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Planning Life Tests

Chapter 10 Objectives

• Explain the basic ideas behind planning a life test.

• Use simulation to anticipate the results, analysis, and pre-

cision for a proposed test plan.

• Explain large-sample approximate methods to assess preci-

sion of future results from a reliability study.

• Compute sample size needed to achieve a degree of preci-

sion.

• Assess tradeoffs between sample size and length of a study.

• Illustrate the use of simulation to calibrate the easier-to-use

large-sample approximate methods.
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Basic Ideas in Test Planning

• The enormous cost of reliability studies makes it essential

to do careful planning. Frequently asked questions include:

� How many units do I need to test in order to estimate

the .1 quantile of life?

� How long do I need to run the life test?

Clearly, more test units and more time will buy more infor-

mation and thus more precision in estimation.

• To anticipate the results from a test plan and to respond to

the questions above, it is necessary to have some planning

information about the life distribution to be estimated.
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Engineering Planning Values and Assumed Distribution
for Planning an Insulation Life Test

Want to estimate t.1 of the life distribution of a newly devel-
oped insulation. Tests are run at higher than usual volts/thickness
to cause failures to occur more quickly.

Information (planning values) from engineering

• Expect about 20% failures in the 1000 hour test and about
12% failures in the first 500 hours of the test.

• Willing to assume a Weibull distribution to describe failure-
time.

• Equivalent information for planning values: η� = 6464
hours (or µ� = log(6464) = 8.774), β� = .8037 (or σ� =
1/β� = 1.244).

Starting point: Use simulated data to assess precision.
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Weibull Probability Paper

Showing the Insulation Life cdf Corresponding to the

Test Planning Values η� = 6464 and β� = .8037
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Simulation as a Tool for Test Planning

• Use assumed model and planning values of model parame-
ters to simulate data from the proposed study.

• Analyze the data perhaps under different assumed models.

• Assess precision provided.

• Simulate many times to assess actual sample-to-sample dif-
ferences.

• Repeat with different sample sizes to gauge needs.

• Repeat with different input planning values to assess sensi-
tivity to these inputs.

Any surprises?
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ML Estimates from 50 Simulated Samples of Size

n = 20, tc = 400 from a Weibull Distribution

with µ� = 8.774 and σ� = 1.244

Hours

.005

.01

.02

.03

.05

.1

.2

.3

.5

.7

.9

.98

.999

   10    50   200   500  2000  5000 20000 50000

F
ra

ct
io

n 
F

ai
lin

g

Censor Time ->

6 samples out of 50 with 0 failures

Conditional geometric average 95% confidence interva
precision factor R for t_0.1 = 12.9

10 - 7



ML Estimates from 50 Simulated Samples of Size

n = 80, tc = 400 from a Weibull Distribution

with µ� = 8.774 and σ� = 1.244
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ML Estimates from 50 Simulated Samples of Size

n = 20, tc = 1000 from a Weibull Distribution

with µ� = 8.774 and σ� = 1.244
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ML Estimates from 50 Simulated Samples of Size

n = 80, tc = 1000 from a Weibull Distribution

with µ� = 8.774 and σ� = 1.244
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Simulations of Insulation Life Tests

• ML estimates obtained from 50 simulated samples of size

n = 20, 80, from a Weibull distribution with µ� = 8.774, σ� =

1.244 (β� = .8037).

• The vertical lines at tc = 400, 1000hours (shown with the

thicker line) indicates the censoring time (end of the test).

• The horizontal line is drawn at p = .1 so to provide a better

visualization of the distribution of estimates of t.1.

• Results at tc = 400 and n = 20 are highly variable.
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Trade-offs Between Test Length and Sample Size

Geometric average R̂ factor from 50 simulated exponential

samples (θ = 5) for combinations of sample size n and test

length tc (conditional on r ≥ 1 failures)

Test Length tc Sample Size n
20 80

400 12.9 2.84
(2) (8)

1000 4.53 2.14
(4) (16)

Numbers within parenthesis are the expected number of fail-

ures at each test condition.
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Assessing the Variability of the Estimates

• For positive quantile tp an approximate 100(1− α)% confi-

dence interval is given by

[tp˜ , t̃p] = [t̂p/R̂, t̂pR̂]

where R̂ = exp
[
z(1−α/2)ŝelog(t̂p)

]
. The factor R̂ > 1 is an

indication of the width of the interval and can be used to

assess the variability in the estimates t̂p.

