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Sequential Karhunen–Loeve Basis Extraction and its
Application to Images

Avraham Levy and Michael Lindenbaum

Abstract—The Karhunen–Loeve (KL) Transformis an optimal
method for approximating a set of vectors or images, which was
used in image processing and computer vision for several tasks
such as face and object recognition. Its computational demands
and its batch calculation nature have limited its application.
Here we present a new, sequential algorithm for calculating the
KL basis, which is faster in typical applications and is especially
advantageous for image sequences: the KL basis calculation is
done with much lower delay and allows for dynamic updating of
image databases. Systematic tests of the implemented algorithm
show that these advantages are indeed obtained with the same
accuracy available from batch KL algorithms.

Index Terms—Karhunen–Loeve Transform, sequential algo-
rithms, singular value decomposition.

I. INTRODUCTION

T HE Karhunen–Loeve (KL) transform[1] is a preferred
method for approximating a set of vectors or images by a

low dimensional subspace. The method provides the optimal
subspace, spanned by theKL basis, which minimizes the MSE
between the given set of vectors and their projections on the
subspace. The KL transform has found many applications in
traditional fields such as statistics [2] and communication [3].
In computer vision, it was used for a variety of tasks such
as face recognition [4], [5], object recognition [6], motion
estimation [7], [8], visual learning [9], and object tracking [10].

Typical computer vision applications calculate the KL basis
of hundreds or thousands images, each of size( Width
Height) in the range of 10 K to 1 M. The basis is partial and typi-
cally includes only a few dozens vectors or less. Calculating the
KL basis for images of size requires roughly
operations. In many applications, this large computational de-
mands may be prohibitive. In fact, for such applications, even
the memory requirement may exceed the resources of
common computers. Several attempts were already made to re-
duce the computational effort by using efficient image coding
[11], [12].

Here, we suggest another approach to reducing the computa-
tional effort, relying on the relatively small dimension (denoted

) of the partial KL basis that is usually needed. Working in the
context of image sets, where , we propose a sequential
algorithm that does not require to store the entire set of input
images before proceeding to the calculation of the KL basis.
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Rather, it takes the images one by one (or in small groups—a
possibility which has computational advantages), and updates
an internal representation of the required KL basis.

The algorithm, namedSequential Karhunen–Loeve al-
gorithm (SKL), essentially makes a sequence of Singular
Value Decomposition (SVD) updating steps, leading to a low
dimensional KL-basis of an image sequence. We optimize the
number of images that should be added at every updating step,
and derive the expected performance. In contrast to previous
updating methods, we show that both the time and memory
required are lower that those required by the standard batch al-
gorithm, implying that the proposed algorithm is advantageous
even when all the data is available before that algorithm starts.
See Section III for the detailed algorithm.

A. Main Advantages of this New Algorithm

1) Reduced complexity and memory requirements:The pro-
posed algorithm requires operations and
memory units in comparison to complexity and

units of memory required by batch algorithms.
2) On-line features:Dealing with a sequence of images, the

proposed algorithm may process the images as they arrive rather
then wait for the end of the sequence.

3) Database update:The proposed, sequential, algorithm
can easily handle continuous updating of the current eigenspace
by new sets of images, without any requirement to keep the old
images as well.

We founda fewrelatedworks:Methods forSVDupdate,based
on efficiently reducing anarrowhead matrixto tridiagonal form
were proposed in [13], [14] but they do not lead to an efficient KL
algorithm. A correlation-matrix-based method for updating the
KL basis was suggested in the context of shape/motion recovery
[15]. It requires however, that the correlation matrix rank is fixed
and small (e.g., 3), and that the space dimension is low relative to
the sequence length. Both demands are essential for efficiency
but fail for images. The proposed SVD update stage shares some
principles with the method suggested in the context of retrieving
textual materials from scientific databases [16].

II. BATCH, SVD BASED, KL A LGORITHMS

The discrete KL low dimension approximation problem is de-
fined as follows. Given a data set ofvectors (images) ,
find a set of orthogonal unit vectors
such that the projections of the data on the subspace spanned by
the vectors approximate the input vectors best. The meaning
of “best approximation” is that the mean square error (over all
input vectors) is minimal. The KL basis may be calculated ei-
ther as the eigenvectors of the input vectors correlation matrix
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or using SVD: Let be the data matrix whose columns are the
input vectors and compute the singular value decomposition

. The KL basis is spanned by the K most signifi-
cant left singular vectors (the first K columns of U).

The following variation on the SVD algorithm, denoted
R-SVD [17], is efficient when .

1) Compute the QR decomposition where is
column-orthonormal matrix and is
upper triangular matrix ( operations by the modi-
fied Gram-Schmidt algorithm [17]).

2) Compute the SVD of , by any standard
SVD algorithm ( operations).

3) Calculate ( operations).

is the SVD of and the total computational com-
plexity of the R-SVD algorithm is .

