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1 Introduction

In this lab we will generate a discrete-time domain signal using MATLAB
and analyze its power spectrum in the frequency domain. We will learn about
spectral leakage and signal aliasing. We will observe aliasing due to under-
sampling and how this relates to the Nyquist-Shannon sampling theorem, the
minimum required sample frequency to maintain all the signal information is
2 times the frequency of the highest component. We will also write our signal
into a ”.wav” file, operate on the file, and read the file back into MATLAB.

2 Objectives
1. Generate a discrete-time domain signal in MATLAB
2. Write the result to file

3. Verify the results of your code in MATLAB

3 Results
3.1 Task 1.
Sampling sinusoids,
x1 = sin(2w fin) fi=23kH=z
xo = sin(27 fan) fo=23kHz
x3 = sin(27 f3n) f3 =36kHz

Continuous waveform plot,
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Using stem() to get 100-discrete samples, we observe that the waveform looks
as below:
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Looking at the stem plot, we can easily see the 100 points of each
sinusoid-given that L = 100.

From observation the 2.3kHz sinusoid has a longer wavelength than the 36kHz
sinusoid, and this we expect because wavelength is inversely proportional to
frequency A = %. So the higher frequency will have a shorter wavelength.

The 23kHz sinusoid looks like an amplituded modulated signal. As if two
sinusoids have been added together in such a way that the waveform looks like
beats; where there is constructive interference at the peaks and destructive
interference at the nodes. Initially, I was expecting to see a sine wave similar
to signals 1 and x3 but with a wavelength in between the two.

3.2 Task 2.
Xy = FFT () fo=23kHz

X4, Xo, X3 are power spectrums of their corresponding signals.
64-Fast Fourier Transform in radians,

FFT (f,=2.3kHz)
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For analysis purpose I will observe the power spectral densities in frequency.
FFT in frequency,

FFT (f,=2.3kHz)
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From the fft plot in frequency, we can observe that x; has a frequency of
2.3kHz, o has a frequency of 23kHz, and x3 has a frequency that is not 36kHz
(between 10kHz and 15kHz); this is due to the under-sampling of signal x5
caused by the sampling rate (discussed in detail in Task 4). However, we do
expect to see three distinct peaks in the FFT plot since we have three distinct
sinusoids.

When taking the fft() of the signals, we plot half the points since we know that
sine and cosine have a positive and a negative frequency component in the
frequency domain.

[0(w — wp) + 0(w + wo)]
[0(w —wp) — 6(w + wp)]

cos(wot) =

T
, m
sin(wot) = 5
From this Fourier Transform, we expect to see delta functions in the frequency
domain analysis. However in our observation, we do not see delta functions.
And this is due to spectral leakage (discussed in Task 3) and how
MATLAB handles windowing and bins.



FFT in frequency plotted together,

- FFT (in frequency)
L
n X: 1.2e+04
IHI Y: 16.66

16
14 r f

12t |l 1 [

+x3}

~ 10 || [ A

fft(x X
co

W

0 0.5 1 1.5 2 2.5
frequency (Hz) «10%

Here we can better see that signal x3 has been undersampled. It’s fft shows
that x3 has a frequency component of 1.2kHz when the original signal is
36kHz.

3.3 Task 3.

Explain why the magnitude plots are not delta functions.

1. https://flylib.com/books/en/2.729.1/dft_leakage.html

2. https://dspillustrations.com/pages/posts/misc/
spectral-leakage-zero-padding-and-frequency-resolution.html

Fanalysis(k) =k % (1)

The magnitude plots of the fft() are not delta functions due to DFT leakage.
This is because the ”input sequence does not have an integral number of cycles
over the N-sampled DFT interval, so the input energy has leaked into all the
other DFT output bins.”

”the analytical frequencies always have an integral number of cycles over our
total sample interval of 64 points.”

”the DFT assumes that its input signal is one period of a periodic signal, its
output are the discrete frequencies of this periodic signal” (1)


https://flylib.com/books/en/2.729.1/dft_leakage.html
https://dspillustrations.com/pages/posts/misc/spectral-leakage-zero-padding-and-frequency-resolution.html
https://dspillustrations.com/pages/posts/misc/spectral-leakage-zero-padding-and-frequency-resolution.html

Because the DFT assumes a periodic repetition of the signal, we can see from
Task 1 that our signals are not a complete period with length L = 100. So
there will be discontinuities between the transistions since we did not capture
a complete period. So the DFT will not see a pure sinusoidal wave, so we do
not see a delta function. This is an example of spectral leakage.

