,'angstrom'), epsilon=(473,'K')),
energyTransferModel = SingleExponentialDown(

alpha0 = (0.5718,'kcal/mol'),
T0 = (300,'K'),
n = 0.85,

),
)

The first parameter ('acetylperoxy' above) is the species label, which can be referenced later in the input file. The
second parameter ('acetylperoxy.py' above) points to the location of another python file containing details of the
species. This file will be referred to as the species input file.

The species input file accepts the following parameters:
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Parameter Re-
quired?

Description

bonds op-
tional

Type and number of bonds in the species

linear yes True if the molecule is linear, False if not
externalSymmetryyes The external symmetry number for rotation
spinMultiplicityyes The ground-state spin multiplicity (degeneracy)
opticalIsomersyes The number of optical isomers of the species
energy yes The ground-state 0 K atomization energy in Hartree (without zero-point energy) or The

path to the quantum chemistry output file containing the energy
geometry yes The path to the quantum chemistry output file containing the optimized geometry
frequencies yes The path to the quantum chemistry output file containing the computed frequencies
rotors op-

tional
A list of HinderedRotor() and/or FreeRotor() objects describing the hindered/free
rotors

The types and number of atoms in the species are automatically inferred from the quantum chemistry output and are
used to apply atomization energy corrections (AEC) and spin orbit corrections (SOC) for a given modelChemistry
(see Model Chemistry). If not interested in accurate thermodynamics (e.g., if only using kinetics()), then atom
corrections can be turned off by setting useAtomCorrections to False.

The bond parameter is used to apply bond corrections (BC) for a given modelChemistry.

Allowed bond types for the bonds parameter are, e.g., 'C-H', 'C-C', 'C=C', 'N-O', 'C=S', 'O=O', 'C#N'. . .

'O=S=O' is also allowed.

The order of elements in for the bond correction is not important. Use -/=/# to denote a single/double/triple bond,
respectively. For example, for acetylperoxy radical we would write:

bonds = {'C-C': 1, 'C=O': 1, 'C-O': 1, 'O-O': 1, 'C-H': 3}

The parameter linear only needs to be specified as either True or False. The parameters externalSymmetry,
spinMultiplicity and opticalIsomers only accept integer values. Note that externalSymmetry corresponds
to the number of unique ways in which the species may be rotated about an axis (or multiple axes) and still be
indistinguishable from its starting orientation (reflection across a mirror plane does not count as rotation about an
axis). For acetylperoxy radical, we would write:

linear = False

externalSymmetry = 1

spinMultiplicity = 2

opticalIsomers = 1

The energy parameter is a dictionary with entries for different modelChemistry. The entries can consist of either
floating point numbers corresponding to the 0 K atomization energy in Hartree (without zero-point energy correction),
or they can specify the path to a quantum chemistry calculation output file that contains the species’s energy. For
example:

energy = {
'CBS-QB3': Log('acetylperoxy_cbsqb3.log'),
'Klip_2': -79.64199436,
}

In this example, the CBS-QB3 energy is obtained from a Gaussian log file, while the Klip_2 energy is specified
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directly. The energy used will depend on what modelChemistry was specified in the input file. CanTherm can parse
the energy from a Gaussian, Molpro, or QChem log file, all using the same Log class, as shown below.

The input to the remaining parameters, geometry, frequencies and rotors, will depend on if hindered/free rotors
are included. Both cases are described below.

Without Hindered/Free Rotors

In this case, only geometry and frequencies need to be specified, and they can point to the same or different quan-
tum chemistry calculation output files. The geometry file contains the optimized geometry, while the frequencies
file contains the harmonic oscillator frequencies of the species in its optimized geometry. For example:

geometry = Log('acetylperoxy_cbsqb3.log')

frequencies = Log('acetylperoxy_freq.log')

In summary, in order to specify the molecular properties of a species by parsing the output of quantum chemistry
calculations, without any hindered/free rotors, the species input file should look like the following (using acetylperoxy
as an example):

bonds = {
'C-C': 1,
'C=O': 1,
'C-O': 1,
'O-O': 1,
'C-H': 3,
}

linear = False

externalSymmetry = 1

spinMultiplicity = 2

opticalIsomers = 1

energy = {
'CBS-QB3': Log('acetylperoxy_cbsqb3.log'),
'Klip_2': -79.64199436,

}

geometry = Log('acetylperoxy_cbsqb3.log')

frequencies = Log('acetylperoxy_freq.log')

With Hindered/Free Rotors

In this case, geometry, frequencies and rotors need to be specified. Note that the geometry and frequencies
parameters must point to the same quantum chemistry calculation output file. For example:

geometry = Log('acetylperoxy_freq.log')

frequencies = Log('acetylperoxy_freq.log')
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The geometry/frequencies log file must contain both the optimized geometry and the Hessian (matrix of partial
second derivatives of potential energy surface, also referred to as the force constant matrix), which is used to calcu-
late the harmonic oscillator frequencies. If Gaussian is used to generate the geometry/frequencies log file, the
Gaussian input file must contain the keyword iop(7/33=1), which forces Gaussian to output the complete Hessian.
Because the iop(7/33=1) option is only applied to the first part of the Gaussian job, the job must be a freq job
only (as opposed to an opt freq job or a composite method job like cbs-qb3, which only do the freq calculation
after the optimization). Therefore, the proper workflow for generating the geometry/frequencies log file using
Gaussian is:

1. Perform a geometry optimization.

2. Take the optimized geometry from step 1, and use it as the input to a freq job with the following input keywords:
#method basis-set freq iop(7/33=1)

The output of step 2 is the correct log file to use for geometry/frequencies.

rotors is a list of HinderedRotor() and/or FreeRotor() objects. Each HinderedRotor() object requires the
following parameters:

Parameter Description
scanLog The path to the Gaussian/Qchem log file or text file containing the scan
pivots The indices of the atoms in the hindered rotor torsional bond
top The indices of all atoms on one side of the torsional bond (including the pivot atom)
symmetry The symmetry number for the torsional rotation (number of indistinguishable energy minima)
fit Fit to the scan data. Can be either fourier, cosine or best (default).

scanLog can either point to a Log file, or simply a ScanLog, with the path to a text file summarizing the scan in the
following format:

Angle (radians) Energy (kJ/mol)
0.0000000000 0.0147251160
0.1745329252 0.7223109804
0.3490658504 2.6856059517

. .

. .

. .
6.2831853072 0.0000000000

The Energy can be in units of kJ/mol, J/mol, cal/mol, kcal/mol, cm^-1 or hartree.

The symmetry parameter will usually equal either 1, 2 or 3. Below are examples of internal rotor scans with these
commonly encountered symmetry numbers. First, symmetry = 3:
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Internal rotation of a methyl group is a common example of a hindered rotor with symmetry = 3, such as the one
above. As shown, all three minima (and maxima) have identical energies, hence symmetry = 3.

Similarly, if there are only two minima along the internal rotor scan, and both have identical energy, then symmetry
= 2, as in the example below:
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If any of the energy minima in an internal rotor scan are not identical, then the rotor has no symmetry (symmetry =
1), as in the example below:
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For the example above there are 3 local energy minima, 2 of which are identical to each other. However, the 3rd
minima is different from the other 2, therefore this internal rotor has no symmetry.

For practical purposes, when determining the symmetry number for a given hindered rotor simply check if the internal
rotor scan looks like the symmetry = 2 or 3 examples above. If it doesn’t, then most likely symmetry = 1.

Each FreeRotor() object requires the following parameters:

Parameter Description
pivots The indices of the atoms in the free rotor torsional bond
top The indices of all atoms on one side of the torsional bond (including the pivot atom)
symmetry The symmetry number for the torsional rotation (number of indistinguishable energy minima)

Note that a scanLog is not needed for FreeRotor() because it is assumed that there is no barrier to internal rotation.
Modeling an internal rotation as a FreeRotor() puts an upper bound on the impact of that rotor on the species’s
overall partition function. Modeling the same internal rotation as a Harmonic Oscillator (default if it is not specifed as
either a FreeRotor() or HinderedRotor()) puts a lower bound on the impact of that rotor on the species’s overall
partition function. Modeling the internal rotation as a HinderedRotor() should fall in between these two extremes.

To summarize, the species input file with hindered/free rotors should look like the following example (different options
for specifying the same rotors entry are commented out):

bonds = {
'C-C': 1,

(continues on next page)
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(continued from previous page)

'C=O': 1,
'C-O': 1,
'O-O': 1,
'C-H': 3,
}

linear = False

externalSymmetry = 1

spinMultiplicity = 2

opticalIsomers = 1

energy = {
'CBS-QB3': Log('acetylperoxy_cbsqb3.log'),
'Klip_2': -79.64199436,

}

geometry = Log('acetylperoxy_freq.log')

frequencies = Log('acetylperoxy_freq.log')

rotors = [
HinderedRotor(scanLog=Log('acetylperoxy_scan_1.log'), pivots=[1,5], top=[1,2,3,4],

→˓symmetry=3, fit='best'),
#HinderedRotor(scanLog=ScanLog('acetylperoxy_rotor_1.txt'), pivots=[1,5], top=[1,2,3,4],

→˓symmetry=3, fit='best'),
#FreeRotor(pivots=[1,5], top=[1,2,3,4], symmetry=3),

]

Note that the atom labels identified within the rotor section should correspond to the indicated geometry.

