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Planning Life Tests
Chapter 10 Objectives

Explain the basic ideas behind planning a life test.

Use simulation to anticipate the results, analysis, and pre-
cision for a proposed test plan.

Explain large-sample approximate methods to assess preci-
sion of future results from a reliability study.

Compute sample size needed to achieve a degree of preci-
sion.

Assess tradeoffs between sample size and length of a study.

Illustrate the use of simulation to calibrate the easier-to-use
large-sample approximate methods.
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Basic Ideas in Test Planning
e [ he enormous cost of reliability studies makes it essential
to do careful planning. Frequently asked questions include:

» How many units do I need to test in order to estimate
the .1 quantile of life?

» How long do I need to run the life test?
Clearly, more test units and more time will buy more infor-

mation and thus more precision in estimation.

e [0 anticipate the results from a test plan and to respond to
the questions above, it is necessary to have some planning
information about the life distribution to be estimated.
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Engineering Planning Values and Assumed Distribution
for Planning an Insulation Life Test

Want to estimate t ;1 of the life distribution of a newly devel-
oped insulation. Tests are run at higher than usual volts/thickness
to cause failures to occur more quickly.

Information (planning values) from engineering

e Expect about 20% failures in the 1000 hour test and about
12% failures in the first 500 hours of the test.

e Willing to assume a Weibull distribution to describe failure-
time.

e Equivalent information for planning values: n° = 6464
hours (or u~ = log(6464) = 8.774), B~ = .8037 (or o =
1/8 = 1.244).

Starting point: Use simulated data to assess precision.
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Weibull Probability Paper
Showing the Insulation Life cdf Corresponding to the
Test Planning Values n” = 6464 and - = .8037
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Simulation as a Tool for Test Planning

Use assumed model and planning values of model parame-
ters to simulate data from the proposed study.

Analyze the data perhaps under different assumed models.

AsSsess precision provided.

Simulate many times to assess actual sample-to-sample dif-
ferences.

Repeat with different sample sizes to gauge needs.

Repeat with different input planning values to assess sensi-
tivity to these inputs.

Any surprises?
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ML Estimates from 50 Simulated Samples of Size
n = 20, t = 400 from a Weibull Distribution
with Y =8.774 and ¢ = 1.244

Censor Time ->

Fraction Failing

6 samples out of 50 with 0O failures

Conditional geometric average 95% confidence interv:

| precision factor R fort_0.1 =12.9
.005 —

[IYII{ T I‘IITT IIIY‘ T ‘IIIY IIIY‘ T Y‘IYII{YIII‘ T I‘
10 50 200 500 2000 5000 20000 50000

10

|
~



ML Estimates from 50 Simulated Samples of Size
n = 80, t = 400 from a Weibull Distribution
with Y =8.774 and ¢ = 1.244
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ML Estimates from 50 Simulated Samples of Size
n = 20, t. = 1000 from a Weibull Distribution
with Y =8.774 and ¢" = 1.244
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ML Estimates from 50 Simulated Samples of Size
n = 80, t. = 1000 from a Weibull Distribution
with Y =8.774 and ¢" = 1.244

999 —
Censor Time ->

.98

Fraction Failing
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Simulations of Insulation Life Tests

ML estimates obtained from 50 simulated samples of size
n = 20, 80, from a Weibull distribution with p" = 8.774, o

1.244 (B = .8037).

The vertical lines at t. = 400, 1000 hours (shown with the

thicker line) indicates the censoring time (end of the test).

The horizontal line is drawn at p = .1 so to provide a better

visualization of the distribution of estimates of ¢ 4.

Results at ¢t = 400 and n = 20 are highly variable.
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Trade-offs Between Test Length and Sample Size

Geometric average R factor from 50 simulated exponential
samples (§ = 5) for combinations of sample size n and test
length t. (conditional on r > 1 failures)

Test Length t. | Sample Size n
20 30

400 | 12.9 2.84

(2) (8)
1000 | 4.53  2.14
(4)  (16)

Numbers within parenthesis are the expected number of fail-
ures at each test condition.
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Assessing the Variability of the Estimates

e For positive quantile ¢, an approximate 100(1 — a)% confi-
dence interval is given by

[é?? i;]:::[ib/jia ijé]

where R = exp [z(l_a/Q)sAe The factor R > 1 is an

log(tp) |-
indication of the width of the interval and can be used to

assess the variability in the estimates t,.

e For an unrestricted quantile y, an approximate 100(1 —«a)%
confidence interval is given by

[pra y~p] — [@p — 57 gp + 5]

where D = z(1_,/2)Se; . The half-width D is an indication
of the width of the interval and can be use to assess the
variability in the estimates yp.
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Simulations of Insulation Life Tests-Continued

Some important points about the effect that sample size will
have on our ability to make inferences:
e For the t. = 400 and n = 5 simulation
» Enormous amount of variability in the ML estimates.
» For several of the simulated data sets, no ML estimates
exist because all units were censored.
e Increasing the experiment length to t. = 1000 and the sam-
ple size to n = 80 provides

» A more stable estimation process.

