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Chapter 4
Location-Scale-Based Parametric Distributions
Objectives

Explain importance of parametric models in the analysis of
reliability data.

Define important functions of model parameter that are of
interest in reliability studies.

Introduce the location-scale and log-location-scale families
of distributions.

Describe the properties of the exponential distribution.

Describe the Weibull and lognormal distributions and the
related underlying location-scale distributions.



Motivation for Parametric Models

e Complements nonparametric techniques.

e Parametric models can be described concisely with just a
few parameters, instead of having to report an entire curve.

e It is possible to use a parametric model to extrapolate (in
time) to the lower or upper tail of a distribution.

e Parametric models provide smooth estimates of failure-time
distributions.

In practice it is often useful to compare various parametric
and nonparametric analyses of a data set.



Functions of the Parameters

e Cumulative distribution function (cdf) of T

F(t;0) =Pr(T <t), t>0.

e The p quantile of T' is the smallest value ¢, such that

F(tp; 9) > p.
e Hazard function of T
f(t; 8)
h(t: 0) = , t>0.
&0 =1"Frre '~



Functions of the Parameters-Continued

The mean time to failure, MTTF, of T (also known as
expectation of T)

E(T) = /Oootf(t;é?) dt = /OOO (1 — F(¢: 0)] dt.

If [5°tf(t;,0)dt = oo, we say that the mean of T" does not
exist.

The variance (or the second central moment) of T' and the
standard deviation

Var(T) = /Ooo[t—E(T)]zf(t;H)dt

v/ Var(T).

Coefficient of variation ~»

_ SD(T)
2= Eopy

SD(T)




Location-Scale Distributions

Y belongs to the location-scale family of distributions if the

cdf of Y can be expressed as

Yy—H
o

F(yip,0) =Pr(Y <y) = & (

where —oo < u < oo IS a location parameter and o > 0 is a
scale parameter.

), —0o <Y <0

® is the cdf of ¥ when x = 0 and ¢ = 1 and & does not
depend on any unknown parameters.

Note: The distribution of Z = (Y — u)/o does not depend
on any unknown parameters.



Importance of Location-Scale Distributions

Importance due to:

e Most widely used statistical distributions are either mem-
bers of this class or closely related to this class of distribu-
tions: exponential, normal, Weibull, lognormal, loglogistic,
logistic, and extreme value distributions.

e Methods of inference, statistical theory, and computer soft-
ware generated for the general family can be applied to this
large, important class of models.

e [ heory for location-scale distributions is relatively simple.



Examples of Exponential Distributions

Cumulative Distribution Function Probability Density Function
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Exponential Distribution

For T~ EXP(0,~),

F(t;0,7v) = 1—exp (—t_TW)
]_ _
f(t;0,y) = g €XP (—%)
h(t; 0,v) = f0.y) 1 t >,

1—F(t;0,v) 6

where 8 > 0O is a scale parameter and ~ is both a location and
a threshold parameter. When v = 0 one gets the well-known
one-parameter exponential distribution.

Quantiles: t, = v — 6log(1 — p).
Moments: For integer m > 0, E[(T —~)™] = m!6™. Then

E(T)=~40, Var(T) = 0>



Motivation for the Exponential Distribution

Simplest distribution used in the analysis of reliability data.

Has the important characteristic that its hf is constant
(does not depend on time t).

Popular distribution for some kinds of electronic compo-
nents (e.g., capacitors or robust, high-quality integrated
circuits).

T his distribution would not be appropriate for a population
of electronic components having failure-causing quality-defects.

Might be useful to describe failure times for components
that exhibit physical wearout only after expected techno-
logical life of the system in which the component would be
installed.
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Examples of Normal Distributions

Cumulative Distribution Function Probability Density Function
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Normal (Gaussian) Distribution

For Y ~ NOR(u, o)

F(y,p,0) = Pnor (y—,u)
Yy—H
o
where qbnor(z) = (1/\/ 27‘(‘) exp(—22/2) and CDnor(Z) = fioo ¢nor(’w>d’w
are pdf and cdf for a standardized normal (u = 0,0 = 1).
—00 < 4 < o0 IS a location parameter; o > 0 is a scale param-

eter.

flysp,o0) = —anor( >, —o0 <y < 00.

