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Sequential Karhunen—Loeve Basis Extraction and its
Application to Images

Avraham Levy and Michael Lindenbaum

Abstract—The Karhunen—-Loeve (KL) Transfornis an optimal  Rather, it takes the images one by one (or in small groups—a
method for approximating a set of vectors or images, which was possibility which has computational advantages), and updates
used in image processing and computer vision for several tasks 5, internal representation of the required KL basis.

such as face and object recognition. Its computational demands h .
and its batch calculation nature have limited its application. The algorithm, namedSequential Karhunen-Loeve al-

Here we present a new, sequential algorithm for calculating the 90rithm (SKL), essentially makes a sequence of Singular
KL basis, which is faster in typical applications and is especially Value Decomposition (SVD) updating steps, leading to a low
advantageous for image sequences: the KL basis calculation isdimensional KL-basis of an image sequence. We optimize the
done with much lower delay and allows for dynamic updating of number of images that should be added at every updating step,
image databases. Systematic tests of the implemented algorithm 4 qerive the expected performance. In contrast to previous
show that these advantages are indeed obtained with the same - .
accuracy available from batch KL algorithms. updatlng methods, we show that. both the time and memory
required are lower that those required by the standard batch al-
gorithm, implying that the proposed algorithm is advantageous
even when all the data is available before that algorithm starts.
See Section Il for the detailed algorithm.

Index Terms—Karhunen-Loeve Transform, sequential algo-
rithms, singular value decomposition.

I. INTRODUCTION

HE Karhunen-Loeve (KL) transforfi] is a preferred A- Main Advantages of this New Algorithm
method for approximating a set of vectors or images by al1) Reduced complexity and memory requirementse pro-

low dimensional subspace. The method provides the optinpalsed algorithm require®(M N K) operations and(M K)
subspace, spanned by ke basis which minimizes the MSE memory units in comparison t&(M N?) complexity and
between the given set of vectors and their projections on %M N) units of memory required by batch algorithms.
subspace. The KL transform has found many applications in2) On-line features:Dealing with a sequence of images, the
traditional fields such as statistics [2] and communication [3proposed algorithm may process the images as they arrive rather
In computer vision, it was used for a variety of tasks suahen wait for the end of the sequence.
as face recognition [4], [5], object recognition [6], motion 3) Database updateThe proposed, sequential, algorithm
estimation [7], [8], visual learning [9], and object tracking [10]can easily handle continuous updating of the current eigenspace

Typical computer vision applications calculate the KL basisy new sets of images, without any requirement to keep the old
of hundreds or thousands images, each of 3izé= Width x  images as well.
Heighy in the range of 10 Kto 1 M. The basis is partial and typi- We found afew related works: Methods for SVD update, based
cally includes only a few dozens vectors or less. Calculating tbe efficiently reducing aarrowhead matrixo tridiagonal form
KL basis for N images of size\/ requires roughhyO(MN?)  were proposedin[13], [14] butthey do notlead to an efficient KL
operations. In many applications, this large computational d&igorithm. A correlation-matrix-based method for updating the
mands may be prohibitive. In fact, for such applications, eve(L basis was suggested in the context of shape/motion recovery
the O(M N') memory requirement may exceed the resources [ab]. It requires however, that the correlation matrix rank is fixed
common computers. Several attempts were already made toared small (e.g., 3), and that the space dimension is low relative to
duce the computational effort by using efficient image codingie sequence length. Both demands are essential for efficiency
[11], [12]. but fail for images. The proposed SVD update stage shares some

Here, we suggest another approach to reducing the compyganciples with the method suggested in the context of retrieving
tional effort, relying on the relatively small dimension (denotetéxtual materials from scientific databases [16].
K) of the partial KL basis that is usually needed. Working in the
context of image sets, whefd >> N, we propose a sequential Il. BATCH, SVD BASED, KL ALGORITHMS

algorithm that does not require to store the entire set of input ) ) ) ) ) ]
images before proceeding to the calculation of the KL basis. The discrete KL low dimension approximation problem is de-
fined as follows. Given a data setdfvectors (images)A; )Y, ,
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or using SVD: LetA be the data matrix whose columns are the ~ whereD is a diagona(L + P) x (L + P) matrix, l]’ff is
input vectors4, and compute the singular value decomposition — anM x (L + P) column-orthonormal matrix andV” is
A = UDVT, The KL basis is spanned by the K most signifi- an(L + P) x (L + P) orthonormal matrix.

cant left singular vectors (the first K columns of U). Thus, calculating the SVD d8* requires to calculate”, v,
The following variation on the SVD algorithm, denotedp’ and the SVD of the small matrik’. This update process is
R-SVD [17], is efficient whemM, >> N. the core of the following sequential algorithm.

