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Planning Accelerated Life Tests

Chapter 20 Objectives

• Outline reasons and practical issues in planning ALTs.

• Describe criteria for ALT planning.

• Illustrate how to evaluate the properties of ALTs.

• Describe methods of constructing and choosing among ALT
plans

� One-variable plans.

� Two-variable plans.

• Present guidelines for developing practical ALT plans with
good statistical properties.

20 - 2



Possible Reasons for Conducting an Accelerated Test

Accelerated tests (ATs) are used for different purposes.

These include:

• ATs designed to identify failure modes and other weak-

nesses in product design.

• ATs for improving reliability

• ATs to assess the durability of materials and components.

• ATs to monitor and audit a production process to identify

changes in design or process that might have a seriously

negative effect on product reliability.
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Motivation/Example

Reliability Assessment of an Adhesive Bond

• Need: Estimate of the B10 of failure-time distribution at

50◦C (expect ≥ 10 years).

• Constraints

� 300 test units.

� 6 months for testing.

• 50◦C test expected to yield little relevant data.
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Model and Assumptions

• Failure-time distribution is loglocation-scale

Pr(T ≤ t) = F(t;µ, σ) = Φ

[
log(t) − µ

σ

]

• µ = µ(x) = β0 + β1x, where

x =
11605

temp ◦C + 273.15
.

• σ does not depend on the experimental variables.

• Units tested simultaneously until censoring time tc.

• Observations statistically independent.
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Assumed Planning Information for the

Adhesive Bond Experiment

The objective is finding a test plan to estimate B10 with

good precision.

• Weibull failure-time distribution with same shape parameter

at each level of temperature σ and location scale parameter

µ(x) = β0 + β1x, where x is ◦C in the Arrhenius scale.

• .1% failing in 6 months at 50◦C.

• 90% failing in 6 months at 120◦C.

Result: Defines failure probability in 6 months at all levels of

temperature. If σ is given also, defines all model parameters.
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Engineers’ Originally Proposed Test Plan

for the Adhesive Bond

Temp Allocation Failure Expected
◦C Proportion Number Probability Number Failing

πi ni pi E(ri)
50 0.001

110 1/3 100 0.60 60
130 1/3 100 1.00 100
150 1/3 100 1.00 100
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Adhesive Bond

Engineers’ Originally Proposed Test Plan

n = 300, πi = 1/3 at each 110◦C, 130◦C, 150◦C

Degrees C

D
ay

s

 40  60  80 100 120 140 160

100

101

102

103

104

105

  5%
  10%

  50%
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Critique of Engineers’ Original Proposed Plan

• Arrhenius model in doubt at high temperatures (above 120◦C).

• Question ability to extrapolate to 50◦C.

• Data much above the B10 are of limited value.

Suggestion for improvement:

• Test at lower more realistic temperatures (even if only small

fraction will fail).

• Larger allocation to lower temperatures.
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Engineers’ Modified Traditional ALT Plan with a

Maximum Test Temperature of 120◦C

Temp Allocation Failure Expected
◦C Proportion Number Probability Number Failing

πi ni pi E(ri)
50 0
80 1/3 100 .04 4
100 1/3 100 .29 29
120 1/3 100 .90 90

For this plan and the Weibull-Arrhenius model, Ase[log(t̂.1(50))] =

.4167
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Simulation of Engineers’

Modified Traditional ALT Plan

Degrees C on Arrhenius scale

 40  50  60  70  80  90 100 120

    5
   10
   20

   50
  100
  200

  500
 1000
 2000

 5000
10000
20000

50000

D
ay

s

  10%

Levels = 80,100,120 Degrees C, n=100,100,100
 Censor time=183,183,183, parameters= -16.74,0.7265,0.5999

Precision factors R for quantile estimates at 50 Degrees C
R( 0.1 quantile)= 2.288
R( 0.5 quantile)= 2.484
   R(Ea)= 1.165

Results based on 300 simulations
Lines shown for 50 simulations
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Methods of Evaluating Test Plan Properties

Assume inferences needed on a function g(θ) (one-to-one

and all the first derivatives with respect to the elements of θ

exist, and are continuous).

• Properties depend on test plan, model and (unknown) pa-

rameter values. Need planning values.

• Asymptotic variance of g(θ̂)

Avar[g(θ̂)] =

[
∂g(θ)

∂θ

]′
Σ

θ̂

[
∂g(θ)

∂θ

]
.

Simple to compute (with software) and general results.

• Use Monte Carlo simulation. Specific results, provides pic-

ture of data, requires much computer time.
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Statistically Optimum Plan for the Adhesive Bond

• Objective: Estimate B10 at 50◦C with minimum variance.

• Constraint: Maximum testing temperature of 120◦C.

