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Prediction of Future Random Quantities

Chapter 12 Objectives

• Describe problem background and motivation, and some

general prediction problem.

• Define probability prediction, naive statistical prediction,

and coverage probability.

• Discuss calibrating statistical prediction intervals and pivotal

methods.

• Illustrate prediction of the number of future field failures

� Single cohort

� Multiple cohorts

• Extensions.
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Introduction

Motivation: Prediction problems are of interest to con-

sumers, managers, engineers, and scientists.

• A consumer would like to bound the failure time of a prod-

uct to be purchased.

• Managers want to predict future warranty costs.

• Engineers want to predict the number of failures in a future

life test.

• Engineers want to predict the number of failures during the

following time period (week, month, etc.) of an ongoing

life test experiment.

12 - 3



Related Literature

• Surveys and methods: Hahn and Nelson (1973), Patel

(1989), Hahn and Meeker (1991).

• Analytical frequentist theory: Cox (1975), Atwood (1984).

• Simulation/bootstrap frequentist theory: Beran (1990),

Bai, Bickel, and Olshen (1990), Efron and Tibshirani (1993).

• Log-location-scale distributions with failure (Type II)

censored data—frequentist approach: Faulkenberry (1973),

Lawless (1973), Nelson and Schmee (1979), Engelhardt and

Bain (1979), Mee and Kushary (1994).

• Likelihood theory: Kalbfleisch (1971).

• Bayesian theory: Geisser (1993).
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New-Sample Prediction

Based on previous (possibly censored) life test data, one

could be interested in:

• Time to failure of a new item.

r Failures

n Units
at Start

0

?
Future Unit(s)

t0

∞

c

• Time until k failures in a future sample of m units.

• Number of failures by time tw in a future sample of m

units.
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Within-Sample Prediction

Predict future events in a process based on early data from

the process. Followed n units until tc and observed r failures.

Data are first r of n failure times: t(1) < . . . < t(r).

Want to predict:

• Number of additional failures in interval [tc, tw).

r Failures

n Units
at Start

ct t w

∞

0

?

• Time of next failure.

• Time until k additional failures.
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Needed for Prediction

In general to predict one needs:

• A statistical model to describe the population or process

of interest. This model usually depends on a set of param-

eters θ.

• Information on the values of the parameters θ. This infor-

mation could come from

� laboratory test.

� field data.

• Nonparametric new-sample prediction also possible (e.g.,

Chapter 5 of Hahn and Meeker 1991).
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Probability Prediction Interval

(θ Known)

• An exact 100(1 − α)% probability prediction interval is (ig-

noring any data)

PI(α) = [T˜ , T̃ ] = [tα/2, t1−α/2]

where tp = tp(θ) is the pth quantile of T .

• Probability of coverage:

Pr[T ∈ PI(α)] = Pr(T˜ ≤ T ≤ T̃ )

= Pr(tα/2 ≤ T ≤ t1−α/2)

= 1 − α.

α/2 α/2

1−α/20

1−α

t tα/2
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Example 1: Probability Prediction for Failure Time of

a Single Future Unit Based on Known Parameters

• Assume cycles to failure follows a lognormal distribution

with known parameters µ = 4.160, σ = .5451

• A 90% probability prediction interval is

PI(α) = [T˜ , T̃ ] = [tα/2, t1−α/2]

= [exp(4.160 − 1.645 × .5451), exp(4.160 + 1.645 × .5451)]

= [26.1, 157.1] .

• Then Pr(T˜ ≤ T ≤ T̃ ) = Pr(26.1 ≤ T ≤ 157.1) = .90.

• With misspecified parameters, coverage probability may not

be .90.
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Statistical Prediction Interval

(θ Unknown)

Objective: Want to predict the random quantity T based on

a learning sample information (DATA).

The random DATA leads parameter estimate θ̂ and predic-

tion interval PI(α) = [T˜ , T̃ ]. Thus [T˜ , T̃ ] and T have a

joint distribution that depends on a parameter θ.

Probability of coverage: PI(α) is an exact 100(1 − α)%

prediction interval procedure if

Pr[T ∈ PI(α)] = Pr(T˜ ≤ T ≤ T̃ ) = 1 − α.

First we consider evaluation, then specification of PI(α).
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Coverage Probabilities Concepts

• Conditional coverage probability for the interval:

For fixed DATA (and thus fixed θ̂ and [T˜ , T̃ ]):

CP[PI(α) | θ̂; θ] = Pr(T˜ ≤ T ≤ T̃ | θ̂; θ)

= F(T̃ ; θ) − F(T˜ ; θ)

Unknown given [T˜ , T̃ ] because F(t; θ) depends on θ.

