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Chapter 17

Failure-Time Regression Analysis

Objectives

• Describe applications of failure-time regression

• Describe graphical methods for displaying censored regres-

sion data.

• Introduce time-scaling transformation functions.

• Describe simple regression models to relate life to explana-

tory variables.

• Illustrate the use of likelihood methods for censored regres-

sion data.

• Explain the importance of model diagnostics.

• Describe and illustrate extensions to nonstandard multiple

regression models
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Computer Program Execution Time

Versus System Load

• Time to complete a computationally intensive task.

• Information from the Unix uptime command

• Predictions needed for scheduling subsequent steps in a

multi-step computational process.
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Scatter Plot of Computer Program Execution Time

Versus System Load

System Load
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Explanatory Variables for Failure Times

Useful explanatory variables explain/predict why some units

fail quickly and some units survive a long time.

• Continuous variables like stress, temperature, voltage, and

pressure.

• Discrete variables like number of hardening treatments or

number of simultaneous users of a system.

• Categorical variables like manufacturer, design, and loca-

tion.

Regression model relates failure time distribution to explana-

tory variables x = (x1, . . . , xk):

Pr(T ≤ t) = F(t) = F(t;x).
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Failure-Time Regression Analysis

• Material in this chapter is an extension of statistical re-

gression analysis with normal distributed data and

mean = β0 + β1x1 + · · · + βsxk

where the xi are explanatory variables.

• The ideas presented here are more general:

� Data not necessarily from a normal distribution.

� Data may be censored.

� Nonstandard regression models that relate life to ex-

planatory variables.

• Presentation motivated by practical problems in reliability

analysis.

17 - 6



Nickel-Base Super-alloy Fatigue Data

26 Observations in Total, 4 Censored

(Nelson 1984, 1990)

Originally described and analyzed by Nelson (1984 and 1990).

• Thousands of cycles to failure as a function of pseudo-

stress in ksi.

• 26 units tested; 4 units did not fail.

Objective: Explore models that might be used to describe

the relationship between life length and the amount of pseudo-

stress applied to the tested specimens.
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Nickel-Base Super-Alloy Fatigue Data

(Nelson 1984, 1990)
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SAFT Models

Illustrating Acceleration and Deceleration.
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Scale Accelerated Failure Time (SAFT) Model

• Scale Accelerated Failure Time (SAFT) models are defined

by

T(x) = T(x0)/AF(x), AF(x) > 0, AF(x0) = 1

where typical forms for AF(x) are:

� log[AF(x)] = β1x with x0 = 0 for a scalar x.

� log[AF(x)] = β1x1 + . . . + βkxk with x0 = 0 for a vector

x = (x1, . . . , xk).

• When AF(x) > 1, the model accelerates time in the sense

that time moves more quickly at x than at x0 so that T(x) <

T(x0).

• When 0 < AF(x) < 1, T(x) > T(x0), and time is deceler-

ated (but we still call this an SAFT model).
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The SAFT Transformation Models and Acceleration

In a time transformation plot of T(x0) vs T(x)

• The SAFT models are straight lines through the origin:

• Accelerating SAFT models are straight lines below the di-

agonal.

• Decelerating SAFT models are straight lines above the di-

agonal.

17 - 11



Some Properties of SAFT Models

For a SAFT model T(x) = T(x0)/AF(x), (Ψ(x) > 0), with

baseline cdf F(t;x0) so AF(x0) = 1

• Scaled time: F(t;x) = F [AF(x) t;x0] . Thus the cdfs

F(t;x) and F(t;x0) do not cross each other.

• Proportional quantiles: tp(x) = tp(x0)/AF(x). Then tak-

ing logs gives

log[tp(x0)] − log[tp(x)] = log[AF(x)].

This shows that in any plot with a log-time scale tp(x0) and

tp(x) are equidistant.

In particular, in a probability plot with a log-time scale,

F(t, x) is a translation of F(t, x0) along the log(t) axis.
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Weibull Probability Plot of Two Members from an

SAFT Model with a Baseline Lognormal Distribution
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Lognormal Distribution Simple Regression Model with

Constant Shape Parameter β = 1/σ

• The lognormal simple regression model is

Pr(T ≤ t) = F(t;µ, σ) = F(t; β0, β1, σ) = Φnor

[
log(t) − µ

σ

]
where µ = µ(x) = β0 + β1x and σ does not depend on x.