• Inputs: Failure probabilities pU = .001 and pH = .90.
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Contour Plot Showing

log10{Avar[log(t̂.1)]/minAvar[log(t̂.1)]}
as Function of ξL, πL to Find the Optimum ALT Plan
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Adhesive Bond

Weibull Distribution Statistically Optimum Plan

Allocations: πLow = .71 at 95◦C, πHigh = .29 at 120◦C

Degrees C

D
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s
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  5%
  10%

  50%

20 - 15



Simulation of the

Weibull Distribution Statistically Optimum Plan

Degrees C on Arrhenius scale

 40  50  60  70  80  90 100 120

    5
   10
   20

   50
  100
  200

  500
 1000
 2000

 5000
10000
20000

50000

D
ay

s

  10%

Levels = 95,120 Degrees C, n=212,88
 Censor time=183,183, parameters= -16.74,0.7265,0.5999

Precision factors R for quantile estimates at 50 Degrees C
R( 0.1 quantile)= 2.103
R( 0.5 quantile)= 2.309
   R(Ea)= 1.155

Results based on 300 simulations
Lines shown for 50 simulations
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Weibull Distribution

Statistically Optimum Plan

Temp Allocation Failure Expected
◦C Proportion Number Probability Number Failing

πi ni pi E(ri)
50 .001
95 .71 213 .18 38

120 .29 87 .90 78

For this plan and the Weibull-Arrhenius model, Ase[log(t̂.1(50))] =

.3794
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Adhesive Bond

Lognormal Distribution Statistically Optimum Plan

Allocations: πLow = .74 at 78◦C, πHigh = .26 at 120◦C

Degrees C

D
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Lognormal Distribution

Statistically Optimum Plan

Temp Allocation Failure Expected
◦C Proportion Number Probability Number Failing

πi ni pi E(ri)
50 .001
78 .74 233 .13 30

120 .26 77 .90 69

For this plan and the Lognormal-Arrhenius model, Ase[log(t̂.1(50))] =

.2002
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Critique of the Statistically Optimum Plan

• Still too much temperature extrapolation (to 50◦C).

• Only two levels of temperature.

• Optimum Weibull and lognormal plans quite different

� 95◦C and 120◦C for Weibull versus.

� 78◦C and 120◦C for lognormal.

In general, optimum plans not robust to model departures.
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Want a Plan That

• Meets practical constraints and is intuitively appealing.

• Is robust to deviations from assumed inputs.

• Has reasonably good statistical properties.
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Criteria for Test Planning

Subject to constraints in time, sample size and ranges of

experimental variables,

• Minimize Var[log(t̂p)] under the assumed model.

• Maximize the determinant of the Fisher information matrix.

• Minimize Var[log(t̂p)] under more general or higher-order

model(s) (for robustness).

• Control the expected number of failures at each experi-

mental condition (since a small expected number of failures

at critical experimental conditions suggests potential for a

failed experiment).
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Types of Accelerated Life Test Plans

• Optimum plans—Maximize statistical precision.

• Traditional plans—Equal spacing and allocation; may be

inefficient.

• Optimized (best) compromise plans—require at least 3

levels of the accelerating variable (e.g., 20% constrained at

middle) and optimize lower level and allocation.
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General Guidelines for Planning ALTs

(Suggested from Optimum Plan Theory)

• Choose the highest level of the accelerating variable to be

as high as possible.

• Lowest level of the accelerating variable can be optimized.

• Allocate more units to lower levels of the accelerating vari-

able.

• Test-plan properties and optimum plans depend on un-

known inputs.

20 - 24



Practical Guidelines for Compromise ALT Plans

• Use three or four levels of the accelerating variable.

• Limit high level of the accelerating variable to maximum

reasonable condition.

• Reduce lowest level of the accelerating variable (to minimize

extrapolation)—subject to seeing some action.

• Allocate more units to lower levels of the accelerating vari-

able.

• Use statistically optimum plan as a starting point.

• Evaluate plans in various meaningful ways.
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Adjusted Compromise Weibull ALT Plan for the

Adhesive Bond

(20% Constrained Allocation at Middle)

Temp Allocation Failure Expected
◦C Proportion Number Probability Number Failing

πi ni pi E(ri)
50 .001
78 .52 156 .03 5
98 .20 60 .24 14

120 .28 84 .90 76

For this plan with the Weibull-Arrhenius model, Ase[log(t̂.1(50))] =

.4375.
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Adhesive Bond

Adjusted Compromise Weibull ALT Plan

πLow = .52, πMid = .20, πHigh = .28

Degrees C

D
ay

s
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Simulation of the Adhesive Bond

Compromise Weibull ALT Plan

Degrees C on Arrhenius scale

 40  50  60  70  80  90 100 120

    5
   10
   20

   50
  100
  200

  500
 1000
 2000

 5000
10000
20000

50000

D
ay

s

  10%

Levels = 78,98,120 Degrees C, n=155,60,84
 Censor time=183,183,183, parameters= -16.74,0.7265,0.5999

Precision factors R for quantile estimates at 50 Degrees C
R( 0.1 quantile)= 2.381
R( 0.5 quantile)= 2.645
   R(Ea)= 1.177

Results based on 300 simulations
Lines shown for 50 simulations
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Basic Issue 1: Choose Levels of Accelerating Variables

Need to Balance:

• Extrapolation in the acceleration variable (assumed temperature-

time relationship).

