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System Reliability Concepts and Methods

Chapter 15 Objectives

• Explain some important system reliability concepts like sys-

tem structure; redundancy; nonrepairable and repairable

systems; maintainability and availability.

• Describe some basic concepts of system reliability modeling.

• Give expressions for the distribution of system failure time

as a function of individual component failure time distribu-

tions.

• Illustrate the analysis of failure-time data with two failure

modes.

• Provide examples of the use of component test data to

estimate system reliability.
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Introduction

• System: a collection of components needed to realize a

given task.

• System structure: a logic diagram illustrating the function

of the system.
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System Structures and System Failure Probability

System failure probability, FT (t; θ): probability that a sys-

tem fails before t.

The failure probability of the system is function of:

• Time in operation (or other measure of use)

• System structure.

• Reliability of system components, interconnections, and in-

terfaces (including, for example, human operators).

• Environmental conditions.
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Time Dependency of System Reliability

For the time to failure of a new system (all components

starting a time 0)

• The cdf for component i is Fi = Fi(t; θi). The correspond-

ing survival probability is Si = Si(t; θi) = 1 − Fi(t; θi). The

θis may have some elements in common. Here θ denotes

the unique elements in (θ1, . . . , θs).

• The cdf for the system is denoted by FT = FT (t; θ). This cdf

is determined by the Fi’s and the system structure. Then

FT (t; θ) = g[F1(t; θ1), . . . , Fs(t; θs)]

or one of the simpler forms

FT (θ) = g[F1(θ1), . . . , Fs(θs)]

FT = g(F1, . . . , Fs).

To simplify the presentation, time-(and parameter)-dependency

will usually be suppressed in this chapter.
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A System with Components in Series

1 2
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Examples of Systems with Components in Series

• Chain

• High-voltage multi-cell battery

• Inexpensive computer system

• Modern decorative tree lights
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A System with Components in Series

A series structure with s components works iff all the com-

ponents work. Then

• For two independent components

FT (t) = Pr(T ≤ t) = 1 − Pr(T > t)

= 1 − Pr(T1 > t ∩ T2 > t)

= 1 − Pr(T1 > t)Pr(T2 > t)

= 1 − (1 − F1)(1 − F2)

• For s independent components

FT (t) = 1 −
s∏

i=1
(1 − Fi)

• For s iid components (F = Fi, i = 1, . . . , s)

FT (t) = 1 − (1 − F)s.
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Reliability of a System with s Identical Independent

Components in Series
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Effect of Positive Dependency in a

Two-Component Series System

• For a series system with two components and dependent

failure times

FT(t) = Pr(T ≤ t) = 1−Pr(T > t) = 1−Pr(T1 > t∩ T2 > t).

In this case, the evaluation has to be done with respect to

the bivariate distribution of T1 and T2.

• If the correlation between the two components is positive,

then the assumption of independence is conservative in the

sense that the actual FT (t) is smaller than that predicted

by the independent-component model.

• These results extend to the s components in series, the

system FT (t) would have to be computed with respect to

the underlying s-variate distribution. Such computations

are, in general, difficult.
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Effect of Positive Dependency in a Two-Component

Series System with Lognormal Failure Times

• The distributions of log failure times for the individual com-

ponents is bivariate normal with the same (arbitrary) mean

and standard deviation for both components and correla-

tion ρ.

• The reliability 1 − FT (t) of the system can be expressed as

a function of the individual reliability components 1 − F(t)

and ρ.

• When ρ = 1 (so the two components are perfectly depen-

dent and will fail at exactly the same time), the system

reliability 1− FT (t) is the same as the reliability for a single

component.

• When ρ = 0 (so the two components are independent),

1 − FT (t) corresponds to the system reliability for a s = 2

independent series system.
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Reliability of a System with 2 Dependent

Components in Series
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A System with Components in Parallel

1

2
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Examples of Systems with Components in Parallel

• Automobile headlights

• RAID computer disk array systems

• Stairwells with emergency lighting

• Overhead projectors with backup bulb switch

• Multiple light banks in classroom
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A System with Components in Parallel

A parallel structure with s components works if at least one

of the components works. Then

• For two independent components

FT (t) = Pr(T ≤ t)

= Pr(T1 ≤ t ∩ T2 ≤ t)

= Pr(T1 ≤ t)Pr(T2 ≤ t)

= F1F2

• For s independent components

FT(t) =
s∏

i=1

Fi

• For s iid components (Fi = F, i = 1, . . . , s)

FT (t) = Fs.
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Reliability of a System with s Identical Independent

Components in Parallel
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Effect of Positive Dependency in a

Two-Component Parallel System

• For a parallel system with two components and dependent

failure times

FT(t) = Pr(T ≤ t) = Pr(T1 ≤ t ∩ T2 ≤ t).