Random because [T˜ , T̃ ] depends on θ̂.

• Unconditional coverage probability for the procedure:

CP[PI(α); θ] = Pr(T˜ ≤ T ≤ T̃ ; θ)

= E
θ̂

{
CP[PI(α) | θ̂;θ]

}
.

In general CP[PI(α); θ] �= 1 − α.

• When CP[PI(α); θ] does not depend on θ, PI(α) is an exact

procedure.
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One-Sided and Two-Sided Prediction Intervals

• Combining lower and upper 100(1−α/2)% prediction bounds

gives an equal-probability two-sided 100(1−α)% prediction

interval.

• If

Pr(T˜ ≤ T < ∞) = 1 − α/2 and

Pr(0 < T ≤ T̃) = 1 − α/2,

then

Pr(T˜ ≤ T ≤ T̃) = 1 − α.

T
~ T

~

α/2 α/2

0

1−α
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Naive Statistical Prediction Interval

• When θ is unknown, a naive prediction interval is

PI(α) = [T˜ , T̃ ] = [t̂α/2, t̂1−α/2]

where t̂p = tp(θ̂) is the ML estimate of the p quantile of T .

• Coverage probability may be far from nominal 1− α, espe-

cially with small samples.
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Asymptotic Approximation for CP[PI(α); θ]

As suggested by Cox (1975) and Atwood (1984):

• For the naive lower prediction bound:
PI(α) = [T˜ , ∞] = [t̂α, ∞] = [tα(θ̂), ∞], we have

CP
[
PI(α) | θ̂; θ

]
= Pr(T˜ ≤ T < ∞;θ) = g(α, θ̂;θ)

CP [PI(α); θ] = E
θ̂

[
g(α, θ̂; θ)

]
.

• Under regularity conditions, using a Taylor expansion of
g(α, θ̂;θ), it follows that

CP[PI(α); θ] = α+
1

n

k∑
i=1

ai
∂g(α, θ̂; θ)

∂θ̂i

∣∣∣∣∣
θ

+
1

2n

k∑
i,j=1

bij
∂2g(α, θ̂;θ)

∂θ̂i ∂θ̂j

∣∣∣∣∣∣
θ

+o

(
1

n

where ai, bij are elements of vector a and matrix B de-
fined by

E
θ̂

(
θ̂ − θ

)
= a(θ) + o(1/n)

E
θ̂

[
(θ̂ − θ)(θ̂ − θ)′

]
= B(θ) + o(1/n).

These are, in general, difficult to compute.
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Prediction interval calibration curve

lognormal model
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Calibrating One-Sided Prediction Bounds

• To calibrate the naive one-sided prediction bound, find αc,

such that

CP[PI(αc); θ̂] = Pr
(
T˜ ≤ T ≤ ∞; θ̂

)

= Pr
[
t̂αc ≤ T ≤ ∞; θ̂

]
= 1 − α.

where T˜ = t̂αc is the ML estimator of the tαc quantile of T .

• Can do this analytically or by simulation.

• When for arbitrary α, CP[PI(α); θ] does not depend on θ,

the calibrated PI(αc) procedure is exact.

• For a two-sided interval, do separately for each tail.
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Simulation of the Sampling/Prediction Process

To evaluate the coverage probability of PI(α0) for some

specified 0 < α0 < 1, do the following:

• Use the assumed model and ML estimates θ̂ to simulate

the sampling and prediction process by computing DATA∗
j

and T ∗
j , j = 1, . . . , B for a large number B (e.g., B = 4000

or B = 10000). For each simulated sample/prediction:

• Compute ML estimates θ̂
∗
j from simulated DATA∗

j .

• Use α0 to compute T˜ ∗
j

= t̂α0 from simulated DATA∗
j and

compare with the simulated T ∗
j . The proportion of the B

trials having T ∗
j > T˜ ∗

j
gives the Monte Carlo evaluation of

CP [PI(α0); θ] at θ̂.