III. SEQUENTIAL KL/SVD ALGORITHM

Our approach to the analysis of large image sets (or sequences)
is to use a sequential iterative algorithm which avoids both the
storage ofall the image dataand its simultaneousprocessing. The
algorithmtakes the images insmall “blocks”andupdatesanSVD
internal representation of the required KL basis.

Based on our assumption that , the proposed algo-
rithm is based on the R-SVD algorithm. The key point in the
R-SVD algorithm, which makes it useful as a basis for the se-
quential approach, is the fact that its complexity is due to the
QR decomposition 1) and the update phase 3) while the contri-
bution of the actual SVD computation 2) is negligible.

A. Partitioning the R-SVD Algorithm

The core of the proposed SKL algorithm is based on parti-
tioning the SVD of a large matrix into two steps. Recall that the
SVD of a matrix represents it as a product of three ma-
trices, , where is the columns orthogonal
matrix of the (left) singular vectors, is diagonal ma-
trix whose diagonal elements are the singular values ofand

is an orthonormal matrix whose columns are the right
singular vectors.

Let be the SVD of a matrix . Efficiently cal-
culating the SVD of a larger matrix , where is
an matrix consisting of additional columns (images)
can be done as follows.

• Perform an orthonormalization process on the ma-
trix , yielding the columns orthonormal matrix

.

• Let be a matrix, where
is the dimensional identity matrix.

• Let

. Note that and

. Note also that the rightmost columns of
are the new vectors, added to, represented in the

orthonormal basis spanned by the columns of.
• Calculate the SVD . Then, the SVD of is

where is a diagonal matrix, is
an column-orthonormal matrix and is
an orthonormal matrix.

Thus, calculating the SVD of requires to calculate , ,
and the SVD of the small matrix . This update process is

the core of the following sequential algorithm.

B. SKL Algorithm

The Sequential Karhunen-Loeve (SKL) algorithm is based on
partitioning the data into blocks of column vectors (images). It
starts by calculating the SVD of the first block. Then, at every
step, another block of columns is added and the updated SVD
is calculated using the “partitioned R-SVD” algorithm (Sec-
tion III-A). Being interested only in a low dimensional approx-
imation to the KL basis, the algorithm both deletes basis vec-
tors (columns in the updatedmatrices), corresponding to very
small singular values and sets a limit on their number.

1) Input and parameters:
data matrix.

Number of columns in each block.
Maximal number of columns for the matrices.
Lower bound for the singular values that are retained.
Optional “forgetting factor” coefficient, which can re-
duce the contribution of previous blocks. See remark
below.

2) Initialization—The 0th stage:Form the matrix from
the first columns of the matrix . Compute the R-SVD

and keep and .
3) th stage: While some data of have not been processed

yet, do the following.

a) Read the matrix , containing the next columns of ,
and append it to the matrix . Calculate the
QR decomposition of
the combined matrix, where is an
column orthonormal matrix and is upper diagonal
of size (in
operations).

b) Compute the SVD of as the product
(in negligible operations).

c) Let be the largest elements of the di-
agonal matrix (the singular values). Delete the rest
of the singular values as well as the energetically neg-
ligible singular values , , satisfying

. Let be the diagonal matrix whose ele-
ments are the remaining singular values.

d) Remove from all the columns that corresponds to
singular values that were removed above, and let
be the resulting matrix. Calculate (in

operations).

4) Output: The matrix at the final stage, after all columns
of has been processed.

5) Remarks:

1) Note that at stage a), the matrix is already
column orthogonal. Therefore, the QR decomposition
[17] can be performed on the columns of only.

2) In most image processing applications the maximal size,
, of the approximation basis is relatively small and the
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Fig. 1. The first five vectors of the KL basis (eigen-faces) produced by the standard KL algorithm (top) and the corresponding vectors produced by the proposed
SKL. Scale inversion was done for some gray images to make the similarity clearer.

TABLE I
SKL TESTS ON EMSEMBLES OF FACES AND

OBJECTSIMAGES. THE SKL-ERROR AND KL-ERROR ARE THEAVERAGE

FRACTIONS OF THETEST IMAGE (VECTOR) ENERGY, WHICH ARE NOT

INCLUDED IN THE CORRESPONDINGSUBSPACES. THE ENERGY RATIO IS THE

RATIO OF THE IMAGE ENERGY CAPTURED (CONTAINED) IN THE SKL BASIS

AND THE IMAGE ENERGY CONTAINED IN THE KL BASIS

approximation is just sufficient for the task. Therefore, it
usually makes sense to setto a very small positive value
(not zero), implying that for each stage.

3) Often, when considering a time sequence of images, we
wish to approximate the more recent images better. Set-
ting the optional forgetting factor to a value smaller
than one, enables this option.

4) The th stage of the algorithm can be described concisely
as follows: Given the basis matrix , the (diagonal)
singular value matrix and the i-th batch of input
vectors, denoted , compute the most significant sin-
gular vectors of the matrix . The some-
what longer stage described at item (3) above has compu-
tational advantage in the case .