• Extrapolation in time (assumed failure-time distribution).

Suggested Plan:

• Middle and high levels of the acceleration variable—expect

to interpolate in time.

• Low level of the acceleration variable—expect to extrapo-

late in time.

20 - 29



Basic Issue 2: Allocation of Test Units

• Allocate more test units to low rather than high levels of

the accelerating variable.

� Tends to equalize the number of failures at experimental

conditions.

� Testing more units near the use conditions is intuitively

appealing.

� Suggested by statistically optimum plan.

• Need to constrain a certain percentage of units to the mid-

dle level of the accelerating variable.
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Properties of Compromise ALT Plans

Relative to Statistically Optimum Plans

• Increases asymptotic variance of estimator of B10 at 50◦C
by 33% (if assumptions are correct).

However it also,

• Reduces low test temperature to 78◦C (from 95◦C).

• Uses three levels of accelerating variable, instead of two

levels.

• Is more robust to departures from assumptions and uncer-

tain inputs.
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Generalizations and Comments

• Constraints on test positions (instead of test units): Con-

sider replacement after 100p% failures at each level of ac-

celerating variable.

• Continue tests at each level of accelerating variable until at

least 100p% units have failed.

• Include some tests at the use conditions.

• Fine tune with computer evaluation and/or simulation of

user-suggested plans.

• Desire to estimate reliability (instead of a quantile) at use

conditions.

• Need to quantify robustness.
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ALT with Two or More Variables

• Moderate increases in two accelerating variables may be

safer than using a large amount of a single accelerating

variable.

• There may be interest in assessing the effect of nonaccel-

erating variables.

• There may be interest in assessing joint effects of two more

accelerating variables.
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Choosing Experimental Variable Definition

to Minimize Interaction Effects

• Care should be used in defining experimental variables.

• Guidance on variable definition and possible transformation

of the response and the experimental models should, as

much as possible, be taken from mechanistic models.

• Proper choice can reduce the occurrence or importance of

statistical interactions.

• Models without statistical interactions simplify modeling,

interpretation, explanation, and experimental design.

• Knowledge from mechanistic models is also useful for plan-

ning experiments.
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Examples of Choosing Experimental Variable

Definition to Minimize Interaction Effects

• For humidity testing of corrosion mechanism use RH and

temperature (not vapor pressure and temperature)

• For testing dielectrics, use size and volts stress (e.g., mm

and volts/mm instead of mm and volts)

• For light exposure, use aperture and total light energy

(not aperture and exposure time)

• To evaluate the adequacy of large-sample approximations

with censored data, use % failing and expected number

failing (not % failing and sample size).
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Comparison of Experimental Layout with

Volts/mm Versus Size and Volts Versus Size

Voltage Stress (Volts/mm)
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Comparison of Experimental Layout with

Volts versus Size and Volts/mm versus Size
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Insulation ALT

From Chapter 6 of Nelson (1990) and

Escobar and Meeker (1995)

• Engineers needed rapid assessment of insulation life at use

conditions.

• 1000/10000 hours available for testing.

• 170 test units available for testing.

• Possible experimental variables:

� VPM (Volts/mm) [accelerating].

� THICK (cm) [nonaccelerating].

� TEMP (◦C) [accelerating].
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Multiple Variable ALT

Model and Assumptions

• Failure-time distribution

Pr(T ≤ t) = F(t;µ, σ) = Φ

[
log(t) − µ

σ

]
.

• µ = µ(x) is a function of the accelerating (or other experi-

mental) variables.

• σ does not depend on the experimental variables.

• Units tested simultaneously until censoring time tc.

• Observations statistically independent.

20 - 39



Models Used in Examples

µ = β0 + β1 log(VPM)

µ = β0 + β1 log(VPM) + β2 log(THICK)

µ = β0 + β1 log(VPM) + β2

[
11605

temp ◦C + 273.15

]
σ constant.
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Insulation ALT

3 × 3 VPM×THICK Factorial Test Plan
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The ALT Design Problem

• Design test plan to estimate life at the

use conditions of VPMU = 80 volts/mm,

THICKU = 0.266 cm, TEMPU = 120 ◦C.

• Interest centers on a quantile in lower tail of life distribution,

tp = exp
[
µ(xU) + Φ−1(p)σ

]
.