In this case, the evaluation has to be done with respect to

the bivariate distribution of T1 and T2.

• If the correlation between the two components is positive,

then the assumption of independence is anti-conservative in

the sense that the actual FT (t) is larger than that predicted

by the independent-component model.

• These results extend to the s components in parallel, the

system FT (t) would have to be computed with respect to

the underlying s-variate distribution. Such computations

are, in general, difficult.
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Effect of Positive Dependency in a Two-Component
Parallel System with Lognormal Failure Times

• The distributions of log failure times for the individual com-
ponents is bivariate normal with the same (arbitrary) mean
and standard deviation for both components and correla-
tion ρ.

• The reliability 1 − FT(t) of the system can be expressed as
a function of the individual reliability components 1 − F(t)
and ρ.

• When ρ = 1 (so the two components are perfectly dependent
and will fail at exactly the same time), the system reliability
1−FT(t) is the same as the reliability for a single component.

• When ρ = 0 (so the two components are independent),
1 − FT (t) corresponds to the system reliability for a s = 2
independent parallel system.

• The advantages of redundancy can be seriously degraded
when the failure times of the individual components have
positive dependence.
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Reliability of a System With 2 Dependent

Components in Parallel

0.5 0.6 0.7 0.8 0.9 1.0

0.80

0.85

0.90

0.95

1.00

Individual Component Reliability

T
w

o-
C

om
po

ne
nt

 P
ar

al
le

l-S
ys

te
m

 R
el

ia
bi

lit
y

ρ = 0 .4 .7 .9 1

15 - 19



Some More Complicated System Structures

Series and parallel structures are the basis for building more

complicated structures which use redundancy to increase

system reliability.

Some examples are:

• Series-parallel with component-level redundancy.

• Series-parallel with system-level redundancy.

• Bridge structures.
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A Series-Parallel System Structure

with Component-Level Redundancy
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Examples Series-Parallel System Structure

with Component-Level Redundancy Parallel

• Dual repeaters in under-sea fiber-optic data transmission

system

• Human body (lungs, kidneys)
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Systems with Component-Level Redundancy

A k × r component-level redundant structure has k series

structures each one made of r units in parallel.

• For 2 × 2 series-parallel with independent components

FT (t) = 1 − Pr(T > t)

= 1 − Pr[parallel 1 works ∩ parallel 2 works]

= 1 − (1 − F11F21)(1 − F12F22)

where Fij, j = 1,2 are the cdfs for the parallel subsystem i.

• For a k × r series-parallel with independent components

FT (t) = 1 −
k∏

j=1

1 −
r∏

i=1

Fij


• When all of the components are iid

FT(t) = 1 − (1 − Fr)k
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A Series-Parallel System Structure

with System-Level Redundancy
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Examples Series-Parallel System Structure

with System-Level Redundancy Parallel

• Dual central processors for a system-critical communica-

tions switching system

• Automobile break system (hydraulic and mechanical)

• Multiple trans-Atlantic transmission cables

• Fiber bundle or stranded wire
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Series-Parallel Structure

with System-Level Redundancy

A r×k series-parallel system-level redundancy structure has

r parallel sets each of k units in series.

• For 2 × 2 structure with independent components

FT (t) = Pr(T ≤ t)

= Pr[series 1 failed ∩ series 2 failed]

= [1 − (1 − F11)(1 − F12)][1 − (1 − F21)(1 − F22)]

where Fij, j = 1,2 are the cdf for the i series.

