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Chapter 3

Nonparametric Estimation

Objectives

• Show the use of the binomial distribution to estimate F(t)

from interval and singly right censored data, without as-

sumptions on F(t). This is called nonparametric estima-

tion.

• Explain and illustrate how to compute standard error for

F̂(t) and approximate confidence intervals for F(t).

• Show how to extend nonparametric estimation to allow for

multiply right-censored data.

• Illustrate the Kaplan-Meier nonparametric estimator for

data with observations reported as exact failures.

• Describe and illustrate a generalization that provides a non-

parametric estimator of F(t) with arbitrary censoring.
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Data for Plant 1 of the

Heat Exchanger Tube Crack Data

π1 π2 π3 π4

95Plant 1

Unconditional
Failure Probability

1 2 2

100 tubes at start Year 1 Year 2 Year 3 Uncracked tubes

Cracked tubes

Likelihood: L(π) = C × [π1]
1 × [π2]

2 × [π3]
2 × [π4]

95

4∑
i=1

πi = 1.
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A Nonparametric Estimator of F(ti) Based on

Binomial Theory for Interval Singly-Censored Data

We consider the nonparametric estimate of F(ti) for data
situations as illustrate by Plant 1 of the Heat Exchanger
Tube Crack:

• The data are:

n : sample size

di : # of failures (deaths) in the ith interval

• Simple binomial theory gives

F̂ (ti) =
# of failures up to time ti

n
=

∑i
j=1 dj

n

ŝe
F̂

=

√√√√F̂(ti)
[
1 − F̂ (ti)

]
n

.

• For Plant 1 (n = 100, d1 = 1, d2 = 2, d3 = 2), one gets:

F̂ (1) = 1/100, F̂(2) = 3/100, F̂ (3) = 5/100.

3 - 4



Nonparametric Estimate for Plant 1

from the Heat Exchanger Tube Crack Data
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Comments on the Nonparametric Estimate of F(ti)

• F̂(t) is only defined at the upper ends of the intervals

(ti−1, ti].

• F̂(ti) is the ML estimator of F(ti).

• The increase in F̂ at each value of ti is

F̂(ti) − F̂(ti−1) = di/n.
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Confidence Intervals

A point estimate can be misleading. It is important to

quantify uncertainty in point estimates.

• Confidence intervals are very useful in quantifying uncer-

tainty in point estimates due to sampling error arising from

limited sample sizes.

• In general, confidence intervals do not quantify possible de-

viations arising from incorrectly specified model or model

assumptions.
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Some Characteristic Features of Confidence Intervals

• The level of confidence expresses one’s confidence (not

probability) that a specific interval contains the quantity of

interest.

• The actual coverage probability is the probability that the

procedure will result in an interval containing the quantity

of interest.

• A confidence interval is approximate if the specified level

of confidence is not equal to the actual coverage probability.

• With censored data most confidence intervals are approxi-

mate. Better approximations generally require more com-

putations.
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Pointwise Binomial-Based

Confidence Interval for F(ti)

• A 100(1 − α)% conservative confidence interval for F(ti)
based on binomial sampling (see Chapter 6 of Hahn and
Meeker, 1991) is

F˜(ti) =

1 +
(n − nF̂ + 1)F

(1−α/2;2n−2nF̂+2,2nF̂ )

nF̂


−1

F̃ (ti) =

1 +
n − nF̂

(nF̂ + 1)F
(1−α/2;2nF̂+2,2n−2nF̂ )


−1

where F̂ = F̂ (ti) and F(1−α/2;ν1,ν2)
is the 100(1 − α/2)

quantile of the F distribution with (ν1, ν2) degrees of free-

dom.

