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Analysis of Recurrence Data

Chapter 16 Objectives

• Describe typical data from repairable systems and other

applications that have recurrence data.

• Explain simple nonparametric graphical methods for pre-

senting recurrence data.

• Show when system test data can be used to estimate the

reliability of individual components.

• Describe simple parametric models for recurrence data.

• Illustrate the combined use of simple parametric and non-

parametric graphical methods for making inferences from

recurrence data.
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Introduction

Recurrence data can be viewed as sequence of recurrences
T1, T2, . . . in time (a point-process). Data may be from one
or more than one observational unit.

In general the interest is on:

• The distribution of the times between recurrences, τj =
Tj − Tj−1 (j = 1,2, . . .) where T0 = 0.

• The number of recurrences in the interval (0, t] as a function
of t.

• The expected number of recurrences in the interval (0, t] as
a function of t.

• The recurrence rate ν(t) as a function of time t.
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Recurrence Data

• Recurrences (e.g., failures or replacements) are observed in

a fixed observation interval (0, ta].

• The data may be reported on several different ways.

� Single system or multiple systems.

� Exact recurrence times t1 < . . . < tr (tr ≤ ta) resulting

from continuous inspection in (0, ta].

� Number of interval censored recurrences d1, . . . , dm in the

intervals (0, t1], (t1, t2], . . . (tm−1, tm], (tm = ta) resulting

from inspections on (0, ta].
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Valve Seat Replacement Times Event Plot

(Nelson and Doganaksoy 1989)
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Valve Seat Replacement Times

(Nelson and Doganaksoy 1989)

Data collected from valve seats from a fleet of 41 diesel

engines (days of operation)

• Each engine has 16 valves

• Does the replacement rate increase with age?

• How many replacement valves will be needed in the future?

• Can valve life in these systems be modeled as a renewal

process?
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Multiple Systems - Data and Model

• Data: For a single system, N(s, t) denotes the cumulative
number of recurrences in the interval (s, t]. And N(t) =
N(0, t).

• Model: The mean cumulative function (MCF) at time t
is defined as µ(t) = E[N(t)], where the expectation is over
the variability of each system and the unit to unit variability
in the population.

• Assuming that µ(t) is differentiable,

ν(t) =
dE[N(t)]

dt
=

dµ(t)

dt
defines the recurrence rate per system (or average recur-
rence rate for a collection of systems).

• Some times the interest is on cost over time and µ(t) =
E[C(t)] is the average cumulative cost per unit in (0, t].
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Nonparametric Methods for Recurrence Data

Under the general cumulative recurrence model the non-

parametric analysis provides:

• Nonparametric estimate of the MCF µ(t).

• Nonparametric confidence interval for µ(t).

• Nonparametric confidence interval for the difference be-

tween two cumulative occurrence models.
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Nonparametric Estimate of a Population MCF

Definition and Assumptions

Here we present a nonparametric estimate of an µ(t). The

estimator is nonparametric in the sense that the method

does not require specification of a model for the point pro-

cess recurrence rate.

• Suppose that there is available a random sample (or entire

population) of n units generating recurrences.

• Suppose also that the time at which observation on a unit is

terminated is not systematically related to any factor related

to the recurrence time distribution.
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Nonparametric Estimate of MCF

Notation Conventions

• Ni(t) denotes the cumulative number of recurrences for the

unit i at time t.

• Let tij, j = 1, . . . , mi be the recurrence times for system i.

• Order all the recurrence times from smallest to largest and

collect the distinct recurrences times say t1 < . . . < tm.

• Let di(tj) the total number of recurrences for unit i at tj.

