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Chapter 2
Models, Censoring, and Likelihood for
Failure-Time Data
Objectives

Describe models for continuous failure-time processes.
Describe some reliability metrics.

Describe models that we will use for the discrete data from
these continuous failure-time processes.

Describe common censoring mechanisms that restrict our
ability to observe all of the failure times that might occur
in a reliability study.

Explain the principles of likelihood, how it is related to the
probability of the observed data, and how likelihood ideas
can be used to make inferences from reliability data.



Typical Failure-time cdf, pdf, hf, and sf

F(t) =1 —exp(—t17);

S(t) = exp(—t1");
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Models for Continuous Failure-Time Processes

T is a nonnegative, continuous random variable describing
the failure-time process. The distribution of T' can be char-
acterized by any of the following functions:

The cumulative distribution function (cdf): F(t) = Pr(T <

0.
Example, F(t) =1 — exp(—=tl7).

The probability density function (pdf): f(t) = dF(t)/dt.
Example, f(t) = 1.7 x t7 x exp(—t17).

Survival function (or reliability function):
©.@)
ﬂﬂszT>ﬂ=1=ﬂﬂ=/ f(z)de.
t
Example, S(t) = exp(—t17).

The hazard function: h(t) = f(t)/[1 — F(t)].
Example, h(t) = 1.7 x ¢/



Hazard Function
or Instantaneous Failure Rate Function

The hazard function h(t) is defined by

Prit<T <t+At|T >t
he) = im PGS TStR AT >0
At—0 At

f(t)
1—F(t)

Notes:
o F(t) =1 —exp[— [§h(zx)dx], etc.

e h(t) describes propensity of failure in the next small interval
of time given survival to time ¢

W) x At = Pr(t<T <t+ At |T > t).

e Some reliability engineers think of modeling in terms of h(t).
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Cumulative Hazard Function and Average Hazard Rate

e Cumulative hazard function:
'
H(t) = /O h(z) da.
Notice that, F(t) =1 —exp[-H(t)] = 1 —exp [— JE h(x) d:z:} .

e Average hazard rate in interval (t1,t5]:

t
Jif h(u)du — H(tp) — H(t1)

to—t1 to — 11 '
If F'(to) — F(t1) is small (say less than .1), then

F(tz) — F(t1)
(to —t1) S(t1)

e An important special case arises when t1 = O,

AHR(t) = Jo h(t“)du = %’5) ~ %’5)

Approximation is good for small F(t), say F(t) < .10.
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Plots showing that the quantile function is the inverse
of the cdf
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Distribution Quantiles

The p quantile of F' is the smallest time ¢, such that

Pr(T <tp) =F(tp) >p, where0<p<1.

t og is the time by which 20% of the population will fail. For,
F(t) = 1—exp(—t17), p = F(tp) gives t, = [—log(1—p)]1/1-7
and t > = [—log(1 —.2)]}/17 = 414,

When F(t) is strictly increasing there is a unique value t,
that satisfies F'(tp) = p, and we write

t, = F~1(p).

When F'(t) is constant over some intervals, there can be
more than one solution t to the equation F(t) > p. Taking
tp equal to the smallest ¢ value satisfying F(t) > p is a
standard convention.

tp is also know ad B100p (e.g., t.1g is also known as B10).
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Partitioning of Time into Non-Overlapping Intervals
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Times need not be equally spaced.
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Models for Discrete Data
from a Continuous Time Processes

All data are discrete! Partition (0,00) into m + 1 intervals
depending on inspection times and roundoff as follows:

(t07t1]7 (t17t2]7 ceey (tm—latm]a (tmatm—l-l)

where tg = 0 and ¢,,41 = oco. Observe that the last interval
is of infinite length.

Define,
m = Pr(tis1 <T <) =F() — F(ti-1)
F(t;) — F(t;_1)
1—F(t;-1)
Because the m; values are multinomial probabilities, m; > 0O

and Z?:""ll w; = 1. Also, p,41 = 1 but the only restriction
on p1,...,pm IS 0 <p; <1

pi = Prit; 1 <T <t | T>t_1)=

N
I
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Models for Discrete Data
from a Continuous Time Processes—Continued

It follows that,

m—+1
S(t,_1) = Pr(T' >t;_1) = Z Uy
J=1
m = piS(ti—1)
i
S(t;)) = H(l—pj>,i=1,...,m—|—1
j=1
We view m = (71,...,Tp4+1) OF p = (p1,...,pm) as the non-

parametric parameters.



