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Other Parametric Distributions

Chapter 5 Objectives

• Describe the properties and the importance of the following

parametric distributions which cannot be transformed into

a location-scale distribution:

Gamma, Generalized Gamma, Extended Generalized Gamma,

Generalized F, Inverse Gaussian, Birnbaum–Saunders,

Gompertz–Makeham.

• Introduce the concept of a threshold-parameter distribution.

• Illustrate how other statistical models can be determined by

applying basic ideas of probability theory to physical prop-

erties of a failure process, system, or population of units.

5 - 2



Examples of Gamma Distributions
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Gamma Distribution

• T follows a gamma distribution, GAM(θ, κ), if

F(t; θ, κ) = ΓI

(
t

θ
;κ

)

f(t; θ, κ) =
1

Γ(κ) θ

(
t

θ

)κ−1
exp

(
− t
θ

)
, t > 0

θ > 0 is a scale parameter and κ > 0 is a shape parameter.

ΓI(v;κ) is the incomplete gamma function defined by

ΓI(v;κ) =

∫ v
0 x

κ−1 exp(−x) dx
Γ(κ)

, v ≥ 0.

• Special case: when κ = 1, GAM(θ, κ) ≡ EXP(θ).

• The hazard function h(t; θ, κ) is decreasing when κ < 1;

increasing when κ > 1; and approaches a constant level

late in life i.e.,

lim
t→∞h(t; θ, κ) = 1/θ.
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Moments and Quantiles of the Gamma Distribution

• Moments: For integer m > 0

E(Tm) =
θmΓ(m+ κ)

Γ(κ)
.

Then

E(T) = θκ

Var(T) = θ2κ

• Quantiles: the p quantile of the distribution is given by

tp = θΓ−1
I (p;κ).

5 - 5



Reparameterization of the Gamma Distribution

For accelerated time regression modeling, the cdf and pdf

can be conveniently reparameterized as follows:

F(t; θ, κ) = Φlg [log(t) − µ;κ]

f(t; θ, κ) =
1

t
φlg [log(t) − µ;κ]

where µ = log(θ), Φlg and φlg are the cdf and pdf for the

standardized loggamma variable Z = log(T/θ) = log(T) −
µ,

Φlg(z;κ) = ΓI[exp(z);κ]

φlg(z;κ) =
1

Γ(κ)
exp [κz − exp(z)] .
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Generalized Gamma Distribution

• T has a generalized gamma distribution if

F(t; θ, β, κ) = ΓI

[(
t

θ

)β
;κ

]

f(t; θ, β, κ) =
β

Γ(κ)θ

(
t

θ

)κβ−1
exp

[
−

(
t

θ

)β]
, t > 0

where θ > 0 is a scale parameter, and κ > 0, β > 0 are shape
parameters.

• If β = 1 the distribution becomes the GAM(θ, κ) distribu-
tion.

• If κ = 1 the distribution becomes the WEIB(µ, σ), where
µ = log(θ) and σ = 1/β.

• If β = 1 and κ = 1 the distribution becomes the EXP(θ)
distribution.
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Generalized Gamma Distribution-Continued

• A more convenient parameterization is given by
µ = log(θ) + (σ/λ) log(λ−2), λ = 1/

√
κ, and σ = 1/(β

√
κ),

in which case, we write T ∼ GENG(µ, σ, λ) and

F(t;µ, σ, λ) = Φlg

[
λω+ log(λ−2);λ−2

]
f(t;µ, σ, λ) =

λ

σt
φlg

[
λω+ log(λ−2);λ−2

]
where ω = [log(t) − µ] /σ, −∞ < µ <∞, σ > 0, and λ > 0.

• If T ∼ GENG(µ, σ, λ) and c > 0 then cT ∼ GENG[µ −
log(c), λ, σ].

• As λ→ 0, T ∼̇ LOGNOR(µ, σ).

• Moments, quantiles, and other related distributions will fol-
low as special cases of the more general extended general-
ized gamma distribution.