Option #2: Directly Enter Molecular Properties

While it is usually more convenient to have CanTherm parse molecular properties from the output of quantum chem-
istry calculations (see Option #1: Automatically Parse Quantum Chemistry Calculation Output) there are instances
where an output file is not available and it is more convenient for the user to directly enter the molecular properties.
This is the case, for example, if the user would like to use calculations from literature, where the final calculated
molecular properties are often reported in a table (e.g., vibrational frequencies, rotational constants), but the actual
output file of the underlying quantum chemistry calculation is rarely provided.

For this option, there are a number of required and optional parameters associated with a species() function:
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Parameter Required? Description
label all species A unique string label used as an identifier
structure all species except bath gas A chemical structure for the species defined using either

SMILES, adjacencyList, or InChI
E0 all species The ground-state 0 K enthalpy of formation (including zero-

point energy)
modes all species The molecular degrees of freedom (see below)
spinMultiplicityall species The ground-state spin multiplicity (degeneracy), sets to 1 by de-

fault if not used
opticalIsomers all species The number of optical isomers of the species, sets to 1 by default

if not used
molecularWeight all species The molecular weight, if not given it is calculated based on the

structure
collisionModel unimolecular isomers and

bath gases
Transport data for the species

energyTransferModelunimolecular isomers Assigned with SingleExponentialDown model
thermo optional Thermo data for the species

The parameters structure, molecularWeight, collisionModel and energyTransferModel were already dis-
cussed above in Species Parameters.

The label parameter should be set to a string with the desired name for the species, which can be reference later in
the input file.

label = 'acetylperoxy'

The E0 ground state 0 K enthalpy of formation (including zero-point energy) should be given in the quantity format
(value, 'units'), using units of either kJ/mol, kcal/mol, J/mol, or cal/mol:

E0 = (-34.6,'kcal/mol')

Note that if CanTherm is being used to calculate the thermochemistry of the species, it is critical that the value of E0
is consistent with the definition above (0 K enthalpy of formation with zero-point energy). However, if the user is only
interested in kinetics, E0 can be defined on any arbitrary absolute energy scale, as long as the correct relative energies
between various species() and transitionState() are maintained. For example, it is common in literature for
the energy of some reactant(s) to be arbitrarily defined as zero, and the energies of all transition states, intermediates
and products are reported relative to that.

Also note that the value of E0 provided here will be used directly, i.e., no atom or bond corrections will be applied.

When specifying the modes parameter, define a list with the following types of degrees of freedom. To understand
how to define these degrees of freedom, please click on the links below:

Translational degrees of freedom

Class Description
IdealGasTranslation A model of three-dimensional translation of an ideal gas

Rotational degrees of freedom

Class Description
LinearRotor A model of two-dimensional rigid rotation of a linear molecule
NonlinearRotor A model of three-dimensional rigid rotation of a nonlinear molecule
KRotor A model of one-dimensional rigid rotation of a K-rotor
SphericalTopRotor A model of three-dimensional rigid rotation of a spherical top molecule
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Vibrational degrees of freedom

Class Description
HarmonicOscillator A model of a set of one-dimensional harmonic oscillators

Note that the frequencies provided here will be used directly, i.e., the frequencyScaleFactor will not be ap-
plied.

Torsional degrees of freedom

Class Description
HinderedRotor A model of a one-dimensional hindered rotation
FreeRotor A model of a one-dimensional free rotation

The spinMultiplicity is defined using an integer, and is set to 1 if not indicated in the species() function.

spinMultiplicity = 2

Similarly, the opticalIsomers is also defined using an integer, and is set to 1 if not used in the species() function.

opticalIsomers = 1

The following is an example of a typical species item, based on the acetylperoxy radical CH3C(−−O)OO · (different
options for specifying the same internal rotation are commented out):

species(
label = 'acetylperoxy',
structure = SMILES('CC(=O)O[O]'),
E0 = (-34.6,'kcal/mol'),
modes = [

IdealGasTranslation(mass=(75.04,"g/mol")),
NonlinearRotor(inertia=([54.2977,104.836,156.05],"amu*angstrom^2"), symmetry=1),
HarmonicOscillator(frequencies=([319.695,500.474,536.674,543.894,727.156,973.365,1037.

→˓77,1119.72,1181.55,1391.11,1449.53,1454.72,1870.51,3037.12,3096.93,3136.39],"cm^-1")),
HinderedRotor(inertia=(7.38359,"amu*angstrom^2"), symmetry=1, fourier=([[-1.95191,-11.

→˓8215,0.740041,-0.049118,-0.464522],[0.000227764,0.00410782,-0.000805364,-0.000548218,-0.
→˓000266277]],"kJ/mol")),

HinderedRotor(inertia=(2.94723,"amu*angstrom^2"), symmetry=3, fourier=([[0.130647,0.
→˓0401507,-2.54582,-0.0436065,-0.120982],[-0.000701659,-0.000989654,0.00783349,-0.00140978,-0.
→˓00145843]],"kJ/mol")),

#FreeRotor(inertia=(7.38359,"amu*angstrom^2"), symmetry=1),
#FreeRotor(inertia=(2.94723,"amu*angstrom^2"), symmetry=3),

],
spinMultiplicity = 2,
opticalIsomers = 1,
molecularWeight = (75.04,"g/mol"),
collisionModel = TransportData(sigma=(5.09,'angstrom'), epsilon=(473,'K')),
energyTransferModel = SingleExponentialDown(

alpha0 = (0.5718,'kcal/mol'),
T0 = (300,'K'),
n = 0.85,

),
)

Note that the format of the species() function above is identical to the conformer() function output by CanTherm
in output.py. Therefore, the user could directly copy the conformer() output of a CanTherm job to another
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CanTherm input file, change the name of the function to species() (or transitionState(), if appropriate, see
next section) and run a new CanTherm job in this manner. This can be useful if the user wants to easily switch a
species() function from Option #1 (parsing quantum chemistry calculation output) to Option #2 (directly enter
molecular properties).

2.4.5 Transition States

Transition states for reactions in the pressure dependent network should be defined very similarly to species
using a transitionState() function, however it has less parameters (structure, molecularWeight,
collisionModel and energyTransferModel aren’t specified for a transition state). Like the species() func-
tion, the transitionState() function may also be specified in two ways: Option #1: Automatically Parse Quantum
Chemistry Calculation Output and Option #2: Directly Enter Molecular Properties

The following is an example of a typical transitionState() function using Option #1:

transitionState('isom1', 'isom1.py')

Just as for a species() function, the first parameter is the label for that transition state, and the second parameter
points to the location of another python file containing details of the transition state. This file will be referred to
as the transition state input file, and it accepts the same parameters as the species input file described in Option #1:
Automatically Parse Quantum Chemistry Calculation Output.

The following is an example of a typical transitionState() function using Option #2:

transitionState(
label = 'isom1',
E0 = (-5.8,'kcal/mol'),
modes = [

IdealGasTranslation(mass=(75.04,"g/mol")),
NonlinearRotor(inertia=([49.3418,103.697,149.682],"u*angstrom**2"), symmetry=1,

→˓quantum=False),
HarmonicOscillator(frequencies=([148.551,306.791,484.573,536.709,599.366,675.538,832.

→˓594,918.413,1022.28,1031.45,1101.01,1130.05,1401.51,1701.26,1844.17,3078.6,3163.07],"cm^-1"),
→˓quantum=True),

],
spinMultiplicity = 2,
opticalIsomers = 1,
frequency = (-1679.04,'cm^-1'),

)

The only additional parameter required for a transitionState() function as compared to a species() function is
frequency, which is the imaginary frequency of the transition state needed to account for tunneling. Refer to Option
#2: Directly Enter Molecular Properties for a more detailed description of the other parameters.

2.4.6 Path Reactions

Each path reaction - a reaction directly connecting two molecular configurations in the network - is specified using a
reaction() function. The following parameters are available:
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Parameter Re-
quired?

Description

label All reac-
tions

A name for the reaction

reactants All reac-
tions

A list of reactant species

products All reac-
tions

A list of product species

transitionStateAll reac-
tions

The transition state

kinetics Optional The high pressure-limit kinetics for the reaction
tunneling Optional The type of tunneling model (either ‘Eckhart’ or ‘Wigner’) to use for tunneling

through the reaction barrier

If the optional kinetics parameter is specified, CanTherm will perform an inverse Laplace transform (ILT) on the
high pressure-limit kinetics provided to estimate the microcanonical rate coefficients, 𝑘(𝐸), needed for the master
equation (refer to Theory manual for more detail). This feature is useful for barrierless reactions, such as radical
recombinations, which don’t have an obvious transition state. If the ILT approach to calculating 𝑘(𝐸) is taken, a
placeholder transitionState must still be defined with an E0 equal to the energy of the higher energy species it is
connecting.

A typical reaction() function might look like this.

reaction(
label = 'isom1',
reactants = ['acetylperoxy'],
products = ['hydroperoxylvinoxy'],
transitionState = 'isom1',
kinetics = Arrhenius(A=(2.65e6,'m^3/(mol*s)'), n=0.0, Ea=(0.0,'kcal/mol'), T0=(1,"K")),
tunneling = 'Eckart',

)

Note that the reactants and products must have been previously declared using a species() function, using the same
name labels. Transition states must also be previously declared using a transitionState() function.

If the optional kinetics entry is not specified, CanTherm will calculate the required kinetic coefficients on its own.
The kinetics entry is particularly useful to specify rates of barrierless reactions (for which CanTherm cannot yet
calculate high-pressure limit rates).

Currently, the reaction() function for a pressure-dependent job cannot connect bimolecular reactants to bimolecular
products (e.g., as in a hydrogen abstraction or disproportionation reaction).