"spectral leakage — even though the signal x(t) is a periodic signal of
frequency fy, if we take a part of the signal and calculate the DFT spectrum
from it, we see multiple frequencies occuring, due to the strange behaviour at
the period’s boundary” (2)

If we were to measure an integer multiple of the signal period, then we would
observe that the leakage would disappear, since the fft() will see a complete
periodic signal.



3.4 Task 4.

Describe how the plots in Task 2 relate to the famous Nyquist-Shannon
sampling theorem. (If there is aliasing, at what frequency is it showing it in
the spectrum and why?)

Nyquist-Shannon sampleing theorem:
http://195.134.76.37/applets/AppletNyquist/Appl_Nyquist2.html
”The minimum sampleing frequency of a signal that it will not distort its

underlying information, should be double the frequency of its highest
frequency component.”
"If f is the sampling frequency, then the critical frequency (or Nyquist limit)

fs »

[n is defined as equal to 4.

The plots in Task 2 show the frequency domain of the signals z1, z2, and x3.
There is aliasing on signal z3. The original sinusoid has a frequency of 36kHz,
but due to aliasing, the 64-fft shows that x3 has a frequency of 12kHz. This
means that x3 with a frequency of f3 = 36kH z has been under-sampled or
distorted, and we can say x3 is an aliased signal due to undersampling.

A

Amplitude

Time

This can be explained by the Nyquist-Shannon sampling theorem, that says
”The minumum sampling frequency of a signal that it will not distort its
underlying information, should be double the frequency of its highest frequency
component.”

x1 = sin(2w fin) f1=23kHz
xo = sin(2w fan) fo=23kHz
x3 = sin(2m fsn) f3=36kHz

Fy = 48k H z should be used for frequency components < 24k H z signals, so x;
and xo will retain their signal information; frequency components higher than


http://195.134.76.37/applets/AppletNyquist/Appl_Nyquist2.html

24kHz will be aliased—as seen with x3 which has a frequency component of
36kHz.

The minimum sampling rate to maintain the original signal of all z1, x2, and
x3 is Fy = 2 x maz(f1, f2, f3) = 2 x 36000 = 72kH z

3.5 Task 5.

Used audiowrite() and to write each signal to a wav file. Using the c-file, I
generated a c-skeleton that reduced the amplituded of the signals by one half
in an output wav file. I then read the signal back into MATLAB using
audioread().

Plotting the processed signals from the c-generated file,
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x is the original signal
y is the modified signal

The c-generated wav files show an output signal that has a max amplitude of
one half. This verifies that the c-skeleton did reduce the amplitudes of each
signal by half. Without changing the shape of the waveform, we reduced the
amplitudes by dividing by two each component of the signal, element by
element wise.
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4 Code Appendix
4.1 MATLAB Code:

%% Task 1

clear all; close all; clc

Fs=48000; %48kHz, sample rate

L=100; %100, number of samples

£=[2300 23000 36000]; %2.3kHz, 23kHz, 36kHz

%sinusoids

n=0:(1/Fs): ((L/Fs)-(1/Fs));
x1=sin(2*pi*f (1)*n);
x2=sin(2*pi*f (2)*n) ;
x3=sin(2*pi*f (3)*n) ;

figure;

subplot(3,1,1);

plot(n,x1); title('f_1=2.3kHz'); ylabel('x_1'); xlabel('n');
subplot(3,1,2);

plot(n,x2); title('f_2=23kHz'); ylabel('x_2'); xlabel('n');
subplot(3,1,3);

plot(n,x3); title('f_3=36kHz'); ylabel('x_3'); xlabel('n');

figure;

subplot(3,1,1);

stem(n,x1); title('f_1=2.3kHz'); ylabel('x_1'); xlabel('n');
subplot(3,1,2);

stem(n,x2); title('f_2=23kHz'); ylabel('x_2'); xlabel('n');
subplot(3,1,3);

stem(n,x3); title('f_3=36kHz'); ylabel('x_3'); xlabel('n');

