
Computers and Mathematics with Applications 75 (2018) 1942–1960

Contents lists available at ScienceDirect

Computers and Mathematics with Applications

journal homepage: www.elsevier.com/locate/camwa

Incremental proper orthogonal decomposition for PDE
simulation data
Hiba Fareed a, John R. Singler a,*, Yangwen Zhang a, Jiguang Shen b

a Department of Mathematics and Statistics, Missouri University of Science and Technology, Rolla, MO 65409, USA
b School of Mathematics, University of Minnesota, Minneapolis, MN 55455, USA

a r t i c l e i n f o

Article history:
Available online 6 October 2017

Keywords:
Proper orthogonal decomposition
Incremental algorithm
Weighted norm
Finite element method

a b s t r a c t

We propose an incremental algorithm to compute the proper orthogonal decomposition
(POD) of simulation data for a partial differential equation. Specifically, we modify an in-
cremental matrix SVD algorithm of Brand to accommodate data arising fromGalerkin-type
simulationmethods for timedependent PDEs. The algorithm is applicable to data generated
bymany numerical methods for PDEs, including finite element and discontinuous Galerkin
methods. The algorithm initializes and efficiently updates the dominant POD eigenvalues
andmodes during the time stepping in a PDE solverwithout storing the simulation data.We
prove that the algorithmwithout truncation updates the POD exactly. We demonstrate the
effectiveness of the algorithmusing finite element computations for a 1D Burgers’ equation
and a 2D Navier–Stokes problem.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Proper orthogonal decomposition (POD) has been widely used in many applications involving partial differential
equations such as aeroelasticity [1], fluid dynamics [2], feedback control [3], PDE constrained optimization and optimal
control [4,5], uncertainty quantification [6], and data assimilation [7,8]. In the most basic form, POD is an optimal data
approximation method: the POD of a dataset produces a basis (called PODmodes) that can be used to optimally reconstruct
the data. There are many methods to compute the POD of a dataset; the most basic approaches rely on computing the
eigenvalue decomposition or singular value decomposition (SVD) of a matrix constructed using the dataset. The method
of snapshots introduced by Sirovich [9] is commonly used to find POD eigenvalues and modes. For more information, see,
e.g., [10–12].

For very large datasets, such as datasets arising from simulations of partial differential equations (PDEs), the basic
approaches to PODcomputations become computationally expensive and require a large amount of data storage. Researchers
have proposed various methods to deal with the computational complexity (see, e.g., [13–16]), and both the computational
complexity and data storage (see, e.g., [17] and the references therein). The latter class of methods are incremental SVD
algorithms; specifically, the SVD is initialized on a small amount of data and then updated as newdata becomes available. This
type of incremental algorithm can be easily used in conjunction with a time stepping code for simulating a time dependent
PDE; the POD eigenvalues and modes are updated during the time stepping without storing any of the simulation data. For
examples of this approach, see, e.g., [18–20].

In thiswork,we focus on computing the PODof data arising fromaGalerkin-type simulation of a PDE. Specifically, the data
lies in a Hilbert space and is expressed using a collection of basis functions; therefore, the data can be generated using many

* Corresponding author.
E-mail addresses: hf3n3@mst.edu (H. Fareed), singlerj@mst.edu (J.R. Singler), ywzfg4@mst.edu (Y. Zhang), shenx179@umn.edu (J. Shen).

https://doi.org/10.1016/j.camwa.2017.09.012
0898-1221/© 2017 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.camwa.2017.09.012
http://www.elsevier.com/locate/camwa
http://www.elsevier.com/locate/camwa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.camwa.2017.09.012&domain=pdf
mailto:hf3n3@mst.edu
mailto:singlerj@mst.edu
mailto:ywzfg4@mst.edu
mailto:shenx179@umn.edu
https://doi.org/10.1016/j.camwa.2017.09.012

H. Fareed et al. / Computers and Mathematics with Applications 75 (2018) 1942–1960 1943

numerical methods for PDEs, including finite element and discontinuous Galerkin methods. We extend Brand’s incremental
matrix SVD algorithm [21] to accommodate data of this type. Specifically, we show that the POD of the Hilbert space data
expressed in terms of a basis is equivalent to the POD of the vectors in Rm of the coefficient data with respect to a weighted
inner product on Rm (see Appendix A.1). We consider two approaches to compute the incremental SVD with respect to
the weighted inner product: (1) using a Cholesky factor of the weight matrix (Section 3), and (2) without using a Cholesky
factor (Section 4). The first approach follows standard POD ideas for weighted inner products (see, e.g., [12]), but requires the
computation of the Cholesky factor and also solving linear systems involving the Cholesky factor. In the second approach,
we avoid these extra computations by directly extending Brand’s incremental matrix SVD algorithm [21] to work with a
weighted inner product onRm. We analyze an idealized version of the second approach that does not involve truncation and
prove that it produces the exact SVD with respect to the weighted inner product.

We link the second approach together with (approximate) POD of time varying functions in Section 5, and then present
numerical results in Section 6. For the numerical results, we consider computing the POD of finite element simulation data
for a 1D Burgers’ equation and a 2D Navier–Stokes equation. For the 1D problem and a coarse discretization of the 2D flow
problem, we compare the result of the second incremental SVD approach to the true results and find excellent agreement.
For a large-scale simulation of the 2D flow problem, we compute the POD without storing all the data by calculating the
incremental SVD only. We present conclusions in Section 7.

2. Basic definitions and concepts

We begin by introducing many important definitions and concepts needed throughout this work.
For notational convenience, we adopt Matlab notation herein. Given a vector u ∈ Rn and r ≤ n, let u(1 : r) denote the

vector of the first r components of u. Similarly, for a matrix A ∈ Rm×n, we let A(p : q, r : s) denote the submatrix of A
consisting of the entries of A from rows p, . . . , q and columns r, . . . , s.

2.1. The SVD with respect to a weighted inner product

Let M ∈ Rm×m be a symmetric positive definite square matrix. Let Rm
M denote the Hilbert space Rm with M-weighted

inner product, i.e.,

(x, y)M = yTMx for all x, y ∈ Rm.

Throughout this work, Rk without a subscript denotes the space with the standard inner product (x, y) = yT x (i.e., the
Euclidean inner product or dot product).

We require two functional analytic concepts for a matrix P ∈ Rm×n considered as a mapping P : Rn
→ Rm

M : the Hilbert
adjoint operator and the singular value decomposition.

First, the Hilbert adjoint operator of the matrix P : Rn
→ Rm

M is a matrix P∗
: Rm

M → Rn satisfying

(Px, y)M = (x, P∗y) for all x ∈ Rn and y ∈ Rm
M .

We can show P∗
= PTM as follows:

(Px, y)M = (x, P∗y) ⇒ yTM Px = (P∗y)T x ⇒ yTM Px = yT (P∗)T x.

Since this holds for all x, y, we have M P = (P∗)T and therefore P∗
= PTM .

Second, since the matrix P : Rn
→ Rm

M is a compact linear operator, it has a singular value decomposition: the nonzero
eigenvalues of PP∗

: Rm
M → Rm

M and P∗P : Rn
→ Rn are equal, and the nonzero singular values σ1 ≥ σ2 ≥ · · · ≥ 0 of P equal

the square roots of those eigenvalues. Also, zero is a singular value of P if either PP∗ or P∗P has a zero eigenvalue. Therefore,
there aremax{m, n} singular values, countingmultiplicities. The corresponding orthonormal bases of eigenvectors, {φj}

m
j=1 ⊂

Rm
M and {ψj}

n
j=1 ⊂ Rn, are the singular vectors. This gives

Pψj = σjφj, P∗φj = σjψj if σj > 0. (1)

Note that {φj}
m
j=1 being orthonormal in Rm

M means

(φi, φj)M = φT
j Mφi =

{
0, if i ̸= j,
1, if i = j.

For more information about the singular value decomposition of operators acting on Hilbert spaces, see, e.g., [22, Chapters
VI–VIII], [23, Chapter 30], [24, Sections VI.5–VI.6].

