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Chapter 4

Location-Scale-Based Parametric Distributions

Objectives

• Explain importance of parametric models in the analysis of

reliability data.

• Define important functions of model parameter that are of

interest in reliability studies.

• Introduce the location-scale and log-location-scale families

of distributions.

• Describe the properties of the exponential distribution.

• Describe the Weibull and lognormal distributions and the

related underlying location-scale distributions.
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Motivation for Parametric Models

• Complements nonparametric techniques.

• Parametric models can be described concisely with just a

few parameters, instead of having to report an entire curve.

• It is possible to use a parametric model to extrapolate (in

time) to the lower or upper tail of a distribution.

• Parametric models provide smooth estimates of failure-time

distributions.

In practice it is often useful to compare various parametric

and nonparametric analyses of a data set.
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Functions of the Parameters

• Cumulative distribution function (cdf) of T

F(t; θ) = Pr(T ≤ t), t > 0.

• The p quantile of T is the smallest value tp such that

F(tp;θ) ≥ p.

• Hazard function of T

h(t; θ) =
f(t; θ)

1 − F(t; θ)
, t > 0.
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Functions of the Parameters-Continued

• The mean time to failure, MTTF, of T (also known as

expectation of T)

E(T) =
∫ ∞
0

tf(t; θ) dt =
∫ ∞
0

[1 − F(t; θ)] dt.

If
∫∞
0 tf(t; θ) dt = ∞, we say that the mean of T does not

exist.

• The variance (or the second central moment) of T and the

standard deviation

Var(T) =
∫ ∞
0

[t − E(T)]2f(t; θ) dt

SD(T) =
√

Var(T).

• Coefficient of variation γ2

γ2 =
SD(T)

E(T)
.
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Location-Scale Distributions

Y belongs to the location-scale family of distributions if the

cdf of Y can be expressed as

F(y;µ, σ) = Pr(Y ≤ y) = Φ
(

y − µ

σ

)
, −∞ < y < ∞

where −∞ < µ < ∞ is a location parameter and σ > 0 is a

scale parameter.

Φ is the cdf of Y when µ = 0 and σ = 1 and Φ does not

depend on any unknown parameters.

Note: The distribution of Z = (Y − µ)/σ does not depend

on any unknown parameters.
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Importance of Location-Scale Distributions

Importance due to:

• Most widely used statistical distributions are either mem-

bers of this class or closely related to this class of distribu-

tions: exponential, normal, Weibull, lognormal, loglogistic,

logistic, and extreme value distributions.

• Methods of inference, statistical theory, and computer soft-

ware generated for the general family can be applied to this

large, important class of models.

• Theory for location-scale distributions is relatively simple.
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Examples of Exponential Distributions
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Exponential Distribution

For T ∼ EXP(θ, γ),

F(t; θ, γ) = 1 − exp
(
− t − γ

θ

)

f(t; θ, γ) =
1

θ
exp

(
− t − γ

θ

)

h(t; θ, γ) =
f(t; θ, γ)

1 − F(t; θ, γ)
=

1

θ
, t > γ,

where θ > 0 is a scale parameter and γ is both a location and

a threshold parameter. When γ = 0 one gets the well-known

one-parameter exponential distribution.

Quantiles: tp = γ − θ log(1 − p).

Moments: For integer m > 0, E[(T − γ)m] = m! θm. Then

E(T) = γ + θ, Var(T) = θ2.

4 - 9



Motivation for the Exponential Distribution

• Simplest distribution used in the analysis of reliability data.

• Has the important characteristic that its hf is constant

(does not depend on time t).

• Popular distribution for some kinds of electronic compo-

nents (e.g., capacitors or robust, high-quality integrated

circuits).

• This distribution would not be appropriate for a population

of electronic components having failure-causing quality-defects.

• Might be useful to describe failure times for components

that exhibit physical wearout only after expected techno-

logical life of the system in which the component would be

installed.
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Examples of Normal Distributions
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Normal (Gaussian) Distribution

For Y ∼ NOR(µ, σ)

F (y;µ, σ) = Φnor

(
y − µ

σ

)

f(y;µ, σ) =
1

σ
φnor

(
y − µ

σ

)
, −∞ < y < ∞.

where φnor(z) = (1/
√

2π) exp(−z2/2) and Φnor(z) =
∫ z−∞ φnor(w)dw

are pdf and cdf for a standardized normal (µ = 0, σ = 1).

−∞ < µ < ∞ is a location parameter; σ > 0 is a scale param-

eter.

Quantiles: yp = µ+σΦ−1
nor(p) where Φ−1

nor(p) is the p quantile

for a standardized normal.