5 - 8



Extended Generalized Gamma Distribution

• T has an extended generalized gamma distribution,

EGENG(µ, σ, λ), if

F(t;µ, σ, λ) =




Φlg

[
λω+ log(λ−2);λ−2

]
if λ > 0

Φnor(ω) if λ = 0

1 − Φlg

[
λω+ log(λ−2);λ−2

]
if λ < 0

f(t;µ, σ, λ) =




|λ|
σt φlg

[
λω+ log(λ−2);λ−2

]
if λ �= 0

1
σtφnor(ω) if λ = 0

where ω = [log(t) − µ] /σ, −∞ < µ < ∞, exp(µ) is a scale

parameter, −∞ < λ <∞ and σ > 0 are shape parameters.
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Comments on the EGENG Distribution

• The distribution at λ = 0 is defined by continuity (i.e., the

limiting distribution when λ → 0).

• If T ∼ EGENG(µ, σ, λ) and c > 0 then

cT ∼ EGENG[µ − log(c), λ, σ]. Thus, exp(µ) is a location-

parameter for T .

• When T ∼ EGENG(µ, λ, σ) then the distribution of

W = [log(T) − µ]/σ depends only on λ.

• Note that for each fixed λ, log(T) is location-scale (µ, σ)

with a standardized location-scale distribution equal to the

distribution of W .
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Extended Generalized Gamma Distribution–Continued

• Moments: For integer m and λ �= 0

E(Tm) =




exp(mµ)
(
λ2

)mσ/λ
Γ
[
λ−1(mσ+λ−1)

]
Γ(λ−2)

if mλσ+ 1 > 0

∞ if mλσ+ 1 ≤ 0.

When λ = 0, the moments are

E(Tm) = exp
[
mµ+ (1/2)(mσ)2

]
.

• Thus when the mean and the variance are finite and λ �= 0,

E(T) =
θΓ

[
λ−1(σ+ λ−1)

]
Γ(λ−2)

Var(T) = θ2


Γ

[
λ−1(2σ+ λ−1)

]
Γ(λ−2)

−
Γ2

[
λ−1(σ+ λ−1)

]
Γ2(λ−2)


 .

• When λ = 0, E(T) = exp[µ+ (1/2)σ2] and
Var(T) = exp(2µ+ σ2) × [exp(σ2) − 1].
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Quantiles of the EGENG Distribution

The EGENG quantiles are

log(tp) = µ+ σ × ω(p;λ)

where ω(p;λ) is the p quantile of the distribution of W ,

ω(p;λ) =




λ−1 log
[
λ2Γ−1

I (p;λ−2)
]

if λ > 0

Φ−1
nor(p) if λ = 0

λ−1 log
[
λ2Γ−1

I (1 − p;λ−2)
]

if λ < 0
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Distributions Related to EGENG

Special Cases:

• If λ > 0 then EGENG(µ, σ, λ) = GENG(µ, σ, λ).

• if λ = 1, T ∼ WEIB(µ, σ).

• if λ = 0, T ∼ LOGNOR(µ, σ).

• if λ = −1, 1/T ∼ WEIB(−µ, σ), [i.e., T has a reciprocal
Weibull (or Fréchet distribution of maxima)].

• When λ = σ, T ∼ GAM(θ, κ), where θ = λ2 exp(µ)
and κ = λ−2.

• When λ = σ = 1, T ∼ EXP(θ), where θ = λ2 exp(µ).
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Comment on EGENG(µ, σ, λ) Parameterization

• The (µ, σ, λ) parameterization is due to Farewell and Pren-

tice (1977). Observe that

F [exp(µ);µ, σ, λ] =




ΓI(λ
−2;λ−2) if λ > 0

.5 if λ = 0

1 − ΓI(λ
−2;λ−2) if λ < 0

This value of F [exp(µ);µ, σ, λ], as a function of λ, is always

in the interval [.5,1). Thus exp(µ) equals a quantile tp with

p ≥ .5.

• The parameterization is stable when there is not much cen-

soring. It tends to be unstable when there is heavy censor-

ing.