In PODapplications, it is typical to only need information about singular vectors corresponding to nonzero singular values.
Let k = rank(P), i.e., P has exactly k positive singular values σ1 ≥ σ2 ≥ · · · ≥ σk > 0. Let V = [φ1, φ2, . . . , φk] ∈ Rm×k be
the matrix of the first k orthonormal eigenvectors of PP∗, and let W = [ψ1, ψ2, . . . , ψk] ∈ Rn×k be the matrix of the first k
orthonormal eigenvectors of P∗P . Then (1) gives

PW = VΣ, P∗V = WΣ, Σ = diag(σ1, . . . , σk). (2)

1944 H. Fareed et al. / Computers and Mathematics with Applications 75 (2018) 1942–1960

Since {ψj}
k
j=1 is orthonormal in Rn, we have W TW = I . Also, since {φj}

k
j=1 is orthonormal in Rm

M , we have V TMV = I or
V ∗V = I , where V ∗

= V TM . Therefore, (2) is equivalent to

P = VΣW T . (3)

Since we are primarily interested in the nonzero singular values and corresponding singular vectors, we primarily
consider the decomposition (3) for our theoretical results. For the standard matrix case (i.e., without weighted norms), the
decomposition (3) is called by various names in the literature and sometimes definitions in different references conflict.1 In
order to potentially avoid confusion, we call this decomposition the core SVD.

Definition 2.1. For a matrix P : Rn
→ Rm

M with exactly k positive singular values, a core SVD of P is given by P = VΣW T ,
where V ∈ Rm×k,Σ ∈ Rk×k, andW ∈ Rn×k are defined above.

Just like the regular SVD, the core SVD is not unique. For example, the columnsofV andW can change sign and P = VΣW T

is still a core SVD of P .
Also, we sometimes consider a core SVD of a matrix in the standard sense, i.e., all inner products are unweighted. To be

clear, we call this the standard core SVD.
Below, we give some basic properties of the core SVD.

Proposition 2.2. Suppose V ∈ Rm×k has M-orthonormal columns, W ∈ Rn×k has orthonormal columns, and Σ ∈ Rk×k is a
positive diagonal matrix withΣ11 ≥ Σ22 ≥ · · ·Σkk > 0. If P : Rn

→ Rm
M satisfies P = VΣW T , then V ,Σ , W give a core SVD of

P.

Proof. First, it is clear that rank(P) ≤ k, and therefore P has at most k positive singular values. It is straightforward to check
that (2) holds. This implies the k columns of V are eigenvectors of PP∗ and the k columns of W are eigenvectors of P∗P , and
the corresponding k eigenvalues are the nonzero diagonal entries ofΣ . Thus, P = VΣW T is a core SVD of P . □

We use the next basic result frequently in this work.

Proposition 2.3. Suppose Vu ∈ Rm×k has M-orthonormal columns and Wu ∈ Rn×k has orthonormal columns. If Q ∈ Rk×k has
standard core SVD Q = VQΣQW T

Q and P : Rn
→ Rm

M is defined by P = VuQW T
u , then

P = VΣQW T , V = VuVQ , W = WuWQ , (4)

is a core SVD of P.

Proof. First, it is clear P has the representation (4). By the above proposition, we only need to show V has M-orthonormal
columns and W also has orthonormal columns. This follows directly since V T

u MVu = I , W T
u Wu = I , V T

QVQ = I , and
W T

QWQ = I . □

2.2. Computing the exact SVD with respect to a weighted inner product

Next, we briefly outline how to compute the exact SVD of a matrix with respect to a weighted inner product using a
Cholesky factorization of theweightmatrix. In our numerical results in Section 6, we compare the incremental SVD approach
in Section 4 to the exact SVD computed using the Cholesky factorization approach discussed here. Note that this Cholesky
approach requires storing all of the data, which incremental approaches do not require.

Let U ∈ Rm×n be a matrix considered as a mapping U : Rn
→ Rm

M , where M ∈ Rm×m is a symmetric positive definite
weight matrix. We want to compute the SVD of U as defined in Section 2.1.

Let

M = RT
MRM

be the Cholesky factorization of M , where RM ∈ Rm×m is upper triangular and invertible. Transform the matrix U using the
Cholesky factor by defining

Ũ = RMU ∈ Rm×n.

The standard SVD of Ũ (i.e., the SVD with unweighted inner products) gives the SVD of U with respect to the weighted inner
product.

1 For example, Horn and Johnson [25] call this decomposition the thin SVD, but this contradictswith the definition of thin SVD in Golub and Van Loan [26].
Furthermore, this definition is called compact SVD in [27]; however, we do not use this terminology to avoid confusion with the SVD of a compact operator.

H. Fareed et al. / Computers and Mathematics with Applications 75 (2018) 1942–1960 1945

Proposition 2.4. Let U ∈ Rm×n, and suppose M ∈ Rm×m is symmetric positive definite with Cholesky factorization M = RT
MRM

as above. If Ũ = Ṽ Σ̃W̃ T is the standard core SVD of Ũ = RMU ∈ Rm×n, then

U = VΣW T , V = R−1
M Ṽ , Σ = Σ̃, W = W̃ (5)

is the core SVD of U : Rn
→ Rm

M .

Proof. We have

U = R−1
M Ũ = V Σ̃W̃ T ,

and

V ∗V = V TMV = Ṽ TR−T
M MR−1

M Ṽ = Ṽ TR−T
M RT

MRMR−1
M Ṽ = Ṽ T Ṽ = I.

The result follows directly from Proposition 2.2. □

Algorithm 1 Exact SVD via Cholesky factorization
Input: U ∈ Rm×n andM ∈ Rm×m (symmetric positive definite)
1: RM = chol(M)
2: Ũ = RMU
3: [Ṽ ,Σ,W] = svd(Ũ)
4: Solve for V : RMV = Ṽ
5: return V ,Σ , W

3. Brand’s incremental SVD

Next, we briefly review Brand’s incremental SVD algorithm from [21]. The algorithm updates the SVD of a matrix when
one or more columns are added to the matrix. A basic implementation of his algorithm has been used for POD computations
in [18–20].

Below, we present themodified version of Brand’s incremental SVD algorithm from [20] using single column updates.We
first consider the standard inner product, and then a weighted inner product using the Cholesky factorization of the weight
matrix. We also briefly discuss why it is beneficial to avoid the Cholesky factorization. Then, in Section 4, we propose an
extension of Brand’s algorithm for a weighted inner product that avoids the Cholesky factorization entirely.

3.1. Standard inner product

Suppose we already have the rank-k truncated SVD of a matrix U ∈ Rm×n denoted by

U = VΣW T , (6)

where Σ ∈ Rk×k is a diagonal matrix with the k (ordered) singular values of U on the diagonal, V ∈ Rm×k is the matrix
containing the corresponding k left singular vectors of U , and W ∈ Rn×k is the matrix of the corresponding k right singular
vectors of U .

Let c ∈ Rm be the single column to be added to U . Our goal is to update the above SVD, i.e., we want to find the SVD of
[U c]. Furthermore, we want to update (Σ, V ,W) without forming the matrices U or [U c].

To do this, let h ∈ Rm be the projection of c onto the orthogonal complement of the space spanned by the columns of V ,
i.e.,

h = c − VV T c.

Also, let p be the magnitude of h and let j be the unit vector in the direction of h, i.e.,

p = ∥h∥, j = h/p.

If p > 0, we have the fundamental identity[
U c

]
=
[
VΣW T c

]
=
[
V j

] [Σ V T c
0 p

][
W 0
0 1

]T
.

As in Proposition 2.3, we can find the SVD of the updated matrix [U c] by finding the SVD of the middle matrix Q in the
right hand side of the above identity. Specifically, if

Q :=

[
Σ V T c
0 p

]
= VQΣQ W T

Q

1946 H. Fareed et al. / Computers and Mathematics with Applications 75 (2018) 1942–1960

is the standard core SVD of Q , then the standard core SVD of [U c] is given by[
U c

]
=
([
V j

]
VQ
)
ΣQ

([
W 0
0 1

]
WQ

)T

. (7)

In practice, truncation is performedwhen p is very small, and also reorthogonalizationmust be performed on the columns
of the updated V and W . We discuss these implementation steps in detail in Section 4.2. We also correct an error in the
truncation formulas for the right singular vectors in [20].

Furthermore, as is discussed in [20], we note that only the singular values and left singular vectors need to be computed
for many POD applications. However, if one wants to retain an approximation to the data without storing the data, then it is
necessary to also compute the right singular vectors.

3.2. Weighted inner product via Cholesky factorization

Next, we discuss incrementally computing the SVD of [U c] with respect to a weighted inner product using a Cholesky
factorization of the weight matrix. Specifically, consider U ∈ Rm×n as a mapping U : Rn

→ Rm
M , where M ∈ Rm×m is

symmetric positive definite. Let c ∈ Rm
M be the column to be added to U . Our goal is to find the SVD of the updated matrix

[U c] considered as a mapping [U c] : Rn+1
→ Rm

M .
Suppose we already have the rank-k SVD of U with respect to the weighted inner product given by U = VΣW T . As in

Section 2.1, letM = RT
MRM be the Cholesky factorization ofM , and transform the data: Let

Ũ = RMU = ṼΣW T , Ṽ = RMV .

