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Chapter 7

Parametric Likelihood Fitting Concepts:

Exponential Distribution

Objectives

• Show how to compute a likelihood for a parametric model

using discrete data.

• Show how to compute a likelihood for samples containing

right censored observations and left censored observations.

• Use a parametric likelihood as a tool for data analysis and

inference.

• Illustrate the use of likelihood and normal-approximation

methods of computing confidence intervals for model pa-

rameters and other quantities of interest.

• Explain the appropriate use of the density approximation for

observations reported as exact failures.

7 - 2



Parametric Likelihood

Probability of the Data

• Using the model Pr(T ≤ t) = F(t; θ) for continuous T ,

the likelihood (probability) for a single observation in the

interval (ti−1, ti] is

Li(θ; datai) = Pr(ti−1 < T ≤ ti) = F(ti;θ) − F(ti−1;θ).

Can be generalized to allow for explanatory variables, mul-

tiple sources of variability, and other model features.

• The total likelihood is the joint probability of the data. As-

suming n independent observations

L(θ) = L(θ;DATA) = C
n∏

i=1

Li(θ; datai).

• Want to estimate θ and g(θ). We will find θ to make L(θ)

large.
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Example: Time Between α-Particle Emissions of

Americium-241 (Berkson 1966)

Berkson (1966) investigates the randomness of α-particle

emissions of Americium-241, which has a half-life of about

458 years.

Data: Interarrival times (units: 1/5000 seconds).

• n =10,220 observations.

• Data binned into intervals from 0 to 4000 time

units. Interval sizes ranging from 25 to 100 units. Ad-

ditional interval for observed times exceeding 4,000 time

units.

• Smaller samples analyzed here to illustrate sample size ef-

fect. We start the analysis with n =200.
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Data for α-Particle Emissions of Americium-241

Interarrival Times
Time Frequency of Occurrence

Interval Endpoint All Times Random Sample of Times
lower upper n = 10220 n = 200
tj−1 tj dj

0 100 1609 41
100 300 2424 44
300 500 1770 24
500 700 1306 32
700 1000 1213 29

1000 2000 1528 21
2000 4000 354 9
4000 ∞ 16 0

10220 200
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Histogram of the n = 200 Sample of α-Particle

Interarrival Time Data
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Exponential Probability Plot of the n = 200 Sample of

α-Particle Interarrival Time Data. The Plot also

Shows Approximate 95% Simultaneous Nonparametric

Confidence Bands.
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Exponential Distribution and Likelihood

for Interval Data

Data: α-particle emissions of americium-241

• The exponential distribution is

F(t; θ) = 1 − exp
(
− t

θ

)
, t > 0.

θ = E(T), the mean time between arrivals.

• The interval-data likelihood has the form

L(θ) =
n∏

i=1

Li(θ) =
8∏

j=1

[
F(tj; θ) − F(tj−1; θ)

]dj

=
8∏

j=1

[
exp

(
− tj−1

θ

)
− exp

(
− tj

θ

)]dj

where dj is the number of interarrival times in the jth in-

terval (i.e., times between tj−1 and tj).
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R(θ) = L(θ)/L(θ̂) for the n = 200 α-Particle Interarrival

Time Data. Vertical Lines Give an Approximate 95%

Likelihood-Based Confidence Interval for θ
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Exponential Probability Plot for the n = 200 Sample of

α-Particle Interarrival Time Data. The Plot Also

Shows Parametric Exponential ML Estimate and 95%

Confidence Intervals for F(t).
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Example. α-Particle Pseudo Data Constructed

with Constant Proportion within Each Bin

Interarrival Times
Time Frequency of Occurrence

Interval Endpoint Samples of Times
lower upper n=20000 n=2000 n=200 n=20
tj−1 tj dj

0 100 3000 300 30 3
100 300 5000 500 50 5
300 500 3000 300 30 3
500 700 3000 300 30 3
700 1000 2000 200 20 2

1000 2000 3000 300 30 3
2000 4000 1000 100 10 1
4000 ∞ 0000 000 0 0

20000 2000 200 20
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R(θ) = L(θ)/L(θ̂) for the n = 20, 200, and 2000 Pseudo

Data. Vertical Lines Give Corresponding Approximate

95% Likelihood-Based Confidence Intervals
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Example. α-Particle Random Samples

Interarrival Times
Time Frequency of Occurrence

Interval Endpoint All Times Random Samples of Times
lower upper n = 10220 n = 2000 n = 200 n=20
tj−1 tj dj

0 100 1609 292 41 3
100 300 2424 494 44 7
300 500 1770 332 24 4
500 700 1306 236 32 1
700 1000 1213 261 29 3