• When there is heavy censoring a different parameterization

is needed for ML estimation.
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EGENG Stable Parameterization

• Parameterization for Numerical Stability: with p1 < p2,

an stable parameterization can be obtained using two quan-

tiles (tp1, tp2), and λ, i.e.,

log(tp1) = µ+ σω(p1, λ)

log(tp2) = µ+ σω(p2, λ)

and solving for µ and σ,

µ =
ω(p2, λ) × log(tp1) − ω(p1, λ) × log(tp2)

ω(p2, λ) − ω(p1, λ)

σ =
log(tp2) − log(tp1)

ω(p2, λ) − ω(p1, λ)
.
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Generalized F Distribution

T has a generalized F distribution with parameters (µ, σ, κ, r),

say GENF(µ, σ, κ, r), if

FT (t;µ, σ, κ, r) = Φlf

[
log(t) − µ

σ
;κ, r

]

fT (t;µ, σ, κ, r) =
1

σt
φlf

[
log(t) − µ

σ
;κ, r

]
, t > 0

where

φlf(z;κ, r) =
Γ(κ+ r)

Γ(κ) Γ(r)

(κ/r)κ exp (κz)

[1 + (κ/r) exp(z)]κ+r

is the pdf of the central log F distribution with 2κ and 2r

degrees of freedom and Φlf is the corresponding cdf.

It follows that φlf(z;κ, r) and Φlf(z;κ, r) are the pdf and cdf

of Z = [log(T) − µ]/σ.

exp(µ) is a scale parameter and σ > 0, κ > 0, r > 0 are shape

parameters.
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Generalized F Distribution-Continued

• Moments: For integer m ≥ 0,

E(Tm) =

{
exp(mµ)Γ(κ+mσ)Γ(r−mσ)

Γ(κ)Γ(r)

(
r
κ

)mσ
, if r > mσ

∞ otherwise.

Then

E(T) =
Γ(κ+ σ)Γ(r − σ)

Γ(κ)Γ(r)
exp(µ)

(r
κ

)σ
Var(T) =

{
Γ(κ+ 2σ)Γ(r − 2σ)

Γ(κ)Γ(r)
− Γ2(κ+ σ)Γ2(r − σ)

Γ2(κ)Γ2(r)

}
exp(2µ)

(r
κ

)2σ

where r > σ for the mean and r > 2σ for the variance.

• Quantiles: The p quantile of the distribution is

tp = exp(µ)
[
F(p,2κ,2r)

]σ
where F(p,2κ,2r) is the p quantile of an F distribution with
(2κ,2r) degrees of freedom.

The expression for tp follows directly from the fact that
T = exp(µ)V σ where V has an F distribution with (2κ,2r)
degrees of freedom.
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Generalized F Distribution–Special Cases

• 1/T ∼ GENF(−µ, σ, r, κ).
• When (µ, σ) = (0,1) then T follows an F distribution with

2κ numerator and 2r denominator degrees of freedom.

• When (κ, r) = (1,1), GENF(µ, σ, κ, r) ≡ LOGLOGIS(µ, σ).

• When r → ∞, T ∼̇ GENG[exp(µ)/κσ,1/σ, κ].

• When (κ, r) = (1,∞), T ∼ WEIB(µ, σ).

• When κ = 1, T follows a Burr type XII distribution with cdf

F(t;µ, σ, r) = 1 − 1[
1 + 1

r

(
t
θ

)1
σ

]r , t > 0

where r > 0, σ > 0 are shape parameters, and θ = exp(µ) is

a scale parameter.

• When κ→ ∞, and r → ∞, T ∼̇ LOGNOR
(
µ, σ

√
(κ+ r)/κr

)
.
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Inverse Gaussian Distribution

• A common parameterization for the cdf of this distribution

is (see Chhikara and Folks 1989) is

Pr(T ≤ t; θ, λ) = Φnor

[
(t− θ)

√
λ

θ
√
t

]
+ exp

(
2λ

θ

)
Φnor

[
− (t+ θ)

√
λ

θ
√
t

]
,

t > 0; θ > 0 and λ > 0 are parameters in the same units of

T .

• Wald (1947) derived this distribution as a limiting form for

the distribution of sample size in sequential probability ratio

test.
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Inverse Gaussian Distribution–Origin

• The inverse Gaussian distribution was originally given by
Schrödinger (1915) as the distribution of the first passage
time in Brownian motion. The parameters θ and λ relate
to the Brownian motion parameters as follows:

• Consider a Brownian process

B(t) = ct+ dW (t), t > 0

where c, d are constants and W (t) is a Wiener process. Let
T be the first passage time of a specified level b0, say

T = inf {t;B(t) ≥ b0} .
Then

Pr (T ≤ t) = Φnor

[
(t− θ)

√
λ

θ
√
t

]
+exp

(
2λ

θ

)
Φnor

[
− (t+ θ)

√
λ

θ
√
t

]

where θ = b0/c and
√
λ = b0/d. Tweedie (1945) gives more

details on this approach.

