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Chapter 19

Analyzing Accelerated Life Test Data

Objectives

• Describe and illustrate nonparametric and graphical meth-

ods of analyzing and presenting accelerated life test data.

• Describe and illustrate maximum likelihood methods of ana-

lyzing and making inferences from accelerated life test data.

• Illustrate different kinds of data and ALT models.

• Discuss some specialized applications of accelerated testing.
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Example: Temperature-Accelerated Life Test on

Device-A (from Hooper and Amster 1990)

Data: Singly right censored observations from a temperature-

accelerated life test.

Purpose: To determine if the device would meet its hazard

function objective at 10,000 and 30,000 hours at operating

temperature of 10◦C.

We will show how to fit an accelerated life regression model

to these data to answer this and other questions.
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Hours Versus Temperature Data from a

Temperature-Accelerated Life Test on Device-A

Number Temperature In Subexperiment
Hours Status of Devices ◦C Units Failures

5000 Censored 30 10 30 0/30

1298 Failed 1 40 100 10/100
1390 Failed 1 40

... ... ... ...
5000 Censored 90 40

581 Failed 60 20 9/20
925 Failed 60

1432 Failed 60
... ... ... ...

5000 Censored 11 60

283 Failed 1 80 15 14/15
361 Failed 1 80
515 Failed 1 80
638 Failed 1 80
... ... ... ...

5000 Censored 1 80
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Device-A Hours Versus Temperature

(Hooper and Amster 1990)

Degrees C

H
ou

rs

  0  20  40  60  80 100

  200

  500

 1000

 2000

 5000

10000

20000

50000

0/30 10/100 9/20 14/15

19 - 5



ALT Data Plot

• Examine a scatter plot of lifetime versus stress data.

• Use different symbols for censored observations.

Note: Heavy censoring makes it difficult to identify the form

of the life/stress relationship from this plot.
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Weibull Multiple Probability Plot Giving Individual

Weibull Fits to Each Level of Temperature for

Device-A ALT Data
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Lognormal Multiple Probability Plot Giving Individual

Lognormal Fits to Each Level of Temperature for

Device-A ALT Data
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ALT Multiple Probability Plot of Nonparametric

Estimates at Individual Levels of Accelerating Variable

• Compute nonparametric estimates F̂ for each level of ac-

celerating variable; plot on a single probability plot.

• Try to identify a distributional model that fits the data well

at all of the stress-levels.

Note: Either the lognormal or the Weibull distribution

model provides a reasonable description for the device-A

data. But the lognormal distribution provides a better fit

to the individual subexperiments.
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ALT Multiple Probability Plot of ML Estimates at

Individual Levels of Accelerating Variable

• For each individual level of accelerating variable compute

the ML estimates.

Let Ti be the failure time at temperature Tempi. For the

lognormal, Ti ∼ LOGNOR(µi, σi), assumed model:

� Compute ML estimates (µ̂i, σ̂i).

� Plot the LOGNOR(µ̂i, σ̂i) cdfs, i = 1,2, . . . on same plot.

• Assess the commonly used assumption that σi does not

depend on Tempi and that Tempi only affects µi.

Note: There are some small differences among the slopes

that could be due to sampling error.
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Device-A ALT Lognormal ML Estimation Results at

Individual Temperatures

95% Approximate
ML Standard Confidence Interval

Parameter Estimate Error Lower Upper
40◦C µ 9.81 .42 8.9 10.6

σ 1.0 .27 .59 1.72

60◦C µ 8.64 .35 8.0 9.3

σ 1.19 .32 .70 2.0

80◦C µ 7.08 .21 6.7 7.5

σ .80 .16 .55 1.17

The individual loglikelihoods were L40 = −115.46, L60 = −89.72,

and L80 = −115.58. The confidence intervals are based on the

normal approximation method.
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Strategy for Analyzing ALT Data

For ALT data consisting of a number of subexperiments,

each having been run at a particular set of conditions:

• Examine the data graphically: Scatter and probability plots.

• Analyze individual subexperiment data.

• Examine a multiple probability plot.

• Fit an overall model involving a life/stress relationship.

• Perform residual analysis and other diagnostic checks.