Next, we update the standard SVD of Ũ by applying Brand’s algorithm as outlined above in Section 3.1 to the transformed
updated matrix RM [U c] = [Ũ RMc]. This gives

[Ũ RMc] = RM [U c] = ṼnewΣnewW T
new. (8)

We undo the transformation by multiplying (8) on the left by R−1
M . Therefore, in order to find the updated SVD of [U c] we

need to rescale the left singular vectors for Ũ as follows:

Vnew = R−1
M Ṽnew. (9)

This gives the updated SVD: [U c] = VnewΣnewW T
new.

The above approach gives an incremental algorithm for the SVD with respect to a weighted inner product; however, the
algorithm has a few drawbacks ifm is very large:

• A Cholesky factorization ofM ∈ Rm×m is required.
• The Cholesky factor RM of M may not be as sparse as M . (However, it may be possible to avoid a significant loss of

sparsity by using ordering methods; see, e.g., [28,29].)
• Solving the linear system RMVnew = Ṽnew is required.

We avoid all of these drawbacks in the next section bymodifying Brand’s algorithm to deal with the weighted inner product
directly.

4. Brand’s incremental SVD with respect to a weighted inner product

In this section, we avoid the Cholesky factorization of the weight matrix M and modify Brand’s algorithm to treat the
weighted inner product case. In themodified algorithm,we do not need to solve any linear systems;we only need tomultiply
by the weight matrixM . In large-scale applications involving partial differential equations, it is common forM to be sparse;
therefore, multiplying by M is a minor computational cost. The modified algorithm has a similar computational cost to the
standard algorithm ifM is sparse or if multiplyingM by a vector can be computed quickly.

We begin in Section 4.1 by describing an idealized version of the incremental SVD algorithm, and we prove it produces
the exact core SVD. Then we discuss implementation details in Section 4.2.

4.1. Idealized algorithm without truncation

Suppose we have an exact core SVD of a matrix U : Rn
−→ Rm

M , and our goal is to update the core SVD when we add a
column c ∈ Rm

M to U . Furthermore, we want to update the core SVD without forming U or [U c].
First, we propose an idealized version of the algorithm by modifying Brand’s algorithm to work in the Hilbert space

structure of the weighted inner product space Rm
M from Section 2. We use Hilbert adjoint operators of matrices, and also the

weighted norm ∥x∥M = xTMx1/2 for x ∈ Rm
M .

The idealized algorithm is given in the following theorem. Again, we present implementation details in Section 4.2.

H. Fareed et al. / Computers and Mathematics with Applications 75 (2018) 1942–1960 1947

Theorem 4.1. Let U : Rn
−→ Rm

M , and suppose U = VΣW T is the exact core SVD of U, where V TMV = I for V ∈ Rm×k,
W TW = I for W ∈ Rn×k, andΣ ∈ Rk×k. Let c ∈ Rm

M and define

h = c − VV ∗c, p = ∥h∥M , Q =

[
Σ V ∗c
0 p

]
,

where V ∗
= V TM. If p > 0 and the standard core SVD of Q ∈ Rk+1×k+1 is given by

Q = VQ ΣQ W T
Q , (10)

then the core SVD of [U c] : Rn+1
−→ Rm

M is given by

[U c] = VuΣQW T
u ,

where

Vu = [V j] VQ , j = h/p, Wu =

[
W 0
0 1

]
WQ .

Proof. Since j = h/p = (c − VV ∗c)/p, we have c = VV ∗c + jp. This gives

[U c] = [VΣW T c]

= [VΣW T VV ∗c + jp]

= [V j]
[
ΣW T V ∗c

0 p

]
= [V j]

[
Σ V ∗c
0 p

][
W 0
0 1

]T
.

Next, note

[V j]TM[V j] =

[
V TMV V TMj
(V TMj)T jTMj

]
=

[
I 0
0 1

]
since V TMV = V ∗V = I by assumption,

V TMj = V ∗j = V ∗(c − VV ∗c)/p = (V ∗c − V ∗c)/p = 0,

and

jTMj =
∥h∥2

M

p2
=

∥h∥2
M

∥h∥2
M

= 1.

Also, sinceW TW = I ,[
W 0
0 1

]T [
W 0
0 1

]
=

[
I 0
0 1

]
.

Proposition 2.3 gives the result. □

4.2. Algorithm details: initialization, truncation, and orthogonalization

In Section 4.1, we demonstrated an idealized approach to computing the SVD with respect to a weighted inner
product incrementally, i.e., by adding one column at a time. Next, we give implementation details concerning initialization,
truncation, and orthogonalization.

Initialization. We initialize the SVD with a single column of data c by setting

Σ = ∥ c ∥M = (cTMc)1/2, V = cΣ−1, W = 1.

We note that although the matrix M may be positive definite in theory, small round off errors may cause cTMc to be very
small and negative in practice. Therefore, throughout this work, when computing theweighted normwe use absolute values
under the square root. For example, we actually setΣ = (|cTMc|)1/2. We also note that c should be nonzero to initialize. The
procedure is given in Algorithm 2.

Truncation part 1. The exact SVD update result in Theorem 4.1 requires p = ∥c − VV ∗c∥M > 0. When p is small enough,
i.e., p < tol for a given tolerance tol, we extend the truncation update approach of Brand [21] to the current weighted norm
framework.

1948 H. Fareed et al. / Computers and Mathematics with Applications 75 (2018) 1942–1960

Algorithm 2 Initialize incremental SVD with respect to weighted inner product
Input: c ∈ Rm×1, c ̸= 0,M ∈ Rm×m (symmetric positive definite)
1: Σ = (|cTMc|)1/2
2: V = cΣ−1

3: W = 1
4: return V ,Σ , W

If p < tol, we approximate and set p = 0. Since p = ∥c − VV ∗c∥M , this implies c = VV ∗c. This gives

[U c] = [VΣW T c]

= [VΣW T VV ∗c]

= [V 0]

[
ΣW T V ∗c

0 0

]
= [V 0]

[
Σ V ∗c
0 0

][
W 0
0 1

]T
.

Similarly to Section 4.1, define Q ∈ Rk+1×k+1 by

Q =

[
Σ V ∗c
0 0

]
.

If the full standard SVD of Q is given by Q = VQΣQW T
Q , where VQ ,ΣQ ,WQ ∈ Rk+1×k+1, then

Q = VQ

[
ΣQ(1:k,1:k) 0

0 0

]
W T

Q

= VQ

[
ΣQ(1:k,1:k)

(
WQ(:,1:k)

)T
0

]
= VQ(:,1:k)ΣQ(1:k,1:k)

(
WQ(:,1:k)

)T
.

This gives

[U c] = [V 0]Q
[
W 0
0 1

]T
= [V 0]VQ(:,1:k)ΣQ(1:k,1:k)

(
WQ(:,1:k)

)T[W 0
0 1

]T
= VVQ(1:k,1:k)ΣQ(1:k,1:k)

([
W 0
0 1

]
WQ(:,1:k)

)T

.

This suggests the following update

V −→ VVQ(1:k,1:k) , Σ −→ ΣQ(1:k,1:k) , W −→

[
W 0
0 1

]
WQ(:,1:k) .

We note that the rank of the SVD is not increased even though we added a column. Furthermore, the formula for the
update ofW given here corrects an error in [21] (the matrix [W , 0; 0, 1] is missing from the update formula).

Orthogonalization. In the idealized algorithm in Section 4.1, the SVD update yields orthonormal left and right singular
vectors. However, in practice, small numerical errors cause a loss of orthogonality. Following [20], we reorthogonalize when
the weighted inner product between the first and last left singular vectors is greater than some tolerance. Specifically, we
apply a modified M-weighted Gram–Schmidt procedure with reorthogonalization to the columns of V ; the columns of the
resulting matrix are orthonormal with respect to the M-weighted inner product. See Algorithm 3, which is a modification
for the weighted inner product of the Gram–Schmidt code in [30, Algorithm 6.11, page 307, Section 6.5.6].

Truncation part 2. The orthogonalization step described above is a large part of the computational cost of the incremental
SVD algorithm. If the incremental SVD update is to be repeated for a large number of added columns, the number of nonzero
singular values can increase quickly and the computational cost of the orthogonalization steps will be large. In such a case,
it is important to keep only the singular values of interest to the application. Usually, singular values very near zero (and
their corresponding singular vectors) are not required for POD applications. Therefore, during an incremental SVD update,
we keep only the singular values (and corresponding singular vectors) above a user specified tolerance.

