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Chapter 7
Parametric Likelihood Fitting Concepts:
Exponential Distribution
Objectives

Show how to compute a likelihood for a parametric model
using discrete data.

Show how to compute a likelihood for samples containing
right censored observations and left censored observations.

Use a parametric likelihood as a tool for data analysis and
inference.

Illustrate the use of likelihood and normal-approximation
methods of computing confidence intervals for model pa-
rameters and other quantities of interest.

Explain the appropriate use of the density approximation for
observations reported as exact failures.



Parametric Likelihood
Probability of the Data

e Using the model Pr(T < t) = F(t;0) for continuous T,
the likelihood (probability) for a single observation in the
interval (¢;_1,t;] is

L;(0;data;) = Pr(ti_1 <T <t;) = F(¢;;0) — F(t;—1,0).

Can be generalized to allow for explanatory variables, mul-
tiple sources of variability, and other model features.

e [ he total likelihood is the joint probability of the data. As-
suming n independent observations

n
L(0) = L(6; DATA) =C |] L;(6; data;).
1=1

e Want to estimate @ and g(6). We will find 8 to make L(0)
large.



Example: Time Between o-Particle Emissions of
Americium-241 (Berkson 1966)

Berkson (1966) investigates the randomness of «a-particle
emissions of Americium-241, which has a half-life of about
458 years.

Data: Interarrival times (units: 1/5000 seconds).
e n —=10,220 observations.

e Data binned into intervals from O to 4000 time
units. Interval sizes ranging from 25 to 100 units. Ad-
ditional interval for observed times exceeding 4,000 time
units.

e Smaller samples analyzed here to illustrate sample size ef-
fect. We start the analysis with n =200.



Data for o-Particle Emissions of Americium-241

Interarrival Times

Time Frequency of Occurrence
Interval Endpoint All Times Random Sample of Times
lower upper n = 10220 n = 200

tj—l tj d]
0 100 1609 41
100 300 2424 44
300 500 1770 24
500 700 1306 32
700 1000 1213 29
1000 2000 1528 21
2000 4000 354 9
4000 00 16 0
10220 200




Frequency

Histogram of the n = 200 Sample of «o-Particle
Interarrival Time Data
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Exponential Probability Plot of the n = 200 Sample of
a-Particle Interarrival Time Data. The Plot also
Shows Approximate 95% Simultaneous Nonparametric
Confidence Bands.
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Exponential Distribution and Likelihood
for Interval Data

Data: o-particle emissions of americium-241

e [ he exponential distribution is
t

F(t;@):l—exp(—g), t > 0.

0 = E(T), the mean time between arrivals.

e [ he interval-data likelihood has the form

L(0) = ﬁ L;(0) = H [F(t F(tj—l;@]dj
1=1

1 eo(- 55 -on (]

=1
where d; is the number of interarrival times in the jth in-
terval (i.e., times between t;,_1 and t;).



R(0) = L(0)/L(0) for the n = 200 a-Particle Interarrival
Time Data. Vertical Lines Give an Approximate 95%
Likelihood-Based Confidence Interval for 6
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Exponential Probability Plot for the n = 200 Sample of
a-Particle Interarrival Time Data. The Plot Also
Shows Parametric Exponential ML Estimate and 95%
Confidence Intervals for F(t).
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Example. o-Particle Pseudo Data Constructed

with Constant Proportion within Each Bin

Time

Interarrival Times

Frequency of Occurrence

Interval Endpoint

Samples of Times

lower upper n=20000 n=2000 n=200 n=20
ti—1 t; d]

0 100 3000 300 30 3
100 300 5000 500 50 5
300 500 3000 300 30 3
500 700 3000 300 30 3
700 1000 2000 200 20 2

1000 2000 3000 300 30 3
2000 4000 1000 100 10 1
4000 00 0000 000 0 0

20000 2000 200 20




R(9) = L(0)/L(H) for the n = 20, 200, and 2000 Pseudo
Data. Vertical Lines Give Corresponding Approximate
95% Likelihood-Based Confidence Intervals
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Example. o-Particle Random Samples

