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Chapter 8

Maximum Likelihood

for Location-Scale Based Distributions

Objectives

• Illustrate likelihood-based methods for parametric models

based on log-location-scale distributions (especially Weibull
and Lognormal).

• Construct and interpret likelihood-ratio-based confidence
intervals/regions for model parameters and for functions

of model parameters.

• Construct and interpret normal-approximation confidence
intervals/regions.

• Describe the advantages and pitfalls of assuming that the
log-location-scale distribution shape parameter is known.
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Weibull Probability Plot of the Shock Absorber Data
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Weibull Distribution Likelihood

for Right Censored Data

• The Weibull model is

Pr(T ≤ t) = F(t;µ, σ) = Φsev {[log(t) − µ]/σ} .

• The likelihood has the form

L(µ, σ) =
n∏

i=1

Li(µ, σ; datai)

=
n∏

i=1

[f(ti;µ, σ)]δi [1 − F (ti;µ, σ)]1−δi

=
n∏

i=1

[
1

σti
φsev

(
log(ti) − µ

σ

)]δi

×
[
1 − Φsev

(
log(ti) − µ

σ

)]1−δi

δi =

{
1 if ti is an exact observation
0 if ti is a right censored observation

φsev(z) is the standardized smallest extreme value density.
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Lognormal Distribution Likelihood

for Right Censored Data

• The lognormal model is

Pr(T ≤ t) = F(t;µ, σ) = Φnor {[log(t) − µ]/σ} .

• The likelihood has the form

L(µ, σ) =
n∏

i=1

Li(µ, σ; datai)

=
n∏

i=1

[f(ti;µ, σ)]δi [1 − F (ti;µ, σ)]1−δi

=
n∏

i=1

[
1

σti
φnor

(
log(ti) − µ

σ

)]δi

×
[
1 − Φnor

(
log(ti) − µ

σ

)]1−δi

δi =

{
1 if ti is an exact observation
0 if ti is a right censored observation

φnor(z) is the standardized normal density.
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Weibull Relative Likelihood

for the Shock Absorber Data

ML Estimates: µ̂ = 10.23 and σ̂ = .3164

R(µ, log(σ)) = L(µ, log(σ))/L(µ̂, log(σ̂))
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Weibull Relative Likelihood

for the Shock Absorber Data

ML Estimates: µ̂ = 10.23 and σ̂ = .3164

R(µ, σ) = L(µ, σ)/L(µ̂, σ̂)
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Six-Distribution ML Probability Plot

of the Shock Absorber Data
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Weibull Probability Plot of Shock Absorber Failure

Times (Both Failure Modes) with Maximum

Likelihood Estimates and Normal-Approximation 95%

Pointwise Confidence Intervals for F(t)
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Lognormal Probability Plots of Shock Absorber Data

with ML Estimates and Normal-Approximation 95%

Pointwise Confidence Intervals for F(t). The Curved

Line is the Weibull ML Estimate.
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Weibull Likelihood-Based Joint Confidence Regions for

µ and σ for the Shock Absorber Data

R(µ, σ) > exp
[
−χ2

(1−α;2)/2
]
= 100α%
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Large-Sample Approximate Theory for Likelihood

Ratios for Parameter Vector

• Relative likelihood for (µ, σ) is

R(µ, σ) =
L(µ, σ)

L(µ̂, σ̂)
.

• If evaluated at the true (µ, σ), then, asymptotically, −2 log[R(µ, σ)]

follows, a chisquare distribution with 2 degrees of freedom.

• General theory in the Appendix.
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Weibull Profile Likelihood R(µ) (exp(µ) ≈ t.63)

for the Shock Absorber Data

R(µ) = max
σ

[
L(µ,σ)
L(µ̂,σ̂)

]
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Weibull Profile Likelihood R(σ) (σ = 1/β)

for the Shock Absorber Data

R(σ) = max
µ

[
L(µ,σ)
L(µ̂,σ̂)

]
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Large-Sample Approximate Theory for Likelihood

Ratios for Parameter Vector Subset

Need: Inferences on subset θ1, from the partition θ = (θ1, θ2)
′.

• k1 = length(θ1).