• Need to choose levels of the accelerating variable(s) x1, . . . , xk

and allocations π1, · · · , πk to those conditions. Equal allo-

cation can be a poor choice.

20 - 42



Multi-Variable Experimental Region

• Maximum levels for all variables:

VPMH = 200 volts/mm

THICKH = 0.355 cm

TEMPH = 260 ◦C.

• Explicit minimum levels for all experimental variables:

VPMA = 80volts/mm

THICKA = 0.163cm

TEMPA = 120◦C
(also stricter implicit limits for VPM and TEMP).

• May need to restrict highest combinations of accelerating

variables; e.g., constrain by equal failure-probability line

(by using a maximum failure probability constraint p∗ or

equivalently a standardized censored failure time ζ∗ con-

straint).
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Insulation ALT

VPM×THICK Optimum Test Plan
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Degenerate and Nondegenerate Test Plans to

Estimate tp

Degenerate plans:

• Test all units at xU .

• Test two (or more) combinations of the experimental

variables on a line with slope s passing through xU .

Nondegenerate practical plans:

• Test at three (or more) noncollinear combinations of the

experimental variables in the plane.
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Optimum Degenerate Plan: Technical Results

• When acceleration does not help sufficiently, it is optimum

to test all units at the use conditions.

• Otherwise there is at least one optimum degenerate test

plan in the x1 × x2 plane.

• Some units tested at highest levels of accelerating variables.

• Optimum degenerate plan corresponds to a single-variable

optimum.
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Splitting Degenerate Plans

• It is possible to split a degenerate plan into a nondegenerate

optimum test plan (maintaining optimum Var[log(t̂p)]).

• Use secondary criteria to chose best split plan.

• Split xi = (x1i, x2i)
′ with allocation πi into

xi1 = (x1i1, x2i1)
′ and xi2 = (x1i2, x2i2)

′
with allocations πi1 and πi2 (where πi1 + πi2 = πi)

πi1xi1 + πi2xi2 = πixi.

• Can introduce a p∗ constraint

[or a ζ∗ constraint where p∗ = Φ(ζ∗)].

• Can also split compromise plans and maintain Var[log(t̂p)].
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Insulation ALT VPM×THICK

Optimum Test Plan with p∗/ζ∗ constraint
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Insulation ALT VPM×THICK 20%

Compromise Test Plan with p∗/ζ∗ constraint
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Comparison of Test Plans and Properties
for the VPM×THICK ALT

No Interaction Interaction
Model Model

Plan V[log(t̂p)] |F | V[log(t̂p)] |F |

3 × 3 144 2.4 × 10−3 145 1.2 × 10−5

Factorial
from Nelson (1990)

Optimum degenerate 80.1 0.0 ∞ 0.0
No ζ∗

Optimum split 80.1 7.3 × 10−4 ∞ 0.0
No ζ∗

Optimum degenerate 131 0.0 ∞ 0.0
ζ∗ = 2.5454

Optimum split 131 1.6 × 10−3 138 1.7 × 10−5

ζ∗ = 2.5454

20% Compromise degenerate 96.1 0.0 9710 0.0
ζ∗ = 4.04

20% Compromise split 96.1 7.0 × 10−3 102 1.2 × 10−4

ζ∗ = 4.04
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Insulation ALT VPM×TEMP

3 × 3 Factorial Test Plan
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Insulation ALT VPM×TEMP

Optimum Test Plan
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Insulation ALT VPM×TEMP

20% Compromise Test Plan with p∗/ζ∗ constraint
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Comparison of Test Plan Properties
for the VPM×TEMP ALT

No Interaction Interaction
Model Model

Plan V[log(t̂p)] |F | V[log(t̂p)] |F |

3 × 3 77.3 1.7 × 10−3 349 2.7 × 10−6

Factorial Adapted
from Nelson (1990)

Optimum degenerate 50.5 0.0 ∞ 0.0
No ζ∗

Optimum split 50.5 1.3 × 10−3 ∞ 0.0
No ζ∗

20% Compromise degenerate 54.7 0.0 1613 0.0
No ζ∗

20% Compromise split 54.7 2.0 × 10−3 430 3.0 × 10−6

No ζ∗

20% Compromise degenerate 77.7 0.0 5768 0.0
ζ∗ = 5.0

20% Compromise split 77.7 1.2 × 10−3 324 1.7 × 10−6

ζ∗ = 5.0
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Extensions of Results to Other Problems

• With one accelerating and several other regular experi-

mental variables, replicate single-variable ALT at each com-

bination of the regular experimental variables.

• Can use a fractional factorial for the regular experimental

variables.

• If the approximate effect of a regular experimental variable

is known, can tilt factorial to improve precision.

• With two or more accelerating variables, our results show

how to tilt the traditional factorial plans to restrict extrap-

olation and maintain statistical efficiency.
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