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Degradation Data, Models, and Data Analysis
Chapter 13 Objectives

Describe a number of useful degradation reliability models.

Show the connection between degradation reliability models
and failure-time reliability models.

Show how degradation measures, when available, can be
used to advantage in estimating reliability.

Present methods of data analysis and reliability inference
for degradation data.

Compare degradation data analysis with traditional failure
time data analysis.
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Fatigue Crack Size Observations for Alloy-A

(Bogdanoff & Kozin 1985)
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Alloy-A Fatigue Crack-Size Data

e Data from Hudak, Saxena, Bucci, and Malcolm (1978) and
Bogdanoff and Kozin (1985, page 242).

e Suppose investigators wanted to:
» Estimate materials-related crack growth parameters.

» Estimate time (measured in number of cycles) at which
50% of the cracks would reach 1.6 inches.

» Assess adequacy of the paris model.
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Degradation Data

Sometimes possible to measure degradation directly over
time

» Continuously.

» At specific points in time.

Degradation is natural response for some tests.

Degradation data can provide considerably more reliability
information than censored failure-time data (especially with
few or no failures).

Direct observation of the degradation process allows direct
modeling of the failure-causing mechanism.
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Degradation Leading to Failure

Most failures can be traced to an underlying degradation
process.

Degradation curves can have different shapes.

Failure occurs when degradation crosses a threshold .

Some applications have more than one degradation variable
or more than one underlying degradation process.

Examples here have only one degradation variable and un-
derlying degradation process.
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Possible Shapes for Univariate Degradation Curves
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Possible Shapes for Univariate Degradation Curves

e Linear degradation: Degradation rate

dD(t) _
dt
is constant over time. Degradation level at time ¢, D(t) =
D(0) + C x t, is linear in t. Examples include: amount
of automobile tire tread wear and mechanical wear on a
bearing.

e Concave degradation: Degradation rate decreasing in time.
Degradation level increasing at a decreasing rate. Exam-
ples include chemical processes with a limited amount of
material to react.

e Convex degradation: Degradation rate increasing in time.
Degradation level increasing at an increasing rate. Exam-
ples include crack growth.
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Paris Crack Growth Model

The paris model is

da(t)
dt
iIs a commonly used model to describe the growth of fatigue
cracks over some range of size.

=C x [AK(a)]™

C > 0 and m > 0 are materials properties

AK(a), the stress intensity function of a. Form of K(a)
depends on applied stress, part dimensions, and geometry.

To model a two-dimensional edge-crack in a plate with a
crack that is small relative to the width of the plate (say

less than 3%), K(a) = Stressy/ma and the solution to the
resulting differential equation is

( 2
[{a(0)}1™/2 + (1 —m/2) x C x (Stressy/m)™ x t]2—m , m# 2

a(t) = |

| a(0) x exp [C x (Stressy/7)? x t], m = 2
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Crack Size (mm)

Paris Model with no Variability
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Paris Model with Unit-to-Unit Variability in Initial
Crack Size but with Fixed Materials Parameters and
Constant Stress
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Models for Variation in Degradation and Failure Time

If all manufactured units were identical, operated at exactly
the same time, under exactly the same conditions, and in
exactly the same environment, and if every unit failed as it
reached a particular critical level of degradation, then all
units would fail at exactly the same time.

e Need to identify and model important sources of variability
in the degradation process.

e Quantities that might be modeled as random include:

» Initial conditions (flaw size, amount of material).
» Materials parameters (related to degradation rate).

» Level of degradation at which unit will fail.

e Stochastic process variability (e.g., stress of other environ-
mental variables changing over time).
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Paris Model with Unit-to-Unit Variability in the Initial
Crack Size and Materials Parameters but
Constant Stress
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Paris Model with Unit-to-Unit Variability in the Initial
Crack Size and Materials Parameters and
Stochastic Stress
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Limitations of Degradation Data

Degradation data may be difficult or impossible to obtain
(e.g., destructive measurements).

Obtaining degradation data may have an effect on future
product degradation (e.g., taking apart a motor to measure
wear).

Substantial measurement error can diminish the information
in degradation data.

Analyses more complicated; requires statistical methods not
yvet widely available.
(Modern computing capabilities should help here)

Degradation level may not correlate well with failure.
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Percent Increase in Operating Current
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Percent Increase in Operating Current
for GaAs Lasers Tested at 80°C
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General Degradation Path Model

D;; = D(ti5, B1i,- - - Brs) IS the degradation path for unit 7 at
time ¢ (measured in hours, cycles, etc.).

Observed sample degradation path of unit ¢z at time t; IS

yU:DZ]—I-GU, z'=1,...,’n,, j=1,...,mi

Residuals ¢;; ~ NOR (0, 0¢) describe a combination of mea-
surement error and model error.