» A substantial improvement in precision.
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Sample.size

10000
5000

2000
1000
500

200
100
50

20
10

Needed sample size giving approximatley a 50% chance of having
a confidence interval factor for the 0.1 quantile that is less than R
weibull Distribution with eta= 6464 and beta= 0.804
Test censored at 1000 Time Units with 20 expected percent failing

99%

95%
90%

80%

1.5 2.0 2.5

Confidence Interval Precision Factor R
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Motivation for Use of Large-Sample Approximations of

Test Plan Properties

Asymptotic methods provide:

Simple expressions giving precision of a specified estimator
as a function of sample size.

Simple expressions giving needed sample size as a function
of specified precision of a specified estimator.

Simple tables or graphs that will allow easy assessments of
tradeoffs in test planning decisions like sample size and test
length.

Can be fine tuned with simulation evaluation.
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Asymptotic Variances

Under certain regularity conditions the following results hold
asymptotically (large sample)

¢ 0~ MVN(8, %), where > = Iyt and

B 02L(0) n 02L,(0)
o= E[_ 8089’] ;E[ 0000’ ]

For a scalar g = g(8) ~ NOR[g(0), Avar(g)], where

39(9)]'ZA [(‘99(9)]
00 0| 00 |

Avar(g) = [

When ¢(0) is positive for all 8, then
log[g(8)] ~ NOR{log[g(8)], Avar[log(g)]}, where

1\ 2
Avarl[log(g)] = <§> Avar(g).
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Asymptotic Approximate Standard Errors for a
Function of the Parameters ¢(0)

Given an assumed model, parameter values (but not sample
size), one can compute scaled asymptotic variances.

e The variance factors V; = nAvar(g) and Viog(5) = nAvar[log(g)]
may depend on the actual value of @ but they do not depend
on n.

To compute these variance factors one uses planning values
for @ (denoted by 6-) as discussed later.

e The asymptotic standard error for g and log(g) are

Ase(@) = =g

Ase[log(g)]

e Easy to choose n to control Ase.
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Sample Size Determination
for Positive Functions of the Parameters

e When ¢g(0) > 0 for all 8, an approximate 100(1 — )% con-
fidence interval for log[g(0)] is

log(g), Iog"(g)] = 109(9)£(1/vVm)z(1—a/2)\ Viog(g) = 109(@) +log(R).

Exponentiation yields a confidence interval for g

lg. 31 =I[3/R. GR]

R = exp |(1/vR)2(1—a/2)\/Vioa(q)| = 3/8=3/9 = @

~ _ -
o Replace Vioq5) V.Vlth yl_og(ﬁ) and solve for n to compute the
needed sample size giving

2 O
_ F—a/2)Vi0g(9)

[log(R7)]?

n
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Sample Size Determination
for Positive Functions of the Parameters-Continued

Test plans with a sample size of

2 O
Z(1-a/2)Yiog(9)

[log(R7)]?
provides confidence intervals for g(8) with the following char-
acteristics:

e In repeated samples approximately 100(1 — a)% of the in-
tervals will contain ¢(0).

e In repeated samples V|Og(g) is random and if V|Og(g) >

V%g( y then the ratio R = j/g will be greater than [R7]2.

e The ratio R = g/g will be greater than [R7]? with a proba-

bility of order .5.
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Sample Size Needed to Estimate the
Mean of an Exponential Distribution
Used to Describe Insulation Life

Need a test plan that will estimate the mean life of insula-
tion specimens at highly-accelerated (i.e., higher than usual
voltage to get failure information quickly) conditions.

Desire a 95% confidence interval with endpoints that are
approximately 50% away from the estimated mean (so Ry =
1.5).

Can assume an exponential distribution with a mean 6"
1000 hours.

Simultaneous testing of all units; must terminate test at

500 hours.
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Sample Size Needed to Estimate the
Mean of an Exponential Distribution

Used to Describe Insulation Life-Continued

e ML estimate of the exponential mean is 0 = TIT/r, where
TTT is the total time on test and r is the number of failures.

