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Chapter 6
Probability Plotting
Objectives

Describe applications for probability plots.
Explain the basic concepts of probability plotting.
Show how to linearize a cdf on special plotting scales.

Explain how to plot a nonparametric estimate F to judge
the adequacy of a particular parametric distribution.

Explain methods of separating useful information from noise
when interpreting a probability plot.

Use a probability plot to obtain graphical estimates of reli-
ability characteristics like failure probabilities and quantiles.



Purposes of Probability Plots

Probability plots are used to:

Assess the adequacy of a particular distributional model.

To detect multiple failure modes or mixture of different
populations.

Obtain graphical estimates of model parameters (e.g., by
fitting a straight line through the points on a probability

plot).

Displaying the results of a parametric maximum likelihood
fit along with the data.

Obtain, by drawing a smooth curve through the points, a
semiparametric estimate of failure probabilities and distri-
butional quantiles.



Probability Plotting Scales: Linearizing a CDF

Main Idea: For a given cdf, F(¢t), one can linearize the
{ t versus F(t) } plot by:

e Finding transformations of F'(t) and t such that the rela-
tionship between the transformed variables is linear.

e [ he transformed axes can be relabeled in terms of the orig-
inal probability and time variables.

The resulting probability axis is generally nonlinear and is
called the probability scale. The data axis is usually a linear
axis or a log axis.



Linearizing the Exponential CDF

CDF: p=F(t;9,7)=1—exp[—(th7)}, t > .
Quantiles: t, =~ —0log(1l — p).
Conclusion:

The { tp versus —log(1l —p) } plot is a straight line.

We plot ¢, on the horizontal axis and p on the vertical axis.
~v is the intercept on the time axis and 1/6 is equal to the
slope of the cdf line.

Note:
Changing 6 changes the slope of the line and changing ~
changes the position of the line.



Plot with Exponential Distribution Probability Scales
Showing Exponential cdfs as Straight Lines for
Combinations of Parameters § = 50,200 and v = 0, 200

tp =7 —0log(1 —p)
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Linearizing the Normal CDF

CDF: p=F(y;u,0)=¢nor(u), —00 < y < 0.

o

Quantiles: yp = p + cPra-(p).

Pna (p) is the p quantile of the standard normal distribution.

Conclusion:
{ yp versus <I>ﬁolr(p) } will plot as a straight line.

u is the point at the time axis where the cdf intersects the
®~1(p) = 0 line (i.e.,, p = .5). The slope of the cdf line on
the graph is 1/o.

Note:

Any normal cdf plots as a straight line with positive slope.
Also, any straight line with positive slope corresponds to a
normal cdf.



Plot with Normal Distribution Probability Scales
Showing Normal cdfs as Straight Lines for
Combinations of Parameters 1 = 40,80 and ¢ = 5,10

yp = pt + o Ppor(p)
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Linearizing the Lognormal CDF

CDF: p = F(t, u, O') = (Dnor [log(;)_'u] , t > 0.

Quantiles : tp = exp [u + JCDEOlr(p)} :

Then log(tp) = u+ Pra(p)o
Conclusion:
{ log(tp) versus Do (p) } will plot as a straight line.

exp(p) can be read from the time axis at the point where
the cdf intersects the <b;olr(p) = 0 line. The slope of the cdf
line on the graph is 1/0 (but in the computations use base e
logarithms for the times rather than the base 10 logarithms
used for the figures).

Note:
Any given lognormal cdf plots as a straight line with positive
slope. Also, any straight line with positive slope corresponds

to a lognormal distribution. -



Plot with Lognormal Distribution Probability Scales
Showing Lognormal cdfs as Straight Lines for
Combinations of exp(u) = 50,500 and 0 = 1,2
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Linearizing the Weibull CDF

CDF: p=F(,u o) = Psev [Iog(;)—u] , t>0.

Quantiles : t, = exp | + oPsey(p)| = nl—log(1 — p)]*/7,

where ®gq,(p) = log[—log(1 —p)], n = exp(u), 8= 1/0.

This leads to

log(tp) = p +log[—1og(1 — p)]o = log(n) + log[—log(1 —p)]%

Conclusion:
{ log(tp) versus log[—log(1 —p)] } will plot as a straight line.



Linearizing the Weibull CDF-Continued

Comments:

n = exp(u) can be read from the time axis at the point
where the cdf intersects the log[—10og(1—p)] = 0 line, which
corresponds to p ~ 0.632.

The slope of the cdf line on the graph is 3 = 1/0 (but in
the computations use base e logarithms for the times rather
than the base 10 logarithms used for the figures).

Any Weibull cdf plots as a straight line with positive slope.
And any straight line with positive slope corresponds to a
Weibull cdf.

