
Sebastian Proksch
S.Proksch@tudelft.nl

Luís Cruz
L.Cruz@tudelft.nl

Containers &
Orchestration

Release Engineering for Machine Learning Applications
(REMLA, CS4295)

1

Goal of today...
•Know different abstraction styles of server hosting
•Understand challenges when hosting services
•Understand basic concepts of Docker and know how
to create and run your own image
•You can run single-host deployments of distributed
systems using Docker Compose
•You know the high-level concepts and terminology of
Kubernetes

2

(Service) Hosting

3

The Old Ways of the Sysadmins

•All applications running in the same environment
•Abstraction/isolation through multiple hosts
•Security through user/group permissions

4

Hardware

MySQL

Host OS

Apache Postfix Email Host ApplicationsSSH

Virtual Machines
•Hypervisor introduces
virtual hardware
•High Flexibility for Guests
•Overhead at each level
•Resources are usually
reserved at start-up
•“Normal” boot times

5

Hardware

Host OS

Hypervisor Host Applications

Guest OS Guest OS

Guest Apps Guest Apps

Containers
•No separate OS needed
•Containers use same kernel
•Containers run as processes
•“Minimal” resource reqs
•Memory
•Disk (No redundancy)

•Almost instant boot
6

Hardware

Host OS

Docker Engine Host Applications

App 1 App 2 App 3

Challenges

7

Infrastructure

•Conflicting requirements for hosting infrastructure
(Java 6 for Service 1, Java 11 for Service 2, ...)
•Maintenance Cost
(effort for update/configuring/optimizing servers)
•Provisioning Effort
(compare setting up bare-metal with a VM)

8

Scaling

•Vertical scaling (powerful machines)
•Horizontal scaling (more machines)

•How to distribute load?
•Elasticity (Christmas Effect)
•Avoid redundancy

9

Packaging & Distribution

•Libraries vs. Applications
• Intra- vs. Extra-Ecosystem
•Runtime Environment

•Configuration Management
•Required Operation Data

10

Portability

•“Works on my machine” problems
•Make software independent of OS or env.
•Allow moving between machines
(Future updates, migrations)
•Development, Integration Testing, Production
•Replicability

11

Security
•Online systems will be attacked
•Make updates easy
•Prepare for the worst and expect breaches
• Intruders should not be able to gain full control
•Protect data (read, but also alter)
•Protect resources (computing power, network)

•Reliable monitoring and logging
12

Docker

13

System Architecture

14Source: Docker

Isolated Execution

•Run as process, not as virtual machine
•Leverages established Linux concepts
•Control Groups (limit resources for a process)
•Namespaces (limit access for a process)
• Seccomp (limit usable kernel features)

15

Networking

•Network access of containers is managed
•No network for container (None)
•Container uses host network (Host)
•Fake “physical network device” (Macvlan)
•Default: Virtual network routed through host (Bridge)

16

Union File System
•Containers are instances of

Images
•Each layer is a diff to parent
• Images are read-only
•Containers are writable
•Avoids redundancy
•One Image can be used

multiple times (tree!)
17Source: Docker

Volumes
•Volumes can be mounted into container at runtime
•bind paths on host machine (More Convenient)
• In-memory mounts (If no persistence is required)
•Mount block-level files (More Performant)

•Use Volumes to...
• ... persist information
• ... avoid growing containers (e.g., logging!)
• ... share data between containers

18

How to create a Docker image?

19

Break?

Build an Image Through a Dockerfile

20

FROM openjdk:11.0-jre-slim
ENTRYPOINT [”bash"]

$ docker build .
Sending build context to Docker daemon 2.048kB
Step 1/2 : FROM openjdk:11.0-jre-slim
---> 973c18dbf567

Step 2/2 : ENTRYPOINT ["bash"]
---> Using cache
---> e411903763a6

Successfully built e411903763a6
$

Dockerfile

$ docker run -it e411903763a6
root@3300a82e5125:/#

Base Image

Define entry point that dispatches commands

Every individual step of Dockerfile
generates new image

Images are identified by digests/hashes

Images can be run (-i: interactive, -t: terminal)

Images Can Be Named (tagged)

21

$ docker build -t a -t b/c -t d:1.2.3 -t e/f/g/h/i .
Sending build context to Docker daemon 2.048kB
Step 1/2 : FROM openjdk:11.0-jre-slim
---> 973c18dbf567

Step 2/2 : ENTRYPOINT ["bash"]
---> Using cache
---> e411903763a6

Successfully built e411903763a6
Successfully tagged a:latest
Successfully tagged b/c:latest
Successfully tagged d:1.2.3
Successfully tagged e/f/g/h/i:latest
$

Best practice would be to publish:
• user/repo:1.2.3
• user/repo:1.2
• user/repo:1
• user/repo:latest

Multiple tags can be used at once

Tags resolve to digest

Distribution via Container Registry

• Images uniquely represented with digest
•Human identification of an image
•User/Organization (empty for “official images”)
•Repository
• Tag (can be name, version, meta data)
•OS/Arch

•Use via docker pull / docker push

22

Default registry is
dockerhub.com, but
can easily changed.