• For an unrestricted quantile yp an approximate 100(1−α)%

confidence interval is given by

[yp˜ , ỹp] = [ŷp − D̂, ŷp + D̂]

where D̂ = z(1−α/2)ŝeŷp
. The half-width D̂ is an indication

of the width of the interval and can be use to assess the

variability in the estimates ŷp.
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Simulations of Insulation Life Tests-Continued

Some important points about the effect that sample size will

have on our ability to make inferences:

• For the tc = 400 and n = 5 simulation

� Enormous amount of variability in the ML estimates.

� For several of the simulated data sets, no ML estimates

exist because all units were censored.

• Increasing the experiment length to tc = 1000 and the sam-

ple size to n = 80 provides

� A more stable estimation process.

� A substantial improvement in precision.
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Confidence Interval Precision Factor R      
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Motivation for Use of Large-Sample Approximations of

Test Plan Properties

Asymptotic methods provide:

• Simple expressions giving precision of a specified estimator

as a function of sample size.

• Simple expressions giving needed sample size as a function

of specified precision of a specified estimator.

• Simple tables or graphs that will allow easy assessments of

tradeoffs in test planning decisions like sample size and test

length.

• Can be fine tuned with simulation evaluation.

10 - 16



Asymptotic Variances

Under certain regularity conditions the following results hold
asymptotically (large sample)

• θ̂ ∼̇ MVN(θ,Σ
θ̂
), where Σ

θ̂
= I−1

θ , and

Iθ = E

[
− ∂2L(θ)

∂θ∂θ′

]
=

n∑
i=1

E

[
− ∂2Li(θ)

∂θ∂θ′

]
.

• For a scalar g = g(θ̂) ∼̇ NOR[g(θ),Avar(ĝ)], where

Avar(ĝ) =

[
∂g(θ)

∂θ

]′
Σ

θ̂

[
∂g(θ)

∂θ

]
.

• When g(θ) is positive for all θ, then
log[g(θ̂)] ∼̇ NOR{log[g(θ)],Avar[log(ĝ)]}, where

Avar[log(ĝ)] =

(
1

g

)2

Avar(ĝ).
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Asymptotic Approximate Standard Errors for a
Function of the Parameters g(θ)

Given an assumed model, parameter values (but not sample
size), one can compute scaled asymptotic variances.

• The variance factors Vĝ = nAvar(ĝ) and Vlog(ĝ) = nAvar[log(ĝ)]
may depend on the actual value of θ but they do not depend
on n.

To compute these variance factors one uses planning values
for θ (denoted by θ�) as discussed later.

• The asymptotic standard error for ĝ and log(ĝ) are

Ase(ĝ) =
1√
n

√
Vĝ

Ase[log(ĝ)] =
1√
n

√
Vlog(ĝ).

• Easy to choose n to control Ase.
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Sample Size Determination

for Positive Functions of the Parameters

• When g(θ) > 0 for all θ, an approximate 100(1 − α)% con-

fidence interval for log[g(θ)] is[
log(g)˜ , ˜log(g)

]
= log(ĝ)±(1/

√
n)z(1−α/2)

√
V̂log(ĝ) = log(ĝ)±log(R).

Exponentiation yields a confidence interval for g

[g˜, g̃] = [ĝ/R, ĝR]

R = exp
[
(1/

√
n)z(1−α/2)

√
V̂log(ĝ)

]
= g̃/ĝ = ĝ/g˜ =

√
g̃/g˜.

• Replace V̂log(ĝ) with V�
log(ĝ) and solve for n to compute the

needed sample size giving

n =
z2
(1−α/2)V

�
log(ĝ)

[log(RT )]2
.
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Sample Size Determination

for Positive Functions of the Parameters-Continued

Test plans with a sample size of

n =
z2
(1−α/2)V

�
log(ĝ)

[log(RT )]2
.

provides confidence intervals for g(θ) with the following char-
acteristics:

• In repeated samples approximately 100(1 − α)% of the in-
tervals will contain g(θ).

