Chapter 14

Introduction to the Use of Bayesian Methods for
Reliability Data

William Q. Meeker and Luis A. Escobar
Iowa State University and Louisiana State University

Copyright 1998-2001 W. Q. Meeker and L. A. Escobar.

Based on the authors’ text Statistical Methods for Reliability
Data, John Wiley & Sons Inc. 1998.

July 18, 2002

12h 26min "

|
[E-



Introduction to the Use of Bayesian Methods for
Reliability Data
Chapter 14 Objectives

Describe the use of Bayesian statistical methods to combine
prior information with data to make inferences.

Explain the relationship between Bayesian methods and like-
lihood methods used in earlier chapters.

Discuss sources of prior information.

Describe useful computing methods for Bayesian methods.
Illustrate Bayesian methods for estimating reliability.
Illustrate Bayesian methods for prediction.

Compare Bayesian and likelihood methods under different
assumptions about prior information.

Explain the dangers of using wishful thinking or expecta-
tions as prior information.
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Introduction

Bayes methods augment likelihood with prior information.

A probability distribution is used to describe our prior beliefs
about a parameter or set of parameters.

Sources of prior information:
Subjective Bayes: prior information subjective.

Empirical Bayes: prior information from past data.

Bayesian methods are closely related to likelihood methods.
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Model for
DATA

Bayes Method for Inference

DATA

Likelihood
L (DATA |6)

Prior
f(0)

Posterior
f (0 |DATA)
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Updating Prior Information Using Bayes Theorem

Bayes Theorem provides a mechanism for combining prior
information with sample data to make inferences on model
parameters.

For a vector parameter 0 the procedure is as follows:
Prior information on 0 is expressed in terms of a pdf f(0).

We observe some data which for the specified model has
likelihood L(DATA|0) = L(8; DATA).

Using Bayes Theorem, the conditional distribution of 8 given

the data (also known as the posterior of 0) is
L(DATA[0)f(0) _  R(6)f(0)

[ L(DATAI|O)f(0)db [R(O)f(0)do

where R(0) = L(H)/L(@) is the relative likelihood and the
multiple integral is computed over the region f(8) > 0.
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Some Comments on on Posterior Distributions

e The posterior f(8|DATA) is function of the prior, the model,
and the data.

e In general, it is impossible to compute the multiple integral
[ L(DATAIO)f(6)dl in closed form.

e New statistical and numerical methods that take advantage
of modern computing power are facilitating the computa-
tion of the posterior.
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Differences Between Bayesian and Frequentist
Inference
e Nuisance parameters
» Bayes methods use marginals.

» Large-sample likelihood theory suggest maximization.

e [ here are not important differences in large samples.

e Interpretation
» Bayes methods justified in terms of probabilities.

» Frequentist methods justified on repeated sampling and
asymptotic theory.
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Sources of Prior Information

e Informative
» Past data

» EXxpert knowledge

e Non-informative (or approximately non-informative)

» Uniform over range of parameter (or function of param-
eter)

» Other vague or diffuse priors
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Proper Prior Distributions

Any positive function defined on the parameter space that
integrates to a finite value (usually 1).

e Uniform prior: f(6) =1/(b—a) for a <6 <b.
This prior does not express strong preference for specific
values of 6 in the interval.

e Examples of non-uniform prior distributions:
» Normal with mean at a and and standard deviation b.

» Beta between specified a and b with specified shape pa-
rameters (allows for a more general shape).

» Isosceles triangle with base (range between) a and b.

For a positive parameter 6, may want to specify the prior
in terms of log(#).
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Improper Prior Distributions

Positive function f(6) over parameter space for which

[ 1®)d9 = o,
e Uniform in an interval of infinite length: f(8) = ¢ for all 6.

e For a positive parameter 0 the corresponding choice is
fllog(@)] = c and f(0) = (¢/0), 6 > 0.