%%h task 1 test 1
t=0:(1/Fs): ((L/Fs)-(1/Fs));
x1=sin(2*pi*f (1)*t);
figure;

stem(t,x1)

%% task 1 test 2

w=[2%pi*f (1) 2*pix*f(2) 2xpixf(3)]; %w=2%pi*f rad/s
n=0:1/Fs: ((L/Fs)-(1/Fs));

figure;

stem(n,sin(n*w(1)))

10
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%% task 1 test 3

Fs = 48000; % Sampling frequency
T = 1/Fs; ' Sampling period

L = 100; % Length of signal

t (0:L-1)*T; % Time vector

signal=sin(2*pix*f (1)*t);
stem(t,signal)
%concl.: all same methods

%% Task 2 test

clear all; close all; clc

Fs=48000; %48kHz, sample rate

L=100; %100, number of samples

£=[2300 23000 36000]; %2.3kHz, 23kHz, 36kHz

%sinusoids

n=0: (1/Fs) : ((L/Fs)-(1/Fs));
x1=sin(2*pix*f (1)*n);
x2=sin(2*pi*f (2)*n);
x3=sin(2*pi*f (3)*n) ;
x=x1+x2+x3;

%signals x1, x2, x3
%L=64; %look here
X=fft(x,64); %64point-fft
P2=abs(X/L);
P1=P2(1:L/2+1);
P1(2:end-1)=2*%P1(2:end-1);
freq = Fs*(0:(L/2))/L;
plot(freq,P1);

%x1im ([0 4000]);

%mapping (0-48000) to (0-2pi)

%% Task 2 £ft() in frequency

clear all; close all; clc

Fs=48000; %48kHz, sample rate

L=100; %100, number of samples

£=[2300 23000 36000]; %2.3kHz, 23kHz, 36kHz

%sinusoids

n=0:(1/Fs): ((L/Fs)-(1/Fs));
x1=sin(2*pix*f (1)*n);
x2=sin(2*pi*f (2)*n) ;
x3=sin(2*pi*f (3)*n);

11
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N=64;

X1=fft(x1,N);
X2=fft (x2,N);
X3=£fft (x3,N);

P1=X1.*conj(X1)/N;
P2=X2.*conj(X2) /N;
P3=X3.*conj(X3)/N;
£=Fsx(0:0.5%N) /N;

figure;

subplot(3,1,1);

plot (£,P1(1:0.5%N+1)); title('FFT (f_1=2.3kHz)'); ylabel('X_1');
— xlabel('frequency');

subplot(3,1,2);

plot(f,P2(1:0.5%N+1)); title('FFT (f_2=23kHz)'); ylabel('X_2');
— xlabel('frequency');

subplot(3,1,3);

plot (£,P3(1:0.5%N+1)); title('FFT (f_3=36kHz)'); ylabel('X_3"');
— xlabel('frequency');

%% Task 2 fft() in radians

clear all; close all; clc

Fs=48000; %48kHz, sample rate

L=100; %100, number of samples

£f=[2300 23000 36000]; %2.3kHz, 23kHz, 36kHz

/%sinusoids

n=0:(1/Fs): ((L/Fs)-(1/Fs));
x1=sin(2%pi*f (1)*n);
x2=sin(2*pi*f (2)*n) ;
x3=sin(2*pixf (3)*n);

N=64;

X1=fft(x1,N);
X2=fft (x2,N);
X3=fft(x3,N);

P1=X1.*conj(X1)/N;
P2=X2.*conj(X2)/N;
P3=X3.*conj(X3)/N;
f=Fs*(0:0.5%N) /N;
fhrad=f*2xpi/size(£f,2);