• This confidence interval is conservative in the sense that

the actual coverage probability is at least equal to 1 − α.
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Pointwise Normal-Approximation

Confidence Interval for F(ti)

• For a specified value of ti, an approximate 100(1 − α)%

confidence interval for F(ti) is

[F˜ (ti), F̃(ti)] = F̂(ti) ± z(1−α/2)ŝeF̂
.

where z(1−α/2) is the 1−α/2 quantile of the standard normal

distribution and ŝe
F̂

=
√

F̂(ti)
[
1 − F̂ (ti)

]
/n is an estimate

of the standard error of F̂ (ti).

• This confidence interval is based on

Z
F̂

=
F̂ (ti) − F(ti)

ŝe
F̂

∼̇ NOR(0,1).
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Plant 1 Heat Exchanger Tube Crack Nonparametric

Estimate with Conservative Pointwise 95% Confidence

Intervals Based on Binomial Theory
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Calculations of the Nonparametric Estimate of F(ti)

for Plant 1 from the Heat Exchanger Tube Crack Data

Year ti di F̂ (ti) ŝe
F̂

Pointwise Confidence Interval
F˜(ti) F̃ (ti)

(0 − 1] 1 1 0.01 .00995

95% Confidence Intervals for F (1)
Based on Binomial Theory [ .0003, .0545 ]
Based on Z

F̂
∼̇ NOR(0,1) [−.0095, .0295 ]

(1 − 2] 2 2 0.03 .01706

95% Confidence Intervals for F (2)
Based on Binomial Theory [ .0062, .0852 ]
Based on Z

F̂
∼̇ NOR(0,1) [−.0034, .0634 ]

(2 − 3] 3 2 0.05 0.02179

95% Confidence Intervals for F (3)
Based on Binomial Theory [ .0164, .1128 ]
Based on Z

F̂
∼̇ NOR(0,1) [ .0073, .0927 ]
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Integrated Circuit (IC) Failure Times in Hours

Data from Meeker (1987)

.10 .10 .15 .60 .80 .80
1.20 2.50 3.00 4.00 4.00 6.00

10.00 10.00 12.50 20.00 20.00 43.00
43.00 48.00 48.00 54.00 74.00 84.00
94.00 168.00 263.00 593.00

When the test ended at 1370 hours, there were 28

observed failures and 4128 unfailed units.

Note: Ties in the data. Reason?
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Nonparametric Estimator of F(t)

Based on Binomial Theory for Exact Failures

and Singly Right Censored Data

When the number of inspections increases the width of the

intervals (ti−1, ti] approaches zero and the failure times are

exact.

• For the integrated circuit life test data, we have: n =

4156 with 28 exact failures in 1370 hours.

For any particular te, 0 < te ≤ 1370, simple binomial theory

gives

F̂ (te) =
# of failures up to time te

n

ŝe
F̂

=

√√√√F̂(te)
[
1 − F̂ (te)

]
n

.

• Methods to obtain confidence intervals for F(te) are the

same as the methods described for the interval data.
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Nonparametric Estimate for the IC Data with Normal
Approximation Pointwise 95% Confidence Intervals

Based on Z
logit(F̂ )
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Comments on the Nonparametric Estimate of F(t)

• F̂(t) is defined for all t in the interval (0, tc] where tc is the

singly censoring time.

• F̂(t) is the ML estimator of F(t).

• The estimate F̂(t) is a step up function with a step of size

1/n at each exact failure time.

Sometimes the step size is a multiple of 1/n because there

are ties on the failure times.

• When there is no censoring, F̂ (t) is the well known empirical

cdf.
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Pooling of the Heat Exchanger Tube Crack Data

1 π2 π3 π4

100
2 2 95

98100
3

100
1

Plant 1

Plant 2

Plant 3

All Plants

L(π) =

π

__

Uncracked tubes

Likelihood:

95

C [π1] [π2] [
4 5

π3]
2
[π4]

95

99 95

Failure Probability

2

1

99

95

99 97

4 5 2
97197300

[π3+ π4]
95

[π + π3+ π4]
99

2
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A Nonparametric Estimator of F(ti) Based on Interval

Data and Multiple Censoring

The combined data from the heat exchanger tube crack are

multiply censored and the simple binomial method to esti-

mate F(ti) cannot be used.

