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Chapter 2

Models, Censoring, and Likelihood for

Failure-Time Data

Objectives

• Describe models for continuous failure-time processes.

• Describe some reliability metrics.

• Describe models that we will use for the discrete data from

these continuous failure-time processes.

• Describe common censoring mechanisms that restrict our

ability to observe all of the failure times that might occur

in a reliability study.

• Explain the principles of likelihood, how it is related to the

probability of the observed data, and how likelihood ideas

can be used to make inferences from reliability data.
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Typical Failure-time cdf, pdf, hf, and sf

F(t) = 1 − exp(−t1.7); f(t) = 1.7 × t.7 × exp(−t1.7)

S(t) = exp(−t1.7); h(t) = 1.7 × t.7
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Models for Continuous Failure-Time Processes

T is a nonnegative, continuous random variable describing

the failure-time process. The distribution of T can be char-

acterized by any of the following functions:

• The cumulative distribution function (cdf): F(t) = Pr(T ≤
t).

Example, F(t) = 1 − exp(−t1.7).

• The probability density function (pdf): f(t) = dF(t)/dt.

Example, f(t) = 1.7 × t.7 × exp(−t1.7).

• Survival function (or reliability function):

S(t) = Pr(T > t) = 1 − F(t) =
∫ ∞
t

f(x)dx.

Example, S(t) = exp(−t1.7).

• The hazard function: h(t) = f(t)/[1 − F(t)].

Example, h(t) = 1.7 × t.7
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Hazard Function

or Instantaneous Failure Rate Function

The hazard function h(t) is defined by

h(t) = lim
∆t→0

Pr(t < T ≤ t + ∆t | T > t)

∆t

=
f(t)

1 − F(t)
.

Notes:

• F(t) = 1 − exp[− ∫ t
0 h(x)dx], etc.

• h(t) describes propensity of failure in the next small interval

of time given survival to time t

h(t) × ∆t ≈ Pr(t < T ≤ t + ∆t | T > t).

• Some reliability engineers think of modeling in terms of h(t).

2 - 5



Bathtub Curve Hazard Function

t

Infant Mortality Random Failures Wearout Failures

h(t)

2 - 6



Cumulative Hazard Function and Average Hazard Rate

• Cumulative hazard function:

H(t) =
∫ t

0
h(x) dx.

Notice that, F(t) = 1− exp [−H(t)] = 1− exp
[
− ∫ t

0 h(x) dx
]
.

• Average hazard rate in interval (t1, t2]:

AHR(t1, t2) =

∫ t2
t1

h(u)du

t2 − t1
=

H(t2) − H(t1)

t2 − t1
.

If F(t2) − F(t1) is small (say less than .1), then

AHR(t1, t2) ≈ F(t2) − F(t1)

(t2 − t1)S(t1)
.

• An important special case arises when t1 = 0,

AHR(t) =

∫ t
0 h(u)du

t
=

H(t)

t
≈ F(t)

t
.

Approximation is good for small F(t), say F(t) < .10.

2 - 7



Plots showing that the quantile function is the inverse

of the cdf
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Distribution Quantiles

• The p quantile of F is the smallest time tp such that

Pr(T ≤ tp) = F(tp) ≥ p, where 0 < p < 1.

t.20 is the time by which 20% of the population will fail. For,

F(t) = 1−exp(−t1.7), p = F(tp) gives tp = [− log(1−p)]1/1.7

and t.2 = [− log(1 − .2)]1/1.7 = .414.

• When F(t) is strictly increasing there is a unique value tp

that satisfies F(tp) = p, and we write

tp = F−1(p).

• When F(t) is constant over some intervals, there can be

more than one solution t to the equation F(t) ≥ p. Taking

tp equal to the smallest t value satisfying F(t) ≥ p is a

standard convention.

• tp is also know ad B100p (e.g., t.10 is also known as B10).
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Partitioning of Time into Non-Overlapping Intervals

π1 π2 π3 πm-1 πm πm+1...

t0 t1 tm+1tmtm-1

... ...

... = ∞= 0 t2

Times need not be equally spaced.
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Graphical Interpretation of the π’s

1.51.00.50.0

0.0

0.2

0.4

0.6

0.8

1.0

2.0

4

t 1F( )

)F(t 2

F( )t

F(

4

)t 3

π

π

π

π

3

2

1

4t3t2t1t0t

2 - 11



Models for Discrete Data

from a Continuous Time Processes

All data are discrete! Partition (0,∞) into m + 1 intervals

depending on inspection times and roundoff as follows:

(t0, t1], (t1, t2], . . . , (tm−1, tm], (tm, tm+1)

where t0 = 0 and tm+1 = ∞. Observe that the last interval

is of infinite length.

