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Parametric Maximum Likelihood: Other Models

Chapter 11 Objectives

• ML estimation for the gamma and the extended generalized

gamma (EGENG) distributions.

• ML estimation for the BISA, IGAU, and GOMA distribu-

tions.

• ML estimation for the limited failure population model.

• ML estimation for truncated data (or data from truncated

distributions)

• ML estimation for threshold-parameter distributions like the

3-parameter lognormal and the 3-parameter Weibull distri-

butions (using generalized threshold-scale or GETS distri-

bution)
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Fitting the Other Distributions and Models

• Likelihood principles similar to location-scale distributions.

L(θ) =
n∏

i=1

Li(θ; datai) =
n∏

i=1

[f(ti; θ)]δi [1 − F(ti;θ)]1−δi

where datai = (ti, δi),

δi =

{
1 if ti is an exact failure
0 if ti is a right censored observation

and F(ti;θ) and f(ti;θ) are the specified distribution’s cdf

and pdf, respectively.

• For some non-location-scale distributions (e.g. GETS) the

density approximation breaks down and one should use the

actual interval probability instead.

• Left censored and interval censored observations also could

be included, as described in Chapter 2.
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Confidence Intervals

for Other Distributions and Models

Confidence intervals and regions similar to location-scale dis-

tributions.

• Normal approximation confidence intervals (using the delta

method and appropriate transformations) are simple and are

adequate in large samples or for rough approximations.

• Profile likelihood and corresponding intervals provide use-

ful insight into the information available about a particular

parameter or functions of parameters.

• Bootstrap and simulation-based intervals will generally pro-

vide confidence intervals with excellent approximations to

nominal coverage probabilities, but will require more com-

puter time (and may not be available in commercial soft-

ware).
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Lognormal Probability Plot of the Bearing Failure

Data, Comparing ML Estimates of the Gamma,

Lognormal and Weibull Distributions. Approximate

95% Pointwise Confidence Intervals for the Gamma

Cdf are Also Shown
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Fitting the Gamma Distribution

• Scale and shape parameter estimated.

• For the bearing data, the gamma, lognormal and Weibull

distributions are similar over the range of the data.
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Fitting the Extended Generalized Gamma (EGENG)
Distribution

• T ∼ EGENG(µ, σ, λ)

• Special cases: Weibull (λ = 1), Lognormal (λ = 0), and
Gamma (θ = λ2 exp(µ), σ = λ, κ = 1/(λ)2.

• A more flexible curve for the data

• Can use EGENG to see if there is evidence for one distri-
bution over the other

• For the bearing data, the EGENG distribution provides a
compromise between lognormal and Weibull.

• The EGENG, lognormal and Weibull agree well within the
range of the data. Important deviations in the lower tail of
the distribution illustrate the danger or extrapolation.

• The profile likelihood shows that the data do not, in this
case, provide strong evidence for one distribution over the
other.
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Weibull Probability Plot of the Bearing Failure Data

Showing Exponential, Weibull, Lognormal, and

Generalized Gamma ML Estimates of F(t)
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Profile Likelihood Plot for EGENG λ for the Bearing

Failure Data Showing Weibull and Lognormal

Distributions as Special Cases
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Lognormal Probability Plot of the Fan Failure Data

Showing Generalized Gamma ML Estimates and

Corresponding Approximate 95% Pointwise

Confidence Intervals for F(t) Along with Exponential,

Weibull, and Lognormal ML Estimates of F(t)
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Fitting the EGENG Distribution to the Fan Data

• Only 12 failures out of 70 units (multiple censoring).

• Lognormal fits the data well. Weibull and exponential also

fit the data reasonably well. Can EGENG do better?

• The EGENG has a larger likelihood than the other distribu-

tions, but the difference is statistically unimportant.

• Comparison shows that the position of the smallest obser-

vation does not have much influence on the fit (small order

statistics have a large amount of variability).

• Fitting a 3-parameter distribution to 12 failures is overfit-

ting.
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Profile Likelihood Plot for EGENG λ for the Fan

Failure Data Showing Weibull and Lognormal

Distributions as Special Cases
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Fitting the BISA and IGAU Distributions

• Distributions motivated by similar degradation models

� Inverse-Gaussian (IGAU) based on time of first crossing

of a threshold for a continuous-time Brownian motion

process with drift.

� Birnbaum-Saunders (BISA) based on discrete-time growth

of fatigue cracks until fracture.

