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Other Parametric Distributions
Chapter 5 Objectives

e Describe the properties and the importance of the following
parametric distributions which cannot be transformed into
a location-scale distribution:

Gamma, Generalized Gamma, Extended Generalized Gamma,
Generalized F, Inverse Gaussian, Birnbaum—Saunders,
Gompertz—Makeham.

e Introduce the concept of a threshold-parameter distribution.

e Illustrate how other statistical models can be determined by
applying basic ideas of probability theory to physical prop-
erties of a failure process, system, or population of units.



Examples of Gamma Distributions
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Gamma Distribution

e T follows a gamma distribution, GAM(6, k), if

F(t;0,k) = I (g;/i)
J(t:6,r) = r(:;)e (%)K_lexp (_2) t>0

6 > 0 is a scale parameter and K > 0 is a shape parameter.
1(v; k) is the incomplete gamma function defined by

v k—1
exp(—x)d
fo :C D( :13) * v > 0.

I_I(U; lﬁ',) — r(l-i) ) =

e Special case: when k =1, GAM(60, k) = EXP(0).

e The hazard function h(t;0,x) is decreasing when x < 1;
INncreasing when « > 1; and approaches a constant level
late in life i.e.,

lim h(t;0,k) = 1/86.
t—00



Moments and Quantiles of the Gamma Distribution

e Moments: For integer m > 0

E(T™) = - I_l‘(?::)Jr H)'
Then
E(T) = 0k
Var(T) = 6%k

e Quantiles: the p quantile of the distribution is given by

tp =6 I_I_l(p; K).



Reparameterization of the Gamma Distribution

For accelerated time regression modeling, the cdf and pdf
can be conveniently reparameterized as follows:

F(t,0,k) = ®Pg[log(t) — p,; K]
f(4:0,8) = - d1g[109(8) — pii ]

where p = log(d), ®|y and ¢4 are the cdf and pdf for the
standardized loggamma variable Z = log(T/0) = log(T) —

1,

Dg(z; k) = Tilexp(2); k]
g/)|g(z; K) = - (1’{) exp [kz — exp(z)].



Generalized Gamma Distribution

e 7' has a generalized gamma distribution if

F(t;0,8,k) = rI[(é)ﬁ;’i]

160,88 = 2 (D" e [— (f)ﬁ] £>0
T (k)6 \0 0 ’
where 6 > 0O is a scale parameter, and k > 0, 8 > 0 are shape
parameters.

e If 3 = 1 the distribution becomes the GAM(0, k) distribu-
tion.

e If k = 1 the distribution becomes the WEIB(u,o0), where
p=10g(f) and o = 1/4.

e If 3 =1 and k = 1 the distribution becomes the EXP(0)

distribution.
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Generalized Gamma Distribution-Continued

e A more convenient parameterization is given by

u=10g(8) + (o/\) 10g(A~2), A = 1/y/K, and o = 1/(By/K).
in which case, we write T' ~ GENG(u, 0, A) and

F(t;p,0,A) = diq [/\w+|og(/\—2);/\—2}
FEmoN) = 2 oig [w+10g(A2); A72]
ot

where w = [log(t) — u] /o, —co < p < o0, o >0, and A > 0.

o If T ~ GENG(u,0,A) and ¢ > 0 then ¢I' ~ GENG[u —
log(c), A, a].

e As A\ — 0, T ~ LOGNOR(u,o0).

e Moments, quantiles, and other related distributions will fol-
low as special cases of the more general extended general-
ized gamma distribution.



Extended Generalized Gamma Distribution

e ' has an extended generalized gamma distribution,
EGENG(u, o, ), if

F(t; p,0,A)

f(t p,o, )

\

y

Dig | Aw + log(A72); A72] if A>0
Pnor(w) it A=20
1 — dy [Aw + log(\—2); /\—2] if A\ <O

%aﬁlg [/\w + log(A~2); /\—2} if A\ %0

L dnor (w) if A=0

where w = [log(t) — u] /o, —oco < p < oo, exp(u) is a scale
parameter, —oo < A < oo and o > 0 are shape parameters.



Comments on the EGENG Distribution

The distribution at A = 0 is defined by continuity (i.e., the
limiting distribution when A\ — 0).

If T ~ EGENG(u,0,)\) and ¢ > 0 then
cT' ~ EGENG[u — log(c), A,o]. Thus, exp(u) is a location-
parameter for T..

