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Parallel QR algorithm for data-driven
decompositions

By T. Sayadi† ‡, C. W. Hamman AND P. J. Schmid‡

Many fluid flows of engineering applications, although very complex in appearance, can
be approximated by lower-order models governed by a few modes, able to capture the
dominant behavior (dynamics) of the system. Recently, different techniques have been
developed, designed to extract the most dominant coherent structures from the flow.
Some of the more general techniques are based on data-driven decompositions, most of
which rely on performing a singular value decomposition (SVD) on a formulated snap-
shot matrix. As the number of degrees of freedom of a simulation increases, the resulting
data-matrix becomes longer, otherwise referred to as a tall-and-skinny (TS) matrix. Ul-
timately, the SVD of a TS data-matrix can no longer be handled on a single processor.
To overcome this limitation, the present study employs the parallel TSQR algorithm of
Demmel et al. (2012), which is further used as a basis of the underlying parallel SVD.
This algorithm is shown to scale well on machines with a large number of processors and,
therefore, allows the decomposition of very large data-sets.

1. Background and motivation

Data-driven decomposition techniques are employed to extract coherent structures
from flows of engineering applications. Since these decomposition techniques rely solely
on the underlying data-set, they are applicable to numerical or experimental results
alike, making them useful and versatile tools for post-processing purposes. Proper or-
thogonal decomposition (POD), for example, belongs to this class of methods, where
structures are ranked by their energy content and form an orthogonal basis of the ana-
lyzed data-set. Often, more than one frequency is attributed to each POD mode, since
the optimization process is focused on the spatial content of the data rather than on
the time evolution. Balanced POD (Rowley 2005) is an alternative to POD for input-
output systems and constitutes a tractable method for computing approximate balanced
truncations of large-scale state-space systems used in control applications. Another ex-
ample of a data-decomposition technique is Koopman (Mezic 2013, Rowley et al. 2009)
or dynamic (Schmid 2010) mode decomposition. The result of this decomposition algo-
rithm is a non-orthogonal basis, where each mode is associated with a specific frequency
present throughout the data. DMD has recently been applied to various flow configu-
rations yielding interesting results (Rowley et al. 2009, Grilli et al. 2012, Sayadi et al.
2014).

All of these data-decomposition techniques, however, rely on an SVD of the data-
matrix. As the size of the analyzed data increases, through highly resolved simulations
or better-quality experimental measurements, the number of rows of the snapshot-matrix
increases, resulting in a tall-and-skinny (TS) snapshot-matrix. The TS data matrix will
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Figure 1: Direct TSQR algorithm suggested by Benson et al. (2013).
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Figure 2: Comparison of the singular values and eigenvalues of the serial to the parallel
algorithms. ◦, serial algorithm; •(gray), parallel algorithm.

eventually make the SVD-based data-driven algorithm computationally expensive and
ultimately prohibitive to execute on a single processor. For this reason, it is necessary
to design and implement a parallel routine for performing the decomposition algorithm;
this routine would eliminate the solution of an SVD for the full, large-scale data-set and
would allow for the decomposition algorithm to remain computationally manageable.

In this study we apply a parallel algorithm for performing a QR-factorization, which
will be used as a basis for the singular value decomposition. The algorithm will be tested
on the direct numerical simulation (DNS) of H- and K-type transitions of Sayadi et al.
(2013), the details of which are presented in Section 3.

2. Parallel algorithm

In this section we will first introduce the parallel QR-decomposition which is then used
as a building block for all the SVD-based data-driven decomposition algorithms. After-
wards, the algorithm for finding the singular values and singular vectors is described.
The resulting parallel SVD can then be used to perform POD on numerical and experi-
mental data. Finally, the SVD is the initial step of DMD (Schmid 2010). Therefore, the
additional steps of the parallel DMD will be outlined.
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Figure 3: The speed-up of the parallel algorithm. − − −, linear scaling; –•– scaling of
the parallel algorithm.