To use an improper prior, one must have
/f(H)L(9|DATA)d9 < 0o
(a condition on the form of the likelihood and the DATA).

e [ hese prior distributions can be made to be proper by spec-
ification of a finite interval for 86 and choosing ¢ such that
the total probability is 1.
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Effect of Using Vague (or Diffuse) Prior Distributions

e For a uniform prior f(6) (possibly improper) across all pos-
sible values of 6

R(O)f(8) _  R(H)
[R(O)f(6)d6 | R(6)dO

which indicates that the posterior f(8|DATA) is proportional
to the likelihood.

F(0|DATA) =

e [ he posterior is approximately proportional to the likeli-
hood for a proper (finite range) uniform if the range is
large enough so that R(8) ~ 0 where f(8) = 0.

e Other diffuse priors also result in a posterior that is approxi-
mately proportional to the likelihood if R(0) is large relative

to f(0).
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Eliciting or Specifying a Prior Distribution
e [ he elicitation of a meaningful joint prior distribution for
vector parameters may be difficult

» [ he marginals may not completely determine the joint
distribution.

» Difficult to express/elicit dependences among parame-
ters through a joint distribution.

» [ he standard parameterization may not have practical

meaning.

e General approach: choose an appropriate parameterization
in which the priors for the parameters are approximately
independent.
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Expert Opinion and Eliciting Prior Information

Identify parameters that, from past experience (or data),
can be specified approximately independently (e.g., for high
reliability applications a small quantile and the Weibull shape
parameter).

Determine for which parameters there is useful informative
prior information.

For parameters for which there in no useful informative prior
information, determine the form and range of the vague
prior (e.g., uniform over a wide interval).

For parameters for which there is useful informative prior
information, specify the form and range of the distribution
(e.g., lognormal with 99.7% content between two specified
points).
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Example of Eliciting Prior Information: Bearing-Cage
Time to Fracture Distribution

With appropriate questioning, engineers provided the fol-
lowing information:

e [ime to fracture data can often be described by a Weibull
distribution.

e From previous similar studies involving heavily censored data,
(u,0) tend to be correlated (making it difficult to specify a
joint prior for them).

e For small p (near the proportion failing in previous stud-
ies), (tp,0) are approximately independent (which allows for
specification of approximately independent priors).
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Example of Eliciting Prior Information: Bearing-Cage
Fracture Field Data (Continued)

Based on experience with previous products of the same
material and knowledge of the failure mechanism, there is
strong prior information about the Weibull shape parameter.

The engineers did not have strong prior information on pos-
sible values for the distribution quantiles.

For the Weibull shape parameter log(c) ~ NOR(aq, bg),
where ag and bg are obtained from the specification of two
quantiles o, /,> and o(;_,») Of the prior distribution for o.

T hen

ao =10 [\/7,/2 X 01—y |, bo =109 [\/O(l—v/m/%/z} [%(1-4/2)

Uncertainty in the Weibull .01 quantile will be described by
UNIFORMIJlog(aq), log(by)] distribution where a7 = 100 and
b1 = 5000 (wide range—not very informative).
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Prior pdfs for log(c) and ¢ when o g5 = .2,0 995 = .5
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Prior pdfs for log(t 1) and t g1 when a7 = 100,57 = 5000

T T I T T T T T

100 500 5000 0O 1000 3000 5000

.01 quantile [log axis] .01 quantile
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Joint Lognormal-Uniform Prior Distributions

e The prior for log(o) is normal

log(o) — ag
bo

The corresponding density for o is f(o) = (1/0)f[log(o)].

fllog(o)] = %aD

], o> 0.

e The prior for log(tp) is uniform

1
ong(qO]==|Ogan/al), a1 <tp < by.