• When (θ1, θ2)
′ = (µ, σ), profile likelihood for θ1 = µ is

R(µ) = max
σ

[
L(µ, σ)

L(µ̂, σ̂)

]
.

• If evaluated at the true θ1 = µ, then, asymptotically, −2 log[R(µ)]

follows, a chisquare distribution with k1 = 1 degrees of free-

dom.

• General theory in the Appendix.
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Asymptotic Theory of Likelihood Ratios – Continued

• An approximate 100(1 − α)% likelihood-based confidence

region for θ1 is the set of all values of θ1 such that

−2 log[R(θ1)] < χ2
(1−α;k1)

or, equivalently, the set defined by

R(θ1) > exp
[
−χ2

(1−α;k1)
/2

]
.

• Transformation of θ1 will not affect the confidence state-

ment.

• Can improve the asymptotic approximation with simulation

(only small effect except in very small samples).
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Contour Plot of Weibull Relative Likelihood R(t.1, σ)

for the Shock Absorber Data

(Parameterized with t.1 and σ)

R(t.1, σ) = L(t.1, σ)/L(t̂.1, σ̂)
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Confidence Regions and Intervals for

Functions of µ and σ

• Likelihood approach can be applied to functions of param-

eters.

• Define the function of interest as one of the parameters,

replacing one of the original parameters giving one-to-one

reparameterization g(µ, σ) = [g1(µ, σ), g2(µ, σ)].

• Then follow previous procedure.

• Simple to implement if function and its inverse are easy to

compute.
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Weibull Profile Likelihood R(t.1)

for the Shock Absorber Data

R(t.1) = max
σ

[
L(t.1,σ)
L(t̂.1,σ̂)

]
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Weibull Profile Likelihood R[F(10000)]

for the Shock Absorber Data

R [F(10000)] = max
σ

 L[F (10000),σ]

L
[
F̂ (10000),σ̂

]

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Asymptotic Theory of ML Estimation

Let θ̂ denote the ML estimator of θ.

• If evaluated at the true value of θ, then asymptotically,

(large samples) θ̂ has a MVN(θ,Σ
θ̂
) and thus the Wald

statistic

(θ̂ − θ)′
[
Σ

θ̂

]−1
(θ̂ − θ)

has a chisquare distribution with k degrees of freedom,

where k is the length of θ.

• Here, Σ
θ̂

= I−1
θ is the large sample approximate covariance

matrix where

Iθ = E

[
− ∂2L(θ)

∂θ∂θ′

]
.
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Asymptotic Theory for Wald’s Statistic

• Alternative asymptotic theory is based on the large-sample

distribution of quadratic forms (Wald’s statistic).

• Let Σ̂
θ̂

be a consistent estimator of Σ
θ̂
, the asymptotic

covariance matrix of θ̂. For example,

Σ̂
θ̂

=

[
− ∂2L(θ)

∂θ∂θ′

]−1

where the derivatives are evaluated at θ̂.

• Asymptotically, the Wald statistic

w(θ) = (θ̂ − θ)′
[
Σ̂

θ̂

]−1
(θ̂ − θ)

when evaluated at the true θ, follows a chisquare distribu-

tion with k degrees of freedom, where k is the length of

θ.
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Asymptotic Theory for Wald’s Statistic – Continued

• An approximate 100(1−α)% confidence region for θ is the

set of all values of θ in the ellipsoid

(θ̂ − θ)′
[
Σ̂

θ̂

]−1
(θ̂ − θ) ≤ χ2

(1−α;k).

• This is sometimes known as the normal-theory confidence

region.

• Can specialize to functions or subsets of θ.

• Can transform to improve asymptotic approximation. Try

to get a log likelihood with approximate quadratic shape.
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Normal-Approximation Confidence Intervals

for Model Parameters

• Estimated variance matrix for the shock absorber data

Σ̂µ̂,σ̂ =

[
V̂ar(µ̂) Ĉov(µ̂, σ̂)
Ĉov(µ̂, σ̂) V̂ar(σ̂)

]
=

[
.01208 .00399
.00399 .00535

]

• Assuming that Zµ̂ = (µ̂ − µ)/ŝeµ̂ ∼̇ NOR(0,1) distribution,

an approximate 100(1 − α)% confidence interval for µ is

[µ˜, µ̃] = µ̂ ± z(1−α/2)ŝeµ̂

where ŝeµ̂ =
√

V̂ar(µ̂).