• Let δi(tj) = 1 if system i is still being observed at time tj
and δi(tj) = 0 otherwise.
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Estimation of the µ(t) with Multiple Systems

• µ̂(t) is constant between the tj’s and the estimate at tj is

µ̂(tj) =
j∑

k=1

[∑n
i=1 δi(tk)di(tk)∑n

i=1 δi(tk)

]
=

j∑
k=1

d·(tk)
δ·(tk)

=
j∑

k=1

d̄(tk), j = 1, . . . , m

where

d·(tk) =
n∑

i=1

δi(tk)di(tk), δ·(tk) =
n∑

i=1

δi(tk), d̄(tk) =
d·(tk)
δ·(tk)

• Note: d·(tk) is the total number of system recurrences at

time tk; δ·(tk) is the size of the risk set at tk; and d̄(tk) is the

average number of system recurrences at tk (or proportion

of recurrences if a system can have only one recurrence at

a time).

16 - 11



Estimate of Number of Valve Seat µ(t)
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Variance of µ̂(t)

• Suppose that the observation times are fixed. Then the

number of recurrences is random.

• Suppose that the systems are independent.

• Define d(tk) as the random variable that describes the num-

ber of system recurrences at tk for a system sampled at

random from the population of systems.

• Direct computations give

Var[µ̂(tj)] =
j∑

k=1

Var[d̄(tk)] + 2
j−1∑
k=1

j∑
v=k+1

Cov[d̄(tk), d̄(tv)]

=
j∑

k=1

Var[d(tk)]

δ·(tk)
+ 2

j−1∑
k=1

j∑
v=k+1

Cov[d(tk), d(tv)]

δ·(tk)
.
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Estimate of Var[µ̂(t)]

• To estimate Var[d(tk)], we use the assumption that di(tk),

i = 1, . . . , n is a random sample from d(tk).

The moment estimators are

V̂ar[d(tk)] =
n∑

i=1

δi(tk)

δ·(tk)
[di(tk) − d̄(tk)]

2

Ĉov[d(tk), d(tv)] =
n∑

i=1

δi(tv)

δ·(tv)
[di(tk) − d̄(tk)]di(tv).

• Plugging these into the variance formula, and after simpli-

fications, one gets

V̂ar[µ̂(tj)] =
j∑

k=1

V̂ar[d(tk)]

δ·(tk)
+ 2

j−1∑
k=1

j∑
v=k+1

Ĉov[d(tk), d(tv)]

δ·(tk)

=
n∑

i=1


j∑

k=1

δi(tk)

δ·(tk)
[
di(tk) − d̄·(tk)

]
2

.
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Comment on Other Estimates of Var[µ̂(t)]

• An alternative to the moments estimators of variances and

covariances, one can use (the slightly different) unbiased

estimators given by

V̂ar[d(tk)] =
n∑

i=1

δi(tk)

δ·(tk) − 1
[di(tk) − d̄(tk)]

2

Ĉov[d(tk), d(tv)] =
n∑

i=1

δi(tv)

δ·(tv) − 1
[di(tk) − d̄(tk)]di(tv).

• Using the unbiased estimates can result in a negative esti-

mate for Var[µ̂(t)].
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Simple Example for 3 Systems Data

Consider 3 systems with the following system failures and

censoring times

System System Censoring
Failures Time

1 5, 8 12
2 16
3 1, 8, 16 20

Then the collection of all system failures is

t1 = 1, t2 = 5, t3 = 8, t4 = 16
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Simple Example Estimation of µ(t)

• Point estimation:

j tj δ1 δ2 δ3 d1 d2 d3 δ· d· d̄ µ̂(tj)

1 1 1 1 1 0 0 1 3 1 1/3 1/3
2 5 1 1 1 1 0 0 3 1 1/3 2/3
3 8 1 1 1 1 0 1 3 2 2/3 4/3
4 16 0 1 1 0 0 1 2 1 1/2 11/6

• Estimation of variances:

V̂ar[µ̂(t1)] = [(1/3) ∗ (0 − 1/3)]2 + [(1/3)(0 − 1/3)]2 + [(1/3) ∗ (1 − 1/3)]2 = 6/81

Similar computations yield:

V̂ar[µ̂(t2)] = 6/81 = .0741

V̂ar[µ̂(t3)] = 24/81 = .296

V̂ar[µ̂(t4)] = 163/216 = .755
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Cylinder Replacement Data

• Cylinders in a type of diesel engine can develop leaks or

have low compression for some other reason.