Probabilities for the Multinomial Failure Time Model
Computed from F(t) =1 — exp(—t17)

ti F(t;) S(;) ; pi 1—p;
0.0 .000 1.000
0.5 .265 .735 .265 .265 .735
1.0 .632 .368 367 .500 .500
1.5 .864 .136 231 .629 371
2.0 961 .0388 .0976 715 .285
oo 1.000 .000 .0388 1.000 .000
1.000




Examples of Censoring Mechanisms

Censoring restricts our ability to observe T'. Some sources of
censoring are:

e Fixed time to end test (lower bound on T for unfailed units).
e Inspections times (upper and lower bounds on T).

e Staggered entry of units into service leads to multiple cen-
soring.

e Multiple failure modes (also known as competing risks, and
resulting in multiple right censoring):

» independent (simple).
» non independent (difficult).

e Simple analysis requires non-informative censoring assump-
tion.

N
I
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Likelihood (Probability of the Data)
as a Unifying Concept

Likelihood provides a general and versatile method of esti-
mation.

Model/Parameters combinations with relatively large likeli-
hood are plausible.

Allows for censored, interval, and truncated data.
Theory is simple in regular models.

Theory more complicated in non-regular models
(but concepts are similar).

Limitation: can be computationally intensive
(still no general software).

N
I
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Determining the Likelihood (Probability of the Data)

The form of the likelihood will depend on:

e Question/focus of study.

e Assumed model.

e Measurement system (form of available data).

e Identifiability/parameterization.



Likelihood (Probability of the Data) Contributions
for Different Kinds of Censoring
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Likelihood Contributions for Different Kinds of
Censoring with F(t) = 1 — exp(—t17")

Interval-censored observations:

t;

Lip) = [ ' f(®)dt = F(t) = F(t;-1).
1—1

If a unit is still operating at ¢t = 1.0 but has failed at ¢t = 1.5

inspection, L, = F'(1.5) — F(1.0) = .231.
Left-censored observations:

Lip) = [ f@) dt = F(t) ~ F(0) = F (2.

If a failure is found at the first inspection time t = .5,
L, = F(.5) = .265.

Right-censored observations:

Lip) = [~ f(®)dt = (o) = F(t;) = 1= F(t,).

If a unit has not failed by the last inspection at ¢t = 2,
L,=1—-F(2) =.0388.



Likelihood for Life Table Data

e For a life table the data are: the number of failures (d;),
right censored (r;), and left censored (¥;) units on each of
the nonoverlapping interval (¢;,_1,t;], t = 1,...,m+1, tg = 0.

e The likelihood (probability of the data) for a single obser-
vation, data;, in (¢,_1,t;] is

L;(m;data;) = F(t;; ) — F(t;—1; 7).

e Assuming that the censoring is at ¢;

Type of Characteristic Number Likelihood of

Censoring of Cases Responses L;(w; data;)
Leftatt;, T <t 0; F(t;)]"

Interval tii1 <T <t d; F(t;) — F(ti—l)]di
Right at t; T > t; T; 1 — F(t;)]"




Likelihood: Probability of the Data

e [ he total likelihood, or joint probability of the DATA, for n
independent observations is

L(T&'; DATA) = C ﬁ Li(ﬂ'; datai)
e
= C [ [Fu)% [F(t;) — F(t;_1)]% [1 — F(t;)]"
1=1

where n = Zm"'l (d +r;+ 4 ) and C is a constant depend-
ing on the sampllng mspectlon scheme but not on w. SO
we can take C = 1.

e Want to find =« so that L(w«) is large.



Likelihood for Arbitrary Censored Data

e In general, the the ¢th observation consists of an interval
(tF ], i=1,...,n (¢t < t;) that contains the time event T
for the 2th individual.

The intervals (tz-L,ti] may overlap and their union may not
cover the entire time line (0,00). In general t,L.L *ti_q.

e Assuming that the censoring is at t;

Type of Characteristic Likelihood of a single

Censoring Response L;(m; data;)
Left at t; T <t F(t;)

Interval th < T <t F(t;) — F(t})

Right at ¢; T > ¢; 1 — F(t;)




Likelihood for General Reliability Data

The total likelihood for the DATA with n independent ob-
servations is

n
L(m; DATA) = || L;(w; data;).
1=1

Some of the observations may have multiple occurrences.
Let (th,tj], j=1,...,k be the distinct intervals in the DATA

and let w; be the frequency of observation of (tf,tj]. Then

k
L(m; DATA) = [ [L;(n; dataj)]wj.
j=1

In this case the nonparametric parameters w correspond to
probabilities of a partition of (0,c0) determined by the data
(Examples later).



Other Topics in Chapter 2

Random censoring.

Overlapping censoring intervals.

Likelihood with censoring in the intervals.

How to determine C.
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