Interarrival Times

Time Frequency of Occurrence
Interval Endpoint All Times Random Samples of Times
lower upper n = 10220 n =2000 n =200 n=20

ti—1 t; dj
0 100 1609 292 41 3
100 300 2424 494 44 7
300 500 1770 332 24 4
500 700 1306 236 32 1
700 1000 1213 261 29 3
1000 2000 1528 308 21 2
2000 4000 354 73 9 0
4000 00 16 4 0 0
10220 2000 200 20




R(9) = L(0)/L(H) for the n = 20, 200, and 2000 Samples
from the o-Particle Interarrival Time Data. Vertical
Lines Give Corresponding Approximate 95%
Likelihood-Based Confidence Intervals.
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Likelihood as a Tool for Modeling/Inference

What can we do with the (log) likelihood?

£(6) =10g[L(8)] = Y £:(6).
1=1

e Study the surface.
e Maximize with respect to 8 (ML point estimates).

e Look at curvature at maximum (gives estimate of Fisher
information and asymptotic variance).

e Observe effect of perturbations in data and model on like-
lihood (sensitivity, influence analysis).



Likelihood as a Tool for Modeling/Inference
(Continued)

Regions of high likelihood are credible; regions of low likeli-
hood are not credible (suggests confidence regions for pa-
rameters).

If the length of @ is > 1 or 2 and interest centers on subset
of @ (need to get rid of nuisance parameters), look at pro-
files

(suggests confidence regions/intervals for parameter sub-
sets).

Calibrate confidence regions/intervals with x2 or simulation
(or parametric bootstrap).

Use reparameterization to study functions of 6.



Exponential (6§ =5) Samples of Size n =3

Profile Likelihood

Relative Likelihood for Simulated
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Relative Likelihood for Simulated
Exponential (6 = 5) Samples of Size n = 1000
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Large-Sample Approximate Theory for Likelihood
Ratios for a Scalar Parameter

Relative likelihood for 6 is
L(0)

R(9) = L

If evaluated at the true 6, then, asymptotically, —210g[R(6)]
follows, a chisquare distribution with 1 degree of freedom.

An approximate 100(1 — a)% likelihood-based confidence
region for 0 is the set of all values of 6 such that

—210g[R()] < X(1_a:1)

or, equivalently, the set defined by
R(0) > exp |[~Xx71_q:1)/2]

General theory in the Appendix.



Normal-Approximation Confidence Intervals for 6

e A 100(1 — a)% normal-approximation (or Wald) confidence
interval for 0 is

_ 1 .
where s&; = \/[—dzﬁ(e)/dHQ] is evaluated at 6.

e Based on

0—0
Z§= — ~ NOR(0, 1)
Se(/g\

e From the definition of NOR(0, 1) quantiles

Pr|2(aj2) < Z5 S 2(1-a/2)| ® 1 = 0@
implies that

Pr [(9 — Z(l—a/Q)S/éé\ < 6 S 0 —I— z(l—a/Q)S/éé\} ~1—a«.



Normal-Approximation Confidence Intervals for 6
(continued)

e A 100(1 — )% normal-approximation (or Wald) confidence
interval for 0 is

[0, 6l =1[0/w, 6 xu]

where w = explz(1_,,2)5€;/6]. This follows after transform-
ing (by exponentiation) the confidence interval

[log(0), log(#)] = log(f) + Z(l—a/Q)S/élog(g)

which is based on

__1og(#) —log(6)

09(®) S€l0g(d)

A

~ NOR(0, 1)

e Because Iog(@) is unrestricted in sign, generally ZIO iS

closer to an NOR(O, 1) distribution than is Z5.

a(6)



Comparisons for o-Particle Data

All Times Sample of Times
n =10,220 n = 200 n=20
ML Estimate 6 596 572 440
Standard Ermm*éég 6.1 42.7 101
959% Confidence Intervals
for & Based on
Likelihood [585, 608] [498, 662] [289, 713]
Zroa@ ~ NOR(0,1) [585, 608] [496, 660] [281, 690]
Z>~ NOR(0, 1) [585, 608] [491, 654] [242, 638]
ML Estimate \ x 10° 168 175 227
Standard Error se~ 1.7 13 52
Ax 105
95% Confidence Intervals
for A x 10° Based on
Likelihood [164, 171] [151, 201] [140, 346]
Z  ~ ~ NOR(0,1) [164, 171] [152, 202] [145, 356]

log(\)
Zirb NOR(O, 1) [164, 171] [149, 200] [125, 329]



Confidence Intervals for Functions of 6

e For one-parameter distributions, confidence intervals for
6 can be translated directly into confidence intervals for
monotone functions of 6.

e The arrival rate A = 1/6 is a decreasing function of 6.