• Assess the reasonableness of using the ALT data to make

the desired inferences.
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The Arrhenius-Lognormal Regression Model

The Arrhenius-lognormal regression model is

Pr[T(temp) ≤ t] = Φnor

[
log(t) − µ

σ

]
where

• µ = β0 + β1x,

• x = 11605/(tempK) = 11605/(temp ◦C + 273.15),

• β1 = Ea is the activation energy, and

• σ assumed to be constant.
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Lognormal Multiple Probability Plot of the

Arrhenius-Lognormal Log-Linear Regression Model Fit

to the Device-A ALT Data
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Scatter plot showing the Arrhenius-Lognormal

Log-Linear Regression Model

Fit to the Device-A ALT Data
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ML Estimation Results for the Device-A ALT Data

and the Arrhenius-Lognormal Regression Model

95% Approximate
ML Standard Confidence Intervals

Parameter Estimate Error Lower Upper
β0 −13.5 2.9 −19.1 −7.8

β1 .63 .08 .47 .79

σ .98 .13 .75 1.28

The loglikelihood is L = −321.7. The confidence intervals are

based on the normal approximation method.
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Analytical Comparison of Individual and

Arrhenius-Lognormal Model ML Estimates of

Device-A Data

• Distributions fit to individual levels of temperature can be

viewed as an unconstrained model.

• The Arrhenius-lognormal regression model can be viewed

as a constrained model (µ linear in x and σ constant).

• Use likelihood ratio test to check for lack of fit with respect

to the constraints.

Lunconst = L40 + L60 + L80 = −320.76

Lconst = −321.7

• −2(Lconst − Lunconst) = −2(−321.7 + 320.76) = 1.88 <

χ2
(.75,3) = 4.1, indicating that there is no evidence of in-

adequacy of the constrained model, relative to the uncon-

strained model.

19 - 17



ALT Multiple Probability Plot of ML Estimates with

an Assumed Life/Stress Relationship

• To make inferences at levels of accelerating variable not

used in the ALT, use a life/stress relationship to fit all the

data.

Let T(xi) be the failure time at xi = 11605/(Tempi +

273.15). For the, T(xi) ∼ LOGNOR(µi = β0 + β1xi, σ),

lognormal SAFT assumed model:

� Compute ML estimates (β̂0, β̂1, σ̂).

� Plot the LOGNOR
[
µ̂i = β̂0 + β̂1xi, σ̂

]
cdfs, i = 1,2, . . .

on same plot.

� Plot t̂p = exp
[
β̂0 + β̂1x + Φ−1

nor(p)σ̂
]
for various values of

p and a range of values of x.
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ML Estimation for the Device-A Lognormal

Distribution F(30,000) at 10◦C

µ̂ = β̂0 + β̂1x

= −13.469 + .6279 × 11605/(10 + 273.15) = 12.2641

ζ̂e = [log(te) − µ̂]/σ̂ = [log(30,000) − 12.2641]/.9778

= −2.000

F̂ (30,000) = Φnor(ζ̂e) = Φnor(−2.000) = .02281

Σ̂µ̂,σ̂ =

[
V̂ar(µ̂) Ĉov(µ̂, σ̂)
Ĉov(µ̂, σ̂) V̂ar(σ̂)

]
=

[
.287 .048
.048 .0176

]
.

ŝe
F̂

=
φ(ζ̂e)

σ̂

[
V̂ar(µ̂) + 2ζ̂eĈov(µ̂, σ̂) + ζ̂e

2
V̂ar(σ̂)

]1
2

=
φ(−2.000)

.9778

[
.286 + 2 × (−2.000) × .047 + (−2.000)2 × .0176

]1
2

= .0225.
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Confidence Interval for the Device-A Lognormal

Distribution F(30,000) at 10◦C

A 95% normal-approximation confidence interval based on
the assumption that Z

logit(F̂ )
∼ NOR(0,1) is

[F˜(te), F̃ (te)] =

[
F̂

F̂ + (1 − F̂ ) × w
,

F̂

F̂ + (1 − F̂ )/w

]

=

[
.02281

.02281 + (1 − .02281) × w
,

.02281

.02281 + (1 − .02281)/w

]
= [.0032, .14]

where

w = exp{(z(1−α/2)ŝeF̂
)/[F̂ (1 − F̂ )]}

= exp{(1.96 × .0225)/[.02281(1 − .02281)]} = 7.232.

This wide interval reflects sampling uncertainty when activa-

tion energy is unknown. The interval does not reflect model

uncertainty. With given activation energy, the confidence

intervals would be much narrower.
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Checking Model Assumptions

It is important to check model assumptions by using residual

analysis and other model diagnostics

• Define standardized residuals as

exp

{
log[t(xi)] − β̂0 − β̂1xi

σ̂

}
where t(xi) is a failure time at xi.

• Residuals corresponding to censored observations are called

censored standardized residuals.