• To obtain a PI with a coverage probability of 100(1−α)%,

find αc such that CP[PI(αc); θ̂] = 1 − α.
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The Effect of Calibration

Result: Beran (1990) showed that, under regularity condi-

tions, with PI(αc) being a once-calibrated prediction,

CP[PI(αc); θ] = 1 − α + O
(
1/n2

)
and that the order of the approximation can be improved

by iterating the calibration procedure.
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Lognormal probability plot of bearing life test data

censored after 80 million cycles with lognormal ML

estimates and pointwise 95% confidence intervals
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Simulation of the bearing life test censored after 80

million cycles (n = 23 and r = 15), lognormal model,

histograms of pivotal–like Zlog(T ∗) = (log(T ∗) − µ̂∗)/σ̂∗
and Φ[Zlog(T ∗)]

-10 -5 0 5 10

0
10

00
20

00
30

00
40

00

Z.logT*

0.0 0.2 0.4 0.6 0.8 1.0

0
20

0
40

0
60

0
80

0
10

00

(Z.logT*)

12 - 20



Prediction interval calibration function for the bearing

life test data censored after 80 million cycles,

lognormal model
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Example 2: Lower Prediction Bound for a
Single Independent Future T

Based on Time-Censored (Type I) Data

• Life test run for 80 million cycles; 15 of 23 ball bearings
failed. ML estimates of the lognormal parameters are: µ̂ =
4.160, σ̂ = .5451.

• The naive one-sided lower 95% lognormal prediction bound
(assuming no sampling error) is:
t̂.05 = exp[4.160 + (−1.645)(.5451)] = 26.1.

• Need to calibrate to account for sampling variability in the
parameter estimates.

• From simulation CP[PI(1 − .964); θ̂] = .95

• Thus the calibrated lower 95% lognormal prediction bound
is

T˜ = t̂.036 = exp[4.160 + (−1.802)(.5451)] = 24.0

where z.036 = −1.802.
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Comparison of Approximate 90% Prediction Intervals

for Bearing Life from a Life Test that was

Type I Censored at 80 Million Cycles

Lognormal

Naive [26.1, 157.1]

Calibrated [24.0, 174.4]
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Within-Sample Prediction

Predict Number of Failures in Next Time Interval

• The sample DATA are singly time-censored (Type I)

from F(t). Observe n units until time tc. Failure times

are recorded for the r > 0 units that fail in (0, tc]; n − r

unfailed at tc.

• Prediction problem: Find an upper bound for the number

of future failures, K, in the interval (tc, tw], tc < tw.

r Failures

n Units
at Start

ct t w

∞

0

?
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Distribution of K and Naive Prediction Bound

• Conditional on DATA, the number of failures K in (tc, tw]

is distributed as

K ∼ BIN(n − r, ρ)

where

ρ =
Pr(tc < T ≤ tw)

Pr(T > tc)
=

F(tw; θ) − F(tc; θ)

1 − F(tc; θ)
.

• Obtain ρ̂ by evaluating at θ̂.

• The naive 100(1 − α)% upper prediction bound for K is

K̃(1− α) = K̂1−α, the estimate of the 1− α quantile of the

distribution of K. This is computed as the smallest integer

such that

BINCDF(K, n − r, ρ̂) > 1 − α.
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Example 3: Prediction of the Number of Future

Failures

• n = 10,000 units put into service; 80 failures in 48 months.

Want an upper prediction bound on the number of the

remaining

n − r = 10000 − 80 = 9920 units

that will fail between 48 and 60 months.

• Weibull time to failure distribution assumed; ML estimates:

α̂ = 1152, β̂ = 1.518 giving

ρ̂ =
F̂(60) − F̂ (48)

1 − F̂ (48)
= .003233.

• Point prediction for the number failing between 48 and 60

months is

(n − r) × ρ̂ = 9920 × .003233 = 32.07.
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Calibration of the Naive Upper-Prediction Bound

for the Number of Field Failures

• Find αc such that

CP[PI(αc); θ̂] = Pr
[
K ≤ K̃(1 − αc)

]
= 1 − α

• A Monte Carlo evaluation of the unconditional coverage

probability is

CP[PI(αc); θ̂] =
1

B

B∑
j=1

Pj

where

Pj = BINCDF
[
K˜ (1 − αc)

∗
j ;n − r∗j , ρ̂

]

is the conditional coverage probability for the jth simulated

interval evaluated at ρ̂.

• Similar for the lower prediction bound.
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Example 3. Calibration functions for upper and lower

prediction bounds on the number of future field failures
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Example 3. Calibration functions for upper and lower

prediction bounds on the number of future field failures
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Example 3–Computations

• The naive 95% upper prediction bound on K is K̂.95 = 42,
the smallest integer K such that

BINCDF(K,9920, .003233) > .95.

• From simulation CP[PI(.9863); θ̂] ≈ .95.

• Thus the calibrated 95% upper prediction bound on K is
K̃ = K̂.9863 = 45, the smallest integer K such that
BINCDF(K,9920, .003233) ≥ .9863.