When T ~ EGENG(u, A\, o) then the distribution of
W = [log(T) — u]/o depends only on A.

Note that for each fixed A, log(T) is location-scale (u,o)
with a standardized location-scale distribution equal to the
distribution of W.



Extended Generalized Gamma Distribution—Continued

e Moments: For integer m and A %= 0

exp(mp) (A2)™ A rIAx1(mo+r1)] .
E(T™) = w () r(/\_Q[) L it mac+1>0

00 it mido+1<O0.
When A = 0, the moments are

E(T™) = exp [mﬂ + (1 /2)(ma)2] .

e Thus when the mean and the variance are finite and A # 0,

or [)\_1(0 + A—l)]

B YOt
FrA 1o+ 2YH mrxicec+r1bH
Var(T) = 62 [ SO0 }_ [ 260D ]

e When A =0, E(T) = exp[u + (1/2)0?] and
Var(T) = exp(2u + 02) x [exp(o?) — 1].



Quantiles of the EGENG Distribution

The EGENG quantiles are

where w(p; \) is

w(p; X) = 4

log(tp) = p+ o x w(p; A)
the p quantile of the distribution of W,
(A llog [/\2r1—1(p; /\—2)] if A>0
®nor(p) if A=0

A "llog [/\2r1—1(1 — /\—2)] if A\<O



Distributions Related to EGENG
Special Cases:
If A >0 then EGENG(u,0,\) = GENG(u, o, M).
ifA=1, T ~ WEIB(u, o).
if A=0, T ~LOGNOR(u,o).

if A\ = -1, 1/T ~ WEIB(—u,o0), [i.e., T has a reciprocal
Weibull (or Fréchet distribution of maxima)].

When A = o, T ~ GAM(0, k), where 0 = A2 exp(u)
and k = A2

When A =0 =1, T ~ EXP(6), where 0 = X2 exp(u).



Comment on EGENG(u, o0, A) Parameterization

e The (u,0,\) parameterization is due to Farewell and Pren-
tice (1977). Observe that

(A2 072) if A>0
Flexp(u); p,o,A\] = < .5 ifA=20
L1 -T(A™2%072) ifA<O

This value of Flexp(u); u, o0, A], as a function of A, is always
in the interval [.5,1). Thus exp(ux) equals a quantile ¢, with
p > .5.

e [ he parameterization is stable when there is not much cen-
soring. It tends to be unstable when there is heavy censor-

ing.

e \When there is heavy censoring a different parameterization
IS needed for ML estimation.



EGENG Stable Parameterization

e Parameterization for Numerical Stability: with p; < po,
an stable parameterization can be obtained using two quan-

tiles (tpy,tp,), and A, i.e.,

p+ ow(pi, A)
M + O-w(p27 )‘)

l0g(tp,)
log(tp,)

and solving for u and o,
— W(pQ,)\) X |Og(tp1) — w(pla)‘) X log(tPQ)
w(p27>‘) _ Cd(p]_,>\)

log(tp,) — log(tp,)
w(p2,>\) — W(plaA).




Generalized F Distribution

T has a generalized F distribution with parameters (u, o0, %,1),
say GENF(u, o, k,r), if

Frt, p,o,k,1) = P

log(®) —m. T]

IOg(t)—,u_li 7“] t>0

1
fT(t;,LL,O',K,,T) _lef
ot

where

M+ 1) (k/r)f exp (kz)

F(R)T(r) [1+ (5/r)exp(2)]T"

is the pdf of the central log F distribution with 2x and 2r
degrees of freedom and dr is the corresponding cdf.

Pif(z; Kk, 1) =

It follows that ¢if(z; k,r) and ®r(z; k,r) are the pdf and cdf
of Z = [log(T) — u]/o.

exp(u) is a scale parameter and o > 0, k > 0, r > 0 are shape

parameters.
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Generalized F Distribution-Continued

e Moments: For integer m > 0,

ey = [ SRR () e me
Then
er) = 2 :(:g rr((:>_ 2 exoi) (£
_ [T(s+20)T(r—20) T?*(k+o0)l?(r—o) N\ 20
Var(T) = { (k) (r) o M2(k)M2(r) } exp(2u) (E)

where r > o for the mean and r > 20 for the variance.

e Quantiles: The p quantile of the distribution is

o
tp = exp(n) [ F(p,221)]
where F, 5. o) IS the p quantile of an F distribution with
(2k,2r) degrees of freedom.