• Plot residuals versus the fitted values given by exp
(
β̂0 + β̂1xi

)
.

• Do a probability plot of the residuals.

Note: For the Device-A data, these plots do not conflict

with the model assumptions.
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Plot of Standardized Residuals Versus Fitted Values

for the Arrhenius-Lognormal Log-Linear Regression

Model Fit to the Device-A ALT Data
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Probability Plot of the Residuals from the

Arrhenius-Lognormal Log-Linear Regression Model fit

to the Device-A ALT data
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Some Practical Suggestions

• Build on previous experience with similar products and ma-

terials.

• Use pilot experiments; evaluate the effect of stress on degra-

dation and life.

• Seek physical understanding of cause of failure.

• Use results from failure mode analysis.

• Seek physical justification for life/stress relationships.

• Design tests to limit the amount extrapolation needed for

desired inferences.

• See Nelson (1990)
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Inferences from AT Experiments

• Inferences or predictions from ATs require important as-

sumptions about:

� Focused correctly on relevant failure modes.

� Adequacy of AT model for extrapolation.

� AT manufacturing testing processes can be related to

actual manufacturing/use of product.

• Important sources of variability usually overlooked.

• Deming would call ATs analytic studies

(see Hahn and Meeker 1993, American Statistician).
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Breakdown Times in Minutes of a Mylar-Polyurethane

Insulating Structure (from Kalkanis and Rosso 1989)
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Accelerated Life Test of a Mylar-Polyurethane

Laminated Direct Current High Voltage Insulating

Structure

• Data from Kalkanis and Rosso (1989)

• Time to dielectric breakdown of units tested at 100.3, 122.4,

157.1, 219.0, and 361.4 kV/mm.

• Needed to evaluate the reliability of the insulating struc-

ture and to estimate the life distribution at system design

voltages (e.g. 50 kV/mm).

• Except for the highest level of voltage, the relation between

log life and log voltage appears to be approximately linear.

• Failure mechanism probably different at 361.4 kV/mm.
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Lognormal Probability Plot of the Individual Tests in

the Mylar-Polyurethane ALT
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Inverse Power Relationship-Lognormal Model

• The inverse power relationship-lognormal model is

F(t) = Pr[T(volt) ≤ t] = Φnor

[
log(t) − µ

σ

]
where µ = β0 + β1x, and x = log(Voltage Stress).

• σ assumed to be constant.
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Lognormal Probability Plot of the Inverse Power

Relationship-Lognormal Model Fitted to the

Mylar-Polyurethane Data Including 361.4 kV/mm
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Plot of Inverse Power Relationship-Lognormal Model

Fitted to the Mylar-Polyurethane Data Including 361.4

kV/mm

log[t̂p(x)] = µ̂ + Φ−1
nor(p)σ̂

kV/mm on log scale
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Lognormal Plot of the Standardized Residuals versus
exp(µ̂) for the Inverse Power Relationship-Lognormal

Model Fitted to the Mylar-Polyurethane Data with the
361.4 kV/mm Data
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Lognormal Probability Plot of the Inverse Power
Relationship-Lognormal Model Fitted to the

Mylar-Polyurethane Data Without the 361.4 kV/mm
Data
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Plot of Inverse Power Relationship-Lognormal Model

Fitted to the Mylar-Polyurethane Data (also Showing

361.4 kV/mm Data Omitted from the ML Estimation)

log[t̂p(x)] = µ̂ + Φ−1
nor(p)σ̂

kV/mm on log scale
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Inverse Power Relationship-Lognormal Model ML

Estimation Results for the Mylar-Polyurethane ALT

Data

95% Approximate
ML Standard Confidence Intervals

Parameter Estimate Error Lower Upper
β0 27.5 3.0 21.6 33.4

β1 −4.29 .60 −5.46 −3.11

σ 1.05 .12 .83 1.32

The loglikelihood is L = −271.4. The confidence intervals are

based on the normal approximation method.
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Lognormal Plot of the Standardized Residuals versus
exp(µ̂) for the Inverse Power Relationship-Lognormal

Model Fitted to the Mylar-Polyurethane Data without
the 361.4 kV/mm Data
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Analysis of Interval ALT Data on a New-Technology

IC Device

• Tests were run at 150, 175, 200, 250, and 300◦C.

• Developers interested in estimating activation energy of the

suspected failure mode and the long-life reliability.

• Failures had been found only at the two higher tempera-

tures.

• After early failures at 250 and 300◦C, there was some con-

cern that no failures would be observed at 175◦C before

decision time.