• In repeated samples V̂log(ĝ) is random and if V̂log(ĝ) >

V�
log(ĝ) then the ratio R = g̃/g˜ will be greater than [RT ]2.

• The ratio R = g̃/g˜ will be greater than [RT ]2 with a proba-

bility of order .5.
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Sample Size Needed to Estimate the

Mean of an Exponential Distribution

Used to Describe Insulation Life

• Need a test plan that will estimate the mean life of insula-

tion specimens at highly-accelerated (i.e., higher than usual

voltage to get failure information quickly) conditions.

• Desire a 95% confidence interval with endpoints that are

approximately 50% away from the estimated mean (so RT =

1.5).

• Can assume an exponential distribution with a mean θ� =

1000 hours.

• Simultaneous testing of all units; must terminate test at

500 hours.
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Sample Size Needed to Estimate the

Mean of an Exponential Distribution

Used to Describe Insulation Life-Continued

• ML estimate of the exponential mean is θ̂ = TTT/r, where

TTT is the total time on test and r is the number of failures.

It follows that

V
θ̂
= nAvar(θ̂) =

n

E
[
−∂2L(θ)

∂θ2

] =
θ2

1 − exp
(
−tc

θ

)
from which

V�

log(θ̂)
=

V�

θ̂

[θ�]2
=

1

1 − exp
(
− 500

1000

) = 2.5415.

Thus the number of needed specimens is

n =
z2
(1−α/2)V

�

log(θ̂)

[log(RT )]2
=

(1.96)22.5415

[log(1.5)]2
≈ 60.
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Location-Scale Distributions and
Single Right Censoring Asymptotic

Variance-Covariance

Here we specialize the computation of sample sizes to sit-
uations in which

• log(T) is location-scale Φ with parameters (µ, σ).

• When the data are Type I singly right censored at tc. In
this case,

n

σ2
Σ(µ̂,σ̂) =

1

σ2

[
Vµ̂ V(µ̂,σ̂)
V(µ̂,σ̂) Vσ̂

]
=

[
σ2

n
I(µ,σ)

]−1

=

[
f11 f12
f12 f22

]−1

=

(
1

f11f22 − f2
12

)[
f22 −f12

−f12 f11

]
where the fij values depend only on Φ and the standard-
ized censoring time ζc = [log(tc)− µ]/σ [or equivalently, the
proportion failing by tc, Φ(ζc)].
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Location-Scale Distributions

and Single Right Censoring

Fisher Information Elements

The fij values are defined as:

f11 = f11(ζc) =
σ2

n
E

[
−∂2Li(µ, σ)

∂µ2

]

f22 = f22(ζc) =
σ2

n
E

[
−∂2Li(µ, σ)

∂σ2

]

f12 = f12(ζc) =
σ2

n
E

[
−∂2Li(µ, σ)

∂µ∂σ

]
The fij values are available from tables or algorithm LSINF

for the SEV (Weibull), normal (lognormal), and logistic (loglo-

gistic) distributions.

For a single fixed censoring time, the asymptotic variance-

covariance factors 1
σ2Vµ̂,

1
σ2Vσ̂, and 1

σ2V(µ̂,σ̂) are easily tabu-

lated as a function of ζc.
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Table of Information Matrix Elements
and Variance Factors

Table C.20 provides for the normal/lognormal distributions,
as functions of the standardized censoring time ζc:

• 100Φ(ζc), the percentage in the population failing by the
standardized censoring time.

• Fisher information matrix elements f11, f22, and f12.

• The asymptotic variance-covariance factors 1
σ2Vµ̂,

1
σ2Vσ̂,

and 1
σ2V(µ̂,σ̂).

• Asymptotic correlation ρ(µ̂,σ̂) between µ̂ and σ̂.

• The σ-known asymptotic variance factor 1
σ2Vµ̂|σ = nAvar(µ̂),

and the µ-known factor 1
σ2Vσ̂|µ = nAvar(σ̂).
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Large-Sample Asymptotic Variance for Estimators of

Functions of Location-Scale Parameters

It is straightforward to compute asymptotic variance factors

for functions of parameters. For example, when ĝ = g(µ̂, σ̂)

Avar(ĝ) =

[
∂g

∂µ

]2
Avar(µ̂)+

[
∂g

∂σ

]2
Avar(σ̂)+2

[
∂g

∂µ

] [
∂g

∂σ

]
Acov(µ̂, σ̂)

Avar[log(ĝ)] =

(
1

g

)2

Avar(ĝ).