1) Compute the QR decompositioh = QR where@ is
column-orthonormal x N matrix andR is N x N B, SKL Algorithm
upper triangular matrix4(d N2 operations by the modi-
fied Gram-Schmidt algorithm [17]).

2) Compute the SVD of?, R = U’DVT by any standard
SVD algorithm (O(N?) operations).

3) Calculatel/ = QU’ (2M N? operations).

A=UDVT is the SVD ofA and the total computational com-
plexity of the R-SVD algorithm i$A N2 + O(IN3).

The Sequential Karhunen-Loeve (SKL) algorithm is based on
partitioning the data into blocks of column vectors (images). It
starts by calculating the SVD of the first block. Then, at every
step, another block of columns is added and the updated SVD
is calculated using the “partitioned R-SVD” algorithm (Sec-
tion IlI-A). Being interested only in a low dimensional approx-
imation to the KL basis, the algorithm both deletes basis vec-
tors (columns in the updatéd matrices), corresponding to very
small singular values and sets a limit on their number.

1) Input and parameters:

Ourapproachtothe analysis of large image sets (or sequences} M x N data matrix.
is to use a sequential iterative algorithm which avoids both the p Number of columns in each block.
storage of allthe image dataand its simultaneous processing. Thg  Mmaximal number of columns for thE; matrices.
algorithmtakesthe imagesin small “blocks” and updates an SVD6
internal representation of the required KL basis.

Based on our assumption thaf > NV, the proposed algo-

I1l. SEQUENTIAL KL/SVD ALGORITHM

Lower bound for the singular values that are retained.
ff Optional “forgetting factor” coefficient, which can re-

rithm is based on the R-SVD algorithm. The key point in the ggfoivthe contribution of previous blocks. See remark
R-SVD algorithm, which makes it useful as a basis for the se- e )

quential approach, is the fact that its complexity is due to the2) Initialization—The Oth stageForm the matrixA, from

QR decomposition 1) and the update phase 3) while the conth€ first&o = & columns of the matrixi. Compute the R-SVD

bution of the actual SVD computation 2) is negligible. Ao = 'U0D0V0T and keef/o and Do.
3) ith stage: While some data oft have not been processed

A. Partitioning the R-SVD Algorithm yet, do the followmg. .
a) Read the matri¥;, containing the nex columns ofA,

The core of the proposed SKL algorithm is based on parti- ~ and append it to the matrikf - U;_, D;_,. Calculate the
tioning the SVD of a large matrix into two steps. Recall that the QR decompositiofif f - U;_yD;_1|A;) = Ul D} | of

SVD of aM x L matrix B represents it as a product of three ma- the combined matrix, wherg! | is anM x (K;_, + P)
trices,B = UDVT, wherelU is theM x L columns orthogonal column orthonormal matrix and?, | is upper diagonal
matrix of the (left) singular vectord) is L x L diagonal ma- of size(K;_, + P) x (K;_1 + P) (in AMP(K + P)
trix whose diagonal elements are the singular values aind operations).
Vis anL x L orthonormal matrix whose columns are the right 1) Compute the SVD ofD/_, as the productD/_, =
singular vectors. . o U;_1D;_1 V™ (in negligibleO(K + P)? operations).
Let B = UDVT be the SVD of a matrix3. Efficiently cal- c) Letol,02,--- 0 be theK largest elements of the di-
culating the SVD of a larger matriB* = (B|E), whereF is agonal matrixD,_; (the singular values). Delete the rest
anM x P matrix consisting ofP additional columns (images) of the singular values as well as the energetically neg-
can be done as follows. ligible singular values?, j; < K, satisfying(c?)? <
« Perform an orthonormalization process on the ma- e XX  (o¥)2. Let D; be the diagonal matrix whose ele-
trix (U]E), yielding the columns orthonormal matrix ments are the remainingy,; singular values.
U = (U|E). d) Remove froml;_; all the columns that corresponds to
. LetV’ = S’I_Ig be a(L + P) x (L+ P) matrix, where singular valugs that were removed above, qnd?l,e;l
Ip is the P dimensional identity matrix. be the resulting matrix. Calculaté; = Uj_,U;—1 (in
e let D) = UTBV' = (%—;) (B|E)( Bffp) 2M K (K + P) operations).