• The failure-time log quantile function

log[tp(x)] = µ(x) + Φ−1
nor(p)σ

is linear in x.

Notice that

tp(x)

tp(0)
= exp (β1x)

implies that this regression model is a scale accelerated fail-

ure time (SAFT) model with AF(x) = exp(−β1x).
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Computer Program Execution Time Versus System

Load Loglinear Lognormal Regression Model

log[t̂p(x)] = µ̂(x) + Φ−1
nor(p)σ̂

System Load
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Likelihood for Lognormal Distribution Simple

Regression Model with Right Censored Data

The likelihood for n independent observations has the form

L(β0, β1, σ) =
n∏

i=1

Li(β0, β1, σ; datai)

=
n∏

i=1

{
1

σti
φnor

[
log(ti) − µi

σ

]}δi
{
1 − Φnor

[
log(ti) − µi

σ

]}1−δi

where datai = (xi, ti, δi), µi = β0 + β1xi,

δi =

{
1 exact observation
0 right censored observation

φnor(z) is the standardized normal pdf and Φnor(z) is the

corresponding normal cdf.

The parameters are θ = (β0, β1, σ).
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Estimated Parameter Variance-Covariance Matrix

Local (observed information) estimate

Σ̂
θ̂

=

 V̂ar(β̂0) Ĉov(β̂0, β̂1) Ĉov(β̂0, σ̂)
Ĉov(β̂1, β̂0) V̂ar(β̂1) Ĉov(β̂1, σ̂)
Ĉov(σ̂, β̂0) Ĉov(σ̂, β̂1) V̂ar(σ̂)



=


−∂2L(β0,β1,σ)

∂β2
0

−∂2L(β0,β1,σ)
∂β0∂β1

−∂2L(β0,β1,σ)
∂β0∂σ

−∂2L(β0,β1,σ)
∂β1∂β0

−∂2L(β0,β1,σ)
∂β2

1
−∂2L(β0,β1,σ)

∂β1∂σ

−∂2L(β0,β1,σ)
∂σ∂β0

−∂2L(β0,β1,σ)
∂σ∂β1

−∂2L(β0,β1,σ)
∂σ2


−1

Partial derivatives are evaluated at β̂0, β̂1, σ̂.
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Standard Errors and Confidence Intervals for

Parameters

• Lognormal ML estimates for the computer time experiment

were θ̂ = (β̂0, β̂1, σ̂) = (4.49, .290, .312) and an estimate of

the variance-covariance matrix for θ̂ is

Σ̂
θ̂

=

 .012 −.0037 0
−.0037 .0021 0

0 0 .0029

 .

• Normal-approximation confidence interval for the computer

execution time regression slope is

[β1˜ , β̃1] = β̂1±z(.975)ŝeβ̂1
= .290±1.96(.046) = [.20, .38]

where ŝe
β̂1

=
√

.0021 = .046 .
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Standard Errors and Confidence Intervals for

Quantities at Specific Explanatory Variable Conditions

• Unknown values of µ and σ at each level of x

• µ̂ = β̂0 + β̂1x, σ does not depend on x, and

Σ̂µ̂,σ̂ =

[
V̂ar(µ̂) Ĉov(µ̂, σ̂)
Ĉov(µ̂, σ̂) V̂ar(σ̂)

]

is obtained from V̂ar(µ̂) = V̂ar(β̂0)+2xĈov(β̂1, β̂0)+x2V̂ar(β̂1)

and Ĉov(µ̂, σ̂) = Ĉov(β̂0, σ̂) + xĈov(β̂1, σ̂).

• Use the above results with the methods from Chapter 8

to compute normal-approximation confidence intervals for

F(t), h(t), and tp.

• Could also use likelihood or simulation-based confidence in-

tervals.
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Log-Quadratic Weibull Regression Model with

Constant (β = 1/σ) Fit to the Fatigue Data

log[t̂p(x)] = µ̂(x) + Φ−1
sev(p)σ̂, x = log(pseudo-stress)

Pseudo-stress (ksi)
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Weibull Distribution Quadratic Regression Model

with Constant Shape Parameter β = 1/σ

This is an AF time model with the following characteristics:

• The Weibull quadratic regression model is

Pr[T ≤ t] = Φsev {[log(t) − µ]/σ}
where µ = µ(x) = β0 + β1x + β2x2 and σ does not depend

on x.