H. Fareed et al. / Computers and Mathematics with Applications 75 (2018) 1942–1960 1949

Algorithm 3ModifiedM-weighted Gram–Schmidt with reorthogonalization
Input: V ∈ Rm×r ,M ∈ Rm×m

1: Q = V
2: for k = 1 tom do
3: for i = 1 to k − 1 do
4: for t = 1 to 2 (reorthogonalize) do
5: E = Q (:, i)TMQ (:, k)
6: Q (:, k) = Q (:, k) − EQ (:, i)
7: R(i, k) = R(i, k) + E
8: end for
9: end for

10: R(k, k) = sqrt(Q (:, k)TMQ (:, k))
11: Q (:, k) = Q (:, k)/R(k, k)
12: end for
13: return Q

Complete implementation. Our implementation of the incremental SVD update algorithm for a weighted inner product
is given in Algorithm 4. Our implementation is modeled after the algorithm in [20] (without a weighted inner product). As
is noted in [20], for many POD applications only the singular values and left singular vectors need to be updated and stored.
However, if one desires to be able to approximately reconstruct the entire dataset (without storing the data), then one must
update and store the singular values and both left and right singular vectors.

Algorithm 4 Incremental SVD with weighted inner product
Input: V ∈ Rm×k,Σ ∈ Rk×k, W ∈ Rn×k, c ∈ Rm, M ∈ Rm×m, tol, tolsv

% Prepare for SVD update
1: d = V TMc , p = sqrt(|(c − Vd)TM(c − Vd)|)
2: if (p < tol) then

3: Q =

[
Σ d
0 0

]
4: else
5: Q =

[
Σ d
0 p

]
6: end if
7: [VQ ,ΣQ ,WQ] = svd(Q)

% SVD update
8: if (p < tol) or (k ≥ m) then

9: V = VVQ(1:k,1:k) ,Σ = ΣQ(1:k,1:k) , W =

[
W 0
0 1

]
WQ(:,1:k)

10: else
11: j = (c − Vd)/p

12: V = [V j]VQ ,Σ = ΣQ , W =

[
W 0
0 1

]
WQ

13: k = k + 1
14: end if

% Orthogonalize if necessary
15: if (|V T

(:,end)MV(:,1)|> min(tol, tol × m)) then
16: V = modifiedGSweighted(V ,M) % Algorithm 3
17: end if

% Neglect small singular values: truncation
18: if (Σ(r,r) > tolsv) and (Σ(r+1,r+1) < tolsv) then
19: Σ = Σ(1:r,1:r), V = V(:,1:r), W = W(:,1:r)
20: end if
21: return V ,Σ ,W

1950 H. Fareed et al. / Computers and Mathematics with Applications 75 (2018) 1942–1960

5. Incremental POD for time varying functions

POD is often used to extract mode shapes or basis functions from solutions of time dependent PDEs. In this case, the
dataset consists of a time varying function taking values in a Hilbert space X with inner product (·, ·) and corresponding
norm ∥ · ∥. More information about POD for this type of data can be found in, e.g., [11,12,31,32].

In this section, we showhow to compute the POD of the data in this setting using themodified incremental SVD algorithm
proposed in Section 4. We focus on approximating continuous POD in Section 5.1, and then consider data expanded in basis
functions for X in Section 5.2. We also briefly consider data generated by a finite difference method in Section 5.3.

5.1. Approximate continuous POD

Let w be in L2(0, T ; X), i.e., roughly,
∫ T
0 ∥w(t)∥2 dt < ∞. Define the continuous POD operator Z : L2(0, T) → X by

Zg =

∫ T

0
w(t) g(t) dt.

In practice, we typically only have access to the data at discrete points in time {tj}s+1
j=1 , where 0 ≤ t1 < t2 < · · · < ts+1 ≤ T .

For j = 1, . . . , s, let δj = tj+1 − tj denote the jth time step. As is well-known (see, e.g., [11,12]), we rescale the data below by
δ
1/2
j in order to arrive at a discrete POD operator.
Approximate the time integral in the definition of the POD operator Z by a Riemann sum with left hand endpoint:

Zg ≈

s∑
j=1

w(tj) δj g(tj)

=

s∑
j=1

uj fj, uj = δ
1/2
j w(tj), fj = δ

1/2
j g(tj).

Therefore, define the (discrete) POD operator K : Rs
→ X by

Kf =

s∑
j=1

ujfj, f = [f1, . . . , fs]T .

5.2. Data expanded in basis functions

In POD applications, a common way to collect data from a time dependent PDE is via numerical simulation. Many
approximate solution methods for PDEs (such as finite element and discontinuous Galerkin methods) are Galerkin-type,
i.e., the approximate solution data is expressed in terms of a basis of a finite dimensional subspace of X . Let {φk}

m
k=1 ⊂ X be

a collection of linearly independent basis functions, and assume the rescaled data uj = δ
1/2
j w(tj) ∈ X can be expressed as

uj = δ
1/2
j w(tj) =

m∑
k=1

Uk,jφk, for j = 1, . . . , s.

In Appendix A.1, we show that the SVD of K : Rs
→ X can be computed using the SVD of the coefficient data matrix

U : Rs
→ Rm

M , where the weight matrix M ∈ Rm×m has entries Mj,k = (φj, φk). We leave the precise statement of the result
toAppendix, butwenote that if {σi, fi, ci} are thenonzero singular values and corresponding singular vectors ofU : Rs

→ Rm
M ,

then {σi, fi, xi} are the nonzero singular values and corresponding singular vectors of K , where

xi =

m∑
k=1

ci,kφk

and ci,k is the kth entry of the vector ci.
Let Uj denote the jth column of the coefficient data matrix U . Algorithm 5 gives the incremental POD algorithm for time

varying data. Asmentioned previously, formany POD applications only the singular values and left singular vectors (the POD
modes) need to be updated and stored. However, if one also updates and stores the right singular vectors then it is possible
to approximately reconstruct the entire dataset without storing the data. Furthermore, we note that the POD eigenvalues
are the squares of the POD singular values.

Remark 5.1. Many researchers remove the average of the data, and then compute the POD of this new data. Such a
computation can be performed incrementally without storing the data. We give a brief overview of the algorithm with a
weighted inner product in Appendix A.2.

H. Fareed et al. / Computers and Mathematics with Applications 75 (2018) 1942–1960 1951

Algorithm 5 Time varying incremental POD
Input: {δj}, {Uj}, M ∈ Rm×m, tol, tolsv % δj,Uj,M as described above
1: [V ,Σ,W] = initializeSVD(U1,M) % Algorithm 2
2: for j = 2, . . . , s do
3: [V ,Σ,W] = incrementalSVD(V ,Σ,W ,Uj, tol, tolsv,M) % Algorithm 4
4: end for
5: W = diag(δ)−1/2W % undo rescaling, δ = [δ1, ..., δs]

6: return V ,Σ , W

In some of our numerical results, we compare the time varying incremental SVD with the exact time varying SVD
computed using the Cholesky factorization ofM as in Section 2.2. Wemust modify Algorithm 1 for the exact SVD to account
for the rescaling by the square roots of the time steps. Let D = diag(δ), where δ = [δ1, . . . , δs]. The modified exact SVD
algorithm is shown in Algorithm 6. Again, note that this exact algorithm requires storing all of the data, which incremental
algorithms do not require.

Algorithm 6 Exact time varying SVD via Cholesky factorization
Input: U = [U1, . . . ,Us], M , D % Uj, M , D as described above
1: RM = chol(M)
2: Ũ = RMU
3: [Ṽ ,Σ, W̃] = svd(Ũ)
4: Solve for V : RMV = Ṽ
5: W = D−1/2W̃
6: return V ,Σ , W

5.3. Data from a finite difference method

Although we focus on Galerkin-type simulation methods for PDEs in this work, we briefly consider incremental POD for
data generated by one type of numerical method for PDEs that is not of Galerkin-type: finite difference methods. The key is
to focus on the Hilbert space inner product and its approximation.

Suppose a finite difference method is used to approximate the solution of a scalar time dependent PDE on a bounded
domainΩ ⊂ Rd, and the goal is to approximate the POD of the data with respect to the L2(Ω) inner product. For a function
u, let uf ∈ Rm denote the vector of approximations to the function u evaluated at them finite difference nodes. Then

(u, v)L2(Ω) =

∫
Ω

u(x) v(x) dx ≈

m∑
i=1

ηiuf ,ivf ,i = vTf Muf ,

where {ηi}
m
i=1 are positive quadrature weights and M = diag(η1, . . . , ηm). It is possible to apply the modified incremental

SVD algorithm in this work with the weight matrix M . However in this case the data can be rescaled by the square roots
of the quadrature weights and Brand’s incremental SVD algorithm can be used without a weighted inner product. Once the
POD modes are computed, the modes must be multiplied by the diagonal matrix M−1/2 so that they are orthonormal with
respect to theM weighted inner product.