• Such cylinders are replaced by a rebuild cylinder.

• Nelson and Doganaksoy provide replacement times on 120

engines.

• Each engine has 16 cylinders.

• More than one cylinder may be replaced at an inspection.

• Is preventive replacement of cylinders appropriate?

16 - 18



Cylinder Replacement Time Event Plot (Subset of

Systems)

(Nelson and Doganaksoy 1989)

0 500 1000 1500

Age in Days

S
ys

te
m

 ID

  806
  810
  814
  818
  822
  826
  830
  834
  838
  842
  846
  850
  854
  858
  862
  866
  869
  870
  874
  878
  882
  886
  890
  894
  898
  902
  906
  910
  914
  918
  922

16 - 19



Estimate of Mean Cumulative Replacement Function

for the Diesel Cylinders
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Estimation of µ(t) with Finite Populations

Sometimes with field data the number of systems is small

and the inference of interest is on the number of recurrences

and cost of those units.

• In this case, finite population methods are appropriate.

• The point estimator for µ(t) is the same. But to take in

consideration sampling from a finite population the follow-

ing estimates are used in computing V̂ar[µ̂(t)]:

V̂ar[d(tk)] =

[
1 − δ·(tk)

N

] n∑
i=1

δi(tk)

δ·(tk)
[di(tk) − d̄(tk)]

2

Ĉov[d(tk), d(tv)] =

[
1 − δ·(tv)

N

] n∑
i=1

δi(tv)

δ·(tv)
[di(tk) − d̄(tk)]di(tv)

where N is the total number of systems in the population

of interest.
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Breaking Grid Replacement Frequency Comparison

(Doganaksoy and Nelson 1991)

• A particular type of locomotive has six breaking grids.

• Data available on locomotive age when a breaking grid is

replaced and the age at the the end of the observation

period.

• A comparison between two different production batches of

breaking grids is desired.
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Comparison of MCFs for the Braking Grids from

Production Batches 1 and 2
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Difference µ̂1 − µ̂2 Between Sample MCFs for Batches

1 and 2 and Pointwise Approximate 95% Confidence

Intervals for the Population Difference
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Difference µ̂1 − µ̂2 Between Sample MCFs for

Production Batches 1 and 2 and a Set of Pointwise

Approximate 95% Confidence Intervals for the

Population Difference

• When there is a single system the point estimate µ̂(t) is the

number of system recurrences up to t.

• Due to the limited information (a sample of size one at each

recurrence time), the nonparametric estimate for V̂ar[µ̂(t)]

used in the multiple systems case can’t be used for single

systems.
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Nonparametric Comparison of
Two Samples of Recurrence Data

• Suppose that there are two independent samples of recur-
rence data with mean cumulative functions given by µ1(t)
and µ2(t), respectively.

• Let ∆µ(t) represent the mean cumulative difference at t.

• A nonparametric estimate of ∆µ(t) is

∆̂µ(t) = µ̂1(t) − µ̂2(t)

with estimated variance given by

V̂ar[∆̂µ(t)] = V̂ar[µ̂1(t)] + V̂ar[µ̂2(t)].

• An approximate 100(1 − α)% confidence interval for ∆µ(t)
is[
∆µ˜ , ∆̃µ

]
=
[
∆̂µ − z(1−α/2)ŝe∆̂µ

, ∆̂µ + z(1−α/2)ŝe∆̂µ

]
.
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Parametric Methods

for Analyzing Recurrence Data

Some important parametric models:

• Poisson processes:

� Homogeneous (HPP).

� Nonhomogeneous (NHPP).

• Renewal processes (RP).