2.4.7 Network

A declaration for the overall network must be given using the network function.

This includes setting the following paramters:

Parameter Description
label A name for the network
isomers A list of species participating in unimolecular reaction channels
reactants A list of the species that participate in bimolecular reactant channels
bathGas A dictionary of bath gases and their respective mole fractions, adding up to 1.0
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CanTherm is largely able to determine the molecular configurations that define the potential energy surface for your re-
action network simply by inspecting the path reactions. However, you must indicate which unimolecular and bimolec-
ular configurations you wish to include in the master equation formulation; all others will be treated as irreversible
sinks.

Note that all species and bath gases used in the network function must have been previously declared with the same
name labels in a previous species function in the input file.

You do not need to specify the product channels (infinite sinks) in this manner, as any configuration not marked as an
isomer or reactant channel will be treated as a product channel.

An example of the network function is given below along with a scheme of the network:

network(
label = 'acetyl + O2',
isomers = [

'acetylperoxy',
'hydroperoxylvinoxy',

],
reactants = [

('acetyl', 'oxygen'),
],
bathGas = {

'nitrogen': 0.4,
'argon': 0.6,

}
)

Image source: J.W. Allen, PhD dissertation, MIT 2013, calculated at the RQCISD(T)/CBS//B3LYP/6-311++G(d,p)
level of theory

2.4.8 Algorithm Parameters

The overall parameters for the pressure-dependence calculation must be defined in a pressureDependence function
at the end of the input file. The following parameters are necessary:
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Parameter Description
label Use the name for the network declared previously
method Method to use for calculating the pdep network. Use either 'modified

strong collision', 'reservoir state', or 'chemically-significant
eigenvalues'

interpolationModel Select the output type for the pdep kinetics, either in 'chebyshev' or
'pdeparrhenius' (plog) format

activeKRotor A flag indicating whether to treat the K-rotor as active or adiabatic
activeJRotor A flag indicating whether to treat the J-rotor as active or adiabatic
Tmin/Tmax/Tcount or
Tlist

Define temperatures at which to compute (and output) 𝑘(𝑇, 𝑃 )

Pmin/Pmax/Pcount or
Plist

Define pressures at which to compute (and output) 𝑘(𝑇, 𝑃 )

maximumGrainSize
and
minimumGrainCount

Defines fineness of energy grains used in master equation calculations.

sensitivity_conditionsSpecifies the conditions at which to run a network sensitivity analysis.

Temperature and Pressure Ranges

CanTherm will compute the 𝑘(𝑇, 𝑃 ) values on a grid of temperature and pressure points. Tmin, Tmax, and Tcount
values, as well as Pmin, Pmax, and Pcount parameter values must be provided. CanTherm will automatically choose
the intermediate temperatures based on the interpolation model you wish to fit. This is the recommended approach.

Alternatively, the grid of temperature and pressure points can be specified explicitly using Tlist and/or Plist.

Energy Grains Determine the fineness of the energy grains to be used in the master equation calculations. Dictate the
maximumGrainSize, and the minimumGrainCount.

An example of the algorithm parameters function for the acetyl + O2 network is shown below. This example also
includes the sensitivity_conditions attribute which invokes a sensitivity analysis calculation:

pressureDependence(
label='acetyl + O2',
Tmin=(300.0,'K'), Tmax=(2000.0,'K'), Tcount=8,
Pmin=(0.01,'bar'), Pmax=(100.0,'bar'), Pcount=5,
#Tlist = ([300, 400, 600, 800, 1000, 1250, 1500, 1750, 2000],'K')
#Plist = ([0.01, 0.1, 1.0, 10.0, 100.0],'bar')
maximumGrainSize = (1.0,'kcal/mol'),
minimumGrainCount = 250,
method = 'modified strong collision',
#method = 'reservoir state',
#method = 'chemically-significant eigenvalues',
interpolationModel = ('chebyshev', 6, 4),
#interpolationModel = ('pdeparrhenius'),
#activeKRotor = True,
activeJRotor = True,
sensitivity_conditions = [[(1000, 'K'), (1, 'bar')], [(1500, 'K'), (10, 'bar')]]

)

The output of a sensitivity analysis is saved into a sensitivity folder in the output directory. A text file, named
with the network label, delineates the semi-normalized sensitivity coefficients dln(k)/dE0 in units of mol/J for all
network reactions (both directions if reversible) at all requested conditions. Horizontal bar figures are automatically
generated per network reaction, showing the semi-normalized sensitivity coefficients at all conditions.
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2.4.9 Thermodynamics Computations

The input to the thermo() function is identical to that of a non-pressure-dependent job.

Use a thermo() function to make CanTherm execute the thermodynamic parameters computatiom for a species. Pass
the string label of the species you wish to compute the thermodynamic parameters for and the type of thermodynamics
polynomial to generate (either 'Wilhoit' or 'NASA'). A table of relevant thermodynamic parameters will also be
displayed in the output file.

Below is a typical thermo() execution function:

thermo('ethane', 'NASA')

2.4.10 Kinetics Computations

The input to the kinetics() function is identical to that of a non-pressure-dependent job. Note, however, that because
currently the reaction() function for a pressure-dependent job cannot connect bimolecular reactants to bimolecular
products (e.g., as in a hydrogen abstraction or disproportionation reaction), it is also not possible to use kinetics()
on such a reaction either. The kinetics of such a reaction can only be calculated as part of a non-pressure-dependent
job.

Use a kinetics() function to make CanTherm execute the high-pressure limit kinetic parameters computation for
a reaction. The 'label' string must correspond to that of a defined reaction() function. If desired, define a
temperature range and number of temperatures at which the high-pressure rate coefficient will be tabulated and saved
to the outupt file. The 3-parameter modified Arrhenius coefficients will automatically be fit to the computed rate
coefficients. The quantum tunneling factor will also be displayed.

Below is a typical kinetics() function:

kinetics(
label = 'H + C2H4 <=> C2H5',
Tmin = (400,'K'), Tmax = (1200,'K'), Tcount = 6,
)

If specific temperatures are desired, you may specify a list (Tlist = ([400,500,700,900,1100,1200],'K'))
instead of Tmin, Tmax, and Tcount.

This is also acceptable:

kinetics('H + C2H4 <=> C2H5')

2.4.11 Examples

Perhaps the best way to learn the input file syntax is by example. To that end, a number of example input files and
their corresponding output have been given in the examples/cantherm/networks directory, which includes both
an acetyl+O2 and n-butanol example.

2.5 Running CanTherm

To execute a CanTherm job, invoke the command

$ python cantherm.py INPUTFILE
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The absolute or relative paths to the cantherm.py file as well as to the input file must be given.

The job will run and the results will be saved to output.py in the same directory as the input file. If you wish to save
the output elsewhere, use the -o/--output option, e.g.

$ python cantherm.py INPUTFILE -o OUTPUTFILE

2.5.1 Drawing Potential Energy Surface

CanTherm contains functionality for automatically generating an image of the potential energy surface for a reaction
network. This is done automatically and outputted in pdf format to a file called network.pdf.

2.5.2 Log Verbosity

You can manipulate the amount of information logged to the console window using the -q/--quiet flag (for quiet
mode) or the -v/--verbose flag (for verbose mode). The former causes the amount of logging information shown to
decrease; the latter causes it to increase.

2.5.3 Help

To view help information and all available options, use the -h/--help flag, e.g.

$ python cantherm.py -h

2.6 Parsing Output Files

2.6.1 Thermodynamic and High-pressure Limit Kinetics Calculations

The syntax of CanTherm output files closely mirrors that of the input files. For each thermo() function in the
input file, there will be a corresponding thermo() function in the output file containing the computed thermodynamic
model. Similarly, For each kinetics() function in the input file, there will be a corresponding kinetics() function
in the output file containing the computed kinetics model.

2.6.2 Pressure-Dependent Calculations

The output file contains the entire contents of the input file. In addition, the output file contains a block of
pdepreaction() calls. The parameters of each pdepreaction() block match those of the reaction() block
from the input file, except that no transition state data is given and the kinetics are by definition pressure-dependent.

A pdepreaction() item is printed for each reaction pathway possible in the network. Each reaction is reversible.
Reactions in the opposite direction are provided as commented out, so a user can choose to use them if she/he desires.

2.6.3 Chemkin Output File

In addition to the output.py which contains the thermodynamic, kinetic, and pressure dependent results from a
cantherm run, a Chemkin input file, chem.inp is also returned. This file contains species and their thermodynamic
parameters for each species that has the thermo() in the input file. The file also contains kinetics, both pressure
dependent and high pressure limit, which have the kinetics() or pressureDependence() module called.
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For the output file to function, all the names of species should be in valid chemkin format. The butanol and ethyl
examples both show how to obtain a valid chemkin file.

The chem.inp file can be used in Chemkin software package or converted to a Cantera input file for use in Cantera
software.

2.6.4 Log File

A log file containing similar information to that displayed on the console during CanTherm execution is also auto-
matically saved. This file has the name cantherm.log and is found in the same directory as the output file. The
log file accepts logging messages at an equal or greater level of detail than the console; thus, it is often useful (and
recommended) to examine both if something unexpected has occurred.

The examples/cantherm directory contains both CanTherm input files and the resulting output files.

2.6.5 Species Dictionary

Any species that had the thermo() method called and had the structure defined in the cantherm input file will also
have an RMG style adjacency list representation in species_dictionary.txt. This allows the user to input the
corresponding thermo and kinetics into RMG in various ways described in the RMG user guide.

2.7 Frequently Asked Questions

Are there other software packages for investigating pressure-dependent reaction networks?