Define,

πi = Pr(ti−1 < T ≤ ti) = F(ti) − F(ti−1)

pi = Pr(ti−1 < T ≤ ti | T > ti−1) =
F(ti) − F(ti−1)

1 − F(ti−1)

Because the πi values are multinomial probabilities, πi ≥ 0

and
∑m+1

j=1 πj = 1. Also, pm+1 = 1 but the only restriction

on p1, . . . , pm is 0 ≤ pi ≤ 1
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Models for Discrete Data

from a Continuous Time Processes–Continued

It follows that,

S(ti−1) = Pr(T > ti−1) =
m+1∑
j=i

πj

πi = piS(ti−1)

S(ti) =
i∏

j=1

(
1 − pj

)
, i = 1, . . . , m + 1

We view π = (π1, . . . , πm+1) or p = (p1, . . . , pm) as the non-

parametric parameters.
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Probabilities for the Multinomial Failure Time Model

Computed from F(t) = 1 − exp(−t1.7)

ti F(ti) S(ti) πi pi 1 − pi
0.0 .000 1.000
0.5 .265 .735 .265 .265 .735
1.0 .632 .368 .367 .500 .500
1.5 .864 .136 .231 .629 .371
2.0 .961 .0388 .0976 .715 .285
∞ 1.000 .000 .0388 1.000 .000

1.000
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Examples of Censoring Mechanisms

Censoring restricts our ability to observe T . Some sources of

censoring are:

• Fixed time to end test (lower bound on T for unfailed units).

• Inspections times (upper and lower bounds on T).

• Staggered entry of units into service leads to multiple cen-

soring.

• Multiple failure modes (also known as competing risks, and

resulting in multiple right censoring):

� independent (simple).

� non independent (difficult).

• Simple analysis requires non-informative censoring assump-

tion.
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Likelihood (Probability of the Data)

as a Unifying Concept

• Likelihood provides a general and versatile method of esti-

mation.

• Model/Parameters combinations with relatively large likeli-

hood are plausible.

• Allows for censored, interval, and truncated data.

• Theory is simple in regular models.

• Theory more complicated in non-regular models

(but concepts are similar).

• Limitation: can be computationally intensive

(still no general software).
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Determining the Likelihood (Probability of the Data)

The form of the likelihood will depend on:

• Question/focus of study.

• Assumed model.

• Measurement system (form of available data).

• Identifiability/parameterization.
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Likelihood (Probability of the Data) Contributions

for Different Kinds of Censoring
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Likelihood Contributions for Different Kinds of

Censoring with F(t) = 1 − exp(−t1.7)

• Interval-censored observations:

Li(p) =
∫ ti

ti−1

f(t) dt = F(ti) − F(ti−1).

If a unit is still operating at t = 1.0 but has failed at t = 1.5

inspection, Li = F(1.5) − F(1.0) = .231.

• Left-censored observations:

Li(p) =
∫ ti

0
f(t) dt = F(ti) − F(0) = F(ti).

If a failure is found at the first inspection time t = .5,

Li = F(.5) = .265.

• Right-censored observations:

Li(p) =
∫ ∞
ti

f(t) dt = F(∞) − F(ti) = 1 − F(ti).

If a unit has not failed by the last inspection at t = 2,

Li = 1 − F(2) = .0388.
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Likelihood for Life Table Data

• For a life table the data are: the number of failures (di),

right censored (ri), and left censored (�i) units on each of

the nonoverlapping interval (ti−1, ti], i = 1, . . . , m+1, t0 = 0.

• The likelihood (probability of the data) for a single obser-

vation, datai, in (ti−1, ti] is

Li(π; datai) = F(ti;π) − F(ti−1;π).

• Assuming that the censoring is at ti

Type of Characteristic Number Likelihood of
Censoring of Cases Responses Li(π; datai)

Left at ti T ≤ ti �i [F(ti)]
�i

Interval ti−1 < T ≤ ti di
[
F(ti) − F(ti−1)

]di

Right at ti T > ti ri [1 − F(ti)]
ri
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Likelihood: Probability of the Data

• The total likelihood, or joint probability of the DATA, for n

independent observations is

L(π;DATA) = C
n∏

i=1

Li(π; datai)

= C
m+1∏
i=1

[F(ti)]
�i

[
F(ti) − F(ti−1)

]di [1 − F(ti)]
ri

where n =
∑m+1

j=1

(
dj + rj + �j

)
and C is a constant depend-

ing on the sampling inspection scheme but not on π. So

we can take C = 1.

• Want to find π so that L(π) is large.
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Likelihood for Arbitrary Censored Data

• In general, the the ith observation consists of an interval

(tLi , ti], i = 1, . . . , n (tLi < ti) that contains the time event T

for the ith individual.

The intervals (tLi , ti] may overlap and their union may not

cover the entire time line (0,∞). In general tLi �= ti−1.

• Assuming that the censoring is at ti

Type of Characteristic Likelihood of a single
Censoring Response Li(π; datai)

Left at ti T ≤ ti F(ti)

Interval tLi < T ≤ ti F(ti) − F(tLi )

Right at ti T > ti 1 − F(ti)
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Likelihood for General Reliability Data

• The total likelihood for the DATA with n independent ob-

servations is

L(π;DATA) =
n∏

i=1

Li(π; datai).

• Some of the observations may have multiple occurrences.

Let (tLj , tj], j = 1, . . . , k be the distinct intervals in the DATA

and let wj be the frequency of observation of (tLj , tj]. Then

L(π;DATA) =
k∏

j=1

[
Lj(π; dataj)

]wj
.

• In this case the nonparametric parameters π correspond to

probabilities of a partition of (0,∞) determined by the data

(Examples later).
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Other Topics in Chapter 2

• Random censoring.

• Overlapping censoring intervals.

• Likelihood with censoring in the intervals.

• How to determine C.
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