The corresponding density for ¢, is f(tp) = (1/tp) f[log(tp)].

e Consequently, the joint prior distribution for (tp,o) is

fllog(tp)] fllog(o)]

tp o

f(tpaa): algtp§b170->o'
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Joint Prior Distribution for (u,o)

e The transformation pu = log(tp) — Peey(p)o, o = o yields the
prior for (u, o)

fllog(tp)]  fllog(a)] |
tp o
= fllog(tp)] x ['oi(a)]
1  @nor {[109(a) — ao] /bo}
log(b1/a1) abo
where 10g(a1) — ®sey(p)o < pu < log(by) — Psay(p)a, o > 0.

f(u, o)

p

e The region in which f(u,0) > 0 is South-West to North-
East oriented because Cov(u,o) = —dbs_e{,(p)Var(a) > 0.
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Joint Posterior Distribution for (u,o)

e [ he likelihood is

2003 d; 1-6;
L(p,0) = H {% Gsev [log(t;) — 'UJ] } X {1 — Psey llog(t;) — 'UJ] }

=1

where §; indicates whether the observation ¢ is a failure or
a right censored observation.

e [ he posterior distribution is

f(,uy O'|DATA) — L(,LL, O-)f(ua 0) R(,LL, O')f(,u, O‘)

[ [ L(v,w) f(v,w)dvdw - [ [ R(v,w)f(v,w)dvdw
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Methods to Compute the Posterior

e Numerical integration: to obtain the posterior, one needs
to evaluate the integral f(O0|DATA) = [ R(0)f(0)dO over
the region on which f(8) > 0.

In general there is not a closed form for the integral and the
computation has to done numerically using fixed quadrature
or adaptive integration algorithms.

e Simulation methods: the posterior can be approximated
using Monte Carlo simulation resampling methods.
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Computing the Posterior Using Simulation

Using simulation, one can draw a sample from the posterior
using only the likelihood and the prior. The procedure for a
general parameter @ and prior distribution f(0) is as follows:

e Let;,,i=1,...,M be a random sample from f(0).

e The ith observation, 0;, is retained with probability R(8;).

Then if U; is a random observation from a uniform (0, 1),
0, is retained if

U; < R(6;).

e It can be shown that the retained observations, say 67, ... ’M*
(M* < M) are observations from the posterior f(@|DATA).

14 -22



sigma

Simulated Joint Prior for ¢t g1 and o

0.50 -
0.45 - , .
0.40 N ‘o
035 | . . .
i .... '. .?. B : o
0.30 R .
i O.° « * . o8 ..
] . e . ,
0.25 - '
0.20 -
- x L R B T * —
100 200 500 1000 2000 5000
0.01 quantile

14-23



sigma
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Sampling from the Prior
The joint prior for 8 = (u,0), is generated as follows:

Use the inverse cdf method (see Chapter 4) to obtain a
pseudorandom sample for t,, say

(tp); = ay x bYY, i=1,...,M

where Uqq,...,Uq1)s; are a pseudorandom sample from a uni-
form (0,1).

Similarly, obtain a pseudorandom sample for o, say

oi = exp |ag + boPnor (U2;)|

where Usq,...,U>ps are another independent pseudorandom
sample from a uniform (0,1).

Then 0; = (u;,0;) with p; =109 [(tp);] — Psey(p)o; is a pseu-
dorandom sample from the (u, o) prior.
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Simulated Joint Prior Distribution with ¢ and o
Relative Likelihood
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Joint Posterior and Marginals for 1 and o for the
Bearing Cage Data
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Comments on Computing Posteriors Using Resampling

The number of observations M* from the posterior is ran-
dom with an expected value of

E(M*) = M / F(O)R(6)dO

Consequently,

e \When the prior and the data do not agree well, M* << M
otherwise and a larger prior sample will be required.

e Can add to the posterior by sequentially filtering groups
of prior points until a sufficient number is available in the
posterior.
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Posterior and Marginal Posterior Distributions for the
Model Parameters

e Inferences on individual parameters are obtained by using
the marginal posterior distribution of the parameter of in-
terest. The marginal posterior of 8]- IS

f16,|DATA] = /f(9|DATA)d0’.

where 6’ is the subset of the parameters excluding 8]-.