The expression for t, follows directly from the fact that
T = exp(pn)V? where V has an F distribution with (2k,2r)
degrees of freedom.

o1
I
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Generalized F Distribution—Special Cases

1/T ~ GENF(—pu, 0,7, K).

When (u,0) = (0,1) then T follows an F distribution with
2k numerator and 2r denominator degrees of freedom.

When (k,7) = (1,1), GENF(u,0,k,7) = LOGLOGIS(u, o).
When r — oo, T ~ GENG[exp(n)/k%,1/0, K].
When (k,7) = (1,0), T ~ WEIB(u, o).
When k = 1, T follows a Burr type XII distribution with cdf
1
1717’
1 (t\o
17
where r > 0, o > 0 are shape parameters, and 6§ = exp(u) is
a scale parameter.

t>0

Ft, p,or) =1 —

When kK — oo, and r — oo, T ~ LOGNOR (,LL,O'\/(HJ + T)/Iﬁ)?“).
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Inverse Gaussian Distribution

e A common parameterization for the cdf of this distribution
is (see Chhikara and Folks 1989) is

( ~ ) nor[ 9\/%

t>0; 0>0and A > 0 are parameters in the same units of
T.

e Wald (1947) derived this distribution as a limiting form for
the distribution of sample size in sequential probability ratio
test.

(t - em] + o0 (2) ner [_ (t+ em] |



Inverse Gaussian Distribution—Origin

e [ he inverse Gaussian distribution was originally given by
Schrodinger (1915) as the distribution of the first passage
time in Brownian motion. The parameters 6 and X\ relate
to the Brownian motion parameters as follows:

e Consider a Brownian process

B(#) =ct+dW(), t>0

where ¢, d are constants and W (t) is a Wiener process. Let
T be the first passage time of a specified level by, say

T = inf{t; B(t) > bg}.
Then

Pr(T <t) = ®nor [(t — 9)\/X] +exp (2)\) DPnor [— (t+ 9)\/X]

0/t 9 0/t

where 0 = bg/c and VX = bg/d. Tweedie (1945) gives more
details on this approach.
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Examples of Inverse Gaussian Distributions

Cumulative Distribution Function Probability Density Function

1.0 |
0.8 -
() 0.4 -
0.2 1| |/,
0.0 L

0.0 1.0 2.0 3.0 0.0 1.0 2.0 3.0

t t

Hazard Function

20
15
h(® 10
05 | [/,
0.0 | -

0.0 1.0 2.0 3.0

AN P T
P PR O

21



Inverse Gaussian Distribution—Continued

The reparameterization (0,8 = \/0) separates the location
and scale parameters. We say that T~ IGAU(6, 3) if

br(t;0,8) = Pjigau [l09(t/0); 5]
fr(6:0,8) = ~ duigau [09(/0); 8], ¢> 0

where 0 > 0 is a scale parameter, 8 > 0 is at unit less shape
parameter, and

Pligau(z;8) = q’ﬂor{\@[e:féfz/;)l”Jr

exp (28) Pnor {_ \/E [ezjéz/_g)ll }

. V3 exp(z) — 1
¢Iigau(z,5) — exp(z/2) @nor {\/B [ exp(z/2) ]}, -0 < 2z < Q.

The hazard function has the following behavior: h7(0;60,3) =
0, hp(t; 0,0) is unimodal, and limy—c hp(t;0,8) = B/(20).
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Inverse Gaussian Distribution-Continued

e Moments: For integer m > 0

(m—1+41)! (1)7’

E(T) = o7 Z i'(m—1—1)!

,l:_

From this it follows that

E(T) =6 and Var(T)=6%/8.

e Quantiles: the p quantile of the IGAU distribution is

There is no simple closed form equation for <l>||gau(p; 8), so it
must be computed by inverting p = ®jigay(2; 8) numerically.



Inverse Gaussian Distribution—Continued

Special cases:

o If T ~IGAU(H,3) and ¢ > 0 then T ~ IGAU(cH, 3).

e For large values of 3, the distribution is very similar to a

NOR(8,6//B).