^
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42320
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K
^
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Staggered Entry Prediction Problem
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Bearing-Cage Field-Failure Data

(from Abernethy et al. 1983)

• A total of 1703 units failed introduced into service over a

period of eight years (about 1600 in the past three years).

• Time measured in hours of service.

• Six out of 1703 units failed.

• Unexpected failures early in life mandated a design change.

• How many failures in the next year (point prediction and

upper prediction bound requested), assuming 300 hours of

service.
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Within-Sample Prediction With Staggered Entry

• The objective it to predict future events in a process based

on several sets of early data from the process.

• Units enter the field in groups over time. Need to predict

the total number of new failures (in all groups) when un-

failed units are observed for an additional period of length

∆t.

• For group i, ni units are followed for a period of length tcj
and ri failures were observed, i = 1, . . . , s.

DATAi for set i (i = 1, . . . , s) are the first ri of ni failure

times, say t(i1) < · · · < t(iri)
.
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Bearing Cage Data and Future-Failure Risk Analysis

Group Hours in Failed At Risk
i Service ni ri ni − ri ρ̂i (ni − ri) × ρ̂i
1 50 288 0 288 .000763 .2196
2 150 148 0 148 .001158 .1714
3 250 125 1 124 .001558 .1932
4 350 112 1 111 .001962 .2178
5 450 107 1 106 .002369 .2511
6 550 99 0 99 .002778 .2750
. . . . . . .
. . . . . . .
. . . . . . .

17 1650 6 0 6 .007368 .0442
18 1750 0 0 0 .007791 .0000
19 1850 1 0 1 .008214 .0082
20 1950 0 0 0 .008638 .0000
21 2050 2 0 2 .009062 .0181

Total 1703 6 5.057
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Distribution of the Number of Future Failures

• Conditional on DATAi, the number of additional failures Ki

in group i during interval (tcj, twi] (where twi = tcj + ∆t) is
distributed as Ki ∼ BIN(ni − ri, ρi) with

ρi =
Pr(tcj < T ≤ twi)

Pr(T > tcj)
=

F(twi; θ) − F(tcj; θ)

1 − F(tcj; θ)
.

• Obtain ρ̂i by evaluating ρ = (ρi, . . . , ρs) at θ̂.

• Let K =
∑s

i=1 Ki be the total number of additional failures
over ∆t. Conditional on the DATA (and the fixed censoring
times) K ∼ SBINCDF(k;n − r, ρ) a sum of s independent
binomials; n − r = (n1−r1, . . . , ns−rs) and ρ = (ρ1, . . . , ρs).

• A naive 100(1 − α)% upper prediction bound K̃(1 − α) is
computed as the smallest integer k such that SBINCDF(k, n − r∗, ρ̂∗) ≥
1 − α.
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Calibration of the Naive Upper Prediction Bound

for the Staggered Entry Number of Field Failures

• Find αc such that

CP[PI(αc); θ̂] = Pr
[
K ≤ K̃(1 − αc)

]
= 1 − α

• A Monte Carlo evaluation of the unconditional coverage

probability is

CP[PI(αc); θ̂] =
1

B

B∑
j=1

Pj

where

Pj = SBINCDF
[
K˜ (1 − αc)

∗
j ;n − r∗, ρ̂

]

is the conditional coverage probability for the jth simulated

interval evaluated at ρ̂.

• Similar for the lower prediction bound.
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Example 4: Calibration functions for upper and lower

prediction bounds on the number of future field

failures with staggered entry
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Example 4: Calibration functions for upper and lower

prediction bounds on the number of future field

failures with staggered entry
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Example 4–Computations

• The naive 95% upper prediction bound on K is K̂.95 = 9,
the smallest integer K such that

SBINCDF(K, n − r, ρ̂) > .95.

• From simulation CP[PI(.9916); θ̂] ≈ .95.

• Thus the calibrated 95% upper prediction bound on K is
K̃ = K̂.9916 = 11, the smallest integer K such that
SBINCDF(K, n − r, ρ̂) > .9916.
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Concluding Remarks and Future Work

• Methodology can be extended to:

� Staggered entry with differences among cohort distribu-

tions.

� Staggered entry with differences in remaining warranty

period.

� Modeling of spatial and temporal variability in environ-

mental factors like UV radiation, acid rain, temperature,

and humidity.

• Today, the computational price is small; general-purpose

software needed.

• Asymptotic theory promises good approximation when not

exact; use simulation to verify and compare with other ap-

proximate methods.
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