UTBY | UTE 4) Output: The matrixU; at the final stage, after all columns
<—|> Note that UYBV = D and of 4 has been processed.

ETBV | ETE
ETBV = 0. Note also that thé® rightmost columns of ~ 5) Remarks:
D'’ are the new vectors, added i# represented in the 1) Note that at stage a), the matid%_, D, ; is already
orthonormal basis spanned by the column#/af column orthogonal. Therefore, the QR decomposition
« Calculate the SV’ = UDV?T. Then, the SVD oB* is [17] can be performed on the columns.4f only.
2) In most image processing applications the maximal size,
B* =U/(UDVHYWV'T = (U'U)D(VTV'T) K, of the approximation basis is relatively small and the
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Fig. 1. The first five vectors of the KL basis (eigen-faces) produced by the standard KL algorithm (top) and the corresponding vectors producefddsetie p
SKL. Scale inversion was done for some gray images to make the similarity clearer.

-
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TABLE | IV. SKL ALGORITHM—EXPERIMENTAL RESULTS
SKL TESTS ONEMSEMBLES OF FACES AND

OBJECTSIMAGES. THE SKL-ERROR AND KL-ERROR ARE THEAVERAGE A. Running Time and Convergence Tests
FRACTIONS OF THETEST IMAGE (VECTOR) ENERGY, WHICH ARE NOT !

INCLUDED IN THE CORRESPONDINGSUBSPACES THE ENERGY RATIO IS THE H H
RATIO OF THE IMAGE ENERGY CAPTURED (CONTAINED) IN THE SKL BASIS We Im_p,lemented bOth the proposed SKL algorlthm and
AND THE IMAGE ENERGY CONTAINED IN THE KL BASIS the tradltlonal algo“thms, and found that the eXpeCted
computational gains are indeed achieved. For example, for

Database | Images no. | Basis dim. | SKL-Error | KL-Error | Energy-Ratio N =200.K = 10. P = 7 the running time of the SKL was
ORL 400 40 | 0.013168 | 0.013001 0.999830 0.2 f 7h I’ . ix based lqorithm ti h
ORL 200 20 | 0.0i8815 | 0.018804 0.999988 . 1; of the correlation matrix base KL algorithm time. The
COIL-20 180 10 | 0.125238 | 0.122030 0.996346 running time is indeed optimized by a block siPe~ K/+/2
COIL-20 380 20 | 0.123589 | 0.117479 0.9930%  and we used this value in all experiments (see [18]).

We used synthetic data for verifying the convergence of the
pKL algorithm and for testing its robustness under changing pa-
rameters. The input vectors were taken from a fixed dimensional
(not zero), implying thaf; = K for each stage. subspace and were accompanied by substantial noise. A lower

3) Often, when considering a time sequence of images, W& ) dimensional KL subspace was constructed using the SKL
wish to approximate the more recent images better, S8{9orithm. In all runs the SKL algorithm converges to the op-
ting the optional forgetting factof f to a value smaller timal subspace with very high level of numerical precision. We
than one, enables this option. found that the rate of convergence depends mostly on the energy