Examples of Birnbaum—Saunders Distributions

Cumulative Distribution Function Probability Density Function
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Birnbaum—Saunders Distribution

e For a variable T with Birnbaum—Saunders distribution, BISA(6, 3),
Fr(t;8,0) = ®nor(¢)

f+f

fr(t, 8,0) = ®nor (€)

where t > 0, § > 0 is a scale parameter, B > 0 is a shape parameter,
and
. 1 \/? \/5
3 0 t
e Moments: For an integer m > O,

I mty Rm=DI R 2m \ [ m—k
E(T™) =60 ;52( )[23(mi)](m_i)!z(2k)( ) )

k=0

Then

E(T) = 60 (1 + %2) and Var(T) = (68)? (1 + 5—52)

e Quantiles: The p quantile is

2
= % {ﬁ Pror(p) + \/4 + |3 CDEolr(p)]z} :



Birnbaum—Saunders Distribution—Continued

To isolate the scale parameter § and the unitless shape pa-
rameter 3, we write the cdf and pdf as follows

Fr(t, 8,0) = Ppisa [l0g(t/0); B]

Fr(6:.6,0) = - diisa 109(t/6); B
where
Pipisa (z:8) = Pnor (V)
Pibisa(z; B) = exp(z/2) + exp(==/2) ¢nor (), —00 < z < 00

20
v = % [exp(z/2) — exp(—2z/2)] .



Birnbaum—Saunders Distribution—Continued

Notes:

o If T'~ BISA(O,3) and ¢ > 0 then T ~ BISA(cH, 3).

o If T ~ BISA(6,3) then 1/T ~ BISA(6—1,3).

e The hazard function BISA h(t; 6, 3) is not always increasing.
» h(0;0,3) = 0.

> limy_oo h(t;6,3) = 1/(26532).

» extensive numerical experiments indicate that h(¢; 6, 3) is
always unimodal.

e This distribution was derived by Birnbaum and Saunders (1969)

in the modeling of fatigue crack extension.
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Examples of Gompertz-Makeham Distributions

Cumulative Distribution Function

1.0 2.0 3.0
t
Hazard Function
15 -
10
h(t)
5 i
0 L , , ,
0.0 1.0 2.0 3.0
t

Probability Density Function

25 1
2.0 \\
01|
05 |
00 L, , ,
0.0 1.0 2.0 3.0
t
( n
0.2 0.5
,,,,,,,,,,,,,,,,,,,,,,,,, 2.0 0.5
ffffffffff 0.2 3
fffffff 20 3

29



Gompertz—Makeham Distribution

e A common parameterization for this distribution is

Akt exp(kt) —
Pr(TStvf}/?K'))\) — 1_eXp _ . —I_fy p(Kj) 7 ; t > 0.
K

v > 0,k > 0,A > 0 and all the parameters have units that
are the reciprocal of the units of t¢.

e T his distribution originated from the need of a positive ran-
dom variable with a hazard function similar to the hazard
of the SEV. It can be shown that

Pr(T <t,v,k,A) = 1-—

] exp(—At)

where p = —(1/k)l0g(v/k), o = 1/k.

e W When A = 0, one gets Gompertz—distribution which corre-
sponds to a truncated SEV at the origin.



Gompertz—Makeham Continued

The parameterization in terms of [0,¢,n] = [1/k,109(k/7), A/K]
isolates the scale parameter from the shape parameter and
we say that T'~ GOMA(0,vy,n), if

Fr(t, 0,¢,n) = ¢Igoma[|09(t/9);¢an]
fr(t; 0,v,n) % fblgoma[log (t/6);,n]

hp(t0,9,m) = ~+ exp(=¢) exXp (g) >0

here 6 is a scale parameter, ¥ and n are unitless shape pa-
rameters, and

Pigomal(z;¥,m) = 1—exp{exp(—y) —exp[exp(z) —¢] —n exp(z)}
legoma(Z; Y,m) = exp(z){n+explexp(z) —¢]}[1 — clDlgoma(Z; Y, n)]

are, respectively, the standardized cdf and pdf of Z = log(¢/0).



Gompertz—Makeham Distribution—Continued

Notes:

o hp(0;0,v,n) = (1/0)[n + exp(—)].

e hp(t;0,1,n) increases with ¢t at an exponential rate.

o If T~ GOMA(H,v,n) and ¢ > 0 then ¢I' ~ GOMA(cH,v,n).



Standardized Third Moment

Standardized Third Moment Versus
Coefficient of Variation

Loglogistic Burr XII, r=2 Lognormal
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Comparison of Spread and Skewness Parameters

e [ he standardized third central moment of T" defined by

I§°It — E(T)IPf(t; 0) dt
3 — 3
[Var(T)]z2
IS @ measure of the skewness in the distribution of T'. This
parameter is unitless and it has the these properties:

» Distributions with v3 > 0 will tend to be skewed to the
right.