• Thus the 200◦C test was started later than the others.
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New-Technology IC Device ALT Data

Hours Number of Temperature
Lower Upper Status Devices ◦C

1536 Right Censored 50 150
1536 Right Censored 50 175

96 Right Censored 50 200
384 788 Failed 1 250
788 1536 Failed 3 250

1536 2304 Failed 5 250
2304 Right Censored 41 250

192 384 Failed 4 300
384 788 Failed 27 300
788 1536 Failed 16 300

1536 Right Censored 3 300
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Lognormal Probability Plot of the Failures at 250 and

300◦C for the New-Technology Integrated Circuit

Device ALT Experiment
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Individual Lognormal ML Estimation Results for the

New-Technology IC Device

95% Approximate
ML Standard Confidence Intervals

Parameter Estimate Error Lower Upper
250◦C µ 8.54 .33 7.9 9.2

σ .87 .26 .48 1.57
300◦C µ 6.56 .07 6.4 6.7

σ .46 .05 .36 .58

The loglikelihood were L250 = −32.16 and L300 = −53.85.

The confidence intervals are based on the normal approximation

method.
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Lognormal Probability Plot Showing the

Arrhenius-Lognormal Model ML Estimation Results for

the New-Technology IC Device
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Arrhenius-Lognormal Model ML Estimation Results for

the New-Technology IC Device

95% Approximate
ML Standard Confidence Intervals

Parameter Estimate Error Lower Upper
β0 −10.2 1.5 −13.2 −7.2

β1 .83 .07 .68 .97

σ .52 .06 .42 .64

The loglikelihood is L = −88.36.

Comparing the constrained and unconstrained models Luconst =

L250+L300 = −86.01 and for the constrained model, Lconst =

−88.36. The comparison has just one degree of freedom and

−2(−88.36 + 86.01) = 4.7 > χ2
(.95,1) = 3.84, again indicating

that there is some lack of fit in the constant-σ Arrhenius-

lognormal model.
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Arrhenius Plot Showing ALT Data and the

Arrhenius-Lognormal Model ML Estimation Results for

the New-Technology IC Device.

log[t̂p(x)] = µ̂(x) + Φ−1
nor(p)σ̂
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Lognormal Probability Plot Showing the

Arrhenius-Lognormal Model ML Estimation Results for

the New-Technology IC Device with Given Ea = .8
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Pitfall 1: Multiple (Unrecognized) Failure Modes

• High levels of accelerating factors can induce failure modes

that would not be observed at normal operating conditions

(or otherwise change the life-acceleration factor relation-

ship).

• Other failure modes, if not recognized in data analysis, can

lead to incorrect conclusions.

• Suggestions:

� Determine failure mode of failing units.

� Analyze failure modes separately.
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Pitfall 2: Failure to Properly Quantify Uncertainty

• There is uncertainty in statistical estimates.

• Standard statistical confidence intervals quantify uncertainty

arising from limited data.

• Confidence intervals ignore model uncertainty (which can

be tremendously amplified by extrapolation in Accelerated

Testing).

• Suggestions:

� Use confidence intervals to quantify statistical uncer-

tainty.

� Use sensitivity analysis to assess the effect of departures

from model assumptions and uncertainty in other inputs.
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Pitfall 3: Multiple Time Scales

• Composite material

� Chemical degradation over time changes material ductil-
ity.

� Stress cycles during use lead to initiation and growth of
cracks.

• Incandescent light bulbs

� Filament evaporates during burn time.

� On-off cycles induce thermal and mechanical shocks that
can lead to fatigue cracks.

• Inkjet pen

� Real time (corrosion)

� Characters or pages printed (ink supply, resistor degra-
dation).

� On/off cycles of a print operation (thermal cycling of
substrate and printhead lamination).
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Dealing with Multiple Time Scales

Suggestions:

• Need to use the appropriate time scale(s) for evaluation of

each failure mechanism.

• With multiple time scales, understand ratio or ratios of time

scales that arise in actual use.

• Plan ATs that will allow effective prediction of failure time

distributions at desired ratio (or ratios) of time scales.
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Possible Results for a Typical

Temperature-Accelerated Failure Mode

on an IC Device
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Unmasked Failure Mode with Lower Activation Energy
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Pitfall 4: Masked Failure Mode

• Accelerated test may focus on one known failure mode,

masking another!

• Masked failure modes may be the first one to show up in

the field.

• Masked failure modes could dominate in the field.