• The failure-time log quantile function

log[tp(x)] = µ(x) + Φ−1
sev(p)σ

is quadratic in x. Also

tp(x) = exp(β1x + β2x2) × tp(0)

which shows that the model is an SAFT model.
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Likelihood for Weibull Distribution Quadratic

Regression Model with Right Censored Data

The likelihood for n independent observations has the form

L(β0, β1, β2, σ) =
n∏

i=1

Li(β0, β1, β2, σ; datai)

=
n∏

i=1

{
1

σti
φsev

[
log(ti) − µi

σ

]}δi
{
1 − Φsev

[
log(ti) − µi

σ

]}1−δi

.

where µi = β0 + β1xi + β2x2
i ,

δi =

{
1 exact observation
0 right censored observation

The parameters are θ = (β0, β1, β2, σ).
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Log-quadratic Weibull Regression Model with

Nonconstant β = 1/σ Fit to the Fatigue Data

log[t̂p(x)] = µ̂(x) + Φ−1
sev(p)σ̂(x)

Pseudo-stress (ksi)
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Weibull Distribution Quadratic Regression Model

with Nonconstant β = 1/σ

• The Weibull quadratic regression model is

Pr[T ≤ t] = Φsev {[log(t) − µ]/σ} ,

where µ = µ(x) = β
[µ]
0 + β

[µ]
1 x + β

[µ]
2 x2 and

log(σ) = log[σ(x)] = β
[σ]
0 + β

[σ]
1 x.

• The failure-time log quantile function is

log[tp(x)] = µ(x) + Φ−1
sev(p)σ(x)

which is not quadratic in x.

Also

tp(x) = exp [µ(x) − µ(0)] exp
[
Φ−1

sev(p) {σ(x) − σ(0)}
]
× tp(0).

Because the coefficient in front of tp(0) depends on p this

shows that the model is not an SAFT model.
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Likelihood for Weibull Distribution Quadratic

Regression Model with Nonconstant β = 1/σ

and Right Censored Data

The likelihood for n independent observations has the form

L(β[µ]
0 , β

[µ]
1 , β

[µ]
2 , β

[σ]
0 , β

[σ]
1 )

=
n∏

i=1

Li(β
[µ]
0 , β

[µ]
1 , β

[µ]
2 , β

[σ]
0 , β

[σ]
1 ; datai)

=
n∏

i=1

{
1

σiti
φsev

[
log(ti) − µi

σi

]}δi
{
1 − Φsev

[
log(ti) − µi

σi

]}1−δi

.

where µi = β
[µ]
0 + β

[µ]
1 xi + β

[µ]
2 x2

i and σi = exp
(
β
[σ]
0 + β

[σ]
1 xi

)
.

Parameters are θ = (β[µ]
0 , β

[µ]
1 , β

[µ]
2 , β

[σ]
0 , β

[σ]
1 ).
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Stanford Heart Transplant Data

Quadratic Log-Mean Lognormal Regression Model
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Stanford Heart Transplant Data

Quadratic Log-Location Weibull Regression Model
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Extrapolation and Empirical Models

• Empirical models can be useful, providing a smooth curve

to describe a population or a process.

• Should not be used to extrapolate outside of the range of

one’s data.

• There are many different kinds of extrapolation

� In an explanatory variable like stress

� To the upper tail of a distribution

� To the lower tail of a distribution

• Need to get the right curve to extrapolate: look toward

physical or other process theory
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Checking Model Assumptions

• Graphical checks using generalizations of usual diagnostics

(including residual analysis)

� Residuals versus fitted values.

� Probability plot of residuals.

� Other residual plots.

� Influence analysis (or sensitivity) analysis.

(see Escobar and Meeker 1992 Biometrics).

• Most analytical tests can be suitably generalized, at least

approximately, for censored data (especially using likelihood

ratio tests).
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Definition of Residuals

• For location-scale distributions like the normal, logistic, and

smallest extreme value,

ε̂i =
yi − ŷi

σ̂

where ŷi is an appropriately defined fitted value (e.g., ŷi =

µ̂i).