5 - 20



Examples of Inverse Gaussian Distributions
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Inverse Gaussian Distribution–Continued

• The reparameterization (θ, β = λ/θ) separates the location

and scale parameters. We say that T ∼ IGAU(θ, β) if

FT (t; θ, β) = Φligau [log(t/θ); β]

fT (t; θ, β) =
1

t
φligau [log(t/θ); β] , t > 0

where θ > 0 is a scale parameter, β > 0 is at unit less shape

parameter, and

Φligau(z; β) = Φnor

{√
β

[
exp(z) − 1

exp(z/2)

]}
+

exp (2β)Φnor

{
−

√
β

[
exp(z) + 1

exp(z/2)

]}

φligau(z; β) =

√
β

exp(z/2)
φnor

{√
β

[
exp(z) − 1

exp(z/2)

]}
, −∞ < z <∞.

• The hazard function has the following behavior: hT (0; θ, β) =

0, hT (t; θ, β) is unimodal, and limt→∞ hT (t; θ, β) = β/(2θ).
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Inverse Gaussian Distribution-Continued

• Moments: For integer m > 0

E(Tm) = θm
m−1∑
i=0

(m− 1 + i)!

i! (m− 1 − i)!

(
1

2β

)i
.

From this it follows that

E(T) = θ and Var(T) = θ2/β.

• Quantiles: the p quantile of the IGAU distribution is

tp = θΦ−1
ligau(p; β).

There is no simple closed form equation for Φ−1
ligau(p; β), so it

must be computed by inverting p = Φligau(z; β) numerically.
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Inverse Gaussian Distribution–Continued

Special cases:

• If T ∼ IGAU(θ, β) and c > 0 then cT ∼ IGAU(cθ, β).

• For large values of β, the distribution is very similar to a

NOR(θ, θ/
√
β).
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Examples of Birnbaum–Saunders Distributions

0.0 1.0 2.0 3.0

0

.5

1

Cumulative Distribution Function

t

F(t)

0.0 1.0 2.0 3.0

0.0

0.2

0.4

0.6

0.8

Probability Density Function

t

f(t)

0.0 1.0 2.0 3.0

0.0

0.5

1.0

1.5

2.0

t

h(t)

Hazard Function

                      β           θ 

0.5        1
0.6        1
1.0        1

5 - 25



Birnbaum–Saunders Distribution

• For a variable T with Birnbaum–Saunders distribution, BISA(θ, β),

FT(t;β, θ) = Φnor (ζ)

fT(t;β, θ) =

√
t
θ
+

√
θ
t

2βt
φnor (ζ)

where t ≥ 0, θ > 0 is a scale parameter, β > 0 is a shape parameter,
and

ζ =
1

β

(√
t

θ
−
√
θ

t

)

• Moments: For an integer m > 0,

E(Tm) = θm
m∑
i=0

β2(m−i) [2(m− i)]![
23(m−i)] (m− i)!

m−i∑
k=0

(
2m
2k

)(
m− k
i

)
.

Then

E(T) = θ

(
1 +

β2

2

)
and Var(T) = (θβ)2

(
1 +

5β2

4

)
.

• Quantiles: The p quantile is

tp =
θ

4

{
βΦ−1

nor(p) +

√
4 +

[
βΦ−1

nor(p)
]2}2

.
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Birnbaum–Saunders Distribution–Continued

To isolate the scale parameter θ and the unitless shape pa-

rameter β, we write the cdf and pdf as follows

FT (t; β, θ) = Φlbisa [log(t/θ); β]

fT (t; β, θ) =
1

t
φlbisa [log(t/θ); β]

where

Φlbisa (z;β) = Φnor (ν)

φlbisa(z;β) =

[
exp(z/2) + exp(−z/2)

2β

]
φnor (ν) , −∞ < z < ∞

ν =
1

β
[exp(z/2) − exp(−z/2)] .
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Birnbaum–Saunders Distribution–Continued

Notes:

• If T ∼ BISA(θ, β) and c > 0 then cT ∼ BISA(cθ, β).

• If T ∼ BISA(θ, β) then 1/T ∼ BISA(θ−1, β).

• The hazard function BISA h(t; θ, β) is not always increasing.

� h(0; θ, β) = 0.