Here we describe a more general method to compute a non-

parametric estimator of F(ti).

F̂(ti) = 1 − Ŝ(ti)

where Ŝ(ti) =
i∏

j=1

[
1 − p̂j

]
with p̂j =

dj

nj

n : sample size

di : # of failures (deaths) in the ith interval

ni = n −
i−1∑
j=0

dj −
i−1∑
j=0

rj, the risk set at ti−1

ri : # of right censored obs at ti
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Calculations of the Nonparametric Estimate of F(ti)

for the Heat Exchanger Tube Crack Data

Year ti ni di ri p̂i 1 − p̂i Ŝ(ti) F̂ (ti)

(0 − 1] 1 300 4 99 4/300 296/300 .9867 .0133

(1 − 2] 2 197 5 95 5/197 192/197 .9616 .0384

(2 − 3] 3 97 2 95 2/97 95/97 .9418 .0582
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Nonparametric Estimate

for the Heat Exchanger Tube Crack Data

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

0.05

0.10

0.15

0.20

P
ro

po
rt

io
n 

F
ai

lin
g

Years

3 - 20



Approximate Variance of F̂(ti)

• Recall, F̂ (ti) = 1 − Ŝ(ti) and Ŝ(ti) =
∏i

j=1

[
1 − p̂j

]
.

• Then Var
[
F̂(ti)

]
= Var

[
Ŝ(ti)

]
.

• A Taylor series first-order approximation of Ŝ(ti) is

Ŝ(ti) ≈ S(ti) +
i∑

j=1

∂S

∂qj

∣∣∣∣∣
qj

(
q̂j − qj

)
where qj = 1 − pj.

• Then it follows that

Var
[
Ŝ(ti)

]
≈ S2(ti)

i∑
j=1

pj

nj(1 − pj)
.
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Estimating the Standard Error of F̂(ti)

• Using the variance formula, one gets

V̂ar
[
F̂(ti)

]
= V̂ar

[
Ŝ(ti)

]
= Ŝ2(ti)

i∑
j=1

p̂j

nj(1 − p̂j)

which is known as Greenwood’s formula.

• An estimate of the standard error, se
F̂
, is

ŝe
F̂

=

√
V̂ar

[
F̂(ti)

]
= Ŝ(ti)

√√√√√ i∑
j=1

p̂j

nj(1 − p̂j)
.
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Pointwise Normal-Approximation Confidence

Interval for F(ti)-Based on Logit Transformation

• Generally better confidence intervals can be obtained by

using the logit transformation (logit(p) = log[p/(1 − p)])

and basing the confidence intervals on

Z
logit(F̂ )

=
logit[F̂ (ti)] − logit[F(ti)]

ŝe
logit(F̂ )

∼̇ NOR(0,1).

• A pointwise normal-approximation 100(1 − α)% confidence

interval for logit[F(ti)] is[
logit(F̂ )˜ , ˜logit(F̂ )

]
= logit(F̂ ) ± z(1−α/2)ŝelogit(F̂ )

= logit(F̂ ) ± z(1−α/2)ŝeF̂
/[F̂ (1 − F̂ )]

since ŝe
logit(F̂ )

= ŝe
F̂

/[F̂(1 − F̂)].
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Pointwise Normal-Approximation Confidence

Interval for F(ti)-Based on Logit Transformation

• The confidence interval for F(ti) is obtained from the inter-

val for logit(F) and using the inverse logit transformation

logit−1(v) =
1

1 + exp(−v)

• Then

[F˜ (ti), F̃(ti)] = logit−1
[
logit(F̂ ) ± z(1−α/2)ŝelogit(F̂)

]
=

1

1 + exp
[
−logit(F̂ ) ∓ z(1−α/2)ŝelogit(F̂ )

]
=

[
F̂

F̂ + (1 − F̂ ) × w
,

F̂

F̂ + (1 − F̂ )/w

]

where w = exp{z(1−α/2)ŝeF̂
/[F̂ (1 − F̂ )]}.