• With models for positive random variables like Weibull, log-

normal, and loglogistic, standardized residuals are defined

as

exp(ε̂i) = exp

[
log(ti) − log(t̂i)

σ̂

]
=

(
ti
t̂i

)1
σ̂

where t̂i = exp(µ̂i) and when ti is a censored observation,

the corresponding residual is also censored.
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Plot of Standardized Residuals Versus Fitted Values

for the Log-Quadratic Weibull Regression Model Fit

to the Super Alloy Data on Log-Log Axes

Fitted Values
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Probability Plot of the Standardized Residuals from

the Log-Quadratic Weibull Regression Model

Fit to the Super Alloy Data

.01

.02

.03

.05

.1

.2

.3

.5

.7

.9

.98

0.001 0.005 0.020 0.050 0.200 0.500 2.000 5.000

P
ro

ba
bi

lit
y

•

•
•

•
• ••

••
••
••

••
••
••

•
•
•

Standardized Residuals

17 - 32



Empirical Regression Models

and Sensitivity Analysis

Objectives

• Describe a class of regression models that can be used to

describe the relationship between failure time and explana-

tory variables.

• Describe and illustrate the use of empirical regression mod-

els.

• Illustrate the need for sensitivity analysis.

• Show how to conduct a sensitivity analysis.
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Picciotto Data

(Picciotto 1970)

• Cycles to failure on specimens of yarn of different lengths.

• Subset of data at particular level of stress and particular

specimen lengths (30mm, 60mm, and 90mm)

• Original data were uncensored. For purposes of illustration,

the data censored at 100 thousand cycles.

• Suppose that the goal is to estimate life for 10 mm units.
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Picciotto Data Showing Fraction

Failing at Each Length
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Picciotto Data

Multiple Weibull Probability Plot

with Weibull ML Estimates

Thousands of Cycles
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Picciotto Data

Multiple Lognormal Probability Plot

with Lognormal ML Estimates

Thousands of Cycles
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Suggested Strategy for Fitting Empirical Regression

Models and Sensitivity Analysis

• Use data and previous experience to choose a base-line

model:

� Distribution at individual conditions

� Relationship between explanatory variables and distribu-

tions at individual conditions

• Fit models

• Use diagnostics (e.g., residual analysis) to check models

• Assess uncertainty

� Confidence intervals quantify statistical uncertainty

� Perturb and otherwise change the model and reanalyze

(sensitivity analysis) to assess model uncertainty.
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Picciotto Data Multiple Lognormal Probability Plot

with Lognormal ML Log-Linear Regression Model

Estimates

Thousands of Cycles
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Scatter Plot of the Picciotto Data
with Lognormal ML Log-Linear Regression Model

Estimate Densities
log[t̂p(x)] = β̂0 + β̂1 log (Length) + Φ−1

nor(p)σ̂

Length on log scale
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Picciotto Data

Log-Linear Model Residual vs Fitted Values Plot

Fitted Values
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Picciotto Data
Multiple Lognormal Probability Plot

with Lognormal ML Squareroot-Linear Regression
Model Estimates

Thousands of Cycles
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Scatter Plot of the Picciotto Data
with Lognormal ML Squareroot-Linear Regression

Model Estimate Densities
log[t̂p(x)] = β̂0 + β̂1

√
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Picciotto Data

Squareroot-Linear Model Residual vs Fitted Values

Plot

Fitted Values
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Examples of Power Transformations

λ Transformation

−2 x∗i ∼ −1/x2
i

−1 x∗i ∼ −1/xi

−.5 x∗i ∼ −1/
√

xi

−.333 x∗i ∼ −1/x
1/3
i

0 x∗i ∼ log(xi)

.333 x∗i ∼ x
1/3
i

.5 x∗i ∼ √
xi

1 x∗i ∼ xi

2 x∗i ∼ x2
i
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Box-Cox Transformation

• The Box-Cox family of power transformations is

x∗i =


xλ

i −1
λ λ �= 0

log(xi) λ = 0

where xi is the original, untransformed explanatory variable

and for observation i and λ is power transformation param-

eter.

• The Box-Cox transformation has the following properties:

� The transformed value x∗i is an increasing function of xi.

� For fixed, xi, x∗i is a continuous function of λ through 0.
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Picciotto Data

Relationship Sensitivity Analysis

for the .1 Quantile at Length 30 mm

Box-Cox Transformation Power
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Picciotto Data

Relationship Sensitivity Analysis

for the .1 Quantile at Length 10 mm

Box-Cox Transformation Power
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Picciotto Data

Profile Plot for Different Box-Cox Parameters for the

Length Relationship
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Picciotto Data

Relationship Sensitivity Analysis .1, .5, .9 Quantiles at

10 mm Length

Box-Cox Transformation Power
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Picciotto Data

Relationship/Distribution Sensitivity Analysis .1

Quantile at 10 mm Length

Box-Cox Transformation Power
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Glass Capacitor Failure Data

• Experiment designed to determine the effect of voltage and

temperature on capacitor life.