• For some values of their parameters, these distributions are

very similar to each other and to the lognormal distribution.
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Lognormal Probability Plot of Yokobori’s Fatigue

Failure Data on Cylindrical Specimens at 52.658 ksi

Showing Lognormal, BISA and IGAU Distribution

ML Estimates
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Weibull Probability Plot of

Integrated Circuit Failure-Time Data

with ML Estimates of the Weibull/LFP Model

After 1370 Hours and 100 Hours of Testing
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Limited Failure Population (LFP) Model

• Only a small proportion (p) of the population is susceptible

to failure.

• The Weibull/LFP model is

Pr(T ≤ t) = pF(t;µ, σ) = pΦsev

[
log(t) − µ

σ

]
.

Similar for lognormal or other distributions.

• ML methods work. The likelihood has the form

L(µ, σ, p) =
n∏

i=1

{
p

σ
φsev

[
log(ti) − µ

σ

]}δi

×
{
1 − pΦsev

[
log(ti) − µ

σ

]}1−δi

.

Need to test until a high proportion (e.g. 90% or more)

of the susceptible subpopulation has failed. See Meeker

(1987) for more details.
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Approximate Joint Confidence Regions For the LFP

Parameters p and log(σ) Based on a Two-Dimensional

Profile Likelihood After 100 Hours of Testing
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Comparison of Profile Likelihoods for p,

the LFP Proportion Defective,

After 1370 and 100 Hours of Testing
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Relationship Between Wald and Profile

Likelihood-Based Confidence Regions/Intervals

Result: Using the Wald (normal-theory) based interval is

equivalent to using a quadratic approximation to the loglike-

lihood profile.

• See Meeker and Escobar (1995) for proof.

• Likelihood-based interval does not depend on transforma-

tion.

• Simulation and some theory suggests that the likelihood-

based interval provides a better asymptotic approximation.

• Interval for the LFP parameter provides an extreme example

of where the quadratic approximation breaks down.
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Analysis of Truncated Data

Some relevant topics in the analysis of truncated data in-

clude:

• Importance of distinguishing between truncated data and

censored data.

• Nonparametric estimation with left-truncated data.

• ML estimation with left-truncated data.

• Nonparametric estimation and ML estimation with right

(and left) truncated data.
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Distribution of Brake Pad Life

from Observational Data

• Pad wear (W as a proportion of wear at the end of life)

was measured and distance driven (V in thousands of km)

was recorded on automobiles that came in for service. Data

from Kalbfleisch and Lawless (1992).

• Time of failure for each pad was imputed from the observed

wear rate as Y = V/W .

• Units having already had a pad replacement were omitted

from the data. Thus, high-rate units are under represented

in the sample.

• To analyze the data, each unit can be viewed as having

been left-truncated at its observation time (if it had failed

before its observation time, we would not know of the unit’s

existence because it would have been omitted from the sam-

ple).
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Weibull Probability Plot of the Nonparametric

Estimate of Brake Pad Life, Conditional on Failure

After 6.951 Thousand km
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Weibull Probability Plot of the Weibull-Adjusted

Nonparametric Estimate of Brake Pad Life Distribution
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IC Failure Data from a Limited Failure Population

• Of the n =4,156 integrated circuits tested, there were 25

failures in the first 100 hours of testing.

• The number of susceptible units in the sample is unknown.

• The 25 failures can be viewed as a sample from a distribu-

tion truncated on the right at 100 hours.
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Lognormal Probability Plot of the Nonparametric

Estimate of the IC Failure-Time Distribution

Conditional on Failure Before 100 Hours
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Lognormal Probability Plot of the Lognormal-Adjusted

(Unconditional) Nonparametric Estimate of the IC

Failure-Time Distribution
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Three-Parameter Weibull and Lognormal Distributions

• Let γ be the threshold parameter. Then

F(t;µ, σ, γ) = Φ

[
log(t − γ) − µ

σ

]

f(t;µ, σ, γ) =
1

σ(t − γ)
φ

[
log(t − γ) − µ

σ

]

for t > γ. Φsev and φsev are used for the Weibull distribution

and Φnor and φnor are used for the lognormal distribution.

• Similarly, a threshold parameter can be added to other dis-

tributions for positive random variables.
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Inferences for 3-Parameter Weibull or Lognormal

Distributions Assuming that Threshold γ is Known

• If γ can be assumed to be known, we can subtract γ from

all times and fit the two-parameter Weibull distribution to

estimate µ and σ.

• Need to adjust inferences accordingly (e.g., add γ back into

estimates of quantiles or subtract γ from times before com-

puting probabilities).

• Similar methods can be used for other distributions for pos-

itive random variables.