4) Theith stage of the algorithm can be described concise§P Petween thifth and the K+ 1)th basis vectors. When this
as follows: Given the basis matriX;_;, the (diagonal) 92P 1S null, thek-dimensional optimal subspace is not unique
singular value matrixD;_; and the i-th batch oP input and the algorithm provides one of the optimal subspaces. The
vectors, denoted;, compute theék’ most significant sin- algorithm converges to the optimal subspace even when very
gular vectors of the matrixl/;_, D;_,|A;). The some- high noise (much more energetic than the weakésh) sub-
what longer stage described at item (3) above has comp#ace component) is present. The presence of the noise reduces
tational advantage in the casé > N, K. thV\f/eI\I/edr t?eflrilatlve energy gap and slows convergence (see [18]

or full details).

approximation is just sufficient for the task. Therefore, i
usually makes sense to gdb a very small positive value

C. Computational Effort Required for the SKL Algorithm B. Tests on Real Imagery

In the worst case, when at every step the number of columnsTeSting the algorithm on real images, for which the true basis

in U; is exactlyk , the complexity of each step is approximatelyS N0t available, we can only compare the results of the SKL
AMP(K + P) + 2M(K + P)K. Neglecting the contribution algorithm with those provided by the standard KL algorithm.
of the initialization step, the total complexity depends on thE @void the problems associated with identical or very close
block sizeP, and isC(P) = 2MN(K? + 3PK + 2P?/P) eigenvalues (see above) we chose to do that by comparing the
(see [18] for details). For fixed/, N, K, the complexityC(p) a@PProximation properties of the two spaces. _

is minimized by a block siz = (X/+/2), which nullify the The tests were carried on ensembles of sub-images taken
derivative C’(P). For this optimal value the total number of T0M @ larger image (see [18]) and on ensembles of images
operations required for finding the partial KL basis using thom the following two faces and objects databases.

SKL algorithm become$4v2 + 6)MNK = 12MNK (in 1) Olivetti and Oracle Research Laboratory (ORL) database
comparison toO(M N?) in traditional algorithms.) The total of faces (400 images). There are ten different images of
space required i8/ (K + P) and is significantly smaller than each of 40 distinct subjects with varying lighting, facial
the M N space usually required. expressions, and facial details (glasses/no glasses).
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2) Columbia Object Image Library (COIL-20) database dadble to decide when the low dimensional KL basis has reached
objects (1440 images). There are 20 objects each with @3atisfactory level of energy approximation content.
images taken at different positions.

Table | summarizes typical results. The learning sets were the REFERENCES
whole set of face images from the ORL database and two subfl] K. Fukunaga,Introduction to Statistical Pattern RecognitionNew
sets of the COIL-20 objects database—corresponding to 9 an ) $°r§:rﬁ%a‘l?m}?r}ég§2} es—Data Analysis and Theorpew York
19 positions for each object (180 and 380 images). The test set H'Olden_gay: 1081, y ’
consisted of one instance for each of the different subjects fronT3] H. L. Van TreesDetection, Estimation, and Modulation TheoryNew
the databases. That is, 40 images of faces from the ORL data-  York: Wiley, 1965. _ ,
base and 20 images of objects from COIL-20. In all runs the[4] ';‘Ctiﬁ‘;‘gt?gnagfh’:j'r'ng'r:tgce"s%‘{'vggp_egjf'K"He’rf;sgfr: fﬁg_th; ggf”"’
block size of the SKL algorithm was approximately the basis  519-524, 1987.
dimension divided by/2. Apparently, the SKL algorithm and  [5] hc/lvggfg and ?éepéglenltgi;f' “Face recognition using eigenfaces,”
the KL algorithm pra(_:tlcally output the same subspace. Obser_v%] H. Mura;'epapﬁd S. K. Néyar, “Visual learning and recognition of 3-d ob-
also that the KL basis calculated by the SKL and the KL basis™ "~ jects from appearanceit. J. Comput. Visvol. 14, pp. 524, Jan. 1995.
_calculated by the KL_ algor?thm (Fig. 1) are visually very sim—_ [7] I\T/Ie-CLri?]?oenanaeucrﬂ, ;I?aire%lréoggifginl% ;rsom grey leve images,” CS dept.,
llar .Up to gray le.'vel inversion, at Iea_St for the more energethIIS] G. D. H_a’ger and P.F_)N. Belhum’eur, “Real time tracking of image re-
basis vectors. Visually observable differences appear only for ~ gions with changes in geometry and illumination,"@VPR'96 1996,