• Superimposed renewal processes (SRP).

16 - 27



Poisson Processes

Poisson processes provide a simple parametric model for the
analysis of point-process recurrence data.

• A point process on [0,∞) is said to be a Poisson process if
it satisfies the following three conditions:

� N(0) = 0.

� The number of recurrences occurring on disjoint time
intervals are independent (independent increments).

� The recurrence rate, ν(t), is positive and such that µ(a, b) =
E[N(a, b)] =

∫ b
a ν(u)du < ∞, when 0 ≤ a < b < ∞.

• For a Poisson process, it follows that the number of re-
currences in (a, b], say N(a, b), is Poisson distributed with
pdf

Pr [N(a, b) = d] =
[µ(a, b)]d

d!
exp [−µ(a, b)] , d = 0,1, . . .
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Homogeneous Poisson Processes

A homogeneous Poisson process (HPP) is a Poisson pro-
cess with a constant recurrence rate, say ν(t) = 1/θ. In
this case:

• N(a, b) has a Poisson distribution with parameter µ(a, b) =
(b − a)/θ.

• The expected number of recurrences in (a, b] is µ(a, b) = (b−
a)/θ. Equivalently the expected number of recurrences per
unit time over (a, b] is constant and equal to 1/θ (stationary
increments).

• The times between recurrences, τj = Tj − Tj−1, are inde-
pendent and identically distributed each with an EXP(θ)
distribution. This follows directly from the relationship

Pr(τj > t) = Pr
[
N(Tj−1, Tj) = 0

]
= exp(−t/θ).

• Then the time to the kth recurrence has a GAM(θ, k) dis-
tribution.
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Nonhomogeneous Poisson Processes

A nonhomogeneous Poisson process (NHPP) is a Poisson

process with a nonconstant recurrence rate.

• In this case the times between recurrence are neither inde-

pendent nor identically distributed.

• The expected number of recurrences per unit time over

(a, b] is

µ(a, b)

b − a
=

1

b − a

∫ b

a
ν(u)du

• Model is often specified in terms of the recurrence rate ν(t).

• Here we suppose that ν(u) = ν(u; θ) is a known function of

an unknown vector of parameters θ.
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NHPP Power Recurrence Rate Model

• The power recurrence rate model is

ν(t; β, η) =
β

η

(
t

η

)β−1

, β > 0, η > 0.

• The corresponding mean cumulative number of recurrences

over (0, t] is

µ(t; β, η) =

(
t

η

)β

• β = 1 implies an HPP.
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NHPP Loglinear Recurrence Rate Model

• The loglinear recurrence rate is

ν(t; γ0, γ1) = exp(γ0 + γ1t).

• The corresponding mean cumulative number of recurrences

over (0, t] is

µ(t; γ0, γ1) =
exp(γ0)

γ1
[exp(γ1t) − 1]

• When γ1 = 0, ν(t; γ0,0) = exp(γ0) which implies an HPP.
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Renewal Processes

Definition: A sequence of recurrences T1, T2, . . . is a re-
newal process if the time between recurrences τj = Tj−Tj−1,
j = 1,2, . . . (T0 = 0) are independent and identically dis-
tributed.

To avoid trivialities we suppose that Pr(T1 = 0) �= 1.

• The HPP is a renewal process but the NHPP is not.

• Some questions of interest include:

� the distribution of the τj’s.

� the distribution of the time until the kth recurrence k =
1,2, . . . .

� the number of occurrences or renewals N(t) in the inter-
val (0, t] and the associated recurrence rate.

� prediction of future recurrences in a given time interval.
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Inferences with Data From a Renewal Process

• If a renewal process provides an adequate model for recur-

rences, the techniques for single distribution analysis can be

applied to model the times between recurrences.

• For example, Lognormal, Weibull, or other distribution used

in Chapters 4 - 5, 7 - 11 can be used in this case to model

the times between recurrences.
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Superimposed Renewal Processes (SRP)

• Definition: Consider a collection of n independent renewal
processes. The union of all the events from these processes
is a superimposed (SRP) renewal process.