» Distributions with v3 < O will tend to be skewed to the
left (e.g., the Weibull distribution with large 3).

e The unitless coefficient of variation of T', v = /Var(T)/E(T),
is useful for comparing the relative amount of variability in
the distributions of random variables having different units.
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pdfs for Three-Parameter Lognormal Distributions for
u=0and ¢ =.5 with v = 1,2,3.

0.8
0.6
(0

0.4 -

0.2

OO \ \ \ \ \ \ \ \



Distributions with a Threshold Parameter

So far we have discussed nonnegative random variables with
cdfs that begin increasing at t = O.

One can generalize these and similar distributions by adding
a threshold, ~, to shift the beginning of the distribution
away from O.

Distributions with a threshold are particularly useful for fit-
ting skewed distributions that are shifted far to the right of O.

The cdf for location-scale log-based threshold distributions
IS

F(t,p,0y) = @

[log(t —v) — u]

o

i b 1/0
or F(t;n,o,v) = @ |log (—7> ] , >
n
where n = exp(u), —co <y < oo, —co< u< oo, o>0,n>0,
and ® is a completely specified cdf.




Examples of Distributions with a Threshold Parameter

e [ hree-parameter lognormal distribution

log(t —v) — p
(o}

F(t;,u,UaW):CDnor[ ],t>'y.

e [ hree-parameter Weibull distribution

o
F(t;n,B,v) = 1—exp {— (%)

log(t — ) — p]

|
o
n
()
<

, U >y

where o = 1/8 and u = log(n).



Properties of Distributions with a Threshold

When the distribution of T' has a threshold, ~, then the
distribution of W = T'—~ has a distribution with O threshold.

The properties of the distribution of 1" are closely related
to the properties of the distribution of W.

In general, E(T) = v+ E(W) and tp, = v 4+ wp, where wy is
the p quantile of the distribution of W.

Changing ~ simply shifts the distribution on the time axis,
there is no effect on the distribution’s spread or shape. Thus
Var(T) = Var(W).

There are, however, some very specific issues in the esti-
mation of v because the points at which the cdf is positive
depends on 7.



Embedded Models

e For some values of (u,o,v), the model is very similar to a
two-parameter location-scale model, as described below.

e Embedded models: Using the reparameterization, a =
v+ 1n, s = on, the model becomes

® -Iog (1—|—0 X t_o‘)l/(j]

I S
= @|log(1+02)1/7|, forz>-1/o

where z = (t — a) /s.

F(t;, o, 0,9)

When o — 0T, (1+ az)l/“ — exp(z), and the limiting dis-
tribution is

F(t;a,0,¢) =P (z), for —oo<t< .

o For example, if & = Pdgey the limiting distribution is the
SEV and if & = ®dpor the limiting distribution is normal.
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Some Comments on the Embedded Models

e [ he limiting distribution arises when

a. 1/o0 and n are going to oo at the same rate, and

b. v is going to —oo at the same rate that n is going to oc.

e Precisely, if F(t;n;, 0;,7;) is a sequence of cdfs such that

o; — 0

s = lim(o;m;) with 0 <¢< oo
1— 00

a = Ilim((yv;+mn) with —c0o < a < oo
1— 00

then F(t; n;,04,7v) — P(z), where z = (t —a)/s

o1
I
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Generalized Threshold Scale (GETS) Models

The original threshold parameter space (o, o,5) (with o > 0)
does not contain the limiting distributions.

It is convenient to enlarge the parameter space such that
the limiting distributions are interior points of the parameter
space.

This is achieved by allowing o to take values in (—oo0, 00).

The family of distributions corresponding to this enlarged
parameter space is known as the generalized threshold scale
(GETS) family .



SEV-GETS, NOR-GETS, and LEV-GETS pdfs with
a=0, c=-.75,0,.75, and ¢ = .5 (Least Disperse), 1,
and 2 (Most Disperse)

SEV

Normal

LEV

00 ="/
3 101 2 3




GETS MODEL

e [ he cdf for the GETS model is

[ @ [log (14 02)!/7], forc >0, z>—1/c
F(t,a,0,¢) =< P (2), forc =0, —co <t <
| 1-®|log (1 +02)tIl], for o <0, 2<~-1/0

where z = (t — ) /s.

e T he corresponding pdf is

¢ [log (1 + oz)/171] x sy foro#0
qﬁ(z)x%, forc =0, —co <t <@

f(t a,0,5) ={

Note: for ¢ >0,z > —1/0 and for ¢ < 0,2 < —1/0.

o If T~ GETS(a,0,¢5) and a # 0 then
(aT 4+ b) ~ GETS(aa + b, a0 /|al,slal).