• For a r × k structure with independent components

FT(t) =
r∏

i=1

1 −
k∏

j=1

(
1 − Fij

)
• For a r × k parallel-series structure with iid components

FT (t) =
[
1 − (1 − F)k

]r
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A Bridge System Structure

1 2

54

3
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Bridge System Structure

Let Ai be the event that the i unit is working

FT (t) = Pr(T ≤ t ∩ A3) + Pr(T ≤ t ∩ Ac
3)

= Pr(A3)Pr(T ≤ t|A3) + Pr(Ac
3)Pr(T ≤ t|Ac

3)

= Pr(A3)Pr[(Ac
1 ∩ Ac

4) ∪ (Ac
2 ∩ Ac

5)|A3] +

Pr(Ac
3)Pr[(Ac

1 ∪ Ac
2) ∩ (Ac

4 ∪ Ac
5)|Ac

3]

= (1 − F3) [F1F4 + F2F5 − F1F2F4F5] +

F3 [F1 + F2 − F1F2] [F4 + F5 − F4F5]
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A 2 out of 3 System Structure

1 2

31

2 3
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Examples of k out of s System Structures

• Satellite battery system in which system will continue to

operate as long as 6 of 10 batteries continue to operate

correctly.

• Floppy disks which continue to provide service by blocking

out bad sectors.
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2 out of 3 System Structures

For a 2 out of 3 independent components

FT(t) = Pr(T ≤ t)

= Pr(exactly two fail) + Pr(exactly three fail)

= F1F2(1 − F3) + F1F3(1 − F2) + F2F3(1 − F1) + F1F2F3

= F1F2 + F1F3 + F2F3 − 2F1F2F3
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k out of s System Structures

• For k out of s independent components

FT (t) =
s∑

j=s−k+1


∑

δ∈Aj

 s∏
i=1

F
δi
i (1 − Fi)

(1−δi)




where δ′ = (δ1, . . . , δs) with δi = 1 indicating failure of unit

i by time t and δi = 0 otherwise and Aj is the set of all δ

such that δ′δ = j.

• For identically distributed components (F = Fi, i = 1, . . . , n)

FT (t) =
s∑

j=s−k+1

(s
j

)
Fj(1 − F)s−j.
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Products With Two or More Causes of Failure

(or Multiple Modes of Failure)

Many units, systems, subsystems, or components have more
than one cause of failure. For example:

• A capacitor can fail open or as a short.

• Any of many solder joints in a circuit board can fail.

• A semiconductor device can fail at a junction or at a lead.

• A device can fail because a manufacturing defect (infant
mortality) or because of mechanical wearout.

• For an automobile tire, tread can wearout or the tire may
suffer a puncture.
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Device-G Background

• Failure times and running times for a sample of devices from

a field tracking study of a larger system.

• Thirty (30) units were installed in typical service environ-

ments.

• Cause of failure information was determined for each unit

that failed.

• Mode S failures were caused by failures on an electronic

component due to electrical surge. These failures predom-

inated early in life.

• Mode W failures, caused by normal product wear, began to

appear after 100 thousand cycles of use.
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Device-G Data

Thousands Failure Thousands Failure Thousands Failure
of Cycles Mode of Cycles Mode of Cycles Mode

275 W 106 S 88 S
13 S 300 – 247 S

147 W 300 – 28 S
23 S 212 W 143 S

181 W 300 – 300 –
30 S 300 – 23 S
65 S 300 – 300 –
10 S 2 S 80 S

300 – 261 S 245 W
173 S 293 W 266 W

W indicates a wearout failure, S indicates an electrical

surge failure, and – indicates a unit still operating after

300 thousand cycles.
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Series-System Model

• Let TS be the lifetime from the electrical surge failure mode

(S) and TW be the lifetime from the wearout failure mode

(W).

• The failure-time of the product is

T = min{TS, TW}

• When the failure modes are independent, the cdf for the

failure-time is

F(t) = Pr(T ≤ t) = 1 − Pr(T > t) = 1 − Pr(TS > t ∩ TW > t)

= 1 − Pr(TS > t)Pr(TW > t)

= 1 − [1 − FS(t)][1 − FW(t)].

• The same concepts apply to the failure-time of a product

with more than two failure modes.
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General Data Analysis Strategies

• Analyze the failure modes separately.

� Of interest to managers or engineers wanting to improve

product reliability.

� Requires that failure modes act independently of each

other or information about the joint distribution of (TS, TW)

(see discussion later).