1000 2000 1528 308 21 2
2000 4000 354 73 9 0
4000 ∞ 16 4 0 0

10220 2000 200 20
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R(θ) = L(θ)/L(θ̂) for the n = 20, 200, and 2000 Samples

from the α-Particle Interarrival Time Data. Vertical

Lines Give Corresponding Approximate 95%

Likelihood-Based Confidence Intervals.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

 200  400  600  800 1000

R
el

at
iv

e 
Li

ke
lih

oo
d

θ

C
on

fid
en

ce
 L

ev
el

      0.99

      0.95

      0.90

      0.80

      0.70

      0.60

      0.50

estimate of mean using all n=10220 times ->

n=20

n=200

n=2000

7 - 14



Likelihood as a Tool for Modeling/Inference

What can we do with the (log) likelihood?

L(θ) = log[L(θ)] =
n∑

i=1

Li(θ).

• Study the surface.

• Maximize with respect to θ (ML point estimates).

• Look at curvature at maximum (gives estimate of Fisher

information and asymptotic variance).

• Observe effect of perturbations in data and model on like-

lihood (sensitivity, influence analysis).
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Likelihood as a Tool for Modeling/Inference

(Continued)

• Regions of high likelihood are credible; regions of low likeli-

hood are not credible (suggests confidence regions for pa-

rameters).

• If the length of θ is > 1 or 2 and interest centers on subset

of θ (need to get rid of nuisance parameters), look at pro-

files

(suggests confidence regions/intervals for parameter sub-

sets).

• Calibrate confidence regions/intervals with χ2 or simulation

(or parametric bootstrap).

• Use reparameterization to study functions of θ.
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Relative Likelihood for Simulated

Exponential (θ = 5) Samples of Size n = 3
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Relative Likelihood for Simulated

Exponential (θ = 5) Samples of Size n = 1000
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Large-Sample Approximate Theory for Likelihood

Ratios for a Scalar Parameter

• Relative likelihood for θ is

R(θ) =
L(θ)

L(θ̂)
.

• If evaluated at the true θ, then, asymptotically, −2 log[R(θ)]

follows, a chisquare distribution with 1 degree of freedom.

• An approximate 100(1 − α)% likelihood-based confidence

region for θ is the set of all values of θ such that

−2 log[R(θ)] < χ2
(1−α;1)

or, equivalently, the set defined by

R(θ) > exp
[
−χ2

(1−α;1)/2
]
.

• General theory in the Appendix.
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Normal-Approximation Confidence Intervals for θ

• A 100(1−α)% normal-approximation (or Wald) confidence

interval for θ is

[θ˜, θ̃] = θ̂ ± z(1−α/2)ŝeθ̂
.

where ŝe
θ̂
=

√[
−d2L(θ)/dθ2

]−1
is evaluated at θ̂.

• Based on

Z
θ̂
=

θ̂ − θ

ŝe
θ̂

∼̇ NOR(0,1)

• From the definition of NOR(0,1) quantiles

Pr
[
z(α/2) < Z

θ̂
≤ z(1−α/2)

]
≈ 1 − α

implies that

Pr
[
θ̂ − z(1−α/2)ŝeθ̂

< θ ≤ θ̂ + z(1−α/2)ŝeθ̂

]
≈ 1 − α.
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Normal-Approximation Confidence Intervals for θ

(continued)

• A 100(1−α)% normal-approximation (or Wald) confidence

interval for θ is

[θ˜, θ̃] = [θ̂/w, θ̂ × w]

where w = exp[z(1−α/2)ŝeθ̂
/θ̂]. This follows after transform-

ing (by exponentiation) the confidence interval

[log(θ)˜ , ˜log(θ)] = log(θ̂) ± z(1−α/2)ŝelog(θ̂)

which is based on

Z
log(θ̂)

=
log(θ̂) − log(θ)

ŝe
log(θ̂)

∼̇ NOR(0,1)

• Because log(θ̂) is unrestricted in sign, generally Z
log(θ̂)

is

closer to an NOR(0,1) distribution than is Z
θ̂
.

7 - 21



Comparisons for α-Particle Data

All Times Sample of Times
n =10,220 n = 200 n=20

ML Estimate θ̂ 596 572 440

Standard Error ŝe
θ̂

6.1 42.7 101

95% Confidence Intervals
for θ Based on

Likelihood [585, 608] [498, 662] [289, 713]
Z

log(θ̂)
∼̇ NOR(0,1) [585, 608] [496, 660] [281, 690]

Z
θ̂
∼̇ NOR(0,1) [585, 608] [491, 654] [242, 638]

ML Estimate λ̂ × 105 168 175 227

Standard Error ŝe
λ̂×105

1.7 13 52

95% Confidence Intervals
for λ × 105 Based on

Likelihood [164, 171] [151, 201] [140, 346]
Z

log(̂λ)
∼̇ NOR(0,1) [164, 171] [152, 202] [145, 356]

Z
λ̂
∼̇ NOR(0,1) [164, 171] [149, 200] [125, 329]
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Confidence Intervals for Functions of θ

• For one-parameter distributions, confidence intervals for

θ can be translated directly into confidence intervals for

monotone functions of θ.