2.1. Parallel QR factorization
The QR-factorization and SVD are two very fundamental decompositions that have many
applications in scientific computing and data analysis. The TSQR algorithm of Demmel
et al. (2012) is the cornerstone of our parallel DMD computer algorithm. TSQR was ini-
tially applied in the context of DMD using MapReduce programming model by Benson
et al. (2013). The schematic of the algorithm is shown in Figure 1. Other implementa-
tions of the TSQR algorithm for the purpose of high-performance computing exist, for
example Trilinos (Heroux et al. 2003). However, due to the simplicity of the direct TSQR
method, an in-house version has been developed for a more effective integration with the
underlying flow solver and further post-processing purposes. The data matrix is first di-
vided into sub-matrices of the same column size and distributed among the processors.
There are no restrictions on how to divide the data-matrix. The QR-factorization is then
performed on each sub-matrix and the resulting Ri matrices are gathered into a single
matrix, R′. A QR-factorization is then performed on the resulting R′ matrix. The re-
sulting Q is then divided between the processors, Q2i with i = 1, · · · ,m, where m is the
number of processors. Q2i is a square matrix with the size of the number of snapshots.
Multiplying the resulting Q2i by the original Q1i’s of the sub-matrices gives the final
Qi of the full data matrix, which is already distributed among the processors. R is the
upper-triangular matrix resulting from the QR-factorization of R′.

2.2. Parallel singular value decomposition
Once the QR-factorization is computed, the singular value decomposition of the data
matrix can be calculated in a straightforward manner by an additional SVD on the small
matrix, R, giving (UR,Σ,Wt) = SVD(R). The left-singular values of the full data-
matrix Ui on each processor will then be computed by multiplying each Qi matrix by
the resulting UR. The singular values and the right-singular vectors are identical to the
ones computed from R.

In order to investigate whether the results of the parallel algorithm match those of the
serial one, a SVD is performed on 101 snapshots taken from a subdomain of the DNS of
Sayadi et al. (2013), with 128, 100, and 128 grid points in the streamwise, wall-normal



338 Sayadi, Hamman & Schmid

Nx Ny Nz ∆x+ ∆y+
min ∆z+ Reθmax Number of snapshots

H-type 4096 240 512 10.3 0.41 5.4 1250 101
K-type 4096 240 512 9.7 0.39 5.5 1410 101

Table 1: Computational domain of the respective DNS simulation used for the decom-
position; total degrees of freedom per snapshot ≈ 0.5 Billion.

and spanwise directions, respectively. Figure 2(a) compares the singular values obtained
from the two different algorithms and the results agree to within round-off.

Figure 3 shows the manner by which this parallel algorithm scales as the number of
processors increases. Each column of the snapshot matrix consists of approximately 8
million degrees of freedom. This is the maximum size of data which would fit on 64
processors (lower limit of the scaling analysis). The maximum number of processors used
for this scaling analysis is 1024. This figure shows that the scaling is near perfect for this
case study.

2.3. Dynamic mode decomposition

Once singular values of the full data-matrix are computed, the same procedure as de-
scribed in Schmid (2010) can be followed. The snapshot sequence of data is given by
matrix VN

1 (snapshot matrix, VN−1
1 is the same as A, given in previous sections):

VN
1 = {v1, v2, · · · , vN}, (2.1)

where the vector vi is the ith snapshot of the flow field containing, e.g., the velocity field.
If we assume that a linear mapping M connects snapshot vi to the subsequent snapshot
vi+1, we have

VN
2 = MVN−1

1 . (2.2)

Replacing the snapshot matrix by the singular values and vectors from the parallel SVD
and multiplying both sides by U∗ gives U∗AU = U∗VN

2 WΣ−1 ≡ S̃. In order to compute
S̃, U∗VN

2 is initially formed on each processor separately and the resulting small matrix
is then added across processors. Let yi and µi be the ith eigenvectors and eigenvalues of
S̃, respectively. We then have