Moments: For integer m > 0, E[(Y − µ)m] = 0 if m is odd,

and E[(Y − µ)m] = (m)!σm/[2m/2 (m/2)!] if m is even. Thus

E(Y ) = µ, Var(Y ) = σ2.
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Examples of Lognormal Distributions
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Lognormal Distribution

If T ∼ LOGNOR(µ, σ) then log(T) ∼ NOR(µ, σ) with

F(t;µ, σ) = Φnor

[
log(t) − µ

σ

]

f(t;µ, σ) =
1

σt
φnor

[
log(t) − µ

σ

]
, t > 0.

φnor and Φnor are pdf and cdf for a standardized normal.

exp(µ) is a scale parameter; σ > 0 is a shape parameter.

Quantiles: tp = exp
(
µ + σΦ−1

nor(p)
)
, where Φ−1

nor(p) is the p

quantile for a standardized normal.

Moments: For integer m > 0, E(Tm) = exp
(
mµ + m2σ2/2

)
.

E(T) = exp
(
µ + σ2/2

)
, Var(T) = exp

(
2µ + σ2

) [
exp(σ2) − 1

]
.
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Motivation for Lognormal Distribution

• The lognormal distribution is a common model for failure
times.

• It can be justified for a random variable that arises from the
product of a number of identically distributed independent
positive random quantities.

• It has been suggested as an appropriate model for failure
time caused by a degradation process with combinations of
random rates that combine multiplicatively.

• Widely used to describe time to fracture from fatigue crack
growth in metals.

• Useful in modeling failure time of a population electronic
components with a decreasing hf (due to a small proportion
of defects in the population).

• Useful for describing the failure-time distribution of certain
degradation processes.
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Examples of Smallest Extreme Value Distributions
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Smallest Extreme Value Distribution

For Y ∼ SEV(µ, σ),

F(y;µ, σ) = Φsev

(
y − µ

σ

)

f(y;µ, σ) =
1

σ
φsev

(
y − µ

σ

)

h(y;µ, σ) =
1

σ
exp

(
y − µ

σ

)
, −∞ < y < ∞.

Φsev(z) = 1− exp[− exp(z)], φsev(z) = exp[z − exp(z)] are cdf

and pdf for standardized SEV (µ = 0, σ = 1). −∞ < µ < ∞
is a location parameter and σ > 0 is a scale parameter.

Quantiles: yp = µ + Φ−1
sev(p)σ = µ + log [− log(1 − p)]σ.

Mean and Variance: E(Y ) = µ − σγ, Var(Y ) = σ2π2/6,

where γ ≈ .5772, π ≈ 3.1416.
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Examples of Weibull Distributions
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Weibull Distribution

Common Parameterization:

F(t) = Pr(T ≤ t) = 1 − exp


−

(
t

η

)β



f(t) =
β

η

(
t

η

)β−1

exp


−

(
t

η

)β



h(t) =
β

η

(
t

η

)β−1

, t > 0

β > 0 is shape parameter; η > 0 is scale parameter.

Quantiles: tp = η [− log(1 − p)]1/β.
Moments: For integer m > 0, E(Tm) = ηmΓ(1+m/β). Then

E(T) = ηΓ

(
1 +

1

β

)
, Var(T) = η2

[
Γ

(
1 +

2

β

)
− Γ2

(
1 +

1

β

)]

where Γ(κ) =
∫ ∞
0

wκ−1 exp(−w)dw is the gamma function.

Note: When β = 1 then T ∼ EXP(η).
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Alternative Weibull Parameterization

Note: If T ∼ WEIB(µ, σ) then Y = log(T) ∼ SEV(µ, σ).

For T ∼ WEIB(µ, σ) then

F(t;µ, σ) = 1 − exp


−

(
t

η

)β

 = Φsev

[
log(t) − µ

σ

]

f(t;µ, σ) =
β

η

(
t

η

)β−1

exp


−

(
t

η

)β

 =

1

σt
φsev

[
log(t) − µ

σ

]

where σ = 1/β, µ = log(η), and

φsev(z) = exp[z − exp(z)]

Φsev(z) = 1 − exp[− exp(z)].

Quantiles:

tp = η [− log(1 − p)]1/β = exp
[
µ + σΦ−1

sev(p)
]

where Φ−1
sev(p) is the p quantile for a standardized SEV (i.e.,

µ = 0, σ = 1).
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Motivation for the Weibull Distribution

• The theory of extreme values shows that the Weibull dis-

tribution can be used to model the minimum of a large

number of independent positive random variables from a

certain class of distributions.

� Failure of the weakest link in a chain with many links

with failure mechanisms (e.g., creep or fatigue) in each

link acting approximately independent.

� Failure of a system with a large number of components in

series and with approximately independent failure mech-

anisms in each component.