• The arrival rate λ = 1/θ is a decreasing function of θ.

[λ˜, λ̃] = [1/θ̃, 1/θ˜] = [.00151, .00201].

• F(t; θ) is a decreasing function of θ

[F˜ (te), F̃(te)] = [F(te; θ̃), F(te; θ˜)].
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Density Approximation for Exact Observations

• If ti−1 = ti − ∆i, ∆i > 0, and the correct likelihood

F(ti;θ) − F(ti−1;θ) = F(ti; θ) − F(ti − ∆i; θ)

can be approximated with the density f(t) as

[F(ti; θ) − F(ti − ∆i; θ)] =
∫ ti

(ti−∆i)
f(t)d t ≈ f(ti;θ)∆i

then the density approximation for exact observations

Li(θ; datai) = f(ti; θ)

may be appropriate.

• For most common models, the density approximation is ad-

equate for small ∆i.

• There are, however, situations where the approximation

breaks down as ∆i → 0.
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ML Estimates for the Exponential Distribution Mean

Based on the Density Approximation

• With r exact failures and n − r right-censored observations

the ML estimate of θ is

θ̂ =
TTT

r
=

∑n
i=1 ti
r

TTT =
∑n

i=1 ti, total time in test, is the sum of the failure

times plus the censoring time of the units that are censored.

• Using the observed curvature in the likelihood:

ŝe
θ̂
=

√√√√√[
−d2L(θ)

dθ2

]−1
∣∣∣∣∣∣
θ̂

=

√
θ̂2

r
=

θ̂√
r
.

• If the data are complete or failure censored, 2TTT/θ ∼ χ2
2r.

Then an exact 100(1 − α)% confidence interval for θ is

[θ˜, θ̃] =

 2(TTT)

χ2
(1−α/2;2r)

,
2(TTT)

χ2
(α/2;2r)

 .
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Confidence Interval for the Mean Life of a New

Insulating Material

• A life test for a new insulating material used 25 specimens

which were tested simultaneously at a high voltage of 30 kV.

• The test was run until 15 of the specimens failed.

• The 15 failure times (hours) were recorded as:

1.08, 12.20, 17.80, 19.10, 26.00, 27.90, 28.20, 32.20,

35.90, 43.50, 44.00, 45.20, 45.70, 46.30, 47.80

Then TTT = 1.08+ · · ·+47.80+10×47.80 = 950.88hours.

• The ML estimate of θ and a 95% confidence interval are:

θ̂ = 950.88/15 = 63.392hours[
θ˜, θ̃

]
=

2(950.88)

χ2
(.975;30)

,
2(950.88)

χ2
(.025;30)

 =
[
1901.76

46.98
,
1901.76

16.79

]
= [40.48, 113.26].
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Exponential Analysis With Zero Failures

• ML estimate for the Exponential distribution mean θ cannot

be computed unless the available data contains one or more

failures.

• For a sample of n units with running times t1, . . . , tn and an

assumed exponential distribution, a conservative 100(1 −
α)% lower confidence bound for θ is

θ˜ =
2(TTT)

χ2
(1−α;2)

=
2(TTT)

−2 log(α)
=

TTT

− log(α)
.

• The lower bound θ˜ can be translated into an lower confi-

dence bound for functions like tp for specified p or a upper

confidence bound for F(te) for a specified te.

• This bound is based on the fact that under the exponen-

tial failure-time distribution, with immediate replacement of

failed units, the number of failures observed in a life test

with a fixed total time on test has a Poisson distribution.
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Analysis of the Diesel Generator Fan Data
(Assuming Removal After 200 Hours of Service)

• Here we do the analysis of the fan data after 200 hours of
testing when all the fans were still running.

• Thus TTT=14,000 hours. A conservative 95% lower confi-
dence bound on θ is

θ˜ =
2(TTT)

χ2
(.95;2)

=
28000

5.991
= 4674.

• Using the entire data set, θ̂ = 28,701 and a likelihood-
based approximate 95% lower confidence bound is θ˜ =

18,485 hours.

This shows how little information comes from a short test
with zero or few failures.

• A conservative 95% upper confidence bound on F(10000; θ)
is F̃ (10000) = F(10000; θ˜) = 1 − exp(−10000/4674) =

.882.
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Other Topics in Chapter 7

• Inferences when there are no failures.
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