Thus

Vĝ =

[
∂g

∂µ

]2
Vµ̂ +

[
∂g

∂σ

]2
Vσ̂ + 2

[
∂g

∂µ

] [
∂g

∂σ

]
V(µ̂,σ̂)

Vlog(ĝ) =

(
1

g

)2

Vĝ; Vexp(ĝ) = exp(2g)Vĝ
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Sample Size to Estimate a Quantile of T
when log(T) is Location-Scale (µ, σ)

• Let g(θ) = tp be the p quantile of T . Then log(tp) = µ +
Φ−1(p)σ, where Φ−1(p) is the p quantile of the standardized
random variable Z = [log(T) − µ]/σ.

• From the previous results, n is given by

n =
z2
(1−α/2)V

�
log(t̂p)

[log(RT )]2

where V�
log(t̂p)

is obtained by evaluating

Vlog(t̂p) =
{
Vµ̂ +

[
Φ−1(p)

]2
Vσ̂ + 2

[
Φ−1(p)

]
V(µ̂,σ̂)

}
at θ� = (µ�, σ�), ζ�

c = [log(tc) − µ�]/σ�.

• Figure 10.5 gives 1
σ2Vlog(t̂p) as a function of pc = Pr(Z ≤ ζc)

for the Weibull distribution. To obtain n one also needs to
specify Φ and a target value RT for R = g̃/ĝ = ĝ/g˜ =

√
g̃/g˜.
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Sample Size Needed to Estimate t.1 of a Weibull

Distribution Used to Describe Insulation Life

• Again expect about 20% failures in the 1000 hour test and

12% failures in the first 500 hours. Equivalent information:

µ� = 8.774, σ� = 1.244 (or β� = 1/1.244 = .8037).

• Need a test plan that will estimate the Weibull .1 quantile

(so p = .1) such that a 95% confidence interval will have

endpoints that are approximately 50% away from the esti-

mated mean (so RT = 1.5). For a 1000-hour test, pc = .2.

• By computing from tables and formula or from Figure 10.5,
1
σ2Vlog(t̂p) = 7.28 so V�

log(t̂p)
= 7.28 × (1.244)2 = 11.266.

Thus, n =
z2
(1−α/2)V

�
log(t̂.1)

[log(RT )]2
=

(1.96)2(11.266)

[log(1.5)]2
≈ 263.
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Variance Factor 1
σ2Vlog(t̂p) for ML Estimation of

Weibull Distribution Quantiles as a Function of pc, the

Population Proportion Failing by Time tc and p, the

Quantile of Interest (Figure 10.5)
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Variance Factor 1
σ2Vlog(t̂p) for ML Estimation of

Lognormal Distribution Quantiles as a Function of pc,

the Population Proportion Failing by Time tc and p,

the Quantile of Interest (Figure 10.6)

.001 .01 .05 .2 .3 .5 .7 .8 .9 .99

1

5

10

50

100

500

1000

Quantile of Interest p

Q
ua

nt
ile

 V
ar

ia
nc

e 
F

ac
to

r

p_c = .005 .01

.02

.05

.07

.1

.2

.4

.7

1.

10 - 30



Figures for Sample Sizes to Estimate Weibull,

Lognormal, and Loglogistic Quantiles

Figures give plots of the factor 1
σ2Vlog(t̂p) for quantile of in-

terest p as a function of p = Pr(Z ≤ ζc) for the Weibull,

lognormal, and loglogistic distributions. Close inspection of

the plots indicates the following:

• Increasing the length of a life test (increasing the expected

proportion of failures) will always reduce the asymptotic

variance. After a point, however, the returns are diminish-

ing.