It follows that

V Avar(6) n °
~= 1N s s
0 92L(6 _ _te
E [_Wg)] 1 —exp ( 9)
from which
. Ve 1
\V/ " =Y = = 2.5415.
a® T (6912 T 1 exp (—£5%)

Thus the number of needed specimens is

2(21—04/2)\/%2,(@) _ (1.96)22.5415 N
[log(Rp)]? [log(1.5)]?

n =

~Y 60.
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Location-Scale Distributions and
Single Right Censoring Asymptotic
Variance-Covariance

Here we specialize the computation of sample sizes to sit-
uations in which

log(T") is location-scale & with parameters (u, o).

When the data are Type I singly right censored at t.. In
this case,

n 1 | V» Vi~ A 2 -1
s = — | Va (1) | — |9 _ | Ji1 Jfi2

_ < 1 )[ f22 —f12]
fiifao — f3) | —fi2 Jfia

where the fz-j values depend only on & and the standard-
ized censoring time (. = [log(t:) — u]/o [or equivalently, the
proportion failing by t., ®({.)].
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Location-Scale Distributions
and Single Right Censoring
Fisher Information Elements

The f;; values are defined as:

2 70 2~ -

fi1=f11(¢) = —E _9 le(g,a)

n | O |

o [ 9%Li(p, o)

f22 = f22(6) = “E - 8(5'/; )_

= _ o[ 9°Li(p,0)]
fi2 = f12(le) = ;E —Bnoe

The f;; values are available from tables or algorithm LSINF
for the SEV (Weibull), normal (lognormal), and logistic (loglo-
gistic) distributions.

For a single fixed censoring time, the asymptotic variance-

- 1 1 1 ,
covariance factors V#, GQVJ, and GQV(W,) are easily tabu

2
o

lated as a function of (.
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Table of Information Matrix Elements
and Variance Factors

Table C.20 provides for the normal/lognormal distributions,
as functions of the standardized censoring time (¢:

1009 (¢{.), the percentage in the population failing by the
standardized censoring time.

Fisher information matrix elements fi11, foo, and fqio.

The asymptotic variance-covariance factors 0—12Vﬁ, iVA,
1
and 5V (ig):

Asymptotic correlation P(5,5) between u and o.

The o-known asymptotic variance factor %Vmg
1

and the p-known factor Vg, = nAvar(o).

= nAvar(n),
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Large-Sample Asymptotic Variance for Estimators of
Functions of Location-Scale Parameters

It is straightforward to compute asymptotic variance factors
for functions of parameters. For example, when g = g(ji, o)

2

2
Avar(g) = [g—Z] Avar(ﬁ)—l—[?—i] Avar(c)+2 [ag] [(‘99

Acov(u, o
5 80] (,5)

1\ 2
Avarl[log(g)] = <§> Avar(g).

Thus
2 2
dg 89] dg lag]
Vo = |2 Va4 |=2| Va+42 Vi~
9 lﬁu] at [80 5T lﬁu] do | (H:9)
1\ 2
Viog(d) = (;) Vg Vexp(y) = exp(29)Vj
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Sample Size to Estimate a Quantile of T
when log(T) is Location-Scale (u,o0)

e Let g(0) = tp be the p quantile of T. Then log(tp) = pu +
d~1(p)o, where @~ 1(p) is the p quantile of the standardized
random variable Z = [log(T") — u]/o.

e From the previous results, n is given by

2 O
z(l—a/Q)vlog(tAp)

[log(R7)]?
where Vl%g(?p) IS obtained by evaluating
2
Vig(y) = {Va+ [@710)] Vo +2 (0710 Vi) |

at 0° = (u”,0"),¢2 = [log(te) — u"1/c".

o Figure 10.5 gives —5V o4z ) as @ function of pe = Pr(Z < ()
for the Weibull distribution. To obtain n one also needs to
specify ® and a target value Ry for R=g/g =g/9= /g9/9.

10-27



Sample Size Needed to Estimate ¢t of a Weibull
Distribution Used to Describe Insulation Life

e Again expect about 20% failures in the 1000 hour test and
129% failures in the first 500 hours. Equivalent information:
p= =8.774, c© = 1.244 (or - =1/1.244 = .8037).

e Need a test plan that will estimate the Weibull .1 quantile
(so p = .1) such that a 95% confidence interval will have
endpoints that are approximately 50% away from the esti-
mated mean (so Ry = 1.5). For a 1000-hour test, p. = .2.

e By computing from tables and formula or from Figure 10.5,
1 o O _ 2 _
?vlog(tp) = 7.28 SO Vlog(fp) = 7.28 x (1.244)< = 11.266.
2 O
_ #—a/2)Viog(i1) _ (1.96)%(11.266)

e DI log(15)]2 2%
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Variance Factor 0—12V,Og(fp) for ML Estimation of
Weibull Distribution Quantiles as a Function of p., the
Population Proportion Failing by Time ¢, and p, the
Quantile of Interest (Figure 10.5)
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Variance Factor 0—12V,Og(fp) for ML Estimation of
Lognormal Distribution Quantiles as a Function of p.,
the Population Proportion Failing by Time ¢t. and p,
the Quantile of Interest (Figure 10.6)
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Figures for Sample Sizes to Estimate Weibull,
Lognormal, and Loglogistic Quantiles