� limt→∞ h(t; θ, β) = 1/(2θβ2).

� extensive numerical experiments indicate that h(t; θ, β) is
always unimodal.

• This distribution was derived by Birnbaum and Saunders (1969)
in the modeling of fatigue crack extension.
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Examples of Gompertz-Makeham Distributions
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Gompertz–Makeham Distribution

• A common parameterization for this distribution is

Pr(T ≤ t; γ, κ, λ) = 1 − exp

[
− λκt+ γ exp(κt) − γ

κ

]
, t > 0.

γ > 0, κ > 0, λ ≥ 0 and all the parameters have units that
are the reciprocal of the units of t.

• This distribution originated from the need of a positive ran-
dom variable with a hazard function similar to the hazard
of the SEV. It can be shown that

Pr(T ≤ t; γ, κ, λ) = 1 −

1 − Φsev

(
t−µ
σ

)
1 − Φsev

(−µ
σ

)

 exp(−λt)

where µ = −(1/κ) log(γ/κ), σ = 1/κ.

• When λ = 0, one gets Gompertz–distribution which corre-
sponds to a truncated SEV at the origin.
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Gompertz–Makeham Continued

The parameterization in terms of [θ, ψ, η] = [1/κ, log(κ/γ), λ/κ]

isolates the scale parameter from the shape parameter and

we say that T ∼ GOMA(θ, ψ, η), if

FT (t; θ, ψ, η) = Φlgoma[log(t/θ);ψ, η]

fT (t; θ, ψ, η) =
1

t
φlgoma[log(t/θ);ψ, η]

hT (t; θ, ψ, η) =
η

θ
+

exp(−ψ)

θ
exp

(
t

θ

)
, t > 0

here θ is a scale parameter, ψ and η are unitless shape pa-
rameters, and

Φlgoma(z;ψ, η) = 1 − exp {exp (−ψ) − exp [exp(z) − ψ] − η exp(z)}
φlgoma(z;ψ, η) = exp(z) {η+ exp [exp(z) − ψ]} [1 − Φlgoma(z;ψ, η)]

are, respectively, the standardized cdf and pdf of Z = log(t/θ).
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Gompertz–Makeham Distribution–Continued

Notes:

• hT (0; θ, ψ, η) = (1/θ)[η + exp(−ψ)].

• hT (t; θ, ψ, η) increases with t at an exponential rate.

• If T ∼ GOMA(θ, ψ, η) and c > 0 then cT ∼ GOMA(cθ, ψ, η).
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Standardized Third Moment Versus

Coefficient of Variation

Coefficient of Variation

0.0 0.5 1.0 1.5 2.0

-2

0

2

4

6

S
ta

nd
ar

di
ze

d 
T

hi
rd

 M
om

en
t

Weibull

LognormalLoglogistic

Gamma

Inverse Gaussian

BISA

GNF
κ,r=.1

GNF
κ=.1, r=100

GNF
κ=100, r=.1

Burr XII, r=2

•

5 - 33



Comparison of Spread and Skewness Parameters

• The standardized third central moment of T defined by

γ3 =

∫∞
0 [t− E(T)]3f(t; θ) dt

[Var(T)]
3
2

is a measure of the skewness in the distribution of T . This

parameter is unitless and it has the these properties:

� Distributions with γ3 > 0 will tend to be skewed to the

right.

� Distributions with γ3 < 0 will tend to be skewed to the

left (e.g., the Weibull distribution with large β).

• The unitless coefficient of variation of T , γ2 =
√

Var(T)/E(T),

is useful for comparing the relative amount of variability in

the distributions of random variables having different units.
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pdfs for Three-Parameter Lognormal Distributions for

µ = 0 and σ = .5 with γ = 1,2,3.
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Distributions with a Threshold Parameter

• So far we have discussed nonnegative random variables with
cdfs that begin increasing at t = 0.

• One can generalize these and similar distributions by adding
a threshold, γ, to shift the beginning of the distribution
away from 0.

• Distributions with a threshold are particularly useful for fit-
ting skewed distributions that are shifted far to the right of 0.