Yes. The following is an illustrative list of such packages:

Name Method(s) Language Author(s)
MultiWell stochastic Fortran J. R. Barker et al
UNIMOL CSE Fortran R. G. Gilbert, S. C. Smith
ChemRate CSE C++1 V. Mokrushin, W. Tsang
Variflex CSE Fortran S. J. Klippenstein et al
MESMER CSE (+ RS) C++ S. H. Robertson et al
CHEMDIS2 MSC Fortran A. Y. Chang, J. W. Bozzelli, A. M. Dean

(MSC = modified strong collision, RS = reservoir state, CSE = chemically-significant eigenvalues)

Many of the above packages also provide additional functionality beyond the approximate solving of the master
equation. For example, Variflex can be used for variational transition state theory calculations, while ChemRate
provides a (Windows) graphical user interface for exploring a database of experimental data and physical quantities.

2.8 Credits

Author: Joshua W. Allen (joshua.w.allen@gmail.com)

P.I.: Prof. William H. Green (whgreen@mit.edu)

The author acknowledges the Green group for helping put the software through its paces and providing suggestions
for its improvement.

1 Uses MFC for Windows graphical user interface
2 No longer distributed
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CanTherm is based upon work supported by the King Abdullah University of Science and Technology.

• genindex

• modindex

• search
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CHAPTER

THREE

THEORY GUIDE

The theoretical foundations to some of the parts of RMG and Cantherm are described in greater detail in these sections.

3.1 RMG Theory Guide

3.1.1 Rate-based Model Enlarging Algorithm

To construct a mechanism, the user must specify an initial set of species and the initial conditions (temperature,
pressure, species concentrations, etc.). RMG reacts the initial species in all possible ways according to its known
reaction families, and it integrates the model in time. RMG tracks the rate (flux) at which each new “edge” species
is produced, and species (and the reactions producing them) that are produced with significant fluxes are incorporated
into the model (the “core”). These new core species are reacted with all other core species in the model to generate a
new set of edge species and reactions. The time-integration restarts, and the expanded list of edge species is monitored
for significant species to be included in the core. The process continues until all significant species and reactions have
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been included in the model. The definition of a “significant” rate can be specified by the user by taking the following
definition for a single species rate:

𝑅𝑖 = 𝑑𝐶𝑖

𝑑𝑡

and the following definition for the reaction system’s characteristic rate, which is the sum of all core species rates:

𝑅𝑐ℎ𝑎𝑟 =
√︂∑︀

𝑗

𝑅2
𝑗 species 𝑗 ∈ core

When a species 𝑖 ∈ edge exceeds a “significant” rate equal to 𝜖𝑅𝑐ℎ𝑎𝑟, it is added to the core. The parameter 𝜖 is the
user-specified toleranceMoveToCore that can be adjusted under the model tolerances in the RMG Input File.

For more information on rate-based model enlargement, please refer to the papers [Gao2016] or [Susnow1997].

Filtering Reactions within the Rate-based Algorithm

Filtering reactions in the react step in the flux-based algorithm attempts to speed up model generation by attacking the
pain point. RMG has trouble converging when generating models for large molecules because it searches for reactions
on the order of (𝑛𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛 𝑠𝑖𝑡𝑒𝑠)

𝑛𝑠𝑝𝑒𝑐𝑖𝑒𝑠 .

The original algorithm performs in the following manner:

1. Reacts species together (slow)

2. Determines which reactions are negligible (fast)

By filtering reactions we add a pre-filtering step before step 1 which prevents species from reacting together when the
reactions are expected to be negligible throughout the simulation.

Here, unimolecularThreshold, bimolecularThreshold, and trimolecularThreshold are binary arrays
storing flags for whether a species or a pair of species are above a reaction threshold. For a unimolecular rate, this
threshold is set to True if the unimolecular rate of reaction 𝑘 for a species A

𝑅𝑢𝑛𝑖𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑎𝑟 = 𝑘𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝐶𝐴 > 𝜖𝑅𝑐ℎ𝑎𝑟

at any given time 𝑡 in the reaction system, where 𝑘𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 𝑘𝐵𝑇
ℎ
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For a bimolecular reaction occuring between species A and B, this threshold is set to True if the bimolecular rate

𝑅𝑏𝑖𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑎𝑟 = 𝑘𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝐶𝐴𝐶𝐵 > 𝜖𝑅𝑐ℎ𝑎𝑟

where 𝑘𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 𝑓𝑖𝑙𝑡𝑒𝑟𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑. filterThreshold is set by the user in the input file and its default value is
108 𝑚3

𝑚𝑜𝑙·𝑠 . This is on the same order of magnitude as the collision limit for two hydrogen atoms at 1000 K. In general,
it is recommended to set filterThreshold such that 𝑘𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 is slightly greater than the maximum rate constants
one expects to be present in the system of interest. This will ensure that very fast reactions are not accidentally filtered
out.

Similarly, for a trimolecular reaction, the following expression is used:

𝑅𝑡𝑟𝑖𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑎𝑟 = 𝑘𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝐶𝐴𝐶𝐵𝐶𝐶 > 𝜖𝑅𝑐ℎ𝑎𝑟

where 𝑘𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 10−3 · 𝑓𝑖𝑙𝑡𝑒𝑟𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝑚6

𝑚𝑜𝑙2·𝑠 . Based on extending Smoluchowski theory to multiple molecules,
the diffusion limit rate constant for trimolecular reactions (in 𝑚6

𝑚𝑜𝑙2·𝑠 ) is approximately three orders of magnitude
smaller than the rate constant for bimolecular reactions (in 𝑚3

𝑚𝑜𝑙·𝑠 ). It is assumed here that Smoluchowski theory gives
a sufficient approximation to collision theory in the gas phase.

When the liquid-phase reactor is used, the diffusion limits are calculated using the Stokes-Einstein equation instead.
For bimolecular reactions, this results in

𝑘𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑[𝑚3/𝑚𝑜𝑙/𝑠] = 22.2 𝑇 [𝐾]
𝜇[𝑃𝑎·𝑠]

and for trimolecular

𝑘𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑[𝑚6/𝑚𝑜𝑙2/𝑠] = 0.11 𝑇 [𝐾]
𝜇[𝑃𝑎·𝑠]

where 𝜇 is the solvent viscosity. The coefficients in the above equations were obtained by using a representative value
of the molecular radius of 2 Angstrom. More details on the calculation of diffusion limits in the liquid phase can be
found in the description of liquid-phase systems under diffusion-limited kinetics.

Three additional binary arrays unimolecularReact, bimolecularReact, and trimolecularReact store flags
for when the unimolecularThreshold, bimolecularThreshold, or trimolecularThreshold flag shifts from
False to True. RMG reacts species when the flag is set to True.

3.1.2 Prune Edge Species

When dealing with complicated reaction systems, RMG calculation would easily hit the computer memory limitation.
Memory profiling shows most memory especially during memory limitation stage is occupied by edge species. How-
ever, most edge species in fact wouldn’t be included in the core (or final model). Thus, it’s natural to get rid of some
not “so useful” edge species during calculation in order to achieve both low memory consumption and mechanism
accuracy. Pruning is such a way.

Key Parameters in Pruning

• toleranceKeepInEdge

Any edge species to prune should have peak flux along the whole conversion course lower than tolerance-
KeepInEdge * characteristic flux. Thus, larger values will lead to smaller edge mechanisms.

• toleranceMoveToCore

Any edge species to enter core model should have flux at some point larger than toleranceMoveToCore * char-
acteristic flux Thus, in general, smaller values will lead to larger core mechanisms.

• toleranceInterrupSimulation
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Once flux of any edge species exceeds toleranceInterruptSimulation * characteristic flux, dynamic simulation
will be stopped. Usually this tolerance will be set a very high value so that any flux’s exceeding that means
mechanism is too incomplete to continue dynamic simulation.

• maximumEdgeSpecies

If dynamic simulation isn’t interrupted in half way and total number of the edge species whose peak fluxes are
higher than toleranceKeepInEdge * characteristic flux exceeds maximumEdgeSpecies, such excessive amount
of edge species with lowest peak fluxes will be pruned.

• minCoreSizeForPrune

Ensures that a minimum number of species are in the core before pruning occurs, in order to avoid pruning the
model when it is far away from completeness. The default value is set to 50 species.

• minSpeciesExistIterationsForPrune

Set the number of iterations an edge species must stay in the job before it can be pruned. The default value is 2
iterations.

How Pruning Works

3.1.3 Dynamics Criterion

When dealing with more complex chemical mechanisms the standard RMG flux criterion has trouble picking up key
chain branching reactions and has limited guarantees that it accurately represents the concentrations of all species.
The dynamics criterion is a measure of how much a given reaction affects core concentrations. This allows it to pick
up key low-flux chain branching reactions and better represent species concentrations.

Calculating the Dynamics Criterion

Let us define rates of production 𝑃𝑖(𝑡) and consumption 𝐿𝑖(𝑡) for a given species 𝑑𝑐𝑖
𝑑𝑡 = 𝑃𝑖(𝑡) − 𝐿𝑖(𝑡)

Let us define a dimensionless concentration variable we will refer to as the accumulation number Ac for a given species

𝐴𝑐𝑠𝑝𝑐,𝑖 = 𝑃𝑖

𝐿𝑖
≈ 𝑐𝑖

𝑐𝑖0

where 𝑐𝑖 is the steady state concentration or more specifically the concentration at which 𝑃𝑖 = 𝐿𝑖 assuming 𝐿𝑖 scales
with 𝑐𝑖 and 𝑐𝑖0 is the current concentration.