Figures give plots of the factor %vlog(fp) for quantile of in-
terest p as a function of p = Pr(Z < (.) for the Weibull,
lognormal, and loglogistic distributions. Close inspection of

the plots indicates the following:

e Increasing the length of a life test (increasing the expected
proportion of failures) will always reduce the asymptotic
variance. After a point, however, the returns are diminish-

ing.

e Estimating quantiles with p large or p small generally results
in larger asymptotic variances than quantiles near to the
expected proportion failing.
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Generalization: Location-Scale Parameters and
Multiple Censoring

In some applications, a life test may run in parts, each part having a
different censoring time (e.g., testing at two different locations or be-

ginning as lots of units to be tested are received). In this case we need
to generalize the single-censoring formula. Assume that a proportion 9;
(Zf’:l d; = 1) of data are to be run until right censoring time t. or failure
(which ever comes first). In this case,

ne o _ LIVe Vau|_|o,

_ 1 Joo  —J12
Jiljéz-—-J%Q “JiQ Jil

where Ji1 = S0 6 f11(20), Joo = S 8if2a(ze), and Jio = 2% i f12(2c)
where z., = (log(t.,) — u)/o.

In this case, the asymptotic variance-covariance factors %Vﬁ, %V;, and

%V@;) depend on &, the standardized censoring times z., and the pro-
portions é;,i = 1,...k.
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Test Plans to Demonstrate
Conformity with a Reliability Standard

Objective: to find a sample size to demonstrate with
some level of confidence that reliability exceeds a given
standard.

The reliability is specified in terms of a quantile, say tp.

T he customer requires demonstration that
tp >t}
where t;fg IS a specified value.

For example, for a component to be installed in a system
with a 1-year warranty, a vendor may have to demonstrate
that t g1 exceeds 24 x 365 = 8760 hours.

Equivalently, in terms of failure probabilities the reliability
requirement could be specified as

F(te) < pT-
For the example, t. = 8760 and p’ = .01.
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Minimum Sample Size
Reliability Demonstration Test Plans

In general the demonstration that ¢, > t}; is successful at
the 100(1 — )% level of confidence if ¢, > t;fg.

Suppose that failure-times are Weibull with a given 5. A
Minimum sample size test plan is one that has a particular
sample size n (depending on 38, «, p and amount of time
available for testing).

The minimum sample size test plan is: Test n units until ¢,
where n is the smallest integer greater than

1 log ()
K0 " 1og(1 — p)

and k = tc/t;fg.

If there is zero failures during the test the demonstration is
successful.
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Number of Units Tested with Zero Failures

Minimum Sample Size for a 99% Reliability

15 20 25 30
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Justification for the Weibull Zero-Failures Test Plan

Suppose that failure-times are Weibull with a given 8 and
zero failures during a test in which n units are tested until
te. Using the results in Chapter 8, to obtain 100(1 — a)%
lower bounds for n and t, are

3
|

1 1
Qntg g . nt? b
X(1—a:2) —log(a)

ty = nx[~log(1—p)]7.

e Using the inequality t, > t}; and solving for the smallest

integer n such that

s 1 y log ()

— kP log(1 - p)

gives the needed minimum sample size, where k = tc/t;fg.
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Justification for the Weibull Zero-Failures Test Plan
(Continued)

e For tests with k£ < 1, which implies extrapolation in time,
having a specified value of 3 greater than the true value is
conservative (the confidence level is greater than the nom-
inal).

e For tests with £ > 1 having a specified value of 3 less
than the true value is conservative (in the sense that the
demonstration is still valid).

e When k£ =1 the value of 3 does not effect the sample size.
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Additional Comments on Zero Failure Test Plans

e T he inequality tp > t;f? can be solved for n, k, B, or a. Zero-

failure test plans can be obtained for other failure-time dis-
tributions with only one unknown parameter.

e Zero-failure test plans can be obtained for for any distribu-
tion.

e [ he ideas here can be extended to test plans with one or
more failures. Such test plans require more units but provide
a higher probability of successful demonstration for a given

th>tp.
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Other Topics in Chapter 10

Uncertainty in planning values and sensitivity analysis.

Location-scale distributions and limited test positions.

Variance factors for location-scale parameters and batch
testing.

Test planning for non-location-scale distributions.

Sample size to estimate: unrestricted functions of the pa-
rameters, the mean of an exponential, the hazard function
of a location-scale distribution.
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