If instead the goal is to approximate the POD of the data with respect to the H1(Ω) inner product, then we have

(u, v)H1(Ω) =

∫
Ω

u v + ∇u · ∇v dx ≈ vTf Muf .

Here, the matrix M is obtained by approximating the integral using quadrature with positive weights and approximating
the gradients by finite difference approximations. In this case, the weight matrixM is not diagonal and so the rescaling idea
described above is not applicable; however, the incremental SVD algorithm with weight matrixM can be applied.

6. Numerical results

In this section, we present numerical results for the incremental POD algorithm applied to time varying finite element
solution data for two PDEs: (i) a 1D Burgers’ equation, and (ii) a 2D Navier–Stokes equation. The first problem serves as a
small test problem with varying time steps. For the second problem, we consider fixed time steps and both small-scale and
large-scale computations. For the small-scale problems, we stored all of the simulation data to compare the standard SVD
(computed using Algorithm 6) with the incremental SVD (computed using Algorithm 5). For the large-scale problem, we did
not store the simulation data and only computed the incremental SVD using Algorithm 5.

For all of the examples reported here, we used the standard L2 inner product for the POD computations. This corresponds
to the matrix SVD with respect to a weighted inner product, where the weight matrixM is the standard finite element mass

1952 H. Fareed et al. / Computers and Mathematics with Applications 75 (2018) 1942–1960

Fig. 1. Example 1, Re = 20: Exact versus incremental singular values.

matrix. For the 1D Burgers’ equation example, we also tested the incremental POD using the standard H1 inner product,
which yields a different matrix M . We do not report these results here; we found the algorithm performance is similar in
this case to the L2 performance. We also tested the incremental approach to POD for the removed average data for the 1D
Burgers’ equation example (as outlined in Appendix A.2). Again, we found that the performance of the algorithm is similar
to the other cases, and so we do not report the results here.

6.1. Example 1: 1D Burgers’ equation

We begin with a small test problem. Consider 1D Burgers’ equation with zero Dirichlet boundary conditions

∂w

∂t
(t, x) + w(t, x)

∂w

∂x
(t, x) =

1
Re
∂2w

∂x2
(t, x), −1 < x < 1.

We used piecewise linear finite elements with 1000 equally spaced notes to approximate the solution of this PDE with
Re = 20 and initial condition w(0, x) = sin(πx). We used Matlab’s ode23s to approximate the solution of the resulting
nonlinear ODE system on the time interval 0 ≤ t ≤ 2. The solver returned the approximate solution at 26 points in time
in that interval; the time steps were not equally spaced. At each time point, the finite element coefficient vector had length
998.

For the incremental POD algorithm, we set tol = 10−14 and tolsv = 10−15. Recall, the first tolerance tol is the truncation
tolerance for the incremental algorithm, while the second tolerance tolsv is the truncation tolerance for the singular values.
In this example and in the examples below, we set tolsv very small in order to test the accuracy of the very small singular
values and the corresponding singular vectors; in practice, a very small singular value tolerance is likely rarely needed.

Fig. 1 shows the exact versus the incrementally computed singular values. We see excellent agreement for all singular
values down to near the singular value tolerance (10−14). Note that the incremental SVD algorithm only returns 21 singular
values due to the singular value truncation. A few of the exact and incrementally computed right singular vectors and POD
modes are shown in Figs. 2 and 3. Again, we see excellent agreement.

Next, Fig. 4 shows the weighted norm error between the exact and incrementally computed POD modes. The errors for
the dominant POD modes (corresponding to the largest singular values) are extremely small. The errors in the POD modes
increase slowly and monotonically as the corresponding singular values approach zero. The number of highly accurate POD
modes is quite large; the first 12 modes are computed to an accuracy level of at least 10−5. The 12th singular value is
O(10−9). In many POD applications, PODmodes are not required for POD singular values that are this small. (Recall, the POD
eigenvalues are the squares of the POD singular values.) The incremental POD algorithm works very well for this problem.

6.2. Example 2: 2D Navier–Stokes equation

For our second example, we consider a 2D laminar flow around a cylinder with circular cross-section [33]. The flow is
governed by the time dependent incompressible Navier–Stokes equationswith Reynolds number Re = 100, andwe consider
a rectangular spatial domain of length 2.2 and width 0.41. The diameter of the cylinder is 0.1, and it is centered at the point
(0.2, 0.2). For the initial condition, we take the steady state solution of the same problemwith Reynolds number 40 (instead
of 100). On the right boundary of the rectangle (the outlet), we consider stress free boundary conditions. The boundary

H. Fareed et al. / Computers and Mathematics with Applications 75 (2018) 1942–1960 1953

Fig. 2. Example 1, Re = 20: Exact versus incremental right singular vectors.

Fig. 3. Example 1, Re = 20: Exact versus incremental POD modes.

conditions on all other walls are Dirichlet boundary conditions. The Dirichlet velocity data on the left wall of the rectangle

(the inlet) is (6y(0.41−y)
0.412

, 0). The Dirichlet data on all other boundaries is zero.

1954 H. Fareed et al. / Computers and Mathematics with Applications 75 (2018) 1942–1960

Fig. 4. Example 1, Re = 20: Errors between true and incremental POD modes.

Fig. 5. Example 2, Re = 100: Exact versus incremental singular values.

The primary goal of this example is to test the incremental POD algorithm on a problem with more complex solution
behavior than the first example (the 1D Burgers’ equation). First, we use a coarse grid and a relatively small number of time
steps over a short time interval in order to compute the exact errors compared to the exact SVD (with respect to theweighted
inner product). We do not attempt to simulate over a longer time period in order to obtain similar numerical results to POD
works in the literature (see, e.g., [34,35]).

For the simulation, we consider the time interval 0 ≤ t ≤ 1 and time step 0.01. The finite element mesh is generated by
Triangle [36,37] with local refinement near the cylinder; also, the mesh is polygonal and only approximately fits the circular
boundary of the cylinder. We used standard Taylor–Hood elements, and backward Euler for the time stepping for simplicity.

We first consider a coarse mesh. At each time point, the velocity finite element coefficients are vectors of length 55552.
We have 101 total solution snapshots. For the incremental SVD computation, we take tol = 10−10 and the singular value
tolerance tolsv = 10−12.

The incremental SVD algorithm returns 33 singular values and corresponding singular vectors. Fig. 5 shows the exact
versus the incremental singular values. We see excellent agreement for all singular values down to near the singular value
tolerance (10−10). The first four exact and incrementally computed right singular vectors are shown in Fig. 6, and the
agreement is again excellent. Fig. 7 shows the horizontal and vertical components of the 1st, 5th, and 10th velocity POD
modes.

Fig. 8 shows the weighted norm error between the exact and incrementally computed velocity POD modes. The error
behaves in a similar fashion to the PODmode error in the first example (Fig. 4). Again, the errors for the dominant PODmodes
are extremely small, and the errors increase slowly and monotonically as the corresponding singular values approach zero.

H. Fareed et al. / Computers and Mathematics with Applications 75 (2018) 1942–1960 1955

Fig. 6. Example 2, Re = 100: Exact versus incremental right singular vectors.

Fig. 7. Example 2, Re = 100: 1st, 5th, and 10th incremental velocity POD modes (from top to bottom); horizontal components are on the left, and vertical
components are on the right.

1956 H. Fareed et al. / Computers and Mathematics with Applications 75 (2018) 1942–1960

Fig. 8. Example 2, Re = 100: Errors between true and incremental POD modes.

Furthermore, there are a large number of highly accurate PODmodes. Again, the incremental POD algorithm is very accurate
for this problem.

We also tested the same problem with a smaller time step of 0.001 (instead of 0.01); this gives 1001 solution snapshots.
We also reduced the algorithm tolerance to tol = 10−12. Using the same the singular value tolerance tolsv = 10−12, the
algorithm returned 97 singular values and corresponding singular vectors. We again found that the incremental approach
gave accurate results (not shown).

Next, we return to the larger time step 0.01, but now use a fine mesh for the finite element discretization. Each of the
101 flow velocity snapshots has a finite element coefficient vector of length nearly 2 million (1 978904). In this case, we did
not store the solution data or compute the exact SVD; we only performed the POD computations incrementally. Also, we
compared the incremental SVD to the incremental SVD computed on the coarse finite element mesh (with the same time
step). We found both incremental SVD computations gave similar singular values and singular vectors (not shown), as we
would expect from POD theory. Specifically, the finite element solution should converge to the solution of the PDE as the
mesh is refined; therefore, the POD eigenvalues and modes must converge (see, e.g., [11,12,32]).