• The cdf for location-scale log-based threshold distributions
is

F(t;µ, σ, γ) = Φ

[
log(t− γ) − µ

σ

]

or F(t; η, σ, γ) = Φ


log

(
t− γ

η

)1/σ

 , t > γ

where η = exp(µ), −∞ < γ <∞, −∞ < µ < ∞, σ > 0, η > 0,
and Φ is a completely specified cdf.
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Examples of Distributions with a Threshold Parameter

• Three-parameter lognormal distribution

F(t;µ, σ, γ) = Φnor

[
log(t− γ) − µ

σ

]
, t > γ.

• Three-parameter Weibull distribution

F(t; η, β, γ) = 1 − exp


−

(
t− γ

η

)β

= Φsev

[
log(t− γ) − µ

σ

]
, t > γ

where σ = 1/β and µ = log(η).
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Properties of Distributions with a Threshold

• When the distribution of T has a threshold, γ, then the

distribution of W = T−γ has a distribution with 0 threshold.

• The properties of the distribution of T are closely related

to the properties of the distribution of W .

• In general, E(T) = γ + E(W ) and tp = γ + wp, where wp is

the p quantile of the distribution of W .

• Changing γ simply shifts the distribution on the time axis,

there is no effect on the distribution’s spread or shape. Thus

Var(T) = Var(W ).

• There are, however, some very specific issues in the esti-

mation of γ because the points at which the cdf is positive

depends on γ.
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Embedded Models

• For some values of (µ, σ, γ), the model is very similar to a
two-parameter location-scale model, as described below.

• Embedded models: Using the reparameterization, α =
γ + η, ς = ση, the model becomes

F(t;α, σ, ς) = Φ

[
log

(
1 + σ × t− α

ς

)1/σ
]

= Φ
[
log (1 + σz)1/σ

]
, for z > −1/σ

where z = (t− α)/ς.

When σ → 0+, (1 + σz)1/σ → exp(z), and the limiting dis-
tribution is

F(t;α,0, ς) = Φ(z) , for −∞ < t <∞.

• For example, if Φ = Φsev the limiting distribution is the
SEV and if Φ = Φnor the limiting distribution is normal.
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Some Comments on the Embedded Models

• The limiting distribution arises when

a. 1/σ and η are going to ∞ at the same rate, and

b. γ is going to −∞ at the same rate that η is going to ∞.

• Precisely, if F(t; ηi, σi, γi) is a sequence of cdfs such that

σi → 0

ς = lim
i→∞(σiηi) with 0 < ς <∞

α = lim
i→∞(γi + ηi) with −∞ < α < ∞

then F(t; ηi, σi, γi) → Φ(z), where z = (t− α)/ς
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Generalized Threshold Scale (GETS) Models

• The original threshold parameter space (α, σ, ς) (with σ > 0)

does not contain the limiting distributions.

• It is convenient to enlarge the parameter space such that

the limiting distributions are interior points of the parameter

space.

• This is achieved by allowing σ to take values in (−∞,∞).

• The family of distributions corresponding to this enlarged

parameter space is known as the generalized threshold scale

(GETS) family .
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SEV-GETS, NOR-GETS, and LEV-GETS pdfs with

α = 0, σ = −.75,0, .75, and ς = .5 (Least Disperse), 1,

and 2 (Most Disperse)
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GETS MODEL

• The cdf for the GETS model is

F(t;α, σ, ς) =




Φ
[
log (1 + σz)1/σ

]
, for σ > 0, z > −1/σ

Φ(z) , for σ = 0, −∞ < t < ∞
1 − Φ

[
log (1 + σz)1/|σ|

]
, for σ < 0, z < −1/σ

where z = (t− α)/ς.

• The corresponding pdf is

f(t;α, σ, ς) =


 φ

[
log (1 + σz)1/|σ|

]
× 1
ς(1+σz), for σ �= 0

φ (z) × 1
ς , for σ = 0, −∞ < t <∞

Note: for σ > 0, z > −1/σ and for σ < 0, z < −1/σ.

• If T ∼ GETS(α, σ, ς) and a �= 0 then

(aT + b) ∼ GETS(aα+ b, aσ/|a|, ς|a|).
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Some Special Cases

• The GETS model includes all the location-scales distribu-
tions. These are obtained when σ = 0, as

F(t;α,0, ς) = Φ[(t− α)/ς].

This includes the normal, logistic, SEV, LEV, etc.

• The GETS includes all the threshold, log-based location-
scale distributions. These are obtained with σ > 0 which
gives

F(t;α, σ, ς) = Φ{[log(t− γ) − µ]/σ}, t > γ

where γ = α− ς/σ, µ = log(ς/σ).