12
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rad=linspace(0,2*pi,size(f,2)); %# of rad points = # freq points

figure;

subplot(3,1,1);

plot(rad,P1(1:0.5%N+1)); title('FFT (f_1=2.3kHz)'); ylabel('X_1')
— ; xlabel('frequency');

set(gca, 'XTick',0:pi/2:2%pi)

set(gca, 'XTickLabel',{'0', 'pi/2', 'pi', '3*pi/2', '2%pi'})

subplot(3,1,2);

plot(rad,P2(1:0.5%N+1)); title('FFT (f_2=23kHz)'); ylabel('X_2");
— xlabel('frequency');

set(gca, 'XTick',0:pi/2:2%pi)

set(gca, 'XTickLabel',{'0', 'pi/2', 'pi', '3*pi/2', '2%pi'})

subplot(3,1,3);

plot(rad,P3(1:0.5%N+1)); title('FFT (f_3=36kHz)'); ylabel('X_3");
— xlabel('frequency');

set(gca, 'XTick',0:pi/2:2%pi)

set(gca, 'XTickLabel',{'0', 'pi/2', 'pi', '3*pi/2', '2%pi'})

%% Task 2 FFT(x1+x2+x3) in frequency

clear all; close all; clc

Fs=48000; %48kHz, sample rate

L=100; %100, number of samples

£=[2300 23000 36000]; %2.3kHz, 23kHz, 36kHz

%sinusoids

n=0:(1/Fs): ((L/Fs)-(1/Fs));
x1=sin(2*pix*f (1)*n);
x2=sin(2*pix*f (2)*n) ;
x3=sin(2*pi*f (3)*n) ;
x=x1+x2+x3;

N=64; 764 point-fft

x=x1+x2+x3;

X=fft(x,N); %N point-fft

Pxx=X.*conj(X)/N;

f=Fs*(0:0.5%N) /N;

figure;

plot (£f,Pxx(1:0.5%N+1));

title('FFT (in frequency)'); xlabel('frequency (Hz)'); ylabel('X=
— fft(x_1+x_2+x_3)"');

%% Task 5

clear all; close all; clc

Fs=48000; %48kHz, sample rate

L=100; %100, number of samples

£=[2300 23000 36000]; %2.3kHz, 23kHz, 36kHz

13
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%sinusoids

n=0:(1/Fs): ((L/Fs)-(1/Fs));
x1=sin(2*pi*f (1)*n);
x2=sin(2*pi*f (2)*n) ;
x3=sin(2*pi*f (3)*n) ;

%% write to WAV file
filenamel='signal_1.wav';
audiowrite(filenamel,x1,Fs);

filename2="'signal_2.wav';
audiowrite(filename2,x2,Fs);

filename3='signal_3.wav';
audiowrite(filename3,x3,Fs);

% on linux terminal run:

% gcc -1lm -o skeleton LabO.c $(pkg-config sndfile --cflags --1libs
— )

% ./skeleton signal_1.wav output_1.wav

%% read output file into MATLAB
[y1,Fs1] = audioread('output_1.wav');

[y2,Fs2] = audioread('output_2.wav');
[y3,Fs3] = audioread('output_3.wav');
% plot

figure;

subplot(3,1,1);

plot(n,x1); hold on;

plot(n,y1);title('f_1=2.3kHz'); ylabel('amplitude'); xlabel('n');
legend('x1','y1l'); hold off;

subplot(3,1,2);

plot(n,x2); hold on;

plot(n,y2); title('f_2=23kHz'); ylabel('amplitude'); xlabel('n');
legend('x2','y2"'); hold off;

subplot(3,1,3);

plot(n,x3); hold on;

plot(n,y3); title('f_3=36kHz'); ylabel('amplitude'); xlabel('n');
legend('x3','y3'); hold off;

%% example time domain
%http://matlab.izmiran.ru/help/techdoc/ref/fft.html
t = 0:0.001:0.6;

14




x = sin(2*pi*50*t)+sin(2*xpi*x120%t) ;

y = x + 2*randn(size(t));
plot (1000%t(1:50),y(1:50))

title('Signal Corrupted with Zero-Mean Random Noise')

xlabel('time (milliseconds)')

%% example frequency domain

Y = £fft(y,512);

Pyy = Y.* conj(Y) / 512;

f = 1000%(0:256)/512;
plot(f,Pyy(1:257))
title('Frequency content of y')
xlabel('frequency (Hz)')

15
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4.2 C Code:

#include <stdlib.h>
#include <stdio.h>
#include <float.h>
//#include "wave.h"
#include <sndfile.h>
#include <math.h>

#define PI 3.14159265

int main(int argc, char *argv[])
{

int ii;

//Require 2 arguments: input file and output file
if (argec < 3)
{

printf ("Not enough arguments \n");

return -1;