e Using the general resampling method described above, one
gets a sample for the posterior for 0, say 07 = (s, o7),
i=1,...,M*.

e Inferences for u or o alone are based on the corresponding
marginal distributions pF and o}, respectively.
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Posterior and Marginal Posterior Distributions for the
Functions of Model Parameters

e Inferences on a scalar function of the parameters ¢g(@) are
obtained by using the marginal posterior distribution of the
functions of the parameters of interest, f[g(60)|DATA].

e Using the simulation method, inferences are based on the
simulated posterior marginal distributions. For example:

» The marginal posterior distribution of f(t,|DATA) for
inference on quantiles is obtained from the empirical dis-
tribution of u¥ + ®gey(p)or.

» The marginal posterior distribution of f[F(te)|DATA] for
inference for failure probabilities at te is obtained from

the empirical distribution of ®gey llog(ti)_“i].

g,
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Simulated Marginal Posterior Distributions
for t o5 and t 19
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Simulated Marginal Posterior Distributions
for F(2000) and F(5000)

I : T : T T T
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F(2000 | DATA) F(5000 | DATA)

14-33



Bayes Point Estimation

Bayesian inference for 6 and functions of the parameters
g(0) are entirely based on their posterior distributions f(@|DATA)
and f[g(0)|DATA].

Point Estimation:

If g(8) is a scalar, a common Bayesian estimate of ¢g(0) is
its posterior mean, which is given by

3(6) = E[9(0)|DATA] = [ 9(0)/(0|DATA)dO.

In particular, for the ith component of 6, @i IS the posterior
mean of 6;,. This estimate is the the Bayes estimate that
Mminimizes the square error |oss.

Other possible choices to estimate ¢g(0) include (a) the pos-
terior mode, which is very similar to the ML estimate and
(b) the posterior median.
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One-Sided Bayes Confidence Bounds

e A 100(1 — )% Bayes lower confidence bound (or credible
bound) for a scalar function g(8) is value g satisfying

/g " flg(6)|DATAldg(8) = 1 — o

~

e A 100(1 — )% Bayes upper confidence bound (or credible
bound) for a scalar function ¢g(0) is value g satisfying

~

[”rlg®)IDATAlg(6) = 1 - a
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Two-Sided Bayes Confidence Intervals

e A 100(1 — a)% Bayes confidence interval (or credible inter-
val) for a scalar function ¢g(0) is any interval [g, ¢]| satis-

fying

/ 7 119(0)|DATAIdg(8) = 1 — (1)

e The interval [g,~ g] can be chosen in different ways

» Combining two 100(1 —«a/2)% intervals puts equal prob-
ability in each tail (preferable when there is more concern
for being incorrect in one direction than the other).

» A 100(1 — «)% Highest Posterior Density (HPD) confi-
dence interval chooses [g, g] to consist of all values of

g with f(g|DATA) > ¢ where c is chosen such that (1)
holds. HPD intervals are similar to likelihood-based con-
fidence intervals. Also, when f[g(8)|DATA] is unimodal
the HPD is the narrowest Bayes interval.
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Bayesian Joint Confidence Regions

The same procedure generalizes to confidence regions for
vector functions g(0) of 6.

e A 100(1 - a)% Bayes confidence region (or credible region)
for a vector valued function g(0) is defined as

CRg = {g(8)|f[g|DATA] > c}

where ¢ is chosen such that

/CRB flg(8)|DATA)dg(0) = 1 — a

e In this case the presentation of the confidence region is
difficult when 8 has more than 2 components.
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Bayes Versus Likelihood

e Summary table or plots to compare the Likelihood versus
the Bayes Methods to compare confidence intervals for u,
o, and t 1 for the Bearing-cage data example.
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Prediction of Future Events

e Future events can be predicted by using the Bayes predictive
distribution.

o If X [with pdf f(:|@)] represents a future random variable

» the posterior predictive pdf of X is

f(x|DATA)

/f(x|9)f(9|DATA)d9
EgipaTa [f(x]0)]