• In general a SRP is not a renewal process (unless it is an
HPP).

• Drenick’s Theorem: Under mild regularity conditions, when
n is large and the system has run long enough to eliminate
transients, a SRP behaves as an HPP.

� this is a kind of central limit theorem for renewal pro-
cesses. And it is sometimes used to justify the use of the
exponential distribution to model times between system
failures in large repairable systems.

� large samples and long times needed for good approxi-
mations.
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Tools for Checking Point Process Assumptions

• Cumulative number of recurrences versus time (special case
of MCF plot with only one unit). Nonlinearity in this plot
indicates non-identically distributed interrecurrence times,
which for Poisson processes indicates a nonconstant recur-
rence rate.

• Plot of times between recurrences versus unit age or time
series plot of times between recurrences versus recurrence
number. Look for trends or cycles to indicate non-identically
distributed interrecurrences times.

• Plot of time between recurrences versus lagged time be-
tween recurrences to see if times between recurrences have
autocorrelation (a form of non-independence).

Data plots will also tend to reveal features of the data or
the process that might otherwise escape detection.
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Times of Unscheduled Maintenance Actions
for a USS Grampus Diesel Engine

• Unscheduled maintenance actions caused by failure of im-
minent failure.

• Unscheduled maintenance actions are inconvenient and ex-
pensive.

• Data available for 16,000 operating hours.

• Data from Lee (1980).

• Is the system deteriorating (i.e., are failures occurring more
rapidly as the system ages)?

• Can the occurrence of unscheduled maintenance actions be
modeled by an HPP?
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Cumulative Number of Unscheduled Maintenance

Actions Versus Operating Hours

for a USS Grampus Diesel Engine

Lee (1980)
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Times Between Unscheduled Maintenance Actions

Versus Maintenance Action Number for a USS

Grampus Diesel Engine
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Times Between Unscheduled Maintenance Actions

Versus Engine Operating Hours for a USS Grampus

Diesel Engine
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Assessing Independence of Times Between

Recurrences

Before modeling data as a Poisson process it is necessary to

check that the assumption of independent inter-recurrence

times is consistent with the data.

• Plot the times between recurrences τi versus τi+k for several

values of k. If times between recurrences are independent,

then these plots should not show any trend.

• The serial correlation coefficient of lag-k which is defined

as

ρk = Cov(τj, τj+k)/
√

Var(τj)Var(τj+k).
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Serial Correlation Estimate

• If τ1, . . . , τr are observed time between recurrences then

ρ̂k =

∑r−k
j=1(τj − τ̄)(τj+k − τ̄)√∑r−k

j=1(τj − τ̄)2
∑r−k

j=1(τj+k − τ̄)2

where

τ̄ =

∑r
j=1 τj

r
.

When ρk = 0 and r large
√

r − k × ρ̂k ∼̇ NOR(0,1) which is

used to assess deviations from 0.
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USS Grampus Diesel Engine
Plot of Times Between Unscheduled Maintenance

Actions Versus Lagged Times Between Unscheduled
Maintenance Actions
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Military Handbook Test (MIL-HDBk-189, 1981)

A simple method of testing β = 1 against β �= 1 in the power
recurrence rate model is based on the fact that under the
null hypothesis of an HPP and conditional on the number
of recurrences r

2r

β̂
∼ χ2

(2r)

This follows directly from the following:

• Under the assumption of a HPP and conditional on r

t1
ta

< . . . <
tr

ta
are distributed as the order statistics from a uniform in
(0,1).

• Then under the HPP model,

X2
MHB = −2

r∑
j=1

log(tj/ta) = 2r/β̂ ∼ χ2
(2r).
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Laplace Test for Trend

• Laplace’s test has a similar basis for testing for trend in the

log-linear recurrence rate NHPP model.