• Ignore cause of failure information.

� Of interest to a consumer concerned with product life.

� Sometimes adequate within the range of the data; can

be seriously incorrect when extrapolating.
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Analysis of Device-G Data

Independent Failure Modes

When the failure modes S and W act independently, one

can:

• Analyze the mode S failures only. In this case mode W

failures are treated as right censored observations.

This is the estimate of the failure-time distribution if mode

W could be completely eliminated.

• Analysis of the mode W failures only. In this case mode S

failures are treated as right censored observations.

This is the estimate of the failure-time distribution if mode

S could be completely eliminated.

• A combined analysis using the series system model and in-

dependence between mode S and mode W.
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Weibull Distribution Models for

the Device-G Data

• Failure times for each of the two failure modes modeled

with a separate Weibull distribution:

Fi(t) = Φsev

(
log(t) − µi

σi

)
, i = S,W.

• The series model for two independent failure modes acting

together is

F(t) = 1 − [1 − FS(t)] × [1 − FW(t)].

• Ignoring the cause of failure information:

F(t) = Φsev

(
log(t) − µSW

σSW

)
.
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Device-G Field-Tracking Data

ML Weibull Distribution Estimation Results for the

Electric Surge (S) and Wearout (W) Failure Modes

95% Approximate
ML Standard Confidence Interval

Mode Parameter Estimate Error Lower Upper
S µS 6.11 .427 5.27 6.95

σS 1.49 .35 .94 2.36

W µW 5.83 0.11 5.62 6.04

σW .23 .08 .12 .44

S & W µSW 5.49 0.23 5.04 5.94

σSW 1.08 .21 .74 1.57

For Mode S alone, LS = −101.36 for Mode W alone, LW =

−47.16, and for both modes together, LSW = −142.62.
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Weibull Analyses of Device-G Data Estimating Time

to Failure Ignoring the Cause of Failure

Kilocycles
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Weibull Analyses of Device-G Data

Individual Failure Modes

Kilocycles
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Weibull Analyses of Device-G Data Estimating Time

to Failure Using Series System Model

Kilocycles

.001

.003

.005

.01

.02

.03

.05

.1

.2

.3

.5

.7

.9

.98

   1    2    5   10   20   50  100  200  500 1000 2000

F
ra

ct
io

n 
F

ai
lin

g

Wearout
Surge

15 - 43



Weibull Analyses of Device-G Data Estimating Time
to Failure Mode S Only, Failure Mode W Only,

Ignoring the Cause of Failure, and
Series System Model

Thousands of Cycles
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Some Comments on the

Weibull Analyses of Device-G Data

• The Weibull distribution provides a good fit to both data

the S failure mode and the W failure mode.

• Weibull analysis ignoring the cause of failure information

shows evidence of a change in the slope of the plotted

points, indicating a gradual shift from one failure mode to

another.

• The Weibull cdf estimate obtained from ignoring the cause

of failure and the series-system cdf estimate for the two fail-

ure modes acting together diverge rapidly after 200 thou-

sand cycles.

• Estimates of the mean time to failure computed from M̂TTF =∫∞
0 [1 − F̂T (t)]dt were 251.3 and 196.0 thousands of cycles,

respectively, for the models ignoring and using the failure

mode information.
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Connection Strength Data

(King 1971 and Nelson 1982)

• Wires are bonded at one end to a semiconductor wafer and

at the other end to a terminal post.

• The wire or the bond can fail.

• The engineers wanted to know if the manufacturing pro-

cess meets the specification that no more that 1% of the

strengths be below 500mg.
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Connection Strength Data

(King 1971 and Nelson 1982)

Strength Failure Strength Failure
mg Mode mg Mode

550 B 1250 B
750 W 1350 W
950 B 1450 B
950 W 1450 B

1150 W 1450 W
1150 B 1550 B
1150 B 1550 W
1150 W 1550 W
1150 W 1850 W
1250 B 2050 B

B indicates that the bond failed and

W indicates that the wire failed
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Normal Distribution Series Model for

Connection Strength Data

• Each failure mode is modeled separately with a normal

model

Fi(t) = Φnor

(
t − µi

σi

)
, i = B,W.

• The series model for the two failure modes acting together

is

F(t) = 1 − [1 − FB(t)] × [1 − FW(t)].