7. Conclusion

Weextended Brand’s incremental SVD algorithm [21] to treat data expanded in basis functions fromaHilbert space.Many
numericalmethods for PDEs generate data of this form. Specifically, we reformulated Brand’smatrix algorithm in aweighted
norm setting using functional analytic techniques. We proved that an idealized version of the algorithm exactly updates the
SVD when a new column is added to the data. We also considered time varying data by incorporating the quadrature on the
time integral into the incremental approach.

We used the left singular vectors to compute the POD modes for the collected data. Standard methods for computing
the POD modes require storing the whole large dataset; in contrast, using an incremental SVD algorithm only requires
storing one snapshot of the data at a time. Therefore, the incremental approach drastically reduces thememory requirement
for computing the POD of the data. Furthermore, the computational cost of the incremental approach is also much lower
than standard approaches. Moreover, by truncating small singular values (and corresponding singular vectors) during the
incremental update, we reduce the computational cost of orthgonalizing the stored singular vectors.

We tested our approach on finite element simulation data with the L2 inner product for a 1D Burgers’ equation and a 2D
Navier–Stokes equation. For the small-scale computational cases, we compared the incremental SVD results with the exact
SVD and found excellent agreement. We also found that the incremental algorithmworked very well using a different inner
product and also if we removed the average from the data (again with an incremental approach without storing the data).
We also tested the algorithm on a fine mesh for the Navier–Stokes problem with nearly 2 million velocity unknowns.

Our implementation of the incremental SVD algorithm with respect to a weighted inner product is based on the
implementation of the unweighted incremental SVD algorithm in [20], and a parallel implementation of this algorithm has
been developed [38]. It is possible that implementation ideas from [38] can be used to develop a parallel implementation of
the proposed algorithm; we leave this to be explored elsewhere.

Although we showed the proposed algorithm is exact in an idealized case, we did not perform an error analysis of the
algorithm with truncation in this work. In our numerical experiments, we found that we obtained very accurate results for
many choices of the truncation tolerances, as long as the tolerances were chosen relatively small (such as 10−8 and smaller).
An analysis may provide more insight into the accuracy of the algorithm with truncation and the choices of the tolerances;
we leave this for future work.

H. Fareed et al. / Computers and Mathematics with Applications 75 (2018) 1942–1960 1957

Acknowledgments

J. Singler and Y. Zhangwere supported in part by National Science Foundation grant DMS-1217122. J. Singler and Y. Zhang
thank the Institute for Mathematics and its Applications at the University of Minnesota for funding research visits, during
which some of this work was completed. The authors thank the referees for their comments, which helped to improve the
manuscript.

Appendix

A.1. POD in a Hilbert space and the matrix SVD with a weighted norm

Let X be a Hilbert space with inner product (·, ·), and suppose {uj}
s
j=1 ⊂ X . Define the POD operator K : Rs

→ X by

Kf =

s∑
j=1

ujfj, f = [f1, . . . , fs]T . (11)

The Hilbert adjoint operator K ∗
: X → Rs satisfies (Kf , x) = (f , K ∗x)Rs for all f ∈ Rs and x ∈ X . It can be checked that

K ∗x =
[
(x, u1), (x, u2), . . . , (x, us)

]T
. (12)

Since K has rank at most s, K is compact and has a singular value decomposition. Let {σi, fi, xi} be the core singular values
and singular vectors of K , i.e., the nonzero singular values and corresponding singular vectors of K . Then

Kfi = σixi, (13)
K ∗xi = σifi. (14)

In the proposition below, we consider the case where each uj is expressed in terms of a finite set of basis functions. We
show that the core singular values and singular vectors of K can be computed by finding the core SVD of a coefficient matrix
with respect to a weighted inner product.

Proposition A.1. Suppose {φk}
m
k=1 ⊂ X are linearly independent, and assume uj ∈ X is given by

uj =

m∑
k=1

Uk,jφk, for j = 1, . . . , s. (15)

Let the matrices M ∈ Rm×m and U ∈ Rm×s have entries Mj,k := (φj, φk) and Uk,l, for j, k = 1, . . . ,m and l = 1, . . . , s. Then
{σi, fi, ci} ⊂ R×Rs

×Rm
M are the core singular values and singular vectors of U : Rs

→ Rm
M if and only if {σi, fi, xi} ⊂ R×Rs

×X
are the core singular values and singular vectors of K : Rs

→ X, where ci and xi are related by

xi =

m∑
k=1

ci,kφk for all i.

Proof. First, since {φk}
m
k=1 ⊂ X is a linearly independent set, we know M is symmetric positive definite. Next, assume

Kfi = σixi (13) is satisfied with σi > 0. Substitute in the expansion for uj (15) and use the definition of K in (11) to obtain
s∑

j=1

m∑
k=1

Uk,jfi,jφk = σixi, (16)

where fi,j denotes the jth entry of the vector fi. Therefore,

xi =

m∑
l=1

ci,lφl, ci,l =
1
σi

s∑
j=1

fi,jUl,j. (17)

Let ci ∈ Rm
M denote the vector with entries ci,k. Then we have

Ufi = σici for all i. (18)

Note the above argument is reversible, i.e., if we assume Ufi = σici with σi > 0 as in (18), then we obtain Kfi = σixi, where
xi is defined in (17).

1958 H. Fareed et al. / Computers and Mathematics with Applications 75 (2018) 1942–1960

Next, we proceed similarly with K ∗xi = σifi (14) and σi > 0. Using the definition of K ∗ in (12), the expansion for uj in
(15), and the expansion for xi in (17) gives

σifi =

m∑
l=1

m∑
k=1

[(
ci,lφl,Uk,1φk

)
, . . . ,

(
ci,lφl,Uk,sφk

)]T
=

m∑
l=1

m∑
k=1

[
ci,lMl,kUk,1, . . . , ci,lMl,kUk,s

]T
=
[
cTi MU1, . . . , cTi MUs

]T
=
(
cTi MU

)T
,

where Uj denotes the jth column of the matrix U . Since U∗
= UTM , we have

U∗ci = σifi for all i. (19)

Again, this argument is reversible, i.e., U∗ci = σifi in (19) with σi > 0 implies K ∗xi = σifi, where xi is defined in (17).
Therefore, we have

Ufi = σici, U∗ci = σifi for all i

if and only if

Kfi = σixi, K ∗xi = σifi for all i.

Next, suppose {σi, fi, xi} ⊂ R × Rs
× X are the core singular values and singular vectors of K : Rs

→ X . To show
{σi, fi, ci} ⊂ R×Rs

×Rm
M are the core singular values and singular vectors of U : Rs

→ Rm
M , where ci = σ−1

i Ufi, we only need
to show {ci} ⊂ Rm

M is orthonormal. We show this as follows. Using cj = σ−1
j Ufj, U∗ci = σifi (19), and {fi} ⊂ Rs is orthonormal

gives (
ci, cj

)
M =

1
σj

(
ci,Ufj

)
M

=
1
σj

(
U∗ci, fj

)
Rs

=
σi

σj

(
fi, fj

)
Rs

=
σi

σj
δij = δij.

Therefore, {ci} ⊂ Rm
M is orthonormal.

Finally, suppose {σi, fi, ci} ⊂ R × Rs
× Rm

M are the core singular values and singular vectors of U : Rs
→ Rm

M . To show
{σi, fi, xi} ⊂ R×Rs

× X are the core singular values and singular vectors of K : Rs
→ X , where xi is defined in (17), we only

need to show {xi} ⊂ X is orthonormal. This follows directly from {ci} ⊂ Rm
M being an orthonormal set:(

xi, xj
)

= cTj Mci = δij.

This completes the proof. □

A.2. Incremental SVD after removing the average

Some authors apply POD on the data after removing the average of the data. Such a computation has recently been
performed incrementally in [19] by applying an algorithm for the additive modification of an SVD [39]. A similar procedure
can be done for time varying data with a weighted norm (as considered in Section 5). We do not give the details of the
procedure here; however, we show how Brand’s algorithm for the additive modification of the SVD [39] can be extended to
the case of a weighted norm.

Theorem A.2. Let M ∈ Rm×m be symmetric positive definite, and let a ∈ Rm
M and b ∈ Rn. Suppose U : Rn

−→ Rm
M has core SVD

given by U = VΣW T , where V TMV = I for V ∈ Rm×k, W TW = I for W ∈ Rn×k, andΣ ∈ Rk×k. Define

m = V ∗a, p = a − Vm, pa = ∥p∥M , (20)

n = W Tb, d = b − Wn, db = ∥d∥Rn , (21)

where V ∗
= V TM and

K =

[
Σ + mnT dbm

panT padb

]
.