This species accumulation number is a measure of how far species i is from steady state.

Since this number can only be calculated for core species, by itself it is only a measure of the behavior of species i
within the reaction network.

However if we consider models with and without some edge reaction j we can define

Π𝐴𝑐,𝑖,𝑗 =
𝐴𝑐𝑠𝑝𝑐,𝑖,𝑤𝑖𝑡ℎ𝑗

𝐴𝑐𝑠𝑝𝑐,𝑖,𝑤𝑖𝑡ℎ𝑜𝑢𝑡𝑗

Which is a measure of how much the concentration of species i is impacted by reaction j.

In order to directly compare multiple reactions we can then sum over all core species involved in reaction j to get our
criterion the dynamics number.∑︀

𝑖∈𝑐𝑜𝑟𝑒 |𝐿𝑛(Π𝐴𝑐,𝑖,𝑗)| = 𝐷𝑦 > 𝜖
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Fig. 1: The goal of pruning is to delete those “useless” edge species. So “usefulness” should be defined and it’s
natural to have flux as a criterion for “usefulness”. Since flux changes with reactant conversion, peak flux is chosen
here to make decision of pruning or not. Every time pruning is triggered, edge species with peak flux lower than
toleranceKeepInEdge * characteristic flux will be deleted.
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Fig. 2: However, pruning is not always triggered because of toleranceInterruptSimulation. As mentioned above, in
order to prune, RMG needs to figure out the peak flux of each edge species, which requires dynamic simulation to
complete. If some run of dynamic simulation is terminated in half way by toleranceInterruptSimulation, pruning is
rejected although there might be some edge species with peak fluxes lower than toleranceKeepInEdge * characteristic
flux. Since pruning requires to complete dynamic simulation, setting toleranceInterruptSimulation to be positive
infinity, as an extreme case, means always enabling pruning. Another extreme case would be that it has same value as
toleranceMoveToCore where no pruning occurs.

In summary, each run of dynamic simulation will proceed towards terminationConversion unless some flux exceeds
toleranceInterruptSimulation * characteristic flux.Following complete simulation is the pruning of edge species whose flux is not

high enough be kept in the edge, which is followed by pruning of excessive amount of edge species to make sure total edge species
number is no greater than maximumEdgeSpecies.
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Surface Algorithm

One common issue with the dynamics criterion is that it treats all core species equally. Because of this, if the dynamics
criterion is set too low it enters a feedback loop where it adds species and then since it can’t get those species’
concentrations right it adds more species and so on. In order to avoid this feedback loop the surface algorithm was
developed. It creates a new partition called the surface that is considered part of the core. We will refer to the part
of the core that is not part of the surface as the bulk core. When operating without the dynamics criterion everything
moves from edge to the bulk core as usual; however the dynamics criterion is managed differently. When using
the surface algorithm most reactions pulled in by the dynamics criterion enter the surface instead of the bulk core.
However, unlike movement to bulk core a constraint is placed on movement to the surface. Any reaction moved to
the surface must have either both reactants or both products in the bulk core. This prevents the dynamics criterion
from pulling in reactions to get the concentrations of species in the surface right avoiding the feedback loop. To avoid
important species being trapped in the surface we also add criteria for movement from surface to bulk core based on
flux or dynamics criterion. However, to avoid important species being trapped in the surface we also add criteria for
movement from surface to bulk core based on flux or dynamics criterion.

Key Parameters for Dynamics Criterion and Surface Algorithm

• toleranceMoveEdgeReactionToCore

An edge reaction will be pulled directly into the bulk core if its dynamics number ever exceeds this value.

• toleranceMoveEdgeReactionToSurface

An edge reaction will be pulled into the surface if its dynamics number ever exceeds this value.

• toleranceMoveEdgeReactionToCoreInterrupt

When any reaction’s dynamics number exceeds this value the simulation will be interrupted.

3.1. RMG Theory Guide 161



RMG-Py and CanTherm Documentation, Release 2.2.0

• toleranceMoveEdgeReactionToSurfaceInterrupt

When the dynamics number of any reaction that would be valid for movement to the surface exceeds this value
the simulation will be interrupted

• toleranceMoveSurfaceReactionToCore

A surface reaction will be pulled into the bulk core if its dynamics number ever exceeds this value. Note this is
done on the fly during simulation.

• toleranceMoveSurfaceSpeciesToCore

A surface species will be pulled into the bulk core if it’s rate ratio ever exceeds this value. Note this is done on
the fly during simulation.

• genindex

• modindex

• search

3.2 Pressure-Dependence Theory Guide

3.2.1 Introduction

Unimolecular Reactions

Unimolecular reactions are those that involve a single reactant or product molecule, the union of isomerization and
dissociation/association reactions:

A −−⇀↽−− B isomerization
A −−⇀↽−− B + C dissociation/association

Gas-phase chemical reactions occur as the result of bimolecular collisions between two reactant molecules. This
presents a problem when there is only one participating reactant molecule! The conclusion is that the above reactions
cannot be elementary as written; another step must be involved.

For a unimolecular reaction to proceed, the reactant molecule A must first be excited to an energy that exceeds the
barrier for reaction. A molecule that is sufficiently excited to react is called an activated species and often labeled with
an asterisk A*. If we replace the stable species with the activated species in the reactions above, the reactions become
elementary again:

A* −−⇀↽−− B*

A* −−⇀↽−− B + C

There are a number of ways that an activated species A* can be produced:

• Chemical activation. A* is produced as the adduct of an association reaction:

B + C −−⇀↽−− A*

• Thermal activation. A* is produced via transfer of energy from an otherwise inert species M via bimolecular
collision:

A + M −−⇀↽−− A* + M
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• Photoactivation. A* is produced as a result of absorption of a photon:

A + ℎ𝜈 −−→ A*

Once an activated molecule has been produced, multiple isomerization and dissociation reactions may become com-
petitive with one another and with collisional stabilization (thermal deactivation); these combine to form a network of
unimolecular reactions. The major pathway will depend on the relative rates of collision and reaction, which in turn is
a function of both temperature and pressure. At high pressure the collision rate will be fast, and activated molecules
will tend to be collisionally stabilized before reactive events can occur; this is called the high-pressure limit. At low
pressures the collision rate will be slow, and activated molecules will tend to isomerize and dissociate, often traversing
multiple reactive events before collisional stabilization can occur.

The onset of the pressure-dependent regime varies with both temperature and molecular size. The figure below shows
the approximate pressure at which pressure-dependence becomes important as a function of temperature and molecular
size. The parameter 𝑚 ≡ 𝑁vib + 1

2𝑁rot represents a count of the internal degrees of freedom (vibrations and hindered
rotors, respectively). The ranges of the x-axis and y-axis suggest that pressure dependence is in fact important over
a wide regime of conditions of practical interest, particularly in high-temperature processes such as pyrolysis and
combustion [Wong2003].
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Fig. 3: Plot of the switchover pressure – indicating the onset of pressure dependence – as a function of temperature
and molecular size. The value 𝑚 ≡ 𝑁vib + 1

2𝑁rot represents a count of the internal degrees of freedom. Over a wide
variety of conditions of practical interest, even very large molecules exhibit significant pressure dependence. Figure
adapted from Wong, Matheu and Green (2003).

Historical Context

The importance of bimolecular collisions in unimolecular reactions was first proposed by Lindemann in 1922
[Lindemann1922]. It was soon recognized by Hinshelwood and others that a rigorous treatment of these pro-
cesses required consideration of molecular energy levels [Hinshelwood1926]. The RRKM expression for the mi-
crocanonical rate coefficient $k(E)$ was derived in the early 1950s [Rice1927] [Kassel1928] [Marcus1951]. In
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the late 1950s master equation models of chemical systems began appearing [Siegert1949] [Bartholomay1958]
[Montroll1958] [Krieger1960] [Gans1960], including an early linear integral-differential equation formulation by
Widom [Widom1959]. Analytical solutions for a variety of simple models soon followed [Keck1965] [Troe1967]
[Troe1973], as did the first numerical approaches [Tardy1966]. Numerical methods – which are required for complex
unimolecular reaction networks – became much more attractive in the 1970s with the appearance of new algorithms,
including Gear’s method for solving stiff systems of ordinary differential equations [Gear1971] and efficient algo-
rithms for calculating the density of states [Beyer1973] [Stein1973] [Astholz1979]. In the 1990s computing power
had increased to the point where it was practical to solve them numerically by discretizing the integrals over energy.

3.2.2 The Master Equation

A full treatment of the energy states of each molecule is unfeasible for molecules larger than diatomics, as there are
simply too many states. To simplify things we apply the RRKM approximation, which leaves the state of a molecule
as a function of two quantities: the total energy 𝐸 and total angular momentum quantum number 𝐽 . Frequently we
will find that even this is too difficult, and will only keep the total energy 𝐸 as an independent variable.

Isomers, Reactants, and Products

Throughout this document we will utilize the following terminology:

• An isomer is a unimolecular configuration on the potential energy surface.

• A reactant channel is a bimolecular configuration that associates to form an isomer. Dissociation from the
isomer back to reactants is allowed.

• A product channel is a bimolecular configuration that is formed by dissociation of an isomer. Reassociation of
products to the isomer is not allowed.