C. Computational Effort Required for the SKL Algorithm

In the worst case, when at every step the number of columns
in is exactly , the complexity of each step is approximately

. Neglecting the contribution
of the initialization step, the total complexity depends on the
block size , and is
(see [18] for details). For fixed , the complexity
is minimized by a block size , which nullify the
derivative . For this optimal value the total number of
operations required for finding the partial KL basis using the
SKL algorithm becomes (in
comparison to in traditional algorithms.) The total
space required is and is significantly smaller than
the space usually required.

IV. SKL A LGORITHM—EXPERIMENTAL RESULTS

A. Running Time and Convergence Tests

We implemented both the proposed SKL algorithm and
the traditional algorithms, and found that the expected
computational gains are indeed achieved. For example, for

the running time of the SKL was
0.211 of the correlation matrix based KL algorithm time. The
running time is indeed optimized by a block size
and we used this value in all experiments (see [18]).

We used synthetic data for verifying the convergence of the
SKL algorithm and for testing its robustness under changing pa-
rameters. The input vectors were taken from a fixed dimensional
subspace and were accompanied by substantial noise. A lower

dimensional KL subspace was constructed using the SKL
algorithm. In all runs the SKL algorithm converges to the op-
timal subspace with very high level of numerical precision. We
found that the rate of convergence depends mostly on the energy
gap between the th and the th basis vectors. When this
gap is null, the -dimensional optimal subspace is not unique
and the algorithm provides one of the optimal subspaces. The
algorithm converges to the optimal subspace even when very
high noise (much more energetic than the weakestth) sub-
space component) is present. The presence of the noise reduces
however the relative energy gap and slows convergence (see [18]
for full details).

B. Tests on Real Imagery

Testing the algorithm on real images, for which the true basis
is not available, we can only compare the results of the SKL
algorithm with those provided by the standard KL algorithm.
To avoid the problems associated with identical or very close
eigenvalues (see above) we chose to do that by comparing the
approximation properties of the two spaces.

The tests were carried on ensembles of sub-images taken
from a larger image (see [18]) and on ensembles of images
from the following two faces and objects databases.

1) Olivetti and Oracle Research Laboratory (ORL) database
of faces (400 images). There are ten different images of
each of 40 distinct subjects with varying lighting, facial
expressions, and facial details (glasses/no glasses).
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2) Columbia Object Image Library (COIL-20) database of
objects (1440 images). There are 20 objects each with 72
images taken at different positions.

Table I summarizes typical results. The learning sets were the
whole set of face images from the ORL database and two sub-
sets of the COIL-20 objects database—corresponding to 9 and
19 positions for each object (180 and 380 images). The test sets
consisted of one instance for each of the different subjects from
the databases. That is, 40 images of faces from the ORL data-
base and 20 images of objects from COIL-20. In all runs the
block size of the SKL algorithm was approximately the basis
dimension divided by . Apparently, the SKL algorithm and
the KL algorithm practically output the same subspace. Observe
also that the KL basis calculated by the SKL and the KL basis
calculated by the KL algorithm (Fig. 1) are visually very sim-
ilar up to gray level inversion, at least for the more energetic
basis vectors. Visually observable differences appear only for
the much less energetic vectors such as the 40th vector.

V. DISCUSSION ANDCONCLUSIONS

The results of the experiments described in Section IV con-
firms that the SKL algorithm performs better than the standard
KL algorithm while preserving a compatible level of approx-
imation accuracy. We recall that the SKL algorithm requires

space and runs in time, in comparison to
the standard KL algorithm that requires space and runs
in time. The results presented in the tables of Sec-
tion IV indicate that the SKL algorithm captures more than 99%,
and in most cases close to 99.99%, of the energy content of the
standard KL approximation.

The proposed SKL algorithm does not transform the data to
zero mean input. From an approximation standpoint this is not a
problem since increasing the dimension of the SKL basis by one
to will yield better accuracy then the equivalentdimen-
sional zero mean approximation (which, for non zero mean data,
requires the calculated average as a “hidden” th com-
ponent). A similar SKL algorithm, which transforms the data to
zero mean input is obtained by subtracting the empirical mean,
accumulated up to this point, from the input before it enters the
update procedure.

The fact that the basis created by the SKL algorithm, is such
a good approximation for the true KL basis, in spite of the cur-
tailing of the temporary basis at each computational stage is not
self evident. In [18], we explained this fortunate behavior using
a probabilistic model for the data, and have shown that, due
to coherency, even true subspace components which are much
weaker than the noise, can beat it and claim their part in the re-
sulting space.

In conclusion we can say that the SKL algorithm ca be utilized
for computing an optimal low dimensional basis for problems as-
sociated with very large data set and for problems with intrinsic
sequential nature. Its reduced computation and memory require-
ments and its update capability make it superior to the standard
KLalgorithminmanyapplications.Wenote that farther improve-
ment to the SKL algorithm performance can be achieved if it can
be terminated at some stage by utilizing a stopping rule. Such
a stopping rule, based on some convergence criteria, should be

able to decide when the low dimensional KL basis has reached
a satisfactory level of energy approximation content.
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