• In this case if the underlying process is HPP (γ1 = 0)

ZLP =

∑r
j=1 tj/ta − r/2√

r/12

follows a NOR(0,1) distribution.

• Values of ZLP in excess of z(1−α/2) provide evidence of a

nonconstant recurrence rate.

• This is a powerful test for testing HPP versus NHPP with

a log-linear recurrence rate.
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Lewis-Robinson Test for Trend

• Both X2
MHB and the ZLP test can give misleading results

when the renewal process is not an HPP.

• The Lewis-Robinson test for trend uses

ZLR = ZLP × τ̄

Sτ

where τ̄ and Sτ are, respectively, the sample mean and stan-

dard deviation of the times between recurrence.

• In large samples, ZLR follows approximately a NOR(0,1)

distribution if the underlying process is a renewal process.

• ZLR was derived from heuristic arguments to allow for non-

exponential times between recurrences by adjusting for a

different coefficient of variation

• Lawless and Thiagarajah (1996) indicate that ZLR is prefer-

able to ZLP as a general test of trend in point process data.
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The Likelihood for the NHPP - Single Unit

• With interval recurrence data.

Suppose that the unit has been observed for a period (0, ta]

and the data are the number of recurrences d1, . . . , dm in

the nonoverlapping intervals (t0, t1], (t1, t2], . . . , (tm−1, tm]

(with t0 = 0, tm = ta).

L(θ) = Pr
[
N(t0, t1) = d1, . . . , N(tm−1, tm) = dm

]
=

m∏
j=1

Pr
[
N(tj−1, tj) = dj

]

=
m∏

j=1

[
µ(tj−1, tj; θ)

]dj

dj!
exp

[
−µ(tj−1, tj; θ)

]

=
m∏

j=1

[
µ(tj−1, tj; θ)

]dj

dj!
× exp [−µ(t0, ta;θ)]
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The Likelihood for the NHPP (Continued)

• If the number of intervals m increases and there are exact

recurrences at t1 ≤ . . . ≤ tr (here r =
∑m

j=1 dj, t0 ≤ t1,

tr ≤ ta), then using a limiting argument it follows that the

likelihood in terms of the density approximation is

L(θ) =
r∏

j=1

ν(tj;θ) × exp [−µ(0, ta; θ)]

• For simplicity, above we assumed that the intervals are con-

tiguous. Obvious changes to the formula above give the

likelihood when there are gaps among the intervals.

• In both cases (the interval data or exact recurrences data)

the same methods used in Chapters 7, 8 can be used to

obtain the ML estimate θ̂ and confidence regions for θ or

functions of θ.
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The NHPP with Power Recurrence Rate and Exact

Recurrence Times

• The likelihood is

L(β, η) =

(
β

ηβ

)r r∏
j=1

t
β−1
j × exp [−µ(ta;β, η)]

• The ML estimates of the parameters are:

β̂ =
r∑r

j=1 log
(
ta/tj

)
η̂ =

ta

r1/β̂

• The relative likelihood is

R(β, η) =

β

β̂
× η̂β̂

ηβ

r  r∏
j=1

tj

β−β̂

exp [r − µ(ta;β, η)]
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NHPP with a Loglinear Recurrence Rate and Exact

Recurrence Times

• The likelihood is

L(γ0, γ1) = exp

rγ0 + γ1

r∑
j=1

tj

× exp [−µ(ta; γ0, γ1)]

• The ML estimates are obtained by solving

r∑
j=1

tj +
r

γ̂1
− rta exp(γ̂1ta)

exp(γ̂1ta) − 1
= 0

exp (γ̂0) =
rγ̂1

exp(taγ̂1) − 1

• The relative likelihood is

R(γ0, γ1) = exp

r(γ0 − γ̂0) + (γ1 − γ̂1)
r∑

j=1

tj

×

exp {r − µ(ta; γ0, γ1)}
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Cumulative Number of Unscheduled Maintenance

Actions Versus Operating Hours with Power and

Loglinear NHPP Models for a USS Grampus Diesel

Engine
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Results of Fitting NHPP Models to the USS Grampus

Diesel Engine Data

• Both models seem to fit the data very well.