The isomers are the configurations for which we must model the energy states. We designate 𝑝𝑖(𝐸, 𝐽, 𝑡) as the pop-
ulation of isomer 𝑖 having total energy 𝐸 and total angular momentum quantum number 𝐽 at time 𝑡. At long times,
statistical mechanics requires that the population of each isomer approach a Boltzmann distribution 𝑏𝑖(𝐸, 𝐽):

lim
𝑡→∞

𝑝𝑖(𝐸, 𝐽, 𝑡) ∝ 𝑏𝑖(𝐸, 𝐽)

We can simplify by eliminating the angular momentum quantum number to get

𝑝𝑖(𝐸, 𝑡) =
∑︁
𝐽

𝑝𝑖(𝐸, 𝐽, 𝑡)

Let us also denote the (time-dependent) total population of isomer 𝑖 by 𝑥𝑖(𝑡):

𝑥𝑖(𝑡) ≡
∑︁
𝐽

∫︁ ∞

0

𝑝𝑖(𝐸, 𝐽, 𝑡) 𝑑𝐸

The two molecules of a reactant or product channel are free to move apart from one another and interact independently
with other molecules in the system. Accordingly, we treat these channels as fully thermalized, leaving as the only
variable the total concentrations 𝑦𝑛A(𝑡) and 𝑦𝑛B(𝑡) of the molecules A𝑛 and B𝑛 of reactant channel 𝑛. (Since the
product channels act as infinite sinks, their populations do not need to be considered explicitly.)

Finally, we will use 𝑁isom, 𝑁reac, and 𝑁prod as the numbers of isomers, reactant channels, and product channels,
respectively, in the system.
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Collision Models

Bimolecular collisions with an inert species M are the primary means by which an isomer molecule changes its energy.
A reasonable estimate – although generally a bit of an underestimate – of the total rate of collisions 𝑘coll,𝑖(𝑇 ) for each
isomer 𝑖 comes from Lennard-Jones collision theory:

𝑘coll,𝑖(𝑇 ) =

√︃
8𝑘B𝑇

𝜋𝜇𝑖
𝜋𝑑2𝑖 Ω

(2,2)*
𝑖

Above, 𝜇𝑖 is the reduced mass, 𝑑𝑖 is the collision diameter, and 𝑘B is the Boltzmann constant. The collision diameter
is generally taken as 𝑑 ≈ 1

2 (𝜎𝑖 + 𝜎M), the arithmetic average of the Lennard-Jones 𝜎 parameter for the isomer and the
bath gas. The parameter Ω

(2,2)*
𝑖 represents a configurational integral, which is well-approximated by the expression

Ω
(2,2)*
𝑖 = 1.16145𝑇−0.14874 + 0.52487𝑒−0.7732𝑇 + 2.16178𝑒−2.437887𝑇

where 𝑇 ≡ 𝑘B𝑇/
√
𝜖𝑖𝜖M is a reduced temperature and 𝜖𝑖 is the Lennard-Jones 𝜖 parameter. Note that we have used

a geometric average for the 𝜖 parameters of the isomer and the bath gas in this expression. Assuming the total gas
concentration to be constant and that the gas is ideal, we obtain an expression for the collision frequency 𝜔𝑖(𝑇, 𝑃 ),
which makes explicit the pressure dependence:

𝜔𝑖(𝑇, 𝑃 ) = 𝑘coll,𝑖(𝑇 )
𝑃

𝑘B𝑇

Now that we have an estimate for the total rate of collisions, we need to develop a model of the effect that these
collisions have on the state of the isomer distribution. To this end, we define 𝑃 (𝐸, 𝐽,𝐸′, 𝐽 ′) as the probability of
a collision resulting in a transfer of a molecule from state (𝐸′, 𝐽 ′) to state (𝐸, 𝐽). There are two mathematical
constraints on 𝑃 (𝐸, 𝐽,𝐸′, 𝐽 ′). The first of these is normalization:∑︁

𝐽′

(2𝐽 ′ + 1)

∫︁ ∞

0

𝑃 (𝐸, 𝐽,𝐸′, 𝐽 ′) 𝑑𝐸′ = 1

The second of these is detailed balance, required in order to obtain the Boltzmann distribution at long times:

𝑃 (𝐸, 𝐽,𝐸′, 𝐽 ′)𝑏(𝐸′, 𝐽 ′) = 𝑃 (𝐸′, 𝐽 ′, 𝐸, 𝐽)𝑏(𝐸, 𝐽)

𝑃𝑖(𝐸
′, 𝐽 ′, 𝐸, 𝐽) =

𝜌𝑖(𝐸
′, 𝐽 ′)

𝜌𝑖(𝐸, 𝐽)
exp

(︂
−𝐸′ − 𝐸

𝑘B𝑇

)︂
𝑃𝑖(𝐸, 𝐽,𝐸′, 𝐽 ′) 𝐸 < 𝐸′

Rather than define models directly for 𝑃 (𝐸, 𝐽,𝐸′, 𝐽 ′), we usually eliminate the angular momentum contribution and
instead define 𝑃 (𝐸,𝐸′). This can be related to 𝑃 (𝐸, 𝐽,𝐸′, 𝐽 ′) via

𝑃 (𝐸, 𝐽,𝐸′, 𝐽 ′) = 𝑃 (𝐸,𝐸′)𝜑(𝐸, 𝐽) = 𝑃 (𝐸,𝐸′)(2𝐽 + 1)
𝜌(𝐸, 𝐽)

𝜌(𝐸)

where 𝜌(𝐸) ≡
∑︀

𝐽(2𝐽 + 1)𝜌(𝐸, 𝐽).

There are a variety of models used for 𝑃 (𝐸,𝐸′). By far the most common is the single exponential down model

𝑃 (𝐸,𝐸′) = 𝐶(𝐸′) exp

(︂
−𝐸′ − 𝐸

𝛼

)︂
𝐸 < 𝐸′

where 𝐶(𝐸′) is determined from the normalization constraint. Note that this function has been defined for the deacti-
vating direction (𝐸 < 𝐸′) only, as the activating direction (𝐸 > 𝐸′) is then set from detailed balance. The parameter
𝛼 corresponds to the average energy transferred in a deactivating collision ⟨∆𝐸d⟩, which itself is a weak function of
temperature.

Other models for 𝑃 (𝐸, 𝐽,𝐸′, 𝐽 ′) include the Gaussian down

𝑃 (𝐸,𝐸′) = 𝐶(𝐸′) exp

[︂
− (𝐸′ − 𝐸)2

𝛼2

]︂
𝐸 < 𝐸′
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and the double exponential down

𝑃 (𝐸,𝐸′) = 𝐶(𝐸′)

[︂
(1 − 𝑓) exp

(︂
−𝐸′ − 𝐸

𝛼1

)︂
+ 𝑓 exp

(︂
−𝐸′ − 𝐸

𝛼2

)︂]︂
𝐸 < 𝐸′

The parameters for these simple models generally contain so much uncertainty that more complex functional forms
are generally not used.

Reaction Models

Chemical reaction events cause a change in molecular configuration at constant energy. The rate coefficient for this
process must be determined as a function of energy rather than the usual temperature. Such a quantity is called a
microcanonical rate coefficient and written as 𝑘(𝐸, 𝐽). In the master equation we will differentiate between micro-
canonical rate coefficients for isomerization, dissociation, and association by using different letters: 𝑘𝑖𝑗(𝐸, 𝐽) for
isomerization, 𝑔𝑛𝑗(𝐸, 𝐽) for dissociation, and 𝑓𝑖𝑚(𝐸, 𝐽) for association. (By convention, we use indices 𝑖 and 𝑗 to
refer to unimolecular isomers, 𝑚 and 𝑛 to refer to bimolecular reactant and product channels, and, later, 𝑟 and 𝑠 to
refer to energy grains.)

As with collision models, the values of the microcanonical rate coefficients are constrained by detailed balance so that
the proper equilibrium is obtained. The detailed balance expressions have the form

𝑘𝑖𝑗(𝐸, 𝐽)𝜌𝑗(𝐸, 𝐽) = 𝑘𝑗𝑖(𝐸, 𝐽)𝜌𝑖(𝐸, 𝐽)

for isomerization and

𝑓𝑖𝑛(𝐸, 𝐽)𝜌𝑛(𝐸, 𝐽) = 𝑔𝑛𝑖(𝐸, 𝐽)𝜌𝑖(𝐸, 𝐽)

for association/dissociation, where 𝜌𝑖(𝐸, 𝐽) is the density of states of the appropriate unimolecular or bimolecular
configuration.

An alternative formulation incorporates the macroscopic equilibrium coefficient 𝐾eq(𝑇 ) and equilibrium distributions
𝑏𝑖(𝐸, 𝐽, 𝑇 ) at each temperature:

𝑘𝑖𝑗(𝐸, 𝐽)𝑏𝑗(𝐸, 𝐽, 𝑇 ) = 𝐾eq(𝑇 )𝑘𝑗𝑖(𝐸, 𝐽)𝑏𝑖(𝐸, 𝐽, 𝑇 )

for isomerization and

𝑓𝑖𝑛(𝐸, 𝐽)𝑏𝑛(𝐸, 𝐽, 𝑇 ) = 𝐾eq(𝑇 )𝑔𝑛𝑖(𝐸, 𝐽)𝑏𝑖(𝐸, 𝐽, 𝑇 )

for association/dissociation. Note that these two formulations are equivalent if the molecular degrees of freedom are
consistent with the macroscopic thermodynamic parameters. There are multiple reasons to use the latter formulation:

• Only the density of states of the unimolecular isomers need be computed. This is a result of the assumption of
thermalized bimolecular channels, which means that we only need to compute the product 𝑓𝑖𝑛𝑏𝑛, and not the
individual values of 𝑓𝑖𝑛 and 𝑏𝑛.

