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Al lifecycle

* CRISP-DM (2000

* Microsoft TDSP (2017
 Sculley et al. (2019

« Haakman et al. (2021
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A 80% of the workload
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Haakman et al. (2020) — Al Lifecycle Models Need To Be Revised
https://arxiv.org/pdf/2010.02716.pdf
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ML Artefacts
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How to version large-scale data®?

How to avoid processing large-scale data every time you
change something?

How to guide collaborators to re-run the right scripts
whenever something changed?

How to keep track of different versions of the pipeline?




The traditional way of automating the build
pipeline is through Makefile, Maven, Gradle, etc.

There are solutions for Machine Learning as
well.

Maven v Gradle R il = X




Makefile for Machine Learning

-~
® Makefile
.PHONY: clean data lint requirements
##
## Install Python Dependencies
requlrements: test environment
S (PYTHON INTERPRETER) -m pip install -U pip setuptools wheel
S (PYTHON INTERPRETER) -m pip install -r requirements.txt
## Make Dataset
data: requirements
S (PYTHON INTERPRETER) src/data/make dataset.py data/raw data/processed
## Delete all compiled Python files
clean:
find . -type £ —-name "*.pylco]" -delete
find . -type d —-name " pycache " -delete
## Lint using flakeS8
lint:
flake8 src
##
_

Suggested Read: “Make My Day...ta Science Easier” by David Stevens. URL: https://edu.nl/eaxag
Makefile Example: https://edu.nl/a78xy 9
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DVC

 Open-source tool.

 Automate pipelines.

» Remote storage setup.

* \ersion control for data, models (and other intermediate artefacts).
 Experiment management.

 Website: https://dvc.org
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Example of a pipeline
(A very basic one) ﬁ%

e e / model.pickle

A
\ /
/ process_data.py % train.py \ metrics.json

/ getdata.py

% ‘
Remote data source data_raw.csv data_processed.csv /\

by_region.png
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Example of a pipeline

e / model.pickle

e,

process_train.py

/ process_data.py k
data_processed.csv j\

by_region.png

/ getdata.py

Remote data source data_raw.csv

metrics.json

/i

%

® dvec.ymi

stages:
get data:
cmd: python get data.py
deps:
- get data.py
outs:
- data raw.csv

e process:

cmd: python process data.py
deps:

- process data.py

- data raw.csv

outs:
- data processed.csv
train:

cmd: python train.py
deps:

- train.py

- data processed.csv
outs:

- by region.png
- model .pickle

metrics:
- metrics.json:
cache: false




Data Version Control

(and other artefacts)

Remote Project

Remote Storage (S3, Google Drive)

Local Project
Dataset Jan 2021
Dataset Mar 2021
Dataset Mar 2021 extra
Model v0.0.1

Model DT

Model v0.0.2

Remote Git (Gitlab, Github)

- Codebase
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data

Jan 2021
Mar 2021

Apr 2021

—

code

V0.0.1
V0.0.2

V0.0.3

git

model

V0.0.1

V0.0.2

v0.0.3



data code model

Jan 2021 V0.0.1 - V0.0.17?
Mar 2021 \0.0.2 - V0.0.27?
Apr 2021 V0.0.3 - v0.0.3?

—

git



Data Version Control

(and other artefacts)

Remote Project v0.0.3
Local Project

Remote Storage (S3, Google Drive)

- Datasets
- Models

[

Remote Git (Gitlab, Github)

- Codebase
- Dataset hash
- Model hash
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Code smells in ML

The Prevalence of Code Smells 1n Machine
Learning projects

Bart van Oort!2, Luis Cruz2, Mauricio Aniche?, Arie van Deursen

2

Delft University of Technology
L AI for Fintech Research, ING
2 Delft, Netherlands

bart.van.oort@ing.com, {l.cruz, m.f.aniche, arie.vandeursen }@tudelft.nl

Abstract—Artificial Intelligence (AI) and Machine Learning
(ML) are pervasive in the current computer science landscape.
Yet, there still exists a lack of software engineering experience
and best practices in this field. One such best practice, static code
analysis, can be used to find code smells, i.e., (potential) defects
in the source code, refactoring opportunities, and violations of
common coding standards. Our research set out to discover the
most prevalent code smells in ML projects. We gathered a dataset
of 74 open-source ML projects, installed their dependencies and
ran Pylint on them. This resulted in a top 20 of all detected

. Manual analvsis of these smells

which we amalgamate into ‘code smells’ for the rest of this
paper. Research has shown that the attributes of quality most
affected by code smells are maintainability, understandability
and complexity, and that early detection of code smells reduces
the cost of maintenance [7].

With a focus on the maintainability and reproducibility of
ML projects, the goal of our research is therefore to apply
static code analysis to applications of ML, in an attempt to
uncover the frequency of code smells in these projects and
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Results

 Naming conventions do not apply for ML cases, due to its resemblance with
mathematical notation.

 Code duplication is a common issue in ML applications

* There are several flaws when specifying dependencies. Many projects did not
even have any written config.

* Pylint poses several incompatibilities with ML-specific libraries. Too many
false positives.



Code Smells for ML



Code Smells for ML

& pypi.org

Help Sponsors Login Register

dSli nter 1.0.0 v/ | Latest version

P"P install dsl'interé L] Released: Jun 23, 2020

Pylint plugin for linting data science and machine learning code, focussed on the libraries pandas and scikit-learn.
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Code Smells for ML

 Unassigned DataFrame Checker: Operations on DataFrames return new DataFrames. These
DataFrames should be assigned to a variable.

 DataFrame Iteration Checker: Vectorized solutions are preferred over iterators for DataFrames.
 Nan Equality Checker: Values cannot be compared with np.nan, as np.nan != np.nan.

 Hyperparameter Checker: For (scikit-learn) learning algorithms, all hyperparameters should be
set.

* Import Checker: Check whether data science modules are imported using the correct naming
conventions.

 Data Leakage Checker: All scikit-learn estimators should be used inside Pipelines, to prevent
data leakage between training and test data.