• When the cause of failure information is ignored

F(t) = Φnor

(
t − µSW

σSW

)
.
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Connection Strength Data Normal ML Estimation

for Bond (B) and Wire (W) Failure Modes

95% Approximate
ML Standard Confidence Interval

Mode Parameter Estimate Error Lower Upper
B µB 1522.32 121.61 1304.20 1831.80

σB 434.97 97.96 295.71 728.46

W µW 1517.36 111.43 1316.00 1799.46

σW 398.70 89.86 270.97 667.58

B&W µBW 1285.00 76.58 1127.41 1442.59

σBW 342.45 54.14 258.58 483.78

For mode S alone, LB = −79.96 for mode W alone, LW =

−79.02, and for both modes together, LBW = −145.10.
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Normal Probability Plots for Connecting Strength

Data Ignoring Cause of Failure

miligrams
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Normal Probability Plots for Connecting Strength

Data Individual Failure Modes

miligrams
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Normal Distribution Series Model for

Connection Strength Data

miligrams
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Normal Probability Plots for Bond, Wire, Ignoring

Mode of Failure and Series System Model

mg

.01

.02

.05

.1

.2

.3

.4

.5

.6

.7

.8

.9

.95

.98

.99
.995

.998

   0  500 1000 1500 2000 2500 3000 3500

P
ro

po
rt

io
n 

F
ai

lin
g

•
•

•

•
• •

•
•

•
•

Model for both modes -> <- Ignore mode info

<- Wire

<- Bond

15 - 53



Some Computations for the Connection Strength Data

• The estimate of the failure probability at 500mg are:

• For bonds

F̂B(500) = Φ
[
500 − 1522.32

434.98

]
= .0094

• For wires

F̂W(500) = Φ
[
500 − 1517.36

398.70

]
= .0054

• When both modes act together (independent failures modes)

F̂(500) = 1 − (1 − .0094)(1 − .0054) = .0147

• Ignoring cause of failure

F̂ (500) = Φ
[
500 − 1285.0

342.45

]
= .0109
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Estimation When Failure Mode is Identified for Only

Some Failures

When failure modes are not identified or are only partially

identified for some units, it is still possible to estimate the

individual Fi(t) distributions by using maximum likelihood.

• Known as masking of failure modes.

• Difficult because the analysis are not separable.

• Parameter estimates for the distribution for one mode will

be correlated with those of the other modes.

• In practice, one is likely to analyze the data as if there were

only a single mode. Potentially misleading if extrapolating

outside the range of the data.
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Effect of Dependency Among Failure Modes

• The common assumption of independent failure modes is
sometimes unrealistic.

When there is dependence, still one can use the relationship

F(t) = Pr(T ≤ t) = 1 − Pr(T1 > t ∩ T2 > t)

but the evaluation has to be done with respect to the bi-
variate joint distribution of T1 and T2.

• Usually, when there is dependence, the dependence is posi-
tive. Then long (short) failure times of one mode tend to
go with long (short) failure times of another.

In this case, eliminating one of the failure modes has little
effect in increasing the reliability of the system because the
other mode assumes the role of the eliminated mode.

• If the failure modes are positively dependent, then attempt-
ing to predict the effect of eliminating one of the failure
modes, using the independent failure mode model, can give
seriously incorrect and overly optimistic predictions.
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Computing System cdf from Component Information

When there are component data available, one can estimate

the θi’s from the component data. This yields the estimates

F1, . . . , Fs. Evaluate as a function of time.

To compute the system cdf, one can

• Use FT = g(F1, . . . , Fs) when when g is known.

• If g cannot be expressed in closed form or is otherwise diffi-

cult to compute, one can use a computer simulation of the

system based on the Fi and the system structure.

• When the Fi are unknown, an estimate of the system FT

can be obtained by evaluating FT at the ML estimates of

the needed Fi values.
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Sources of Reliability Data and Other Information

• Laboratory tests.

• Field data.

• Books and data banks.

• Expert knowledge.
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Maximum Likelihood Estimation of System Reliability

The system cdf and other related functions can be esti-

mated using ML estimates for the components.