U∗AUY = S̃Y = Yµ, (2.3)

and

AUY = UYµ, (2.4)

with Y containing the eigenvectors yi and µ containing the eigenvalues mui. The dynamic
modes are calculated as

Φ = UY. (2.5)

The final multiplication (Eq. 2.5) can easily be performed in parallel. It can be deduced
from Eqs. (2.2)-(2.5) that, once the singular values are computed, the algorithm is paral-
lelizable in a straightforward fashion. Figure 2(b) shows the comparison of the eigenvalues
evaluated through the serial and parallel algorithms. The subdomain is the same as that
described in Section 2.2.
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Figure 4: Modal decomposition of the H-type transition. (c, d) wall-parallel slices of the
streamwise velocity component. The selected DMD modes correspond to the Tollmien-
Schlichting and subharmonic waves.

3. Results

The performance of the developed algorithm will be assessed by performing DMD on
the data of direct numerical simulations of H- and K-type transitions of Sayadi et al.
(2013); details of the analyzed domains are given in Table 1. The decomposed domain
consists of approximately half a billion grid points in each simulation and covers the full
streamwise extent, from low-amplitude disturbances to non-linear breakdown into the
turbulent regime. Previously, a domain of this size could not be analyzed due to memory
restriction on a single processor.

The result of DMD of the streamwise velocity component of the H-type transition is
first discussed. Hundred and one equally spaced snapshots are included in the analysis.
These snapshots span approximately two periods of the fundamental Tollmien-Schlichting
wave. The extracted eigenvalues are plotted in Figure 4(a). Two modes, mode 2 and mode
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(a) Mode 2, x = 4.0 (b) Mode 3, x = 4.0

(c) Mode 2, x = 5.0 (d) Mode 3, x = 5.0

(e) Mode 2, x = 6.0 (f) Mode 3, x = 6.0

Figure 5: Contours of the streamwise velocity of modes 2 and 3, H-type transition.

3, are highlighted in the figure and are selected using the sparsity promoting algorithm
(Jovanović et al. 2014) for further analysis. As demonstrated in Sayadi et al. (2014), these
two modes coincide with the fundamental Tollmien-Schlichting and subharmonic modes
of the early transitional regime. The amplitudes of the modes are determined using the
optimization algorithm described in Jovanović et al. (2014) and the resulting spectrum
is shown in Figure 4(b).

The spatial evolution of the DMD modes at a fixed wall-normal slice across the do-
main is given in Figure 4(c,d). The Tollmien-Schlichting wave is characterized by its two-
dimensionality, which is illustrated in Figure 4(d) at the initial stage of the development
of mode 2. However, as the flow evolves into the nonlinear stage of the transition mecha-
nism, the two-dimensionality of the Tollmien-Schlichting wave breaks down. In contrast,
the subharmonic wave exhibits a cosine shape in the spanwise direction at the upstream
portion of the domain. The spanwise extent of the domain is such that it contains four
wavelengths of the subharmonic wave, and this can be noticed in the extracted mode
of Figure 4(c), especially in the streamwise region of 4.2 ≤ x ≤ 4.5. In order to better
visualize the evolution of the modes downstream, we have extracted three slices at fixed
streamwise locations. The comparison of the streamwise slices of Figure 5(a,b) illustrates
the three-dimensional shape of the subharmonic disturbance versus the two-dimensional
nature of the Tollmien-Schlichting wave. These modes are similar to the modal shapes
that are extracted through linear stability analysis at this stage of the transition process,
since the amplitude of the disturbances is still relatively low. As the modes evolve down-
stream, mode 2 maintains the spanwise wavelength of the initial subharmonic wave. This
is illustrated by the shape of this mode shown in Figure 5(c) and the alternating signs
along the spanwise direction. Mode 3 evolves in a different manner, and no alternating
signs are observed in the shape of the mode. Similarly, at the streamwise location of
x = 6.0, close to the breakdown to turbulence, the overall shape of the modes resembles
the behavior observed upstream.