• Only the reactive rovibrational modes need be included in the density of states. Missing modes will not affect
the observed equilibrium because we are imposing the macroscopic equilibrium via 𝐾eq(𝑇 ).

• Constants of proportionality in the density of states become unimportant, as they cancel when taking the ratio
𝜌(𝐸, 𝐽)/𝑄(𝛽). For example, if the external rotational constants are unknown then we will include an active
K-rotor in the density of states; this property means that the rotational constant of this active K-rotor cancels
and is therefore arbitrary.

There are two common ways of determining values for 𝑘(𝐸, 𝐽): the inverse Laplace transform method and RRKM
theory. The latter requires detailed information about the transition state, while the former only requires the high-
pressure limit rate coefficient 𝑘∞(𝑇 ).
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Inverse Laplace Transform

The microcanonical rate coefficient 𝑘(𝐸) is related to the canonical high-pressure limit rate coefficient 𝑘∞(𝑇 ) via a
Boltzmann averaging

𝑘∞(𝑇 ) =

∑︀
𝐽

∫︀∞
0

𝑘(𝐸)𝜌(𝐸, 𝐽)𝑒−𝛽𝐸 𝑑𝐸∑︀
𝐽

∫︀∞
0

𝜌(𝐸, 𝐽)𝑒−𝛽𝐸 𝑑𝐸

where 𝜌(𝐸, 𝐽) is the rovibrational density of states for the reactants and 𝛽 ≡ (𝑘B𝑇 )−1. Neglecting the angular
momentum dependence, the above can be written in terms of Laplace transforms as

𝑘∞(𝑇 ) =
ℒ [𝑘(𝐸)𝜌(𝐸)]

ℒ [𝜌(𝐸)]
=

ℒ [𝑘(𝐸)𝜌(𝐸)]

𝑄(𝛽)

where 𝑄(𝛽) is the rovibrational partition function for the reactants. The above implies that 𝐸 and 𝛽 are the transform
variables. We can take an inverse Laplace transform in order to solve for 𝑘(𝐸):

𝑘(𝐸) =
ℒ−1 [𝑘∞(𝛽)𝑄(𝛽)]

𝜌(𝐸)

Hidden in the above manipulation is the assumption that 𝑘∞(𝛽) is valid over a temperature range from zero to positive
infinity.

The most common form of 𝑘∞(𝑇 ) is the modified Arrhenius expression

𝑘(𝑇 ) = 𝐴𝑇𝑛 exp

(︂
− 𝐸a

𝑘B𝑇

)︂
where 𝐴, 𝑛, and 𝐸a are the Arrhenius preexpoential, temperature exponent, and activation energy, respectively. For
𝑛 = 0 and 𝐸a > 0 the inverse Laplace transform can be easily evaluated to give

𝑘(𝐸) = 𝐴
𝜌(𝐸 − 𝐸a)

𝜌(𝐸)
𝐸 > 𝐸a

We can also determine an expression when 𝑛 > 0 and 𝐸a > 0 using a convolution integral:

𝑘(𝐸) = 𝐴
𝜑(𝐸 − 𝐸a)

𝜌(𝐸)
𝐸 > 𝐸a

𝜑(𝐸) = ℒ−1 [𝑇𝑛𝑄(𝛽)] =
1

𝑘𝑛BΓ(𝑛)

∫︁ 𝐸

0

(𝐸 − 𝑥)𝑛−1𝜌(𝑥) 𝑑𝑥

Finally, for cases where 𝑛 < 0 and/or 𝐸a < 0 we obtain a rough estimate by lumping these contributions into
the preexponential at the temperature we are working at. By redoing this at each temperature being considered we
minimize the error introduced, at the expense of not being able to identify a single 𝑘(𝐸).

RRKM Theory

RRKM theory – named for Rice, Ramsperger, Kassel, and Marcus – is a microcanonical transition state theory. Like
canonical transition state theory, detailed information about the transition state and reactants are required, e.g. from
a quantum chemistry calculation. If such information is available, then the microcanonical rate coefficient can be
evaluated via the equation

𝑘(𝐸, 𝐽) =
𝑁‡(𝐸, 𝐽)

ℎ𝜌(𝐸, 𝐽)
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where 𝑁‡(𝐸, 𝐽) is the sum of states of the transition state, 𝜌(𝐸, 𝐽) is the density of states of the reactant, and ℎ is the
Planck constant. Both the transition state and the reactants have been referenced to the same zero of energy. The sum
of states is related to the density of states via

𝑁(𝐸, 𝐽) =

∫︁ 𝐸

0

𝜌(𝑥, 𝐽) 𝑑𝑥

The angular momentum quantum number dependence can be removed via

𝑘(𝐸) =
∑︁
𝐽

(2𝐽 + 1)𝑘(𝐸, 𝐽)

The Full Master Equation

The governing equation for the population distributions 𝑝𝑖(𝐸, 𝐽, 𝑡) of each isomer 𝑖 and the reactant concentrations
𝑦𝑛A(𝑡) and 𝑦𝑛B(𝑡) combines the collision and reaction models to give a linear integro-differential equation:

𝑑

𝑑𝑡
𝑝𝑖(𝐸, 𝐽, 𝑡) = 𝜔𝑖(𝑇, 𝑃 )

∑︁
𝐽′

∫︁ ∞

0

𝑃𝑖(𝐸, 𝐽,𝐸′, 𝐽 ′)𝑝𝑖(𝐸
′, 𝐽 ′, 𝑡) 𝑑𝐸′ − 𝜔𝑖(𝑇, 𝑃 )𝑝𝑖(𝐸, 𝐽, 𝑡)

+

𝑁isom∑︁
𝑗 ̸=𝑖

𝑘𝑖𝑗(𝐸, 𝐽)𝑝𝑗(𝐸, 𝐽, 𝑡) −
𝑁isom∑︁
𝑗 ̸=𝑖

𝑘𝑗𝑖(𝐸, 𝐽)𝑝𝑖(𝐸, 𝐽, 𝑡)

+

𝑁reac∑︁
𝑛=1

𝑦𝑛A(𝑡)𝑦𝑛B(𝑡)𝑓𝑖𝑛(𝐸, 𝐽)𝑏𝑛(𝐸, 𝐽, 𝑡) −
𝑁reac+𝑁prod∑︁

𝑛=1

𝑔𝑛𝑖(𝐸, 𝐽)𝑝𝑖(𝐸, 𝐽, 𝑡)

𝑑

𝑑𝑡
𝑦𝑛A(𝑡) =

𝑑

𝑑𝑡
𝑦𝑛B(𝑡) =

𝑁isom∑︁
𝑖=1

∫︁ ∞

0

𝑔𝑛𝑖(𝐸, 𝐽)𝑝𝑖(𝐸, 𝐽, 𝑡) 𝑑𝐸

−
𝑁isom∑︁
𝑖=1

𝑦𝑛A(𝑡)𝑦𝑛B(𝑡)

∫︁ ∞

0

𝑓𝑖𝑛(𝐸, 𝐽)𝑏𝑛(𝐸, 𝐽, 𝑡) 𝑑𝐸

A summary of the variables is given below:

Variable Meaning
𝑝𝑖(𝐸, 𝐽, 𝑡) Population distribution of isomer 𝑖
𝑦𝑛A(𝑡) Total population of species A𝑛 in reactant channel 𝑛
𝜔𝑖(𝑇, 𝑃 ) Collision frequency of isomer 𝑖
𝑃𝑖(𝐸, 𝐽,𝐸′, 𝐽 ′) Collisional transfer probability from (𝐸′, 𝐽 ′) to (𝐸, 𝐽) for isomer 𝑖
𝑘𝑖𝑗(𝐸, 𝐽) Microcanonical rate coefficient for isomerization from isomer 𝑗 to isomer 𝑖
𝑓𝑖𝑚(𝐸, 𝐽) Microcanonical rate coefficient for association from reactant channel 𝑚 to isomer 𝑖
𝑔𝑛𝑗(𝐸, 𝐽) Microcanonical rate coefficient for dissociation from isomer 𝑗 to reactant or product channel 𝑛
𝑏𝑛(𝐸, 𝐽, 𝑡) Boltzmann distribution for reactant channel 𝑛
𝑁isom Total number of isomers
𝑁reac Total number of reactant channels
𝑁prod Total number of product channels

The above is called the two-dimensional master equation because it contains two dimensions: total energy 𝐸 and
total angular momentum quantum number 𝐽 . In the first equation (for isomers), the first pair of terms correspond
to collision, the second pair to isomerization, and the final pair to association/dissociation. Similarly, in the second
equation above (for reactant channels), the pair of terms refer to dissociation/association.
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We can also simplify the above to the one-dimensional form, which only has 𝐸 as a dimension:

𝑑

𝑑𝑡
𝑝𝑖(𝐸, 𝑡) = 𝜔𝑖(𝑇, 𝑃 )

∫︁ ∞

0

𝑃𝑖(𝐸,𝐸′)𝑝𝑖(𝐸
′, 𝑡) 𝑑𝐸′ − 𝜔𝑖(𝑇, 𝑃 )𝑝𝑖(𝐸, 𝑡)

+

𝑁isom∑︁
𝑗 ̸=𝑖

𝑘𝑖𝑗(𝐸)𝑝𝑗(𝐸, 𝑡) −
𝑁isom∑︁
𝑗 ̸=𝑖

𝑘𝑗𝑖(𝐸)𝑝𝑖(𝐸, 𝑡)