• Assuming that Zlog(σ̂) = [log(σ̂)−log(σ)]/ŝelog(σ̂) ∼̇ NOR(0,1)

an approximate 100(1 − α)% confidence interval for σ is

[σ˜, σ̃] = [σ̂/w, σ̂ × w]

where w = exp
[
z(1−α/2)ŝeσ̂/σ̂

]
and ŝeσ̂ =

√
V̂ar(σ̂).
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Normal-Approximation Confidence Intervals

for Function g1 = g1(µ, σ)

• ML estimate ĝ1 = g1(µ̂, σ̂).

• Assuming Zĝ1
= (ĝ1−g1)/ŝeĝ1

∼̇ NOR(0,1), an approximate

100(1 − α)% confidence interval for g1 is

[g1˜ , g̃1] = ĝ1 ± z(1−α/2)ŝeĝ1
,

where

ŝe
ĝ1

=

√
V̂ar(ĝ1) =

[(
∂g1

∂µ

)2

V̂ar(µ̂) +

(
∂g1

∂σ

)2

V̂ar(σ̂) + 2

(
∂g1

∂µ

) (
∂g1

∂σ

)
Ĉov(µ̂, σ̂)

]1

2

• Partial derivatives evaluated at µ̂, σ̂.

• General theory in the appendix.
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Normal-Approximation Confidence Interval

for F(te;µ, σ)

Objective: Obtain a point estimate and a confidence interval

for Pr(T ≤ te) = F(te;µ, σ) at a fixed and known point te.

• The ML estimates θ̂ = (µ̂, σ̂) and Σ̂
θ̂

are available.

• The ML estimate for F(te;µ, σ) is

F̂ = F(te; µ̂, σ̂) = Φ(ζ̂e)

where ζ̂e = [log(te) − µ̂]/σ̂.

• In the context of Wald’s theory, however, there are many

ways to obtain a confidence interval for F(te;µ, σ).
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Confidence Interval for F(te;µ, σ)–Continued

Note: Wald’s confidence intervals depend on the parameter-

ization used to derive the intervals.

For example, 100(1 − α)% confidence interval for F(te;µ, σ)

can be obtained using:

• The asymptotic normality of Z
F̂

= (F̂ − F)/ŝe
F̂

[F˜ , F̃ ] = F̂(te) ± z(1−α/2)ŝeF̂
.

• The asymptotic normality of Z
logit(F̂ )

= [logit(F̂ )−logit(F)]/ŝe
logit(F̂ )

[F˜ , F̃ ] =

[
F̂(te)

F̂(te) + (1 − F̂ (te)) × w
,

F̂(te)

F̂ (te) + (1 − F̂(te))/w

]

where w = exp{z(1−α/2)ŝeF̂
/[F̂ (te)(1 − F̂ (te))]}.
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Confidence Interval for F(te;µ, σ)—Continued

Comments:

• Often the confidence interval based on the asymptotic nor-

mality of Z
F̂

has poor statistical properties caused by the

slow convergence toward normality of Z
F̂
.

• The confidence interval based on the transformation Z
logit(F̂ )

can have better statistical properties if Z
logit(F̂)

converges

to normality faster than Z
F̂
.
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ML Estimates for Biomedical Data

Here we show ML estimates (Weibull and lognormal) for

the DMBA and the IUD data.
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Nonparametric and Weibull ML Estimate for DMBA

Data with Parametric Pointwise Approximate 95%

Confidence Intervals

Days

Pe
rc

en
t

1 0 0 5 0 0
.1

.2

.5

1

2

5

10

20

30
40
50
60
70
80

95
99

99.9

8 - 30



Nonparametric and Lognormal ML Estimate for

DMBA Data with Parametric Pointwise Approximate

95% Confidence Intervals
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Lognormal ML Estimate for IUD Data with a set of

Pointwise Approximate 95% Confidence Intervals
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Weibull ML Estimate for IUD Data with a set of

Pointwise Approximate 95% Confidence Intervals
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Inference when σ (or Weibull β) is Given

• Simplifies problem. Only one parameter with r failures and

t1, . . . , tn failures and censor times

η̂ =

∑n
i=1 t

β
i

r

1/β

, ŝeη̂ =
η̂

β

√
1

r
.