• The endpoints F˜ (ti) and F̃(ti) will always lie between 0 and 1.
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Normal-Approximation Pointwise Confidence Intervals

for the Heat Exchanger Tube Crack Data

• Computation of standard errors

V̂ar
[
F̂(ti)

]
= Ŝ2(ti)

i∑
j=1

p̂j

nj(1 − p̂j)

V̂ar
[
F̂(t1)

]
= (.9867)2

[
.0133

300(.9867)

]
= .0000438

ŝe
F̂(t1)

=
√

.0000438 = .00662

V̂ar
[
F̂(t2)

]
= (.9616)2

[
.0133

300(.9867)
+

.0254

197(.9746)

]
= .0001639

ŝe
F̂(t2)

=
√

.0001639 = .0128

3 - 25



Normal-Approximation Pointwise Confidence Intervals

for the Heat Exchanger Tube Crack Data

Computation of approximate 95% confidence intervals:

• For F (1) with F̂ (t1) = .0133, ŝe
F̂ (t1)

=
√

.0000438 = .00662

Based on: Z
F̂

= [F̂(t1) − F (t1)]/ŝeF̂
∼̇ NOR(0,1).

[F˜(t1), F̃ (t1)] = .0133 ± 1.96(.00662) = [.0003, .0263].

Based on: Z
logit(F̂ )

= [logit[F̂(t1)] − logit[F (t1)]/ŝelogit(F̂ )
∼̇ NOR(0,1).

[F˜(t1), F̃ (t1)] =

[
.0133

.0133 + (1 − .0133) × w
,

.0133

.0133 + (1 − .0133)/w

]
= [.0050, .0350] .

w = exp{1.96(.00662)/[.0133(1 − .0133)]} = 2.687816.

• For F (2) with F̂ (t2) = .0384, ŝe
F̂ (t2)

=
√

.0001639 = .0128

Based on: Z
F̂
, [F˜(t2), F̃ (t2)] = [.0133, .0635].

Based on: Z
logit(F̂ )

, [F˜(t2), F̃ (t2)] = [.0198, .0730] .
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Results of Calculations for Nonparametric Pointwise Con-

fidence Intervals for F(ti) for the Heat Exchanger Tube

Crack Data

Year ti F̂ (ti) ŝe
F̂

Pointwise Confidence Intervals

(0 − 1] 1 .0133 .00662

95% Confidence Intervals for F (1)
Based on Z

logit(F̂ )
∼̇ NOR(0,1) [.0050, .0350]

Based on Z
F̂
∼̇ NOR(0,1) [.0003, .0263]

(1 − 2] 2 .0384 .0128

95% Confidence Intervals for F (2)
Based on Z

logit(F̂ )
∼̇ NOR(0,1) [.0198, .0730]

Based on Z
F̂
∼̇ NOR(0,1) [.0133, .0635]

(2 − 3] 3 .0582 .0187

95% Confidence Intervals for F (3)
Based on Z

logit(F̂ )
∼̇ NOR(0,1) [.0307, .1076]

Based on Z
F̂
∼̇ NOR(0,1) [.0216, .0949]
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Heat Exchanger Tube Crack Nonparametric Estimate

with Pointwise 95% Confidence Intervals

Based on Z
logit(F̂ )
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Shock Absorber Failure Data

First reported in O’Connor (1985).

• Failure times, in number of kilometers of use, of vehicle

shock absorbers.

• Two failure modes, denoted by M1 and M2.

• One might be interested in the distribution of time to fail-

ure for mode M1, mode M2, or in the overall failure-time

distribution of the part.

Here we do not differentiate between modes M1 and M2.