Quantiles: y, = pu+oPnd(p) where ®4(p) is the p quantile
for a standardized normal.

Moments: For integer m > 0, E[(Y — n)™] = 0 if m is odd,
and E[(Y — p)™] = (m)!e™/[27/2 (m/2)!] if m is even. Thus

E(Y)=yp, Var(Y)=os°.
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Examples of Lognormal Distributions

Cumulative Distribution Function Probability Density Function
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Lognormal Distribution

If T ~ LOGNOR(y, o) then log(T) ~ NOR(u, o) with

F(t' m 0_) — Pnor [Iog(t) — :u]

f(t o)

|

|
<
>
S

¢onor and dnpor are pdf and cdf for a standardized normal.
exp(u) is a scale parameter; o > 0 is a shape parameter.

Quantiles: t, = exp (u+ oPrgi(p)), where ®rg(p) is the p
quantile for a standardized normal.
Moments: For integer m > 0, E(T™) = exp (m,u + m202/2>.

E(T) = exp (u -+ 02/2) , Var(T) = exp (QM + 02) [exp(ch) — 1] :
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Motivation for Lognormal Distribution

The lognormal distribution is a common model for failure
times.

It can be justified for a random variable that arises from the
product of a number of identically distributed independent
positive random quantities.

It has been suggested as an appropriate model for failure
time caused by a degradation process with combinations of
random rates that combine multiplicatively.

Widely used to describe time to fracture from fatigue crack
growth in metals.

Useful in modeling failure time of a population electronic
components with a decreasing hf (due to a small proportion
of defects in the population).

Useful for describing the failure-time distribution of certain
degradation processes.
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Examples of Smallest Extreme Value Distributions

Cumulative Distribution Function Probability Density Function
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Smallest Extreme Value Distribution

For Y ~ SEV(u, o),

F(y,p,0) = Psev (y—,u)

o
1 y—p
fly,p,0) = —cbsev( )
02 02
]_ _
h(y,/,L,O') = —€exXp <y Iu)a —OO<y<OO
O O

Dsev(z) = 1 —exp[—exp(2)], dsev(z) = exp[z — exp(z)] are cdf
and pdf for standardized SEV (u = 0,0 =1). —oco < u < ©
IS a location parameter and o > 0 is a scale parameter.

Quantiles: yp, = p + Psav(p)o = p+ log [~ log(1 — p)] o.
Mean and Variance: E(Y) = u — o7, Var(Y) = o2712/6,
where v = 5772, ™~ 3.1416.
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Examples of Weibull Distributions

Cumulative Distribution Function Probability Density Function
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Weibull Distribution

Common Parameterization:

F(t)

f(@)

h(t)

()
Pr(T <t)=1-—exp —<—> ]

n
p—1 B
) e ()
n\"N n
B3—1
é(£) >0
n\"N

B > 0 is shape parameter; n > 0 is scale parameter.

Quantiles: t, = n[—log(1l — p)]l/ﬂ.
Moments: For integer m > 0, E(T™) = 0™l (14+m/3). Then

E(T) =nl (1 + %) . Var(T) =n? [r (1 + %) —r? (1 + 1)]

5]

@)
where [(k) :/o w® L exp(—w)dw is the gamma function.

Note: When 3 =1 then T ~ EXP(n).
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Alternative Weibull Parameterization
Note: If T~ WEIB(u,0) then Y = log(T) ~ SEV(u, o).

For T~ WEIB(u, o) then

B
F(t,u,0) = 1—exp l— (%) ] = Psev 09 (t) — p
B-1 B _
fltpo) = & <£> exp [— <£> ] — 2 ooy 09(1) M]
n\n ) ot o
where o = 1/3, p =109(n), and
dsev(z) = explz —exp(z)]
Dsev(z) = 1 —exp[—exp(z)].

Quantiles:
tp = n[—109(1 — p)I*P = exp |1+ cPsey ()]
where CDS_e{,(p) is the p quantile for a standardized SEV (i.e.,

pw=0,0=1).
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Motivation for the Weibull Distribution

e [ he theory of extreme values shows that the Weibull dis-
tribution can be used to model the minimum of a large
number of independent positive random variables from a
certain class of distributions.