Exponential cdfs plot as straight lines with slopes equal to 1.
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Plot with Weibull Distribution Probability Scales
Showing Weibull cdfs as Straight Lines for
Combinations of n =50,500 and g = .5,1

log(tp) = log(n) + log[—log(1l — p)]%
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Choosing Plotting Positions to
Plot the Nonparametric Estimate of F

e The discontinuity and randomness of F(t) make it diffi-
cult to choose a definition for pairs of points (¢, F) to plot.

e With times reported as exact, it is has been traditional to
plot { t; versus F(t;) } at the observed failure times.

General Idea: Plot an estimate of F' at some specified set
of points in time and define plotting positions consisting of
a corresponding estimate of F' at these points in time.
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Criteria for Choosing Plotting Positions

Criteria for choosing plotting positions should depend on the
application or purpose for constructing the probability plot.

Some applications that suggest criteria:

e Checking distributional assumptions.

e Estimation of parameters.

e Display of maximum likelihood results with data.



Plotting Positions: Continuous Inspection Data
and Multiple Censoring

F(¢t) is a step function until the last reported failure time,
but the step increases may be different than 1/n.

Plotting Positions: {¢y versus p;} with

1~ _
pi=S{F [ta)y+ 8] + Flt — A}

Justification: This is consistent with the definition for single
censoring.



Proportion Failing

Nonparametric Estimate of F'(t) for the Shock
Absorbers. Simultaneous Approximate 95%
Confidence Bands for F'(t)
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Plotting Positions: Continuous Inspection Data and
Single Censoring

Let taa) t2): - - be the ordered failure times. When there is
not ties, F'(t) is a step function increasing by an amount 1/n
until the last reported failure time.

: " : —.5
Plotting Positions: {ti versus = }
e Justification:

. 1, _
Z n5 = {Fltw + A+ Flig - Al

E [ty ~ F (Z_ns)

where A is positive and small.

e When the model fits well, the ML line approximately goes
through the points.

e Need to adjust these plotting positions when there are ties.

6-18



Weibull Probability Plot of the Shock Absorber Data.
Also Shown are Simultaneous Approximate 95%
Confidence Bands for F'(t)

Log Kilometers

.98 —

MW oo N ©
|
([ ]

i
x

.05 e

02 4
01

Proportion Failing
Standard quantile

005 4
003

.001 -

.0005 -

[ T T T T ‘ T T T T ‘ T T T T ‘ T T T T ‘ T T T T
5000 10000 15000 20000 25000

Kilometers



Lognormal Probability Plot of the Shock Absorber
Data. Also Shown are Simultaneous Approximate 95%
Confidence Bands for F'(t)
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Proportion Failing
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Plot of Nonparametric Estimate of F'(¢t) for the Alloy
T7987 Fatigue Life and Simultaneous Approximate
95% Confidence Bands for F(t)
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Six-Distribution Probability Plots
Alloy T7987 Fatigue Life
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Weibull Probability Plot for the Alloy T7987 Fatigue
Life and Simultaneous Approximate 95% Confidence
Bands for F(t)
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Lognormal Probability Plot for the Alloy T 7987
Fatigue Life and Simultaneous Approximate 95%
Confidence Bands for F'(t)
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Exponential Distribution Probability Plot of the
Heat-Exchanger Tube Crack Data and Simultaneous
Approximate 95% Confidence Bands for F'(t)
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Plotting Positions: Interval Censored Inspection Data
Let (tg,t1],..., (t,,—1,tm] be the inspection times.

The upper endpoints of the inspection intervalst;,2 = 1,2, ...,
are convenient plotting times.

Plotting Positions: {t¢; versus p; }, with

p; = F(t;)
When there are no censored observations beyond t,,,
F(tm) = 1 and this point cannot be plotted on probability

paper.

Justification: with no losses, from standard binomial theory,

E[F(t:)] = F(t).

27
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Biomedical Examples

Here we show some probability plots for the IUD data

28



Nonparametric Estimate for IUD Data
(Weibull probability plot)

Percent

5 10 | 100
We ek s

29



Percent

Nonparametric Estimate for IUD Data
(Lognormal Probability Plot)
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Probability Plots with Specified Shape Parameters

The probability plotting techniques can be extended to con-
struct probability plots for:

Distributions that are not members of the location-scale
family.

e [0 help identify, graphically, the need for non-zero threshold
parameter.

e Estimate graphically a shape parameter.
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Pdf for three-parameter lognormal distributions
for =0 and ¢ = .5 with v = 1,2,3
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Distributions with a Threshold Parameter

e [ he lognormal, Weibull, gamma, and other similar distri-
butions can be generalized by the addition of a threshold
parameter, v, to shift the beginning of the distribution away
from O.

e [ hese distributions are particularly useful for fitting skewed
distributions that are shifted far to the right of O.

e For example, the cdf and quantiles of the 3-parameter log-
normal distribution can be expressed as

p = F(t,p,o0,7) = Pnor

log(t — —
gt — ) u], £ n
(o)



Linearizing the 3-Parameter Gamma CDF

CDF: p=F(t0,Kr~) =] (t—T’W;) t> .