H. Fareed et al. / Computers and Mathematics with Applications 75 (2018) 1942–1960 1959

If pa, db > 0 and the standard core SVD of K ∈ Rk+1×k+1 is given by

K = VKΣKW T
K , (22)

then the core SVD of U + abT is given by

U + abT = VuΣKW T
u ,

where

Vu = [V r] VK , r = p−1
a p, Wu = [W q] WK , q = d−1

b d.

Proof. Rewrite U + abT as

U + abT = VΣW T
+ abT = [V a]

[
Σ 0
0 1

]
[W b]

T . (23)

Next, use the definitions in (20) and (21), respectively, to obtain

[V a] = [V r]

[
I V ∗a
0 pa

]
,

[W b] = [W q]

[
I W Tb
0 db

]
.

Substituting these results into (23) gives

U + abT = [V r]

([
I m
0 pa

][
Σ 0
0 1

][
I n
0 db

]T)
[W q]

T

= [V r]

[
Σ + mnT dbm

panT padb

]
[W q]

T .

Next, note

[V r]
TM[V r] =

[
V TMV V TMr
(V TMr)T rTMr

]
=

[
I 0
0 1

]
since V TMV = V ∗V = I by assumption,

V TMr = V ∗r = V ∗(a − Vm)/pa = (m − m)/pa = 0,

and

rTMr =
∥p∥2

M

p2a
=

∥p∥2
M

∥p∥2
M

= 1.

Also, we have

[W q]
T
[W q] =

[
W TW W Tq
(W Tq)T qTq

]
=

[
I 0
0 1

]
sinceW TW = I ,

W Tq = W T (b − Wn)/db = (n − n)/db = 0,

and

qTq =
∥d∥2

M

d2b
=

∥d∥2
M

∥d∥2
M

= 1.

Proposition 2.3 gives the result. □

References

[1] D. Amsallem, C. Farhat, Interpolation method for adapting reduced-order models and application to aeroelasticity, AIAA J. 46 (7) (2008) 1803–1813.
http://dx.doi.org/10.2514/1.35374.

[2] P. Holmes, J.L. Lumley, G. Berkooz, C.W. Rowley, Turbulence, Coherent Structures, Dynamical Systems and Symmetry, second ed., Cambridge University
Press, Cambridge, 2012, p. xvi+386. http://dx.doi.org/10.1017/CBO9780511919701.

[3] H.T. Banks, R.C.H. del Rosario, R.C. Smith, Reduced-order model feedback control design: numerical implementation in a thin shell model, IEEE Trans.
Automat. Control 45 (7) (2000) 1312–1324. http://dx.doi.org/10.1109/9.867024.

http://dx.doi.org/10.2514/1.35374
http://dx.doi.org/10.1017/CBO9780511919701
http://dx.doi.org/10.1109/9.867024

1960 H. Fareed et al. / Computers and Mathematics with Applications 75 (2018) 1942–1960

[4] P. Benner, E. Sachs, S. Volkwein, Model order reduction for PDE constrained optimization, in: Trends in PDE Constrained Optimization, in: Internat.
Ser. Numer. Math., vol. 165, 2014, pp. 303–326. http://dx.doi.org/10.1007/978-3-319-05083-6_19.

[5] M. Gubisch, S. Volkwein, POD for linear-quadratic optimal control, in: P. Benner, A. Cohen, M. Ohlberger, K. Willcox (Eds.), Model Reduction and
Approximation: Theory and Algorithms, SIAM, Philadelphia, PA, 2017.

[6] M. Gunzburger, N. Jiang, M. Schneier, An ensemble-proper orthogonal decomposition method for the nonstationary Navier-Stokes equations, SIAM J.
Numer. Anal. 55 (1) (2017) 286–304. http://dx.doi.org/10.1137/16M1056444.

[7] R. Ştefănescu, A. Sandu, I.M. Navon, POD/DEIM reduced-order strategies for efficient four dimensional variational data assimilation, J. Comput. Phys.
295 (2015) 569–595. http://dx.doi.org/10.1016/j.jcp.2015.04.030.

[8] S. Qian, X. Lv, Y. Cao, F. Shao, Parameter estimation for a 2D tidal model with POD 4D VAR data assimilation, Math. Probl. Eng. 2016 (2016).
http://dx.doi.org/10.1155/2016/6751537. Article ID 6751537.

[9] L. Sirovich, Turbulence and the dynamics of coherent structures. I. Coherent structures, Quart. Appl. Math. 45 (3) (1987) 561–571. http://dx.doi.org/
10.1090/qam/910462.

[10] R. Pinnau, Model reduction via proper orthogonal decomposition, in: Model Order Reduction: Theory, Research Aspects and Applications, in: Math.
Ind., vol. 13, Springer, Berlin, 2008, pp. 95–109. http://dx.doi.org/10.1007/978-3-540-78841-6_5.

[11] J.R. Singler, Convergent snapshot algorithms for infinite-dimensional Lyapunov equations, IMA J. Numer. Anal. 31 (4) (2011) 1468–1496. http:
//dx.doi.org/10.1093/imanum/drq028.

[12] S. Volkwein, Proper orthogonal decomposition: Theory and reduced-order modelling (lecture notes), 2013. URL http://www.math.uni-konstanz.de/
numerik/personen/volkwein/teaching/POD-Book.pdf.

[13] M. Fahl, Computation of POD basis functions for fluid flows with Lanczos methods, Math. Comput. Modelling 34 (1–2) (2001) 91–107. http://dx.doi.
org/10.1016/S0895-7177(01)00051-6.

[14] C.A. Beattie, J. Borggaard, S. Gugercin, T. Iliescu, A domain decomposition approach to POD, in: Proceedings of the IEEE Conference on Decision and
Control, 2006, pp. 6750–6756. http://dx.doi.org/10.1109/CDC.2006.377642, ISSN: 0191-2216.

[15] Z. Wang, B. McBee, T. Iliescu, Approximate partitioned method of snapshots for POD, J. Comput. Appl. Math. 307 (2016) 374–384. http://dx.doi.org/10.
1016/j.cam.2015.11.023.

[16] C. Himpe, T. Leibner, S. Rave, Hierarchical Approximate Proper Orthogonal Decomposition, 2016. arXiv:1607.05210.
[17] C.G. Baker, K.A. Gallivan, P. Van Dooren, Low-rank incremental methods for computing dominant singular subspaces, Linear Algebra Appl. 436 (8)

(2012) 2866–2888. http://dx.doi.org/10.1016/j.laa.2011.07.018.
[18] B. Peherstorfer, K. Willcox, Dynamic data-driven reduced-order models, Comput. Methods Appl. Mech. Engrg. 291 (2015) 21–41. http://dx.doi.org/10.

1016/j.cma.2015.03.018.
[19] M.J. Zahr, C. Farhat, Progressive construction of a parametric reduced-order model for PDE-constrained optimization, Internat. J. Numer. Methods

Engrg. 102 (5) (2015) 1111–1135. http://dx.doi.org/10.1002/nme.4770.
[20] G.M. Oxberry, T. Kostova-Vassilevska, W. Arrighi, K. Chand, Limited-memory adaptive snapshot selection for proper orthogonal decomposition,

Internat. J. Numer. Methods Engrg. 109 (2) (2017) 198–217. http://dx.doi.org/10.1002/nme.5283.
[21] M. Brand, Incremental Singular Value Decomposition of Uncertain Data with Missing Values, in: A. Heyden, G. Sparr, M. Nielsen, P. Johansen (Eds.),

Computer Vision — ECCV 2002: 7th European Conference on Computer Vision Copenhagen, Denmark, May 28–31, 2002 Proceedings, Part I, Springer
Berlin Heidelberg, Berlin, Heidelberg, 2002, pp. 707–720. http://dx.doi.org/10.1007/3-540-47969-4_47.

[22] I. Gohberg, S. Goldberg, M.A. Kaashoek, Classes of Linear Operators. Vol. I, in: Operator Theory: Advances and Applications, vol. 49, Birkhäuser Verlag,
Basel, 1990, p. xiv+468. http://dx.doi.org/10.1007/978-3-0348-7509-7.