Now we will present the low-frequency modes extracted through dynamic mode de-
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Figure 6: Modal decomposition of the K-type transition. (c, d) wall-parallel slices of
the streamwise velocity component. The selected DMD modes correspond to the two
low-frequency modes.

composition of the K-type transition data. The size of the data is similar to that of
the H-type transition, described previously and given in Table 1. The eigenvalues and
spectrum are computed using the sparsity promoting algorithm (Jovanović et al. 2014)
and are plotted in Figure 6. The highlighted modes, 2 and 5, are the chosen two low-
frequency modes, which will be analyzed in further detail. Mode 5 is the higher harmonic
of mode 2. Figure 6(c,d) show that at the initial stage of the evolution, where the dis-
turbances are of low-amplitude, their growth follows the linear stability approximation,
both modes are two-dimensional. The lowest-frequency mode (mode 2) represents the
Tollmien-Schlichting wave and has the same frequency. The higher-frequency mode ap-
pears with a smaller wavelength in the streamwise direction upstream of the domain. As
these modes evolve downstream, the location where the three-dimensional trace appears
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(a) H-type transition normalized by x0, where Re|x0 = 105.

(b) K-type transition normalized by x0, where Re|x0 = 105

Figure 7: Contours of streamwise velocity showing the development of the lowest-
frequency mode (mode 2) for the H- and K-type transitions.

in both modes coincides with the location where Λ-vortices start to form within the
computational domain. Further downstream, where the Λ-vortices evolve into localized
turbulent patches, smaller scales also appear in the shape of these modes.

In order to examine the manner by which modes of the same frequency evolve within
the two different transition scenarios, the evolution of mode 2 is compared between K-
and H-type transitions in Figure 7. The wall-parallel slice includes the full computational
domain, including the fully turbulent regime. The K-type transition is characterized by
the appearance of aligned Λ-shaped vortices in the late stages of transition, whereas
these vortices appear in a staggered format in the H-type transition. This difference
is apparent from the shape of these modes. In addition, the trace of these Λ-vortices
can be clearly seen in the low-frequency modes of the K-type transition. The distance
from which the three-dimensional effects become visible to where the mode stops being
spanwise periodic is smaller in the K-type compared to that in the H-type transition. This
can be attributed mainly to the higher-amplitude initial disturbances that are introduced
into the computational domain for the K-type transition, causing the region of nonlinear
growth to shorten and the breakdown to turbulence to happen quicker. Although the
spatial development of these modes depends on the transition scenario, in the region
where the flow is fully turbulent the differences between the two modes diminish (Sayadi
et al. 2013). In both transition scenarios the modes are composed of streaky structures
in the streamwise direction. The shape and the size of these streaks is similar to what
is reported for streaks in the buffer layer of turbulent wall-bounded flows. This is to be
expected as the slices are taken within the buffer layer region of the turbulent boundary
layer for both cases.
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4. Conclusions

Data-driven decompositions are efficient techniques for extracting coherent structures
from data taken from experiments or numerical simulations. Most of these decomposition
algorithms are based on the QR-factorization of the constructed snapshot matrix. The
columns of the snapshot matrix represents the full data at a single time, and the rows
are equally spaced time snapshots of the same data format. As the size of the simulations
increases, the rows of the snapshot matrix also increase, resulting in a tall-and-skinny
(TS) matrix. In this study we have adopted a parallel QR algorithm, proposed origi-
nally Demmel et al. (2012) and later used by Benson et al. (2013) for a MapReduce
infrastructure. Once the QR algorithm is in place, the singular values and vectors can be
computed in a straightforward fashion. This algorithm is shown to scale linearly on up
to 1024 processors. With access to the singular eigenvalues and vectors, we can extend
the algorithm to perform DMD within the same context. We have applied this parallel
algorithm to the DNS data of H-type and K-type transitions, where each column of the
data matrix is composed of half a billion degrees of freedom.
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