» Failure of the weakest link in a chain with many links
with failure mechanisms (e.g., creep or fatigue) in each
link acting approximately independent.

» Failure of a system with a large number of components in
series and with approximately independent failure mech-
anisms in each component.

e [ he more common justification for its use is empirical: the
Weibull distribution can be used to model failure-time data
with a decreasing or an increasing hft.

N
|
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Examples of Largest Extreme Value Distributions

Cumulative Distribution Function Probability Density Function
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Largest Extreme Value Distribution

When Y ~ LEV(u, o),
. y— K
Flyimo) = drey (V)

flyip,0) = ;fblev <%)

h(y, p,o) = )}_1}, —o0 < y < oo.

o {exp [exp (— %
where ® o, (2) = exp[—exp(—z)] and ¢je (2) = exp[—z—exp(—2z)]
are the cdf and pdf for a standardized LEV (@ = 0,0 = 1)
distribution.

—00 < u < oo iIs a location parameter and o > 0 is a scale
parameter.



Largest Extreme Value Distribution - Continued
Quantiles: y, = u — olog [—log(p)].
Mean and Variance: E(Y) = u + ov, Var(Y) = ¢272/6,
where v =~ .5772, ™~ 3.1416.

Notes:

e [ he hazard is increasing but is bounded in the sense that

o If Y ~LEV(u,0) then —Y ~ SEV(—pu, o).



Examples of Logistic Distributions

Cumulative Distribution Function Probability Density Function
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Logistic Distribution

For Y ~ LOGIS(u, o),

: y— M
F(y, p,0) = CIDIogis (T)

1 Yy — [
fly,p,0) = —Qlogis (—>
o o
1 y—p
h(y, p,o0) = ;cblogis (T) , —oo <y < o0.

—o0 < u < oo is a location parameter; o > 0 is a scale param-
eter.

Plogis anNd Piogis are pdf and cdf for a standardized logistic
distribution defined by

o exp(z)
Plogis(2) = [1 4+ exp(2)]?
DPlogis(z) = e

1+ exp(z)

N
|
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Logistic Distribution-Continued

Quantiles: y, = p+ oPl (p) = p+ alog( p), where

|og|5(p) log[p/(1 — p)] is the p quantile for a standardized
logistic distribution.

Moments: For integer m > 0, E[(Y — u)™] = 0 if m is odd,
and E[(Y — u)™] = 2™ (m!) [1 - (1/2)m—1] >0 (1/i)™ if m
IS even. Thus

o272

3

E(Y)=pu, Var(Y)=



Examples of Loglogistic Distributions

Cumulative Distribution Function Probability Density Function
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Loglogistic Distribution

If Y ~ LOGIS(u,0) then T = exp(Y) ~ LOGLOGIS(u, o)
with

F(t,p,0) = Piogis [log(w;) — M]

1 | —
ft o) = a@ogis [ 22 (2 ,LL]
h(t,p,0) = %Cblogis Iog(i) — M] , t>0.

exp(p) is a scale parameter; o > 0 is a shape parameter.
P|ogis and ¢jpgis are cdf and pdf for a LOGIS(O, 1).



Loglogistic Distribution-Continued
Quantiles: t, = exp [u + UCDBéiS(p)] = exp(p) [p/(1 — p)]°.
Moments: For integer m > 0O,

E(T™) = exp(mu) M1 +mo) N1 —mo).

The m moment is not finite when mo > 1.

For o < 1,
E(T) =exp(u) (1 +o0)I(1-o0),
and for o < 1/2,

Var(T) = exp(2u) [r(l +20)M (1 —20) —TM2(140)M2(1 - a)] .



Other Topics in Chapter 4

Pseudorandom number generation.
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Topics in Chapter 5

Parametric models with threshold parameters.

Important distributions used in reliability that can not be
translated into location-scale distributions: gamma, gener-
alized gamma, etc.

Finite (discrete) mixture distributions

F(t,0) =& F1(t01) + -+ § P (8 0)
where ¢ >0, and ) ;& =1

Compound (continuous) mixture distributions.

If failure-times of units in a population are EXP(n) with
1/n ~ GAM(6, k), then the unconditional failure time, T, of
a unit selected at random from the population has a Pareto
distribution of the form

1

F(t;0,k) =1 — 1160

t > 0.

N
|
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