� With Φ = Φnor this gives the lognormal with a threshold.

� With Φ = Φsev this gives the Weibull (also known as
Weibull-type for minima) with a threshold.

� And with Φ = Φlev one obtains the Fréchet for maxima
with a threshold.
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Some Special Cases-Continued

• The GETS includes the reflection (negative) of the thresh-
old, log-based location-scale distributions. These are ob-
tained with σ < 0, giving

F(t;α, σ, ς) = Φ{[log(−t− γ) − µ]/σ}, t < −γ
where γ = −(α− ς/σ), µ = log(−ς/σ).

• With Φ = Φnor this gives the negative of a lognormal with
a threshold.

• With Φ = Φsev this gives the negative of a Weibull with
a threshold. Or equivalently a Weibull-type distribution for
maxima.

• With with Φ = Φlev one obtains the negative of a Fréchet
for maxima with a threshold. Or equivalently, a Fréchet-
type distribution for minima.

5 - 45



Quantiles for the GETS Distribution

• Quantiles: the p quantile of the GETS distribution is

tp = α+ ς × w(σ, p)

where

w(σ, p) =




exp[σΦ−1(p)]−1
σ , for σ > 0

Φ−1(p), for σ = 0

exp{|σ|Φ−1(1−p)}−1
σ , for σ < 0

• Then for fixed σ, tp versus w(σ, p) plots as a straight line.
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GETS Stable Parameterization

• Parameterization for Numerical Stability: with p1 < p2,

a stable parameterization can be obtained using two quan-

tiles and σ, i.e., (tp1, tp2, σ).

• Using the expression for the quantiles

tp1 = α+ ς × w(σ, p1)

tp2 = α+ ς × w(σ, p2).

Solving for α and ς

α =
w(σ, p1) × tp2 − w(σ, p2) × tp1

w(σ, p1) − w(σ, p2)

ς =
tp1 − tp2

w(σ, p1) − w(σ, p2)
.
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Finite (Discrete) Mixture Distributions

• The cdf of units in a population consisting of a mixture of
units from k different populations can be expressed as

F(t; θ) =
∑
i

ξiFi(t; θi)

where θ = (θ1, θ2, . . . , ξ1, ξ2, . . .), ξi ≥ 0, and
∑
i ξi = 1.

• Mixtures tend to have a large number of parameters and
estimation can be complicated. But estimation is facilitated
by:

� identification of the individual population from which
sample units originated.

� considerable separation in the components and/or enor-
mous amounts of data.

• Sometimes it is sufficient to fit a simpler distribution to
describe the overall mixture.
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Continuous Mixture (Compound Distributions)

• These probability models arise from distributions in which
one or more of the parameters are continuous random vari-
able.

• These distributions are called compound distributions and
correspond to continuous mixture of a family of distribu-
tions, as follows:

Assume that for a fixed value of a scalar parameter θ1,
T |θ1 ∼ fT |θ1(t; θ) with θ = (θ1, θ2). Assuming that θ1 is
random from unit to unit with θ1 ∼ fθ1(ϑ; θ3), where θ3
does not have elements in common with θ, then

F(t; θ2, θ3) = Pr(T ≤ t) =
∫ ∞
−∞

Pr(T ≤ t|θ1 = ϑ)fθ1(ϑ; θ3)dϑ

=
∫ ∞
−∞

FT |θ1=ϑ(t; θ)fθ1(ϑ; θ3)dϑ

and the corresponding pdf is

f(t; θ2, θ3) =
∫ ∞
−∞

fT |θ1=ϑ(t; θ)fθ1(ϑ; θ3)dϑ.
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Pareto Distribution as a Compound Distribution

• If life of the the ith unit in a population can be modeled by

T |η ∼ EXP(η).

• But the failure rate varies from unit to unit in the population

according to a GAM(θ, κ), i.e,

1

η
∼ GAM(θ, κ).

• Then the unconditional failure time of a unit selected at

random from the population follows a Pareto distribution

of the form

F(t; θ, κ) = 1 − 1

(1 + θt)κ
, t > 0.
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Other Distributions

• Power distributions.

• Distributions based on stochastic components of physical/chemical

degradation models.

• Multivariate failure time distributions.

5 - 51