• The more common justification for its use is empirical: the

Weibull distribution can be used to model failure-time data

with a decreasing or an increasing hf.
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Examples of Largest Extreme Value Distributions
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Largest Extreme Value Distribution

When Y ∼ LEV(µ, σ),

F(y;µ, σ) = Φlev

(
y − µ

σ

)

f(y;µ, σ) =
1

σ
φlev

(
y − µ

σ

)

h(y;µ, σ) =
exp

(
− y−µ

σ

)
σ
{
exp

[
exp

(
− y−µ

σ

)]
− 1

}, −∞ < y < ∞.

where Φlev(z) = exp[− exp(−z)] and φlev(z) = exp[−z−exp(−z)]

are the cdf and pdf for a standardized LEV (µ = 0, σ = 1)

distribution.

−∞ < µ < ∞ is a location parameter and σ > 0 is a scale

parameter.
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Largest Extreme Value Distribution - Continued

Quantiles: yp = µ − σ log [− log(p)] .

Mean and Variance: E(Y ) = µ + σγ, Var(Y ) = σ2π2/6,

where γ ≈ .5772, π ≈ 3.1416.

Notes:

• The hazard is increasing but is bounded in the sense that

limy→∞ h(y;µ, σ) = 1/σ.

• If Y ∼ LEV(µ, σ) then −Y ∼ SEV(−µ, σ).
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Examples of Logistic Distributions
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Logistic Distribution

For Y ∼ LOGIS(µ, σ),

F(y;µ, σ) = Φlogis

(
y − µ

σ

)

f(y;µ, σ) =
1

σ
φlogis

(
y − µ

σ

)

h(y;µ, σ) =
1

σ
Φlogis

(
y − µ

σ

)
, −∞ < y < ∞.

−∞ < µ < ∞ is a location parameter; σ > 0 is a scale param-

eter.

φlogis and Φlogis are pdf and cdf for a standardized logistic

distribution defined by

φlogis(z) =
exp(z)

[1 + exp(z)]2

Φlogis(z) =
exp(z)

1 + exp(z)
.
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Logistic Distribution-Continued

Quantiles: yp = µ + σΦ−1
logis(p) = µ + σ log

(
p

1−p

)
, where

Φ−1
logis(p) = log[p/(1 − p)] is the p quantile for a standardized

logistic distribution.

Moments: For integer m > 0, E[(Y − µ)m] = 0 if m is odd,

and E[(Y − µ)m] = 2σm (m!)
[
1 − (1/2)m−1

]∑∞
i=1(1/i)m if m

is even. Thus

E(Y ) = µ, Var(Y ) =
σ2π2

3
.
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Examples of Loglogistic Distributions
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Loglogistic Distribution

If Y ∼ LOGIS(µ, σ) then T = exp(Y ) ∼ LOGLOGIS(µ, σ)

with

F(t;µ, σ) = Φlogis

[
log(t) − µ

σ

]

f(t;µ, σ) =
1

σt
φlogis

[
log(t) − µ

σ

]

h(t;µ, σ) =
1

σt
Φlogis

[
log(t) − µ

σ

]
, t > 0.

exp(µ) is a scale parameter; σ > 0 is a shape parameter.

Φlogis and φlogis are cdf and pdf for a LOGIS(0,1).

4 - 29



Loglogistic Distribution-Continued

Quantiles: tp = exp
[
µ + σΦ−1

logis(p)
]

= exp(µ) [p/(1 − p)]σ.

Moments: For integer m > 0,

E(Tm) = exp(mµ) Γ(1 + mσ) Γ(1 − mσ).

The m moment is not finite when mσ ≥ 1.

For σ < 1,

E(T) = exp(µ)Γ(1 + σ) Γ(1 − σ),

and for σ < 1/2,

Var(T) = exp(2µ)
[
Γ(1 + 2σ) Γ(1 − 2σ) − Γ2(1 + σ)Γ2(1 − σ)

]
.
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Other Topics in Chapter 4

Pseudorandom number generation.
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Topics in Chapter 5

• Parametric models with threshold parameters.

• Important distributions used in reliability that can not be

translated into location-scale distributions: gamma, gener-

alized gamma, etc.

• Finite (discrete) mixture distributions

F(t; θ) = ξ1F1(t; θ1) + · · · + ξkFk(t; θk)

where ξi ≥ 0, and
∑

i ξi = 1

• Compound (continuous) mixture distributions.

If failure-times of units in a population are EXP(η) with

1/η ∼ GAM(θ, κ), then the unconditional failure time, T , of

a unit selected at random from the population has a Pareto

distribution of the form

F(t; θ, κ) = 1 − 1

(1 + θt)κ
, t > 0.
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