• Let θ̂ be the ML estimate of θ , and Σ̂
θ̂

the ML estimate of

Σ
θ̂

obtained from the component data. Then using same

methods as in previous chapters

F̂T = FT (θ̂) = g[F1(θ̂), . . . , Fs(θ̂s)]

V̂ar(F̂T ) =
(

∂FT

∂θ

)′
Σ̂

θ̂

(
∂FT

∂θ

)
where the derivatives are evaluated at θ̂.
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Example of Maximum Likelihood Estimation for a

Simple System

For a parallel structure with s iid components

F̂T = [F̂ ]s = [F(θ̂)]s

V̂ar(F̂T ) =
(

∂FT

∂θ

)′
Σ̂

θ̂

(
∂FT

∂θ

)
=

(
∂FT

∂F

∂F

∂θ

)′
Σ̂

θ̂

(
∂FT

∂F

∂F

∂θ

)

=
(
sF̂ s−1∂F

∂θ

)′
Σ̂

θ̂

(
sF̂ s−1∂F

∂θ

)

ŝe(F̂T ) =
√

V̂ar(F̂T )
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Normal-Approximation Confidence Intervals for

System Reliability

An approximate 100(1 − α)% confidence intervals can be

based on Z
logit(F̂T )

∼̇ NOR(0,1)

[FT˜ , F̃T ] =

[
F̂T

F̂T + (1 − F̂T ) × w
,

F̂T

F̂T + (1 − F̂T )/w

]

where w = exp{z(1−α/2)ŝeF̂
/[F̂ (1 − F̂ )]}.
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Bootstrap Approximate Confidence Intervals for

System Reliability

• Needed bootstrap samples consist of

� Bootstrap estimates F̂ ∗
i , i = 1, . . . , s (as in Chapter 13).

� Bootstrap estimate F̂ ∗
T = g(F̂ ∗

1 , . . . , F̂ ∗
s )

• A 100(1 − α)% approximate confidence interval based on

Z
logit(F̂T)

∼̇ Z
logit(F̂ ∗

T)
and B bootstrap samples is

[FT˜ , F̃T ] =

 F̂T

F̂T + (1 − F̂T ) × w˜ ,
F̂T

F̂T + (1 − F̂T ) × w̃


where w˜ = exp{z

logit(F̂ ∗
T )(1−α/2)

ŝe
F̂T

/[F̂T (1 − F̂T)]} and w̃ =

exp{z
logit(F̂ ∗

T )(α/2)
ŝe

F̂T
/[F̂T (1 − F̂T )]} are obtained from the

quantiles of the B bootstrap estimates F̂ ∗
T .
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Other System Structures

Standby or passive redundancy: a redundant unit is ac-

tivated only when another unit fails and the redundant unit

is need to keep the system working.

There are many variations of this:

• Cold standby.

• Partially loaded redundancy.

Need to consider the reliability of the switching mechanism

that activates the standby units.
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Other Topics in System Reliability

• Other systems structures.

• System repair, maintainability, and availability.

• Dependent failures: the common assumption of compo-

nents with independent failures is sometimes unrealistic. It

is possible that a component failure improves or degrades

the reliability of other system components.

• Markov models for handling dependencies and common-

cause failures.
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Repairable and Nonrepairable Systems

• Nonrepairable system: a system (component) that is dis-

carded the first time that it fails.

• Repairable system: a system (component) that can be

repaired or replaced after failure.

Modeling the reliability of a system containing many compo-

nents of different ages is complicated (components not iid).
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Repairable System Reliability Metrics

• For repairable systems with failures at T1, T2, . . . and negli-

gible repair time define τi = Ti − Ti−1, where T0 = 0,

� Mean time between failures (MTBF): average time elapsed

between failures, MTBFi = E(τi). In general, MTBFi

depends on i and τ1, . . . , τi−1.

� The failure occurrence rate (or intensity) is defined as:

v(t) =
dE[N(t)]

dt

where N(t) is the number of failures in the interval (0, t].
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Markov and Other More General Models

Markov models allow the modeling of repairable models al-

lowing for dependence among components and common-

cause failures.

• Markov models are, however, only suitable for small sys-

tems.

• The Markov models are also limited by the life and repair

distributions that can be employed.

• Non-Markovian generalizations possible, but lead to compu-

tational difficulties. Analysis of such models generally done

with simulation.
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