For unit 2, 314, ..., 08k; IS @ vector of £ unknown parameters.
Some of the 31, ..., Br; are random from unit to unit. Model
appropriate function of 3q1;,..., Br; with multivariate normal

distribution (MVN) with parameters ug and > g3.
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Crack Size (inches)

Alloy-A Fatigue Crack Size Observations and
Fitted Paris-Rule Model
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Estimation of Degradation Model Parameters

The likelihood for the random-parameter degradation model
IS L(y,ﬁ, Z,@? O‘€| DATA)

-1/ L

where ;5 = [y;;—D(tj, B1is - - -, Bri)l/oe and fg(Biiy - - s Bris 1@ Z3)
is the multivariate normal distribution density function.

m; 1
11 G%Or(@j)] F8(Buis - Bris g, Zp)dBuis . . ., B
o

Each evaluation of L(ug, > 3,0 DATA) will, in general, re-
quire numerical approximation of n integrals of dimension
k.

Maximization of L(MB,ZB,O'E|DATA) computationally diffi-
cult.

We use the Pinheiro and Bates (1995b) S-PLUS software
for the Lindstrom and Bates (1990) approximate ML to do
the fitting.
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Estimates of Fatigue Data Model Parameters for
Alloy-A

The program of Pinheiro and Bates (1995b) gives the fol-
lowing approximate ML estimates.

[ 5.17 s _( 251 —.194
U=\ 373 |’ B=\ 194 519

and o = .0034.
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Estimates 31, Versus 3-,, i = 1,...,21 and Contours for
the Fitted Bivariate Normal Distribution

Beta2
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Models Relating Degradation and Failure

e Soft failures: specified degradation level

» In some products there is a gradual loss of performance

(e.g., decreasing light output from a fluorescent light
bulb).

» Use fixed Df to denote the critical level for the degrada-
tion path.

e Hard failures: correlation between failure and degra-
dation level

» Loss of functionality.

» Random Ds. Use a joint distribution of Df and other
random parameters.
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Fatigue Crack Size Observations for Alloy-A

Failure Level
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Evaluation of F(t)

Direct evaluation of F(t): Closed forms available for sim-
ple problems (e.g., a single random variable and other spe-
cial cases).

Numerical integration: Useful for a small number of ran-
dom variables (e.g., 2 or 3).

FORM (first order) approximation: Rapid computation,
but uncertain approximation.

Monte Carlo simulation: General method. Needs much
computer time to evaluate small probabilities. Can use iIm-
portance sampling.

Estimate failure probabilities by evaluating at ML estimates.
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Evaluation of F(¢) by Numerical Integration

e The failure (crossing probability) can be expressed as

Pr(T <t)=F(t) = F(t,0g) = Pr[D(t, 51, ---,8) > Dsl.

e If (B1,03>) follows a bivariate normal distribution with pa-
rameters “617“ﬁ20§170§27%1,ﬁ2' then P(T < t)

00 Ds, t, — —
:/ Do 9(Ds,t, B1) M@251] 1 bror (ﬁl Mm) d61
oo ;

93561 o3 93,
where g(Ds,t,31) is the value of @, for given (31, that gives
D(t) = Dxs.

e Method generalizes to multivariate normal.
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A Simple Parametric Bootstrap Sampling Method

Actual Sample Data From _ A
Population or Process Simulated Censored Samples From  F(t; 6)
Population or Process . .
(Used to Estimate Model Parameters) (Draw B samples, each of size n)

, n units
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Confidence Intervals Based on Bootstrap Sampling

Simulate new sets of n censored sample paths, using the
ML estimates as if they were the true model. Repeat B
times.

Compute F*(t)1,..., F*(t)g, bootstrap estimates of F(¢).

Sort the B values F*(t)1,...,EF*(¢)g in increasing order giv-
ing F*(t)[b],b: 1,...,B.

Lower and upper bounds of pointwise 100(1 — )% confi-
dence intervals for the distribution function F(t¢) are

[F @, F (t)] = [F*Op,  F O]

where
I = ®nor [2®75:(¢) + Pror(a/2)], u = ®nor [2®75.(¢) + P (1 — a/2)]

and ¢g is the proportion of the B values of ﬁ*(t) that are
less than F'(t) (using ¢ = .5 is equivalent to the percentile
bootstrap method).
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Cumulative Probability
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Bootstrap Estimates of F'(t)




Degradation Estimate of F(¢) with Pointwise
Two-Sided 90% and 80% Bootstrap Bias-Corrected
Percentile Confidence Intervals, Based on the
Crack-Size Data Censored at t. = .12. The
Nonparametric Estimate of F'(t) Indicated by Dots
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Comparison with Traditional Failure Time Analyses

Lognormal distribution provides a good fit to the failure-
time data up to t. = .12, but not beyond.

Other commonly used parametric models, which fit almost
as well before t, = .12, do not do any better beyond t. =
12,

The degradation analysis provides a reasonable extrapola-
tion beyond t. = .12—uses information in censored obser-
vations more effectively.