the much less energetic vectors such as the 40th vector. pp. 403-410.
[9] B.Moghaddam and A. Pentland, “Probabilistic visual learning for object
representation,/EEE Trans. Pattern Anal. Machine Intelizol. 19, pp.
696-710, July 1997.
V. DiscussioN ANDCONCLUSIONS [10] M. J. Black and A. D. Jepson, “Eigentracking: Robust matching and
tracking of articulated objects using a view-based representafiat,”
The results of the experiments described in Section IV con- . j gorgput-b\ﬁs.volh%, c?lii 6’3—84, Jqu.) 15:_9'8. _ e d ,

- . . B. Roseborougn an . Murase, artial elgenvalue decomposition

firms thaf{ the SK_L algomhm performs bef[ter than the Standarél for large image sets using run-length encodirRattern Recognit.vol.

KL algorithm while preserving a compatible level of approx- 28, no. 3, pp. 421-430, 1995.

imation accuracy. We recall that the SKL algorithm required12] H. Murase and M. Lindenbaum, “Spatial temporal adaptive method for

; ; ; : partial eigenstructure decomposition of large image matricEE
O(MK) space and runs i®(M NK) time, in comparison to Trans. Image Processingol. 4, no. 5, pp. 620629, 1995,

.the standard |_<|— algorithm that reqUir%M]_V) space andruns [13] H. zha, “A two way chasing scheme for reducing a symmetric arrow-
in O(M N?) time. The results presented in the tables of Sec-  head matrix to tridiagonal form,J. Numer. Lin. Alg. Applicatvol. 1,

i indi i 0 no. 1, pp. 49-57, 1992.

tion I.V indicate thatthe SKL algon(t)hm captures more than 99 A)ﬂm] S. Van Huffel and H. Park, “Parallel tri- and bi-diagonalization of border
and in most cases C!Ose -tO 99.99%, of the energy content of the " giagonal matrices,Parallel Comput, vol. 20, pp. 1107-1128, 1994.
standard KL approximation. [15] T. Kanade and T. Morita, “A sequential factorization method for recov-

The proposed SKL algorithm does not transform the data to ~ €ing shape and motion from image streamsARPA'94 vol. II, 1994,
pp. 1177-1187.

Zero mean inpyt. From an apprloxima.tion standpoint thi§ is not fl6] M. W. Berry, S. T. Dumais, and G. W. Obrien, “Using linear algebra for
problem since increasing the dimension of the SKL basis by one intelligent information retrieval, SIAM Rev.vol. 37, no. 4, pp. 573-595,

to K +1 will yield better accuracy then the equivaldiitdimen- 1995. . . .

sional zero mean approximation (which, for non zero mean datél,n G. Golub and C. Van LoarMatrix Computations Baltimore, MD:
Johns Hopkins Univ. Press, 1992.

requires the calculated average as a “hiddgs"+ 1)th com-  [18] A. Levy, “Optimal Low Diemensional Approximation—Theoretical

ponent). A similar SKL algorithm, which transforms the data to and Computational Aspects,” Ph.D. dissertation, Technion, Haifa,

zero mean input is obtained by subtracting the empirical mean, 'Sl 199

accumulated up to this point, from the input before it enters the

update procedure.

The fact that the basis created by the SKL algorithm, is su
a good approximation for the true KL basis, in spite of the cu
tailing of the temporary basis at each computational stage is |
self evident. In [18], we explained this fortunate behavior usir —
a probabilistic model for the data, and have shown that, d 4
to coherency, even true subspace components which are rrﬂ ' h
weaker than the noise, can beat it and claim their part in the fe-
sulting space.

In conclusion we can say that the SKL algorithm ca be utilized
for computing an optimal low dimensional basis for problems a
sociated with very large data set and for problems with intrins
sequential nature. Its reduced computation and memory requ
ments and its update capability make it superior to the stand;
KL algorithmin many applications. We note that fartherimprove
ment to the SKL algorithm performance can be achieved if it c;
be terminated at some stage by utilizing a stopping rule. S
a stopping rule, based on some convergence criteria, shoul
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