• Estimating quantiles with p large or p small generally results

in larger asymptotic variances than quantiles near to the

expected proportion failing.
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Generalization: Location-Scale Parameters and

Multiple Censoring

In some applications, a life test may run in parts, each part having a
different censoring time (e.g., testing at two different locations or be-
ginning as lots of units to be tested are received). In this case we need
to generalize the single-censoring formula. Assume that a proportion δi

(
∑k

i=1 δi = 1) of data are to be run until right censoring time tci or failure
(which ever comes first). In this case,

n

σ2
Σ

(µ̂,̂σ)
=

1

σ2

[
V

µ̂
V

(µ̂,̂σ)

V
(µ̂,̂σ)

V
σ̂

]
=

[
σ2

n
I(µ,σ)

]−1

=

(
1

J11J22 − J2
12

)[
J22 −J12

−J12 J11

]
where J11 =

∑k
i=1 δif11(zci

), J22 =
∑k

i=1 δif22(zci
), and J12 =

∑k
i=1 δif12(zci

)
where zci = (log(tci) − µ)/σ.

In this case, the asymptotic variance-covariance factors 1
σ2Vµ̂

, 1
σ2Vσ̂

, and
1
σ2V(µ̂,̂σ)

depend on Φ, the standardized censoring times zci, and the pro-

portions δi, i = 1, . . . k.
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Test Plans to Demonstrate
Conformity with a Reliability Standard

Objective: to find a sample size to demonstrate with
some level of confidence that reliability exceeds a given
standard.

• The reliability is specified in terms of a quantile, say tp.

The customer requires demonstration that

tp > t†p
where t

†
p is a specified value.

For example, for a component to be installed in a system
with a 1-year warranty, a vendor may have to demonstrate
that t.01 exceeds 24 × 365 = 8760 hours.

• Equivalently, in terms of failure probabilities the reliability
requirement could be specified as

F(te) < p†.
For the example, te = 8760 and p† = .01.

10 - 33



Minimum Sample Size

Reliability Demonstration Test Plans

• In general the demonstration that tp > t
†
p is successful at

the 100(1 − α)% level of confidence if tp˜ > t
†
p.

• Suppose that failure-times are Weibull with a given β. A

minimum sample size test plan is one that has a particular

sample size n (depending on β, α, p and amount of time

available for testing).

• The minimum sample size test plan is: Test n units until tc

where n is the smallest integer greater than

1

kβ
× log(α)

log(1 − p)
.

and k = tc/t
†
p.

• If there is zero failures during the test the demonstration is

successful.
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Minimum Sample Size for a 99% Reliability

Demonstration for t.1 with Given β
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Justification for the Weibull Zero-Failures Test Plan

Suppose that failure-times are Weibull with a given β and
zero failures during a test in which n units are tested until
tc. Using the results in Chapter 8, to obtain 100(1 − α)%
lower bounds for η and tp˜ are

η˜ =

 2nt
β
c

χ2
(1−α;2)

1
β

=

 nt
β
c

− log(α)

1
β

tp˜ = η˜ × [− log(1 − p)]
1
β .

• Using the inequality tp˜ > t
†
p and solving for the smallest

integer n such that

n ≥ 1

kβ
× log(α)

log(1 − p)

gives the needed minimum sample size, where k = tc/t
†
p.
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Justification for the Weibull Zero-Failures Test Plan

(Continued)

• For tests with k < 1, which implies extrapolation in time,

having a specified value of β greater than the true value is

conservative (the confidence level is greater than the nom-

inal).

• For tests with k > 1 having a specified value of β less

than the true value is conservative (in the sense that the

demonstration is still valid).

• When k = 1 the value of β does not effect the sample size.
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Additional Comments on Zero Failure Test Plans

• The inequality tp˜ > t
†
p can be solved for n, k, β, or α. Zero-

failure test plans can be obtained for other failure-time dis-

tributions with only one unknown parameter.

• Zero-failure test plans can be obtained for for any distribu-

tion.

• The ideas here can be extended to test plans with one or

more failures. Such test plans require more units but provide

a higher probability of successful demonstration for a given

t
†
p > tp.
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Other Topics in Chapter 10

• Uncertainty in planning values and sensitivity analysis.

• Location-scale distributions and limited test positions.

• Variance factors for location-scale parameters and batch

testing.

• Test planning for non-location-scale distributions.

• Sample size to estimate: unrestricted functions of the pa-

rameters, the mean of an exponential, the hazard function

of a location-scale distribution.
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