We will estimate the distribution of time to failure by either

mode M1 or M2.
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Failure Pattern in the Shock Absorber Data

Failure Mode Ignored

(O’Connor 1985)
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Nonparametric Estimation of F(t) with Exact Failures

(Kaplan-Meier) Estimator

In the limit, as the number of inspections increases and the

width of the inspection intervals approaches zero, we get

the product-limit or Kaplan-Meier estimator:

• Failures are concentrated in a small number of intervals of

infinitesimal length.

• F̂(t) will be constant over all intervals that have no failures.

• F̂(t) is a step function with jumps at each reported failure

time.

Note: The binomial estimator for exact failures and singly

right censored data is a special case of the Kaplan-Meier

estimate.
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Nonparametric Estimates for the Shock Absorber Data

up to 12,220 km

Conditional Unconditional

tj (km) nj dj rj p̂j 1 − p̂j Ŝ(tj) F̂ (tj)

6,700 38 1 0 1/38 37/38 0.97368 0.02632
6,950 37 0 1
7,820 36 0 1
8,790 35 0 1
9,120 34 1 0 1/34 33/34 0.94505 0.05495
9,660 33 0 1
9,820 32 0 1

11,310 31 0 1
11,690 30 0 1
11,850 29 0 1
11,880 28 0 1
12,140 27 0 1
12,200 26 1 0 1/26 25/26 0.90870 0.09130

... ... ... ... ... ... ... ...
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Nonparametric Estimate for Shock Absorber Data with

Pointwise 95% Confidence Intervals Based on Z
logit(F̂ )
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Nonparametric Estimate for Shock Absorber Data

with Simultaneous 95% Confidence Bands

Based on Z
logit(F̂ )
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Need for Nonparametric Simultaneous

Confidence Bands for F(t)

• Pointwise confidence intervals for F(t) are useful for

making a statement about F(t) at one particular value of t.

• Simultaneous confidence bands for F(t) are necessary to

quantify the sampling uncertainty over a range of values

of t.
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Nonparametric Simultaneous Confidence Bands

for F(t)

Approximate 100(1−α)% simultaneous confidence bands for

F can be obtained from[
F˜ (t), F̃(t)

]
= F̂ (t)±e(a,b,1−α/2)ŝeF̂

(t) for all t ∈ [tL(a), tU(b)]

where [tL(a), tU(b)] is a complicated function of the censoring

pattern in the data.

Comments:

• The approximate factors e(a,b,1−α/2) can be computed from

a large-sample approximation given in Nair (1984).

• e(a,b,1−α/2) is the same for all values of t.

• The factors e(a,b,1−α/2) are greater than the corresponding

z(1−α/2).
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Factors e(a,b,1−α/2) for Computing the EP

Nonparametric Simultaneous

Approximate Confidence Bands

Limits Confidence Level
a b .80 .90 .95 .99

.005 .999 2.92 3.17 3.41 3.88

.01 .999 2.90 3.15 3.39 3.87

.05 .999 2.84 3.10 3.34 3.82

.001 .995 2.92 3.17 3.41 3.88

.005 .995 2.86 3.12 3.36 3.85

.01 .995 2.84 3.10 3.34 3.83

.05 .995 2.76 3.03 3.28 3.77

.001 .99 2.90 3.15 3.39 3.87

.005 .99 2.84 3.10 3.34 3.83

.01 .99 2.81 3.07 3.31 3.81

.05 .99 2.73 3.00 3.25 3.75

.001 .95 2.84 3.10 3.34 3.82

.005 .95 2.76 3.03 3.28 3.77

.01 .95 2.73 3.00 3.25 3.75

.05 .95 2.62 2.91 3.16 3.68

.001 .9 2.80 3.07 3.31 3.80

.005 .9 2.72 3.00 3.25 3.75

.01 .9 2.68 2.96 3.21 3.72

.05 .9 2.56 2.85 3.11 3.64
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Nonparametric Estimate Heat Exchanger Tube Crack

Data with Simultaneous 95% Confidence Bands

Based on Zmax logit(F̂ )
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Better Nonparametric Simultaneous Confidence Bands
for F(t)

• The approximate 100(1−α)% simultaneous confidence bands[
F˜(t), F̃ (t)

]
= F̂ (t) ± e(a,b,1−α/2)ŝeF̂

(t) for all t ∈ [tL(a), tU(b)]

are based on the the approximate distribution of

ZmaxF̂
=

max
t ∈ [tL(a), tU(b)]

F̂ (t) − F(t)

ŝe
F̂(t)

 .