• 2 × 4 factorial, 8 units at each combination.

• Test at each combination run until 4 of 8 units failed (Type

II censoring).

• Original data from Zelen (1959).
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Scatter Plot the Effect of Voltage and Temperature

on Glass Capacitor Life

(Zelen 1959)
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Weibull Probability Plots of Glass Capacitor Life Test

Results at Individual Temperature and Voltage Test
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Two-Variable Regression Models

• Additive model

log[tp(x)] = yp(x) = β0 + β1x1 + β2x2 + Φ−1(p)σ.

Because

tp(x) = exp [yp(x)] = exp(β1x1 + β2x2) tp(0)

this is an SAFT model

• The interaction model

log[tp(x)] = yp(x) = β0 + β1x1 + β2x2 + β3x1x2 + Φ−1(p)σ.

is also SAFT.

• Comparing the two models gives

−2 × (L1 − L2) = −2 × (−244.24 + 244.17) = .14

which is small relative χ2
.95,1 = 3.84
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Weibull Probability Plots with Weibull Regression

Model ML Estimates of F(t) at each Set of Conditions

for the Glass Capacitor Data
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Estimates of Weibull t.5 Plotted for each Combination

of the Glass Capacitor Test Conditions
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The Proportional Hazard Failure Time Model

The proportional hazard (PH) model assumes

h(t;x) = Ψ(x)h(t;x0), for all t > 0.

h(t;x0) and F(t;x0) denote the baseline hazard function

and cdf of the model.

The PH model implies (some details later):

• S(t;x) = [S(t;x0)]
Ψ(x) or 1 − F(t;x) = [1 − F(t;x0)]

Ψ(x).

If Ψ(x) �= 1, F(t;x) and F(t;x0) do not cross and the model

is accelerating if Ψ(x) > 1 and decelerating if Ψ(x) < 1.

• From 1−F(t;x) = [1−F(t;x0)]
Ψ(x) and taking logs (twice):

log {− log [1 − F(t;x)]}−log {− log [1 − F(t;x0)]} = log [Ψ(x)] .

Thus in a Weibull probability scale F(t;x) and F(t;x0)

are equidistant. In particular, Weibull plots of F(t;x) and

F(t;x0) are translation of each other along the probability

axis.
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Weibull Probability Plot of Two Members from a

PH Model with a Baseline Lognormal Distribution
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Proportional Hazard Model (Lognormal Baseline) as a

Time Transformation
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Interpreting PH Models as a

Failure Time Transformation.

Suppose that T(x0) ∼ F(t;x0) and define the time trans-

formation:

T(x) = F−1
(
1 − {1 − F [T(x0);x0]}

1
Ψ(x) ;x0

)
.

It can be shown that:

• T(x) and T(x0) follow the PH relationship

h(t;x) = Ψ(x)h(t;x0).

• T(x) is a monotone transformation of T(x0) such that

T(x) < T(x0) if Ψ(x) > 1, accelerating

T(x) = T(x0) if Ψ(x) = 1, identity transform

T(x) > T(x0) if Ψ(x) < 1, decelerating
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Some Comments on the

Proportional Hazard Failure Time Model

Here we consider the proportional hazards, PH, model

h(t;x) = Ψ(x)h(t;x0), for all t > 0.

• In general, the PH model does not preserve the baseline

distribution. For example, if T(x0) has a lognormal distri-

bution then T(x) has a power lognormal distribution.

• The semiparametric model without a particular specification

of h(t;x0) is known as Cox’s proportional hazards model.
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Weibull Probability Plot of Two Members from a

PH/SAFT Model with a Baseline Weibull Distribution
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Contrasting SAFT and PH Models

The scale failure time model tp(x) = tp(x0)/Ψ(x) and the

PH model h(t;x) = Ψ(x)h(t;x0) are equivalent if only if the

baseline distribution is Weibull.

In other words, the Weibull distribution is the only baseline

distribution for which a SAFT model is also a a PH model,

and vice versa.

Heuristic argument: Consider F(t;x1) and F(t;x2). The

Weibull probability plots of these two cdfs are translation

of each other in both the probability and the log(t) scale if

and only if the plots are straight parallel lines.
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Statistical Methods for the

Semiparametric (Cox) PH Model

Data: n units, t(1), . . . , t(r) ordered failure times with n − r

censored observations (usually multiply censored).