• ML works if used correctly.
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Fitting the Three-Parameter Weibull Distribution

Likelihood with Unknown Threshold γ

Two possible problems with ML that need to be avoided

• If the smallest observation is an exact failure, there may be

paths in the parameter space leading to infinite likelihood

when the density approximation likelihood is used.

Using the correct likelihood will allow one to avoid this

problem.

• For some data sets the ML estimate of σ will approach 0

(on the boundary of the parameter space).

This problem can be avoided by extending to the parameter

space to allow values of σ ≤ 0. For the 3-parameter Weibull

(lognormal), use the SEV (NORM) GETS distribution.
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SEV-GETS, NOR-GETS, and LEV-GETS pdfs with

α = 0, σ = −.75,0, .75, and ς = .5 (Least Disperse), 1,

and 2 (Most Disperse)
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Density Approximation Profile Likelihood for γ and

3-Parameter Lognormal Probability Plots of the Fan

Data with γ Varying Between −100 and 449.999

-100 100 300

-1
34

.6
-1

34
.0

Threshold Profile

Threshold Parameter Gamma

lo
gn

or
m

al
  L

og
lik

el
ih

oo
d

.005

.01

.02

.05

.1

.2

.3

  500  2000 10000

P
ro

po
rt

io
n 

F
ai

lin
g

γ = -100

•

•
•
••

••
• •

•

.005

.01

.02

.05

.1

.2

.3

  200  1000  5000

P
ro

po
rt

io
n 

F
ai

lin
g

γ = 0

•

•
•
••

••
••

•

.005

.01

.02

.05

.1

.2

.3

  100   500  5000

P
ro

po
rt

io
n 

F
ai

lin
g

γ = 300

•

•
•
••

••
••

•

.005

.01

.02

.05

.1

.2

.3

   50   500  5000

P
ro

po
rt

io
n 

F
ai

lin
g

γ = 380

•

•
•
••

••
••

•

.005

.01

.02

.05

.1

.2

.3

10-2 100 102 104

P
ro

po
rt

io
n 

F
ai

lin
g

γ = 449.99

•

•
•
••
••
••
•

11 - 31



Correct Likelihood (∆ = .01) Profile Likelihood for γ

and 3-Parameter Lognormal Probability Plots Of The

Fan Data with γ Varying Between −100 and 449.999
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Lognormal Probability Plot Comparing ML Estimates

Three-Parameter Lognormal and Three-Parameter

Weibull Distributions for the Turbine Fan Data
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Fitting the 3-Parameter Lognormal and 3-Parameter

Weibull Distributions to the Fan Data

• Only 12 failures out of 70 units (multiple censoring).

• 2-parameter Lognormal fits the data well. Weibull and ex-

ponential also fit the data reasonably well. Can 3-parameter

distributions do better?

• For the 3-parameter distributions, the density approxima-

tion breaks down. One should use the correct likelihood.

• ML suggests that there is a positive threshold, but the level

of improvement is statistically unimportant.

• Fitting a 3-parameter distribution to 12 failures is overfit-

ting.
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Lognormal Probability Plot Comparing

Three-Parameter Lognormal and Three-Parameter

Weibull Distributions for the Alloy T7987 Data
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Three-Parameter Weibull Distribution

• Let γ be the threshold parameter. Then

F(t;µ, σ, γ) = Φsev

[
log(t − γ) − µ

σ

]

f(t;µ, σ, γ) =
1

σ(t − γ)
φsev

[
log(t − γ) − µ

σ

]

Both functions equal 0 for t < 0.

• Similar for the two-parameter exponential and three-parameter

lognormal.
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Inferences for 3-Parameter Weibull

Assuming that γ is Known

• If γ can be assumed to be known, we can subtract γ from

all times and fit the two-parameter Weibull distribution.

• Need to adjust inferences accordingly (e.g. add γ back

into estimates of quantiles or subtract γ from times before

computing probabilities).

• Similar for 3-parameter lognormal and 2-parameter expo-

nential.
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The Three-Parameter Weibull Distribution Likelihood

for Right Censored Data

• The likelihood has the form

L(µ, σ, γ) =
n∏

i=1

Li(µ, σ, γ; datai)

=
n∏

i=1

{f(ti;µ, σ, γ)}δi {1 − F(ti;µ, σ, γ)}1−δi

=
n∏

i=1

{
1

σ(ti − γ)
φsev

[
log(ti − γ) − µ

σ

]}δi

×
{
1 − Φsev

[
log(ti − γ) − µ

σ

]}1−δi

• Problem: when γ → t(1) and σ → 0, L(µ, σ, γ) → ∞.

• Solution: Do not use the density approximation; use the

correct likelihood (based on small intervals).
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