• Suggestions:

� Know (anticipate) different failure modes.

� Limit acceleration and test at levels of accelerating vari-

ables such that each failure mode will be observed at

two or more levels of the accelerating variable.

� Identify failure modes of all failures.

� Analyze failure modes separately.
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Comparison of Two Products I

Simple Comparison
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Comparison of Two Products II

Questionable Comparison
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Pitfall 5: Faulty Comparison

• It is sometimes claimed that Accelerated Testing is not use-

ful for predicting reliability, but is useful for comparing al-

ternatives.

• Comparisons can, however, also be misleading.

• Beware of comparing products that have different kinds of

failures.

• Suggestions:

� Know (anticipate) different failure modes.

� Identify failure modes of all failures.

� Analyze failure modes separately.

� Understand the physical reason for any differences.
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Pitfall 6: Acceleration Factors

Can Cause Deceleration!

• Increased temperature in an accelerated circuit-pack relia-

bility audit resulted in fewer failures than in the field because

of lower humidity in the accelerated test.

• Higher than usual use rate of a mechanical device in an ac-

celerated test inhibited a corrosion mechanism that eventu-

ally caused serious field problems.

• Automobile air conditioners failed due to a material drying

out degradation, lack of use in winter (not seen in contin-

uous accelerated testing).

• Inkjet pens fail from infrequent use.

• Suggestion: Understand failure mechanisms and how they

are affected by experimental variables.
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Pitfall 7: Untested Design/Production Changes

• Lead-acid battery cell designed for 40 years of service.

• New epoxy seal to inhibit creep of electrolyte up the positive

post.

• Accelerated life test described in published article demon-

strated 40 year life under normal operating conditions.

• 200,000 units in service after 2 years of manufacturing.

• First failure after 2 years of service; third and fourth failures

followed shortly thereafter.

• Improper epoxy cure combined with charge/discharge cycles

hastened failure.

• Entire population had to be replaced with a re-designed cell.
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Temperature/Voltage ALT Data on

Tantalum Electrolytic Capacitors

• Two-factor ALT

• Non-rectangular unbalanced design

• Much censoring

• The Weibull distribution seems to provide a reasonable model

for the failures at those conditions with enough failures to

make a judgment.

• Temperature effect is not as strong.

• Data analyzed in Singpurwalla, Castellino, and Goldschen

(1975)
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Tantalum Capacitors ALT Design Showing Fraction

Failing at Each Point
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Scatter Plot of Failures in the Tantalum Capacitors

ALT Showing Hours to Failure Versus Voltage with

Temperature Indicated by Different Symbols
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Weibull Probability Plot for the Individual Voltage and

Temperature Level Combinations for the Tantalum

Capacitors ALT, with ML Estimates of Weibull cdfs
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Tantalum Capacitors ALT

Weibull/Arrhenius/Inverse Power Relationship Models

Model 1: µ = β0 + β1x1 + β2x2

Model 2: µ = β0 + β1x1 + β2x2 + β3x1x2

where x1 = log(volt), x2 = 11605/(tempK), and β2 = Ea.

• Coefficients of the regression model are highly sensitive to

whether the interaction term is included in the model or

not (because of the nonrectangular design with highly un-

balanced allocation).

• Data provide no evidence of interaction.

• Strong evidence for an important voltage effect on life.
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Tantalum Capacitor ALT Weibull-Inverse Power

Relationship Regression ML Estimation Results

95% Approximate
ML Standard Confidence Interval

Parameter Estimate Error Lower Upper
Model 1 β0 84.4 13.6 57.8 111.

β1 −20.1 4.4 −28.8 −11.4

β2 .33 .19 −.04 .69

σ 2.33 .36 1.72 3.16

Model 2 β0 -78.6 109.0 −292.3 135.1

β1 19.9 26.7 −32.5 72.35

β2 5.13 3.3 −1.35 11.6

β3 −1.17 .80 −2.8 .40

σ 2.33 .36 1.72 3.16

Loglikelihoods L1 = −539.63 and L2 = −538.40

19 - 62



Weibull Multiple Probability Plot of the Tantalum

Capacitor ALT Data Arrhenius-Inverse Power

Relationship Weibull Model (with no Interaction)
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ML Estimates of t.1 for the Tantalum Capacitor Life

Using the Arrhenius-Inverse Power Relationship

Weibull Model
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Other Topics in Chapter 19

Discussion of

• Highly accelerated life tests (HALT).

• Environmental stress and STRIFE testing.

• Burn-in.

• Environmental stress screening.
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