[23] P.D. Lax, Functional Analysis, in: Pure and Applied Mathematics (New York), Wiley-Interscience [John Wiley & Sons], New York, 2002, p. xx+580.
[24] M. Reed, B. Simon, Methods of Modern Mathematical Physics I: Functional Analysis, second ed., Academic Press, Inc., New York, 1980, p. xv+400.
[25] R.A. Horn, C.R. Johnson, Matrix Analysis, second ed., Cambridge University Press, Cambridge, 2013, p. xviii+643.
[26] G.H. Golub, C.F. Van Loan, Matrix Computations, fourth ed., in: Johns Hopkins Studies in the Mathematical Sciences, Johns Hopkins University Press,

Baltimore, MD, 2013, p. xiv+756.
[27] Z. Bai, J. Demmel, J. Dongarra, A. Ruhe, H. van der Vorst (Eds.), Templates for the Solution of Algebraic Eigenvalue Problems, Society for Industrial and

Applied Mathematics (SIAM), Philadelphia, PA, 2000, p. xxx+410. http://dx.doi.org/10.1137/1.9780898719581.
[28] T.A. Davis, Direct Methods for Sparse Linear Systems, in: Fundamentals of Algorithms, vol. 2, Society for Industrial and Applied Mathematics (SIAM),

Philadelphia, PA, 2006, p. xii+217. http://dx.doi.org/10.1137/1.9780898718881.
[29] T.A. Davis, S. Rajamanickam, W.M. Sid-Lakhdar, A survey of direct methods for sparse linear systems, Acta Numer. 25 (2016) 383–566. http://dx.doi.

org/10.1017/S0962492916000076.
[30] W. Gander, M.J. Gander, F. Kwok, Scientific Computing, in: Texts in Computational Science and Engineering, vol. 11, Springer, Cham, 2014, p. xviii+905.

http://dx.doi.org/10.1007/978-3-319-04325-8.
[31] K. Kunisch, S. Volkwein, Galerkin proper orthogonal decomposition methods for parabolic problems, Numer. Math. 90 (1) (2001) 117–148. http:

//dx.doi.org/10.1007/s002110100282.
[32] K. Kunisch, S. Volkwein, Galerkin proper orthogonal decomposition methods for a general equation in fluid dynamics, SIAM J. Numer. Anal. 40 (2)

(2002) 492–515. http://dx.doi.org/10.1137/S0036142900382612.
[33] M. Schäfer, S. Turek, F. Durst, E. Krause, R. Rannacher, Benchmark computations of laminar flow around a cylinder, in: E.H. Hirschel (Ed.), Flow

Simulation with High-Performance Computers II: DFG Priority Research Programme Results 1993–1995, Vieweg+Teubner Verlag, Wiesbaden, 1996,
pp. 547–566. http://dx.doi.org/10.1007/978-3-322-89849-4_39.

[34] I. Akhtar, J. Borggaard, J.A. Burns, H. Imtiaz, L. Zietsman, Using functional gains for effective sensor location in flow control: A reduced-order modelling
approach, J. Fluid Mech. 781 (2015) 622–656. http://dx.doi.org/10.1017/jfm.2015.509.

[35] B.R. Noack, K. Afanasiev, M.Morzynski, G. Tadmor, F. Thiele, A hierarchy of low-dimensionalmodels for the transient and post-transient cylinderwake,
J. Fluid Mech. 497 (2003) 335–363. http://dx.doi.org/10.1017/S0022112003006694.

[36] J.R. Shewchuk, Triangle: Engineering a 2D quality mesh generator and delaunay triangulator, in: M.C. Lin, D. Manocha (Eds.), Applied Computational
Geometry: Towards Geometric Engineering, in: Lecture Notes in Computer Science, vol. 1148, Springer-Verlag, 1996, pp. 203–222.

[37] J.R. Shewchuk, Triangle: A two-dimensional quality mesh generator and Delaunay triangulator, version 1.6, 2005. URL https://www.cs.cmu.edu/
~quake/triangle.html.

[38] W. Arrighi, G. Oxberry, T. Vassilevska, K. Chand, libROM, https://github.com/LLNL/libROM.
[39] M. Brand, Fast low-rankmodifications of the thin singular value decomposition, Linear Algebra Appl. 415 (1) (2006) 20–30. http://dx.doi.org/10.1016/

j.laa.2005.07.021.

http://dx.doi.org/10.1007/978-3-319-05083-6_19
http://refhub.elsevier.com/S0898-1221(17)30560-6/sb5
http://refhub.elsevier.com/S0898-1221(17)30560-6/sb5
http://refhub.elsevier.com/S0898-1221(17)30560-6/sb5
http://dx.doi.org/10.1137/16M1056444
http://dx.doi.org/10.1016/j.jcp.2015.04.030
http://dx.doi.org/10.1155/2016/6751537
http://dx.doi.org/10.1090/qam/910462
http://dx.doi.org/10.1090/qam/910462
http://dx.doi.org/10.1090/qam/910462
http://dx.doi.org/10.1007/978-3-540-78841-6_5
http://dx.doi.org/10.1093/imanum/drq028
http://dx.doi.org/10.1093/imanum/drq028
http://dx.doi.org/10.1093/imanum/drq028
http://www.math.uni-konstanz.de/numerik/personen/volkwein/teaching/POD-Book.pdf
http://www.math.uni-konstanz.de/numerik/personen/volkwein/teaching/POD-Book.pdf
http://www.math.uni-konstanz.de/numerik/personen/volkwein/teaching/POD-Book.pdf
http://dx.doi.org/10.1016/S0895-7177(01)00051-6
http://dx.doi.org/10.1016/S0895-7177(01)00051-6
http://dx.doi.org/10.1016/S0895-7177(01)00051-6
http://dx.doi.org/10.1109/CDC.2006.377642
http://dx.doi.org/10.1016/j.cam.2015.11.023
http://dx.doi.org/10.1016/j.cam.2015.11.023
http://dx.doi.org/10.1016/j.cam.2015.11.023
http://arxiv.org/1607.05210
http://dx.doi.org/10.1016/j.laa.2011.07.018
http://dx.doi.org/10.1016/j.cma.2015.03.018
http://dx.doi.org/10.1016/j.cma.2015.03.018
http://dx.doi.org/10.1016/j.cma.2015.03.018
http://dx.doi.org/10.1002/nme.4770
http://dx.doi.org/10.1002/nme.5283
http://dx.doi.org/10.1007/3-540-47969-4_47
http://dx.doi.org/10.1007/978-3-0348-7509-7
http://refhub.elsevier.com/S0898-1221(17)30560-6/sb23
http://refhub.elsevier.com/S0898-1221(17)30560-6/sb24
http://refhub.elsevier.com/S0898-1221(17)30560-6/sb25
http://refhub.elsevier.com/S0898-1221(17)30560-6/sb26
http://refhub.elsevier.com/S0898-1221(17)30560-6/sb26
http://refhub.elsevier.com/S0898-1221(17)30560-6/sb26
http://dx.doi.org/10.1137/1.9780898719581
http://dx.doi.org/10.1137/1.9780898718881
http://dx.doi.org/10.1017/S0962492916000076
http://dx.doi.org/10.1017/S0962492916000076
http://dx.doi.org/10.1017/S0962492916000076
http://dx.doi.org/10.1007/978-3-319-04325-8
http://dx.doi.org/10.1007/s002110100282
http://dx.doi.org/10.1007/s002110100282
http://dx.doi.org/10.1007/s002110100282
http://dx.doi.org/10.1137/S0036142900382612
http://dx.doi.org/10.1007/978-3-322-89849-4_39
http://dx.doi.org/10.1017/jfm.2015.509
http://dx.doi.org/10.1017/S0022112003006694
http://refhub.elsevier.com/S0898-1221(17)30560-6/sb36
http://refhub.elsevier.com/S0898-1221(17)30560-6/sb36
http://refhub.elsevier.com/S0898-1221(17)30560-6/sb36
https://www.cs.cmu.edu/%7Equake/triangle.html
https://www.cs.cmu.edu/%7Equake/triangle.html
https://www.cs.cmu.edu/%7Equake/triangle.html
https://github.com/LLNL/libROM
http://dx.doi.org/10.1016/j.laa.2005.07.021
http://dx.doi.org/10.1016/j.laa.2005.07.021
http://dx.doi.org/10.1016/j.laa.2005.07.021

	Incremental proper orthogonal decomposition for PDE simulation data
	Introduction
	Basic definitions and concepts
	The SVD with respect to a weighted inner product
	Computing the exact SVD with respect to a weighted inner product

	Brand's incremental SVD
	Standard inner product
	Weighted inner product via Cholesky factorization

	Brand's incremental SVD with respect to a weighted inner product
	Idealized algorithm without truncation
	Algorithm details: initialization, truncation, and orthogonalization

	Incremental POD for time varying functions
	Approximate continuous POD
	Data expanded in basis functions
	Data from a finite difference method

	Numerical results
	Example 1: 1D Burgers' equation
	Example 2: 2D Navier–Stokes equation

	Conclusion
	Acknowledgments
	Appendix
	POD in a Hilbert space and the matrix SVD with a weighted norm
	Incremental SVD after removing the average

	References