Confidence intervals based on the degradation and failure-
time data have similar widths from .10 < t < .12. Degrada-
tion analysis has tighter bounds for ¢t > .12.

Degradation method provides a much tighter upper confi-
dence bound on the cdf in the lower tail of the failure-time
distribution.
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05 -

.02 —

.01

Lognormal Probability Plot and Lognormal
Distribution ML Estimate Based on the
Failure-Time Data Censored at ¢, = .12

Censoring time -»

[ T T T T ‘ T T T T ‘ T T T T ‘ T T T T T T T T ‘
0.08 0.09 0.10 0.11 0.12 0.13

Millions of Cycles

13-31



Lognormal Distribution ML Estimate, Pointwise 90%
Approximate Confidence Intervals, and Nonparametric
Estimate Based on the Censored Failure-Time Data
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Degradation and Failure-Time Data Analysis Based on
Data Censored at ¢, = .12 Million Cycles, Compared
with the Nonparametric Estimate
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Approximate Degradation Analysis

An alternative (but only approximately correct) method of
analyzing degradation data is as follows.

Do a separate analysis for each unit to predict the time
at which the unit will reach the critical degradation level
corresponding to failure.

These predicted failure times are called pseudo failure times.

The n pseudo failure times are analyzed as a complete
sample of failure times to estimate F'(¢).
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Approximate Degradation Analysis—Details

In detail, the method is as follows:

For the unit 7, use the sample path data (¢1,v;1), ...,
(tim;» Yim;) @and the path model

Yij = Dij T €5
to find the (conditional) ML estimate of 3, = (814, - - -, Bri).
say 3,. This can be done using nonlinear least squares.

Solve the equation D(t,Bi) = Ds for t and call the solution
t;.

Repeat the procedure for each sample path to obtain the
pseudo failure time t1,...,tn.

Do a single distribution analysis of the data ¢1,...,tn tO
estimate F'(¢).
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Approximate Degradation Analysis
Simple Linear Path

e For some simple degradation processes
D(t) = B1 + Bot.

e [ his model is sometime obtained after log transformations
on the sample degradation values or on the time scale or

both.
e In this case the pseudo times to failure are obtained from
e D — (1,
;= =
B2i

where
i (tig — ) X vy
> jetq (tij — )2
and t; and y; are the means of t;1,...,t;y, and yi1,. .., Yim,.
respectively.

B1i = y; — Boi X t;, Bo; =
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Approximate Degradation Analysis
Simple Linear Path Through the Origin

e For some degradation processes, all paths start at the origin
(t;1 = 0,y;,1 = 0). If, in addition, the degradation rate is
constant, then the degradation path has the form

D(t) = Bot.

e [ hen the pseudo times to failure are obtained from
. D
B2;
where
Sy tij X Yy

P2i = ST 42,
J=1"1y
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Laser Life Data

e Percentage increase in operating current for GaAs lasers
tested at 80°C.

e Fifteen (15) devices each measured every 250 hours up to
4000 hours of operation.

e For these devices and the corresponding application, a Df =
10% increase in current was the specified failure level.
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Laser Life Analysis

e The failure times (for paths exceeding Df = 10% increase
in current before 4000 hours) and the pseudo failure times
were obtained by fitting straight lines through the data for
each path.

e [ hese pseudo times to failure are 3702, 4194, 5847, 6172,
5301, 3592, 6051, 6538, 5110, 3306, 5326, 4995, 4721,
5689, and 6102 hours.

e One can use methods from Chapters 6 and 8 to obtain the
Weibull probability plot of these pseudo failure times with
the corresponding ML estimate for F(t).
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Weibull Probability Plot of the Laser Pseudo Times to
Failure Showing the ML Estimate of F(¢) and
Approximate 95% Pointwise Confidence Intervals
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Comments on the Approximate Degradation Analysis

The approximate method may give adequate results if

The degradation paths are relatively simple.

The fitted path model is approximately correct.

There are enough data for precise estimation of the 3, pa-
rameters for each device.

The amount of measurement error is small.

There is not too much extrapolation in predicting the tAZ
times to failure.
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Potential Problems With the Approximate
Degradation Analysis

e The method ignores the prediction error in t and does
not account for measurement error in the observed sam-
ple paths.

e [ he distributions fitted to the pseudo times to failure will
not, in general, correspond to the distribution induced by
the degradation model.

e Some of the sample paths may not contain enough infor-
mation to estimate all of the path parameters (e.g., when
the path model has an asymptote but the sample path has
not begun to level off).

This might necessitate fitting different models for different
sample paths in order to predict the crossing time.
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Other Topics in Chapter 13

Autocorrelation in degradation data.

More details on methods of evaluating F(t).

More details on ML estimation of degradation parameters.

More details on the bootstrap method.

Accelerated degradation analysis covered in Chapter 21.
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