[\, A =1[1/6, 1/0] =[.00151, .00201].

e I(t;0) is a decreasing function of 6

[E(te), F(te)] = [F(te; 0), F(te; 9)].

23

\l
|



Density Approximation for Exact Observations

If t;_ 1 =1t;, — A;, A; >0, and the correct likelihood
F(t;;0) — F(t;—1,0) = F(t;,0) — F(t; — A, 0)
can be approximated with the density f(¢) as
t.

[F(15:0) = F(ti = D O] = [ f(0)dt~ f(t;0)D;

then the density approximation for exact observations
L;(0;data;) = f(¢;;0)

may be appropriate.

For most common models, the density approximation is ad-
equate for small A;.

There are, however, situations where the approximation
breaks down as A; — 0.



ML Estimates for the Exponential Distribution Mean
Based on the Density Approximation

e With r exact failures and n — r right-censored observations
the ML estimate of 0 is
T1T . Z?zl t;
o
TI'T = Z?zlti, total time in test, is the sum of the failure
times plus the censoring time of the units that are censored.

=

e Using the observed curvature in the likelihood:

o |[LPL@) _ 26
9_\ 62 s

e If the data are complete or failure censored, 2TTT /0 ~ X%r'
Then an exact 100(1 — a)% confidence interval for 6 is

~

19, 0] =

2(TTT) 2(TTT) ]

X%l—oz/Q;Qr), X%oz/Q;Qr)



Confidence Interval for the Mean Life of a New
Insulating Material

A life test for a new insulating material used 25 specimens
which were tested simultaneously at a high voltage of 30 kV.

The test was run until 15 of the specimens failed.
The 15 failure times (hours) were recorded as:

1.08, 12.20, 17.80, 19.10, 26.00, 27.90, 28.20, 32.20,
35.90, 43.50, 44.00, 45.20, 45.70, 46.30, 47.80

Then TIT =1.08+4---+47.80+4+ 10 x 47.80 = 950.88 hours.

The ML estimate of & and a 95% confidence interval are:

)

= 950.88/15 = 63.392 hours
2(950.88) 2(950.88)] B [1901.76 1901.76

Y

46.98 ' 16.79

2 2
X(.975:30) X(.025;30)
[40.48, 113.26].



Exponential Analysis With Zero Failures

ML estimate for the Exponential distribution mean 6 cannot
be computed unless the available data contains one or more
failures.

For a sample of n units with running times t1,...,tn, and an
assumed exponential distribution, a conservative 100(1 —
a)% lower confidence bound for 6 is

,_ 2(ITT) _ 2(TIT) _  TIT
T Xf g —2log(@)  —log(a)

The lower bound 6 can be translated into an lower confi-

~

dence bound for functions like ¢, for specified p or a upper
confidence bound for F(t.) for a specified te.

This bound is based on the fact that under the exponen-
tial failure-time distribution, with immediate replacement of
failed units, the number of failures observed in a life test

with a fixed total time on test has a Poisson distribution.
7-27



Analysis of the Diesel Generator Fan Data
(Assuming Removal After 200 Hours of Service)

Here we do the analysis of the fan data after 200 hours of
testing when all the fans were still running.

Thus TTT=14,000 hours. A conservative 95% lower confi-
dence bound on 0 is

_ 2(TTT) _ 28000
~ 5.901

o

~

= — = 4674.
X(.95;2)

Using the entire data set, 0 = 28,701 and a likelihood-
based approximate 95% lower confidence bound is § =

18,485 hours.

This shows how little information comes from a short test
with zero or few failures.

A conservative 95% upper confidence bound on F'(10000; 0)
is F(10000) = F(10000;60) = 1 — exp(—10000/4674) =

.8382.



Other Topics in Chapter 7

e Inferences when there are no failures.
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