• It is generally better to compute the simultaneous confi-
dence bands based on the logit transformation of F̂ . This
gives

[F˜(t), F̃ (t)] =

[
F̂ (t)

F̂ (t) + [1 − F̂ (t)] × w
,

F̂ (t)

F̂ (t) + [1 − F̂ (t)]/w

]
where w = exp{e(a,b,1−α/2)ŝeF̂

/[F̂ (1 − F̂ )]}.
These are based on the approximate distribution of

Zmaxlogit(F̂ )
=

max
t ∈ [tL(a), tU(b)]

[
logit[F̂ (t)]− logit[F (t)]

ŝe
logit[F̂ (t)]

]
.
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Nonparametric Estimation of F(ti)

with Arbitrary Censoring

• The methods described so far works only for some kinds of

censoring patterns (multiple right censoring, interval cen-

soring with intervals that do not overlap, and some other

very special censoring patterns.)

• The nonparametric maximum likelihood generalizations pro-

vided by the Peto/Turnbull estimator can be used for

� Arbitrary censoring (e.g., both left and right).

� Censoring with overlapping intervals.

� Truncated data.
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Plot of Proportions Failing Versus Hours of Exposure

for the Turbine Wheel Inspection Data
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Turbine Wheel Inspection Data Summary

100-hours of # Cracked # Not Cracked Proportion Cracked
Exposure Left Censored Right Censored Crude Estimate of

ti F (t)

4 0 39 0/39 = .000
10 4 49 4/53 = .075
14 2 31 2/33 = .060
18 7 66 7/73 = .096
22 5 25 5/30 = .167
26 9 30 9/39 = .231
30 9 33 9/42 = .214
34 6 7 6/13 = .462
38 22 12 22/34 = .647
42 21 19 21/40 = .525
46 21 15 21/36 = .583

Data from Nelson (1982), page 409.

• The analysts did not know the initiation time for any of the
wheels.

• All they knew about each wheel was its exposure time and
whether a crack had initiated or not. Units grouped by
exposure time.
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Basic Parameters Used in Computing the

Nonparametric ML Estimate of F(t) for the Turbine

Wheel Data

π1 π2 π4 π5 π6 π7 π8 π9 π10π11π12

4 49

π3

390 2 31

0 4 10 18 34 4226 46

21 15

Hundreds of Hours
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Nonparametric Estimation of F(t) with Arbitrary

Censoring-General Approach

• Basic idea: write the likelihood and maximize this likeli-

hood to obtain p̂ or π̂ from which one gets F̂ (ti) (Peto 1973).

• Illustration: the likelihood for the turbine wheel inspection

data is

L(π) = L(π;DATA) = C × [π1]
0 × [π2 + · · · + π12]

39 ×
[π1 + π2]

4 × [π3 + · · · + π12]
49 ×

[π1 + · · · + π3]
2 × [π4 + · · · + π12]

31 ×
...

[π1 + · · · + π11]
21 × [π12]

15

where π12 = 1 − ∑11
i=1 πi. The values of π1, . . . , π11 that

maximize L(π) gives π̂, the ML estimator of π. Then

F̂(ti) =
∑i

j=1 π̂j, i = 1, . . . , m.

3 - 44



Nonparametric ML estimate for the turbine wheel data

with 95% Pointwise Confidence Intervals for F(ti)

Based on Z
logit(F̂ )
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Other Topics in Chapter 3

• Maximum likelihood methods to compute nonparametric

confidence intervals and confidence bands.

• Uncertain censoring times.
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