• Provides much more precision, especially with small r.

• If 0 failures can provide

� Upper confidence bound on F(t).

� Lower confidence bound on tp.

• Requires sensitivity analysis because β is in doubt.

• Danger of misleading inferences.
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Weibull Probability Plots Bearing Cage Fracture Data

with Weibull ML Estimates and Sets of 95% Pointwise

Confidence Intervals for F(t) with β Estimated, and

Assumed Known Values of β= 1.5, 2, and 3.
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Bearing-Cage Fracture Field Data

• A population of n = 1703 units had been introduced into

service over time and 6 failures have been observed.

• There is concern that the B10 design life specification of

t.1 = 8 thousand hours was not being met.

• ML estimate is t̂.1= 3.903 thousand hours and an approxi-

mate 95% likelihood-ratio confidence interval for t.1 is [2.093,

22.144] thousand hours.

• Management also wanted to know how many additional fail-

ures could be expected in the next year.
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Comparison Between Lognormal and Weibull

Distributions Fit to the Bearing-Cage Fracture Field

Data
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Weibull/SEV Distribution with Given β = 1/σ

and Zero Failures

• ML Estimate for the Weibull Scale Parameter η Cannot be

Computed Unless the Available Data Contains One or More

Failures.

• For a sample of n units with running times t1, . . . , tn and no

failures, a conservative 100(1−α)% lower confidence bound

for η is

η˜ =

2
∑n

i=1 t
β
i

χ2
(1−α;2)

1
β

.

• The lower bound η˜ can be translated into an lower confi-

dence bound for functions like tp for specified p or a upper

confidence bound for F(te) for a specified te.
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Component A Safe Data

• A metal component in a ship’s propulsion system fails from
fatigue-caused fracture.

• Because of persistent reliability problems, the component
was redesigned to have a longer service life.

• Previous experience suggests that the Weibull shape param-
eter is near β = 2, and almost certainly between 1.5 and
2.5.

• Newly designed components were put into service during
the past year and no failures have been reported.

Hours: 500 1000 1500 2000 2500 3000 3500 4000
Number of Units: 10 12 8 9 7 9 6 3

Staggered entry data, with no reported failures.

• Can replacement be increased from 2000 hours to 4000
hours?
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Weibull Model 95% Upper Confidence Bounds on F(t)

for Component-A with Different Fixed Values for the

Weibull Shape Parameter
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Relative Weibull Likelihood

with One Failure at 1 and One Survivor at 2
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Relative Weibull Likelihood

with One Failure at 1.9 and One Survivor at 2
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Regularity Conditions

• Each technical result (e.g., asymptotic distribution of an

estimator) has its own set of conditions on the model (see

Lehmann 1983, Rao 1973).

• Frequent reference to Regularity Conditions which give rise

to simple results.

• For special cases the regularity conditions are easy to state

and check. For example, for some location-scale distribu-

tions the needed conditions are:

lim
z→−∞

z2φ2(z)

Φ(z)
= 0

lim
z→+∞

z2φ2(z)

1 − Φ(z)
= 0.

• In non-regular models, asymptotic behavior is more com-

plicated (e.g., behavior depends on θ), but there are still

useful asymptotic results.
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Regularity Conditions – Continued

Some typical regularity conditions include:

• Support does not depend on unknown parameters.

• Number of parameters does not grow too fast with n.

• Continuous derivatives of log likelihood (w.r.t. θ).

• Bounded derivatives of likelihood.

• Can exchange the order of differentiation of log likelihood

w.r.t. θ and integration w.r.t. data.

• Identifiability.
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Other Topics Related to Parametric Likelihood

Covered in Book

• Truncated data.

• Threshold parameters.

• Other distributions (e.g., gamma).

• Bayesian methods.

• Multiple failure modes.
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