• RSi = RS(t(i) − ε) is the risk set just before the failure at

time t(i).

• Each unit has a vector xi of explanatory variables (often

called covariates).
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Cox PH Model Likelihood (Probability of the Data)

• The probability that individual i dies in [t, t + ∆t] is

h(t;xi)∆t = h(t;x0)∆tΨ(xi) = h(t;x0) exp(x′
iβ)∆t

where Ψ(xi) = exp(x′
iβ) = exp(β1x1+· · ·+βkxk) and x0 = 0

• If a death occurs at time t, the probability that it was indi-

vidual i is

Li =
h(t;xi)∆t∑


∈RSi
h(t;x
)∆t

=
exp(x′

iβ)∑

∈RSi

exp(x′

β)

• Conditional on the observed failure times, the joint proba-

bility of the data is

L(β) =
r∏

i=1

exp(x′
iβ)∑


∈RSi
exp(x′


β)

• Need mild conditions on xi and the censoring mechanism.
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Comments on the Cox PH Model Likelihood

• Cox (1972) called L(β) a conditional likelihood.

• L(β) is not a true likelihood, but there is justification for

treating it as such.

• With no censoring, Kalbfleisch and Prentice (1973) show

that L(β) can be justified as a marginal likelihood based on

ranks of the observed failures. Argument can be extended

to Type II censoring.

• Cox (1975) provided a partial likelihood justification.

• Asymptotic theory shows that the estimates obtained from

maximizing L(β) have high efficiency.

• There are some technical difficulties when there are ties

observations. Approximations for L(β) generally used.
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Estimating h(t;x0) [or S(t;x0) or F(t;x0)]

• Basic idea is to substitute β̂ for β and maximize the prob-

ability of the data (after adjustment for the explanatory

variables), as in the product limit estimator.

• Let qi = S(ti + ε;x0), i = 1, . . . , r for the r failure times and

let qj = S(tj + ε;x0), j = r + 1, . . . , n for the n − r censored

observations. If there are no ties among the failure times,

L(q) =
r∏

i=1

(
q
Ψ̂(xi)
i−1 − q

Ψ̂(xi)
i

) n∏
j=r+1

q
Ψ̂(xj)
j−1

where Ψ̂(xi) = exp(x′
iβ̂) and q0 ≡ 1.

• Maximize L(q) with respect to qi, i = 1, . . . , r to get the

step-function estimate of S(t;x0).

• Estimate of S(t) at x is Ŝ(t;x) = [Ŝ(t;x0]
Ψ̂(x).

• Setup more complicated when there are ties.
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Picciotto Cox PH Model Survival Estimates

(Linear Axes)
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Picciotto Cox PH Model Survival Estimates

(on Weibull Probability Scales)
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Picciotto Cox PH Model

Schoenfeld Residuals versus Time
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General Failure Time Transformation Graph
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General Failure Time Transformation Model

A general time transformation model is

T(x) = Υ[T(x0), x]

where x0 are some baseline conditions.

We assume that Υ(t, x) satisfies the following conditions:

• Υ(t, x) is nonnegative, i.e., Υ (t, x) ≥ 0 for all t and x.

• For fixed x, Υ (t, x) is monotone increasing in t.

• For all x, Υ (0, x) = 0.

• For x0 the transformation is the identity transformation,

i.e., Υ (t, x0) = t for all t.
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General Failure Time Transformation Model

This general assumed transformation model implies:

• The distribution of T(x) can be determined from the dis-

tribution of T(x0) and x. In particular, tp(x) = Υ[tp(x0), x]

for 0 ≤ p ≤ 1.

• In a plot of T(x0) versus T(x)

� T(x) entirely below the diagonal line implies acceleration.

� T(x) entirely above the diagonal line implies decelera-

tion.

� Other T(x)s imply acceleration sometimes and deceler-

ation other times. The cdfs of T(x) and T(x0) cross.

� Scale time transformations and proportional hazard model

are special cases.

17 - 74



Other Topics in Failure-Time Regression

• Models with non-location-scale distributions.

• Nonlinear relationship regression model.

• Fatigue-limit regression model.

• Special topics in regression: random effects models, non-

parametric SAFT regression models, parametric PH regres-

sion models.
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