• For the power recurrence rate model, β̂=1.22 and η̂ =0.553.

• For the loglinear recurrence rate model, γ̂0=1.01 and γ̂1 =.0377.

• Times between recurrences are consistent with a HPP:

� the Lewis-Robinson test gave ZLR = 1.02

with p-value p = .21.

� the MIL-HDBk-189 test gave X2
MHB = 92

with p-value p = .08.
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Times Between Unscheduled Maintenance Actions for
a USS Halfbeak Diesel Engine

• Unscheduled maintenance actions caused by failure or im-
minent failure

• Unscheduled maintenance actions are in convenient and ex-
pensive

• Data available for 25,518 operating hours.

• Data from Ascher and Feingold (1984, page 75)

• Is the system deteriorating (i.e., are failures occurring more
rapidly as the system ages)?

• Can the occurrence of unscheduled maintenance actions be
modeled by an HPP?
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Cumulative Number of Unscheduled Maintenance

Actions Versus Operating Hours

for a USS Halfbeak Diesel Engine

Ascher and Feingold (1984)
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Times Between Unscheduled Maintenance Actions

Versus Maintenance Action Number for a USS

Halfbeak Diesel Engine Versus
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Times Between Unscheduled Maintenance Actions

Versus Engine Operating Hours for a USS Halfbeak

Diesel Engine
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USS Halfbeak Diesel Engine Plot of Times Between

Unscheduled Maintenance Actions Versus Lagged

Times Between Unscheduled Maintenance Actions
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Cumulative Number of Unscheduled Maintenance

Actions Versus Operating Hours with Power and

Loglinear NHPP Models for a USS Halfbeak Diesel

Engine
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Results of Fitting NHPP Models to the USS Halfbeak

Diesel Engine Data

• Both models seem to fit the data reasonably well, but the

loglinear recurrence rate model fits better than the power

recurrence rate.

• For the power recurrence rate model, β̂=2.76 and η̂ =5.45.

• For the loglinear recurrence rate model, γ0=−1.43 and γ1 =.149.

• The evidence against an HPP is strong:

� the Lewis-Robinson test gave ZLR = 4.70 with p-value

=0.

� the MIL-HDBk-189 test gave X2
MHB = 51 with p-value

= 0.
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Prediction of Future Recurrences with

a Poisson Process

• The expected number of recurrences in an interval [a, b]

is
∫ b
a ν(u, θ)du. Then the ML point prediction estimate is∫ b

a ν(u, θ̂)du.

• A point prediction for the power recurrence rate is

∫ b

a
ν(u, θ̂)du =

(
1

η̂

)β̂ (
bβ̂ − aβ̂

)
.

• A point prediction for the loglinear recurrence rate is∫ b

a
ν(u, θ̂)du =

exp(γ̂0)

γ̂1
[exp(γ̂1b) − exp(γ̂1a)] .

• There is a similar expression for the case of a loglinear power

recurrence rate.

• Need a method to obtain prediction intervals. Could use

bootstrap.
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Likelihood for Multiple NHPP Systems with

Exact Recurrence Times

• We suppose that there are n independent NHPP system

with the same intensity function.

• System i is observed in the interval (0, tai], i = 1, . . . , n.

• The recurrence times for unit i are denoted by ti1, . . . , tiri
.

• The overall likelihood is simply the product of the likelihoods

for the individual units

L(θ) =
n∏

i=1

ri∏
j=1

ν(tij;θ) × exp

− n∑
i=1

µ(0, tai; θ)

 .
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Other Topics in the Analysis

of Recurrence Data

• Adjustment for covariates.

• Reliability growth applications.
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