SF_INFO sndInfo;
SNDFILE *sndFile = sf_open(argv[1], SFM_READ, &sndInfo);
if (sndFile == NULL) {
fprintf (stderr, "Error reading source file '/s': Ys\n",
— argv[1], sf_strerror(sndFile));
return 1;

SF_INFO sndInfoOut = sndInfo;

sndInfoOut.format = SF_FORMAT_WAV | SF_FORMAT_PCM_16;

sndInfoOut.channels =

sndInfoOut.samplerate = sndInfo.samplerate;

SNDFILE *sndFileOut = sf_open(argv[2], SFM_WRITE, &sndInfoOut)
— 3

)

=

// Check format - 16bit PCM

if (sndInfo.format '= (SF_FORMAT_WAV | SF_FORMAT_PCM_16)) {
fprintf (stderr, "Input should be 16bit Wav\n");
sf_close(sndFile);
return 1;
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// Check channels - mono

if (sndInfo.channels !'= 1) {
fprintf(stderr, "Wrong number of channels\n");
sf_close(sndFile);
return 1;

}

// Allocate memory

float *buffer = malloc(sizeof (double));

if (buffer == NULL) {
fprintf (stderr, "Could not allocate memory for file\n");
sf_close(sndFile);
return 1;

3

// Load data
for(ii=0; ii < sndInfo.frames; ii++)

{
sf_readf_float(sndFile, buffer, 1);
//Do something to the variable buffer here
//buffer[iil=buffer[iil/2;
sbuffer = *buffer/2;
sf_writef_float(sndFileOut, buffer, 1);
}

sf_close(sndFile);
sf_write_sync(sndFileQut);
sf_close(sndFileOut);
free(buffer);

return 1;
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4.3 EIpXCode:

\documentclass{article}

\usepackage [utf8]{inputenc}

\usepackage{graphicx}

\usepackage{hyperref}

%\usepackage [a4dpaper,width=150mm, top=1in,bottom=1in] {geometry}
%\usepackage [adpaper ,margin=1in] {geometry}
\usepackage{indentfirst}

\usepackage{amsmath}

\pagenumbering{arabic}

\usepackage{subcaption}

\usepackage [numbered] {mcode} %using mcode.sty to convert .m file
— code to latex format

\usepackage{listings}

\usepackage{adjustbox}

\usepackage{minted}

\graphicspath{{./images/}}

\1lstset{
basicstyle=\ttfamily,
columns=fullflexible,
frame=single,
breaklines=true,
postbreak=\mbox{\textcolor{red}{$\hookrightarrow$}\space},
}

\begin{document}

\input{titlepage}

\hspace{Opt}
\vfill
\tableofcontents
\vfill
\hspace{Opt}

18



38

39

40

41

42

43

44

45

46

47

48

49

50

60

61

62

63

64

65

66

67

68

\newpage

yA
N ]
(—>

% Content

%
Oy
f%

\section{Introduction}

In this lab we will generate a discrete-time domain signal
using MATLAB and analyze its power spectrum in the
frequency domain. We will learn about \textbf{spectral
leakage} and \textbf{signal aliasing}. We will observe
aliasing due to under-sampling and how this relates to
the Nyquist-Shannon sampling theorem, the minimum
required sample frequency to maintain all the signal
information is 2 times the frequency of the highest
component. We will also write our signal into a ".wav"
file, operate on the file, and read the file back into
MATLAB.

L A

% \begin{figurel}[h!]

% \centering

% \includegraphics[scale=1.7]{universe}
% \caption{The Universe}

% \label{fig:universe}

% \end{figure}

\section{Objectives}
\begin{enumerate}
\item Generate a discrete-time domain signal in MATLAB
\item Write the result to file
\item Verify the results of your code in MATLAB
\end{enumerate}