+

𝑁reac∑︁
𝑛=1

𝑦𝑛A(𝑡)𝑦𝑛B(𝑡)𝑓𝑖𝑛(𝐸)𝑏𝑛(𝐸, 𝑡) −
𝑁reac+𝑁prod∑︁

𝑛=1

𝑔𝑛𝑖(𝐸)𝑝𝑖(𝐸, 𝑡)

𝑑

𝑑𝑡
𝑦𝑛A(𝑡) =

𝑑

𝑑𝑡
𝑦𝑛B(𝑡) =

𝑁isom∑︁
𝑖=1

∫︁ ∞

0

𝑔𝑛𝑖(𝐸)𝑝𝑖(𝐸, 𝑡) 𝑑𝐸

−
𝑁isom∑︁
𝑖=1

𝑦𝑛A(𝑡)𝑦𝑛B(𝑡)

∫︁ ∞

0

𝑓𝑖𝑛(𝐸)𝑏𝑛(𝐸, 𝑡) 𝑑𝐸

The equations as given are nonlinear, both due to the presence of the bimolecular reactants and because both 𝜔𝑖

and 𝑃𝑖(𝐸,𝐸′) depend on the composition, which is changing with time. The rate coefficients can be derived from
considering the pseudo-first-order situation where 𝑦𝑛A(𝑡) ≪ 𝑦𝑛B(𝑡), and all 𝑦(𝑡) are negligible compared to the bath
gas M. From these assumptions the changes in 𝜔𝑖, 𝑃𝑖(𝐸,𝐸′), and all 𝑦𝑛B can be neglected, which yields a linear
equation system.

The Energy-Grained Master Equation

Except for the simplest of unimolecular reaction networks, both the one-dimensional and two-dimensional master
equation must be solved numerically. To do this we must discretize and truncate the energy domain into a finite
number of discrete bins called grains. This converts the linear integro-differential equation into a system of first-order
ordinary differential equations:

𝑑

𝑑𝑡

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

p1

p2
...

𝑦1A
𝑦2A

...

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

M1 K12 . . . F11b1𝑦1B F12b2𝑦2B . . .
K21 M2 . . . F21b1𝑦1B F22b2𝑦2B . . .

...
...

. . .
...

...
. . .

(g11)𝑇 (g12)𝑇 . . . ℎ1 0 . . .
(g21)𝑇 (g22)𝑇 . . . 0 ℎ2 . . .

...
...

. . .
...

...
. . .

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

p1

p2
...

𝑦1A
𝑦2A

...

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
The diagonal matrices K𝑖𝑗 and F𝑖𝑛 and the vector g𝑛𝑖 contain the microcanonical rate coefficients for isomerization,
association, and dissociation, respectively:

(K𝑖𝑗)𝑟𝑠 =

{︃
1

Δ𝐸𝑟

∫︀ 𝐸𝑟+Δ𝐸𝑟/2

𝐸𝑟−Δ𝐸𝑟/2
𝑘𝑖𝑗(𝐸) 𝑑𝐸 𝑟 = 𝑠

0 𝑟 ̸= 𝑠

(F𝑖𝑛)𝑟𝑠 =

{︃
1

Δ𝐸𝑟

∫︀ 𝐸𝑟+Δ𝐸𝑟/2

𝐸𝑟−Δ𝐸𝑟/2
𝑓𝑖𝑛(𝐸) 𝑑𝐸 𝑟 = 𝑠

0 𝑟 ̸= 𝑠

(g𝑛𝑖)𝑟 =
1

∆𝐸𝑟

∫︁ 𝐸𝑟+Δ𝐸𝑟/2

𝐸𝑟−Δ𝐸𝑟/2

𝑔𝑛𝑖(𝐸) 𝑑𝐸

The matrices M𝑖 represent the collisional transfer probabilities minus the rates of reactive loss to other isomers and to
reactants and products:

(M𝑖)𝑟𝑠 =

{︃
𝜔𝑖 [𝑃𝑖(𝐸𝑟, 𝐸𝑟) − 1] −

∑︀𝑁isom

𝑗 ̸=𝑖 𝑘𝑖𝑗(𝐸𝑟) −
∑︀𝑁reac+𝑁prod

𝑛=1 𝑔𝑛𝑖(𝐸𝑟) 𝑟 = 𝑠

𝜔𝑖𝑃𝑖(𝐸𝑟, 𝐸𝑠) 𝑟 ̸= 𝑠
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The scalars ℎ𝑛 are simply the total rate coefficient for loss of reactant channel 𝑛 due to chemical reactions:

ℎ𝑛 = −
𝑁isom∑︁
𝑖=1

𝑁grains∑︁
𝑟=1

𝑦𝑛B𝑓𝑖𝑛(𝐸𝑟)𝑏𝑛(𝐸𝑟)

Further Reading

The interested reader is referred to any of a variety of other sources for alternative presentations, of which an illustrative
sampling is given here [Gilbert1990] [Baer1996] [Holbrook1996] [Forst2003] [Pilling2003].

3.2.3 Methods for Determining Phenomenological Rate Coefficients

Solving the energy-grained master equation is often prohibitively expensive for chemical reaction mechanisms of even
modest size. Instead, we seek to reduce the master equation matrix down to a set of phenomenological rate coefficients
𝑘(𝑇, 𝑃 ). In particular, we need to replace the isomer population distributions 𝑝𝑖(𝐸, 𝑡) with the corresponding time-
dependent total isomer populations 𝑥𝑖(𝑡).

Three methods of varying rigor, computational cost, and robustness will be discussed in the upcoming sections. The
modified strong collision (MSC) method is the fastest and most robust, but utilizes the least realistic approximations.
The reservoir state (RS) method uses better approximations, which leads to increased accuracy, but requires more
computational effort. Finally, the chemically-significant eigenvalues (CSE) method is the most theoretically sound,
but is very computationally expensive and not very robust. Your choice of method will depend on the particular balance
between expense, robustness, and rigor that is required for your intended application.

A Common Formalism

All of the methods discussed here can be expressed in terms of a common formalism. Each method seeks to express the
population distribution vector 𝑝𝑖(𝐸, 𝑡) for each unimolecular isomer 𝑖 as a linear combination of the total populations
𝑥𝑗(𝑡) and 𝑦𝑚A(𝑡)𝑦𝑚B of unimolecular isomers A𝑗 and reactant channels A𝑚 + B𝑚:

𝑝𝑖(𝐸, 𝑡) =

𝑁isom∑︁
𝑗=1

𝑥𝑗(𝑡)𝑢𝑖𝑗(𝐸) +

𝑁reac∑︁
𝑚=1

𝑦𝑚A(𝑡)𝑦𝑚B𝑣𝑖𝑚(𝐸)

The function 𝑢𝑖𝑗(𝐸) represents the portion of the population distribution of unimolecular isomer 𝑖 at energy 𝐸 that
tracks the population of isomer 𝑗. In the modified strong collision and reservoir state methods, this is because the
energy levels of isomer 𝑖 are in pseudo-steady-state relationships with isomer 𝑗. The interpretation is a bit different
for the chemically-significant eigenvalues method, but the form of the equations is the same. Similarly, the function
𝑣𝑖𝑚(𝐸) represents the population distribution of unimolecular isomer 𝑖 at energy 𝐸 that tracks the population of
reactant channel 𝑚. Both functions 𝑢𝑖𝑗(𝐸) and 𝑣𝑖𝑚(𝐸) are functions of energy only, and not of time.

After discretizing the energy domain, the above becomes

p𝑖(𝑡) =

𝑁isom∑︁
𝑗=1

𝑥𝑗(𝑡)u𝑖𝑗 +

𝑁reac∑︁
𝑚=1

𝑦𝑚A(𝑡)𝑦𝑚Bv𝑖𝑚

The phenomenological rate coefficients can be constructed from the energy-grained master equation matrix and the
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vectors u𝑖𝑗 and v𝑖𝑚:

𝑘𝑖𝑗(𝑇, 𝑃 ) =

𝑁grains∑︁
𝑠=1

(M𝑖u𝑖𝑗)𝑠 +

𝑁isom∑︁
ℓ ̸=𝑖

𝑁grains∑︁
𝑠=1

(K𝑖ℓuℓ𝑗)𝑠

𝑘𝑖𝑚(𝑇, 𝑃 ) =

𝑁grains∑︁
𝑠=1

(M𝑖v𝑖𝑚)𝑠 +

𝑁isom∑︁
ℓ ̸=𝑖

𝑁grains∑︁
𝑠=1

(K𝑖ℓvℓ𝑚)𝑠 +

𝑁grains∑︁
𝑠=1

(F𝑖𝑚b𝑚)𝑠

𝑘𝑛𝑗(𝑇, 𝑃 ) =

𝑁isom∑︁
ℓ=1

g𝑛ℓ · uℓ𝑗

𝑘𝑛𝑚(𝑇, 𝑃 ) =

𝑁isom∑︁
ℓ=1

g𝑛ℓ · vℓ𝑚

Above, the indices 𝑖 and 𝑗 represent unimolecular isomers of the initial adduct, 𝑚 represents bimolecular reactants, 𝑛
represents bimolecular reactants and products, and 𝑠 represents an energy grain. Thus, the rate coefficients above are
for isomerization, association, dissociation, and bimolecular reactions, respectively.

The output from each of the three methods is a set of phenomenological rate coefficients 𝑘(𝑇, 𝑃 ) and the vectors u𝑖𝑗

and v𝑖𝑚 which can be used to construct the approximate population distribution predicted by that method.

The Modified Strong Collision Method

The Reservoir State Method

The Chemically-Signficant Eigenvalues Method

• genindex

• modindex

• search
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