Quantiles : t, =~ + I‘I_l(p; k)0.
where M(z; k) = [§ 2" le™%dz/T (k) and (k) = [§° z" le %dx.
Conclusion:

{ tp versus I‘I_l(p; k) } will plot as a straight line.

The probability axis depends on specification of the shape
parameter k.

~ is the intercept on the time axis (because I‘I_l(p; k) =0
when p = 0). The slope of the cdf line is equal to 1/6.

Note:

Changing 6 changes the slope of the line and changing ~
changes the position of the line.



Gamma Probability Plot with « = .8,1.2,2,5 for the
Alloy T7987 Fatigue Life with Simultaneous
Approximate 95% Confidence Bands for F'(t)
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Linearizing the 3-Parameter Weibull CDF Using Linear
Time AXis and Specified Shape Parameter

CDF: p= F(t, p,0) = Psev [log(t;w—“] , 1>7.

Quantiles : t, = v + n[—log(1 — p)]1/”,
where ®sey(z) = 1 — exp[—exp(z)], n =exp(u), 8=1/0.

Conclusion:
{ tp versus [—log(1 —p)]1/P } will plot as a straight line.

e [ he probability axis for this linear-time-axis Weibull proba-
bility plot requires specification of the shape parameter .

e v is the intercept on the time axis. The slope of the cdf
line is equal to 1/7.

e [ he plot allows graphical estimation the threshold param-
eter ~.
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Linear-Scale Weibull Plot with 3 = 1.4 for the Alloy
T7987 Fatigue Life with Simultaneous Approximate
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Linearizing the Generalized Gamma CDF

CDF: p=F(t 0,8,k =TI [(5)5 ; K;] .

Quantiles: t, =16 [I‘I_l(p; /4;)]1/6.
Then log(tp) = log(8) + Iog[l‘I_l(p; k)] %
Conclusion:

{ log(tp) versus Iog[l’I_l(p; k)] } will plot as a straight line.

The scale parameter 6 is the intercept on the time scale, cor-
responding to the time where the cdf crosses the horizontal
line at |Og[|_I_1(p;/<;)] = 0.

The slope of the line on the graph with time on the horizontal
axis is (.

Note: The probability scale for the GENG probability plot

requires a given value of the shape parameter k. . as



GENG Probability Plots of the Ball Bearing Fatigue
Data with Specified k== .1, 1, 4, and 20
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Random Normal Variates Plotted on Normal
Probability Plots with Sample Sizes of n=10, 20, and
40. Five Replications of Each Probability Plot
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Random EXxponential Variates Plotted on Normal
Probability Plots with Sample Sizes of n=10, 20, and
40. Five Replications of Each Probability Plot
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Notes on the Application of Probability Plotting

e Using simulation to help interpret probability plots

» Try different assumed distributions and compare the re-
sults.

» Assess linearity; allowing for more variability in the tails.

* Use simultaneous nonparametric confidence bands.

x Use simulation or bootstrap to calibrate.
e Possible reason for a bend in a probability plot

» Sharp bend or change in slope generally indicates an
abrupt change in a failure process.
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Bleed System Failure Data
(Abernethy, Breneman, Medlin, and Reinman 1983)

Failure and running times for 2256 bleed systems.

The Weibull probability plot suggest changes in the failure
distribution after 600 hours. The data shows that 9 of the
19 failures had occurred at Base D.

Separate analyses of the Base D data and the data from
the other bases indicated different failure distributions.

The large slope (3 ~ 5) for Base D indicated strong wearout.

The relatively small slope for the other bases (8 =~ .85)
suggested infant mortality or accidental failures.

The problem at base D was caused by salt air. A change in
maintenance procedures there solved the main part of the
reliability problem with the bleed systems.



Weibull Probability Plot of the V7 Transmitter Tube
Failure Data with Simultaneous Approximate 95%
Confidence Bands for F'(t).
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Lognormal Probability Plot of the V7 Transmitter
Tube Failure Data with Simultaneous Approximate
95% Confidence Bands for F'(t).
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Other Topics in Chapter 6

Probability plotting for arbitrarily censored data.
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