\section{Results}
\subsection{Task 1.} Sampling sinusoids,
\begin{alignx}
x_1&=sin(2 \pi f_1 n) & f_1&=2.3kHz\\
x_2&=sin(2 \pi f_2 n) & £_2&=23kHz\\
x_3&=sin(2 \pi f_3 n) & f_3&=36kHz
\end{align*}
Continuous waveform plot,
\flushleft\includegraphics[width=\textwidth]{tasklb. jpg}t
Using stem() to get 100-discrete samples, we observe that
— the waveform looks as below:
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\flushleft\includegraphics[width=\textwidth]{taskla. jpg}
Looking at the stem plot, we can easily see the 100 points
< of each sinusoid--given that $L=100%.\\
\vspace{5mm}
From observation the 2.3kHz sinusoid has a longer
— wavelength than the 36kHz sinusoid, and this we
— expect because wavelength is inversely proportional
— to frequency $\lambda=\frac{1}{f}$. So the higher
— frequency will have a shorter wavelength.\\
The 23kHz sinusoid looks like an amplituded modulated
signal. As if two sinusoids have been added
together in such a way that the waveform looks like
beats; where there is constructive interference at
the peaks and destructive interference at the
nodes. Initially, I was expecting to see a sine
wave similar to signals $x_1$ and $x_3$ but with a
wavelength in between the two.

U

\subsection{Task 2.}

\begin{align*}

X_1&=FFT(x_1) & f_1&=2.3kHz\\

X_2&=FFT(x_2) & f_2&=23kHz\\

X_3&=FFT(x_3) & f_3%&=36kHz
\end{align*}
$X_1$, $X_28, $X_3$% are power spectrums of their

— corresponding signals.\\
\vspace{5mm}
64-Fast Fourier Transform in radians,
\includegraphics[width=\textwidth] {task2b. jpg}
\newpage
For analysis purpose I will observe the power spectral

— densities in frequency.\\
FFT in frequency,
\includegraphics[width=\textwidth] {task2a.jpg}
From the fft plot in frequency, we can observe that $x_1$
has a frequency of 2.3kHz, $x_2$ has a frequency of
23kHz, and $x_3$ has a frequency that is not 36kHz

(between 10kHz and 15kHz); this is due to the

under-sampling of signal $x_3$ caused by the
sampling rate (discussed in detail in \textbf{Task
4}). However, we do expect to see three distinct
peaks in the FFT plot since we have three distinct
sinusoids.\\
\vspace{5mm}
When taking the fft() of the signals, we plot half the

— points since we know that sine and cosine have a

TLLLLLLd
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— positive and a negative frequency component in the
— frequency domain.
\begin{align*}
cos(\omega_0 t)=\pi[\delta(\omega-\omega_0)+\delta(\
— omega+\omega_0)]\\
sin(\omega_0 t)=\frac{\pi}{2}[\delta(\omega-\omega_0)
— -\delta(\omega+\omega_0)]
\end{align*}
From this Fourier Transform, we expect to see delta
— functions in the frequency domain analysis. However
< in our observation, we do not see delta functions.
< And this is due to \textbf{spectral leakagel} (
— discussed in \textbf{Task 3}) and how MATLAB
— handles windowing and bins.
\newpage
FFT in frequency plotted together,
\includegraphics[width=\textwidth]{task2. jpg}
Here we can better see that signal $x_3$% has been
— undersampled. It's fft shows that $x_3$% has a
< frequency component of 1.2kHz when the original
— signal is 36kHz.
\subsection{Task 3.} Explain why the magnitude plots are not
— delta functions.\\
\vspace{5mm}
\begin{enumerate}
\item\url{https://flylib.com/books/en/2.729.1/
— dft_leakage.html}
\item\url{https://dspillustrations.com/pages/posts/
— misc/spectral-leakage-zero-padding-and-frequency
— -resolution.html}
\end{enumerate}
\begin{equation}
F_{analysis}(k)=k*\frac{f_s}{N}
\end{equation}
The magnitude plots of the fft() are not delta functions
< due to DFT leakage. This is because the "input
< sequence does not have an integral number of cycles
— over the N-sampled DFT interval, so the input
— energy has leaked into all the other DFT output
~ bins."
\newline
"the analytical frequencies always have an integral number
<~ of cycles over our total sample interval of 64
— points."
\newline
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"the DFT assumes that its input signal is one period of a
— periodic signal, its output are the discrete
— frequencies of this periodic signal" (1)\\
\vspace{5mm}
Because the DFT assumes a periodic repetition of the
signal, we can see from \textbf{Task 1} that our
signals are not a complete period with length $L
=100$. So there will be discontinuities between the
transistions since we did not capture a complete
period. So the DFT will not see a pure sinusoidal
wave, so we do not see a delta function. This is an
example of \textbf{spectral leakage}.\\
\vspace{5mm}
"\textbf{spectral leakage} -- even though the signal x(t)
< is a periodic signal of frequency $f_0$%, if we take
— a part of the signal and calculate the DFT
— spectrum from it, we see multiple frequencies
< occuring, due to the strange behaviour at the
— period's boundary" (2)\\
\vspace{5mm}
If we were to measure an integer multiple of the signal
— period, then we would observe that the leakage
— would disappear, since the fft() will see a
— complete periodic signal.