» the posterior predictive cdf of X is
F(z|DATA) = /x F(ul0)du = /F(:c|9)f(9|DATA)d9
— OO0
= EgpaTa [F(z]0)]

where the expectations are computed with respect to the

posterior distribution of 0.
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Approximating Predictive Distributions

e f(x|DATA) can be approximated by the average of the pos-
terior pdfs f(x|67). Then

1 M7
f(z|DATA) = WZf(x|0§).
1=1

e Similarly, F(x|DATA) can be approximated by the average
of the the posterior cdfs F(x|07). Then

1 M7
F(z|DATA) =~ WZF(;UW?;).
1=1

e A two-sided 100(1 — a)% Bayesian prediction interval for a
new observation is given by the «/2 and (1 —«a/2) quantiles
of F(z|DATA).
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Location-Scale Based Prediction Problems

Here we consider prediction problems when log(7T) has a
location-scale distribution.

Predicting a future value of T'. In this case, X = T and
r =1t, then

F110) =~ 6(0),  F(18) = (0)
where ¢ = [log(t) — u]/o.

Thus, for the Bearing-cage fracture data, approximations
of the predictive pdf and cdf for a new observation are:
FUDATA) ~ = 3 L ge(eh)
M* =1 J;t ¢
~ 1 & *
F(t|DATA) = W@; Psev((;)

where ¢* = [log(t) — u7]/o7.
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Prediction of an Order Statistic

Here we consider prediction of the kth order statistic in a
future sample of size m from the distribution of T° when
log(T") has a location-scale distribution.

e In this case, X = T(k) and x = t(k), then

¢ (C)

B m! k—1 1
Tlw®l = G ayign —my <P OF X

X [1—® ()] "

ml

9 — - i1 m—j
Pligolél = 3 S =i [ ©OF x 1= ©)]

where ¢ = [Iog(t(k)) —ul/o.
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Predicting the 1st Order Statistic

When k = 1 (predicting the 1st order statistic), the formulas
simplify to

e Predictive pdf
1

——h () x [1—@ (O
(1)

fltyl6] = mx [® ()™ x
e Predictive cdf

Fltylo] = 1-[1-& (O™
where ¢ = [Iog(t(l)) —ul/o.
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Predicting the 1st Order Statistic for the
Bearing-Cage Fracture Data

For the Bearing-cage fracture data:

e An approximation for the predictive pdf for the 1st order
statistic is

1 M 1 * x\1m—1
leylDATAL ~ 113 fx o (@) x [1- @ ()"}
1=1 ()

e [ he corresponding predictive cdf is
~ 1 M *\ 1M
Flt)|DATA] ~ Zl {1-[1-® @)™}
1=

where ¢ = [log(t) — u7]/or.
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Predicting a New Observation

e F'(t|DATA) can be approximated by the average of the pos-
terior probabilities F(t|07), ¢t =1,..., M™.

e Similarly, f(t|DATA) can be approximated by the average
of the posterior densities f(¢|07), :=1,...,M*.

e In particular for the Bearing-cage fracture data, an approx-
imation for the predictive pdf and cdf are

f(t|DATA)

F(t|DATA)

1 M7y log(t) —
Wm@ Sevl oy ]
1 M+ o [|og(t) - u:] |
M* =1 o;

e A 100(1 — )% Bayesian prediction interval for a new ob-
servation is given by the percentiles of this distribution.
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Predictive Density and Prediction Intervals for a
Future Observation from the Bearing Cage Population

0 5000 10000 15000
Hours
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Caution on the Use of Prior Information

e In many applications, engineers really have useful, indis-
putable prior information. In such cases, the information
should be integrated into the analysis.

e \We must beware of the use of wishful thinking as prior in-
formation. The potential for generating seriously misleading
conclusions is high.

e As with other inferential methods, when using Bayesian
methods, it is important to do sensitivity analyses with
respect to uncertain inputs to ones model (including the
inputted prior information)
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