Some Special Cases

e The GETS model includes all the location-scales distribu-
tions. These are obtained when o = 0, as

F(t; a,0,¢) = ®[(t — a)/s].
This includes the normal, logistic, SEV, LEV, etc.

e The GETS includes all the threshold, log-based location-
scale distributions. These are obtained with ¢ > 0 which
gives

F(t;a,0,¢) = ®{llog(t =) —pl/o}, t>~
where vy =a —¢/o, p =109(s/0).

» With & = dnor this gives the lognormal with a threshold.

» With @ = dgey this gives the Weibull (also known as
Weibull-type for minima) with a threshold.

» And with & = P, one obtains the Fréchet for maxima
with a threshold.
5-44



Some Special Cases-Continued

The GETS includes the reflection (negative) of the thresh-
old, log-based location-scale distributions. These are ob-
tained with o < 0, giving

F(t o, 0,6) = ®{[log(—t —v) —ul/o}, t<—v
where v = —(a —¢/0), p =10g9(—¢/0o).

With ® = dnor this gives the negative of a lognormal with
a threshold.

With ® = dgey this gives the negative of a Weibull with
a threshold. Or equivalently a Weibull-type distribution for
maxima.

With with & = d|,, one obtains the negative of a Fréchet
for maxima with a threshold. Or equivalently, a Fréchet-
type distribution for minima.



Quantiles for the GETS Distribution

e Quantiles: the p quantile of the GETS distribution is

ty = a+¢xw(o,p)
where
r 1
exp[”cba (p)]-1 for o >0
w(o,p) = { P 1(p), for o =0
—1 L o
K expilo|® 0(1 P)} L foro <0

e Then for fixed o, t, versus w(o,p) plots as a straight line.



GETS Stable Parameterization

e Parameterization for Numerical Stability: with p; < po,
a stable parameterization can be obtained using two quan-

tiles and o, i.e., (tpy,tp,,0).

e Using the expression for the quantiles

a+¢ X w(o,p1)
a—+ s xw(o,p2).

tpy

tpo
Solving for o« and ¢

w(o,p1) Xty — (5, p2) X ty,
w(a,pl) T ’U)(O’,pQ)

tpy — tpo
’U)(O‘,p]_) T ’UJ(O’,pz)

N
|



Finite (Discrete) Mixture Distributions

e [ he cdf of units in a population consisting of a mixture of
units from k different populations can be expressed as

F(t;0) => &Fi(t;0;)

where 8 = (01,05,...,£1,82,...), § >0, and Y} ;& = 1.

e Mixtures tend to have a large number of parameters and
estimation can be complicated. But estimation is facilitated
by:

» identification of the individual population from which
sample units originated.

» considerable separation in the components and/or enor-
mous amounts of data.

e Sometimes it is sufficient to fit a simpler distribution to

describe the overall mixture.
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Continuous Mixture (Compound Distributions)

e [ hese probability models arise from distributions in which
one or more of the parameters are continuous random vari-
able.

e [ hese distributions are called compound distributions and
correspond to continuous mixture of a family of distribu-
tions, as follows:

Assume that for a fixed value of a scalar parameter 64,
T|61 ~ fT|91(t;9) with 8 = (01,605). Assuming that 67 is
random from unit to unit with 6, ~ fg (9;603), where 03
does not have elements in common with 6, then

F(t;05,03) =Pr(T'<t) = /OO Pr(T <t|f1 = ﬁ)fgl (; 03)dvY

- /_o; Frri9,=9(t; 0) fg, (9; 03)dd

and the corresponding pdf is

[(t:02,03) = [ frip,—y(t: 0)Jo, (9; 63)dv.



Pareto Distribution as a Compound Distribution

e If life of the the 2th unit in a population can be modeled by

Tn ~ EXP(n).

e But the failure rate varies from unit to unit in the population
according to a GAM(6, k), i.e,

1
= ~ GAM(8, k).

n

e [ hen the unconditional failure time of a unit selected at
random from the population follows a Pareto distribution
of the form

1

F(t;@,ﬁz)=1—(1+0t)m, t > 0.




Other Distributions

e Power distributions.

e Distributions based on stochastic components of physical/chemical
degradation models.

e Multivariate failure time distributions.