TLLLLdd

\pagebreak
\subsection{Task 4.} Describe how the plots in Task 2 relate

— to the famous Nyquist-Shannon sampling theorem. (If
— there is aliasing, at what frequency is it showing it
< in the spectrum and why?)\\
\vspace{5mm}
\begin{center}

\textbf{\Large{Nyquist-Shannon sampleing theorem:}}\\

\url{http://195.134.76.37/applets/AppletNyquist/

— Appl_Nyquist2.html}

"The minimum sampleing frequency of a signal that it
< will not distort its underlying information,
< should be double the frequency of its highest
— frequency component."

\newline

"If $f_s$ is the sampling frequency, then the critical
— frequency (or Nyquist limit) $f_N$ is defined
— as equal to $\frac{f_s}{2}$."

\end{center}
\vspace{5mm}
The plots in \textbf{Task 2} show the frequency domain of

— the signals $x_1$, $x_2$, and $x_3$.
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There is aliasing on signal $x_3$. The original sinusoid
has a frequency of 36kHz, but due to aliasing, the
64-fft shows that $x_3$ has a frequency of 12kHz.
This means that $x_3$ with a frequency of $f_3=36
kHz$ has been \textbf{under-sampled or distorted},
and we can say \textbf{$x_3$ is an aliased signal
due to undersampling.}
\includegraphics [width=\textwidth]{aliasing. jpg}
\newline\newline
This can be explained by the Nyquist-Shannon sampling
< theorem, that says \textit{"The minumum sampling
— frequency of a signal that it will not distort its
< underlying information, should be double the
— frequency of its highest frequency component."}
\begin{alignx}
x_1&=sin(2 \pi f_1 n) & f_1&=2.3kHz\\
x_2&=sin(2 \pi £_2 n) & f_2&=23kHz\\
x_3%=sin(2 \pi f_3 n) & f_3&=36kHz
\end{alignx*}
$F_s=48kHz$ should be used for frequency components $\leq
— 24kHz$ signals, so $x_1$ and $x_2$ will retain
— their signal information; frequency components
— higher than 24kHz will be aliased--as seen with
< $x_3% which has a frequency component of 36kHz.\\
\vspace{5mm}
The minimum sampling rate to maintain the original signal
— of all $x_1%, $x_2%, and $x_3$ is $F_N=2\times max(
— f£_1,£_2,f_3)=2 \times 36000=72kHz$

RS R

\subsection{Task 5.}

Used \textbf{audiowrite()} and to write each signal to a
— wav file. Using the c-file, I generated a c-
— skeleton that reduced the amplituded of the signals
— by one half in an output wav file. I then read the
— signal back into MATLAB using \textbf{audioread()}
— A\

\vspace{5mm}

Plotting the processed signals from the c-generated file,

\includegraphics[width=\textwidth]{task5. jpg}

\begin{center}
$x$ is the original signall\
$y$ is the modified signal

\end{center}

The c-generated wav files show an output signal that has a
<~ max amplitude of one half. This verifies that the
— c-skeleton did reduce the amplitudes of each signal
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by half. Without changing the shape of the

two each component of the signal, element by

(SN
— waveform, we reduced the amplitudes by dividing by
%
(_>

element wise.
\newpage
\section{Code Appendix}
\subsection{MATLAB Code:}

%\begin{adjustbox}{max width=\textwidth}
\lstinputlisting[frame=single]{code-files/lab0.m}

%\end{adjustbox}
\newpage
\subsection{C Code:}

\lstinputlisting[frame=single]{code-files/Lab0.c}

\newpage
\subsection{\LaTeX Code:}

\1lstinputlisting[frame=single]{main.tex}

\end{document}
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