ENTRYPOINT versus RUN

23

FROM openjdk:11.0-jre-slim
ENTRYPOINT [”java"]
CMD [“-version”]

$ docker run -it remla
openjdk version "11.0.7" 2020-04-14
...
$

$ docker run -it remla --help
Usage: java [options] <mainclass> [args...]
...
$

$ docker run -it --entrypoint ls remla
bin dev home lib64 mnt proc run srv tmp var
boot etc lib media opt root sbin sys usr
$

$ docker run -it --entrypoint ls remla -l
total 64
drwxr-xr-x 2 root root 4096 May 14 2020 bin
...
$

Custom
RUN

Custom ENTRYPOINT

docker build –t remla .

Preparing the Image Content

24

FROM ubuntu:latest

WORKDIR /root/
COPY somefile.txt .
RUN apt update
RUN apt install wget

ENTRYPOINT ["bash"]

You can COPY or ADD existing files/folders into to the image. ADD
has a lot of additional features (e.g., auto extracting archives),
which makes it very unpredictable. For a more transparent
execution, use the (more limited) COPY.

The WORKDIR defines the current working directory in the image.

You can freely change the system through RUN commands.

Multi-Stage Builds

25

FROM openjdk:11.0-jre-slim AS first

RUN java --help > help.txt
RUN java --version > version.txt

FROM ubuntu:latest

WORKDIR /root/
RUN mkdir data
COPY --from=first version.txt .

ENTRYPOINT ["bash"]

Avoid unnecessary image grow (e.g., apt-get update)

Use separate stage to run expensive command (e.g.,
compilation), COPY relevant output (e.g., just the binary)

Stages can be named, by default, they are numbered.

Offering Network Services

26

...
EXPOSE 8080
...

Images that want to offer network services must EXPOSE the
port, at which the service is running.

To make this port available, the docker run command
must map the port to a local port.

docker run –d –p 1234:8080 tomcat

Docker client has many more peculiarities...

•Mounting volumes
•Life-cycle Management (start/stop/remove)
• Image management
•Connecting to running containers
•Garbage collection
• ...

27

We will cover more details in the tutorial.

Orchestration

28

Docker Compose: Single-Host Deployment

29

docker-compose up -d

Build local Docker image

Open Ports to Host

Mount Volumes

Connect Containers

Networking

Define Services, register DNS Records

Advanced Docker Compose

•Environment Variables
•Custom RUN commands
•Advanced Networking
•Startup Management (depends_on)
• Inheritance
• ...

30

https://docs.docker.com/compose/

Cluster Management
•Abstraction for Multi-host Management
(aka. Cluster/Cloud/Farm/...)
•Desired State Reconciliation
•Service Discovery
•Load-Balancing
•Auto-Scaling

31

Docker Swarm
Kubernetes

Kubernetes
Disclaimer: This lecture can only give a first glimpse into the capabilities of Kubernetes. The
tutorial will put this into a more practical context, but there is no way to cover all or even just
a representative subset of all Kubernetes features!

32

Why you need Kubernetes and what it can do

• Service discovery and load balancing Kubernetes can expose a container using DNS or
IP address. On high traffic, Kubernetes can load-balance and auto-scale.
• Storage orchestration Kubernetes allows you to automatically mount a storage system

of your choice, such as local storages, public cloud providers, and more.
• Automated rollouts and rollbacks Kubernetes will keep the actual state in sync with

the configured desired state, at a controlled rate.
• Automatic bin packing Kubernetes will distribute required containers within the

cluster of nodes to optimize resource utilization.
• Self-healing Kubernetes restarts failed containers, replaces containers, kills

irresponsive containers, and only advertise functional clients.
• Secret and configuration management Store and manage sensitive information.

Deploy and update secrets without rebuilding your container images or exposing
secrets in your configuration.

33https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/

Architecture

34

Container
Runtime

Container
Runtime

Container
Runtime

Ingress

• Ingress/Ingress Controller Makes Service Available
•Single entry/exit point of the cluster

35

Service

•An abstract way to expose an application running on a
set of Pods as a network service.
• In Kubernetes, DNS is used for service discovery.
•Pods get their own IP addresses. Grouping multiple
pods with a single DNS name allows load-balancing.

36

Pod (as in a pod of whales or pea pod)
•Pods are the smallest deployable units of computing
that you can create and manage in Kubernetes.
•A Pod is a group of one or more containers, with
shared storage and network resources.
•A Pod's contents are always co-located and co-
scheduled, and run in a shared context.
•A Pod models a "logical host” and tightly coupled
containers, very often just one.

37

Deployment

•A Deployment is a declaration of a desired state.
•Deployments can ReplicaSets to create multiple
instances of the same Pod.
•The Deployment Controller will react to updates and
move from actual to desired state at a controlled rate.
•Kubernetes will report status per deployment.

38

39

Name of Deployment

Number of Replicas

Container Reference

Container Config (i.e., port, volumes, secrets, env, ...)

40

Name of the service

Reference to Pods that should be grouped

How is the service made available?

Other Kubernetes Objects
•ReplicaSet
•Secret
•ConfigMap
•PersistentVolume
• Job
• ...

41

kubectl

•Command line tool to control Kubernetes clusters
•Corresponding cluster is configured in kubeconfig
•Communicates over REST API with cluster controller
•Deploy and manage all parts of the cluster
•Usually work together with the .yml definitions

42

Conclusion

43

Interesting Connection Points

•DevOps
•Serverless Computing
• Infrastructure as a Service
•Logging/Monitoring
•Stateless Stream Processing

44

After today's lecture, you can...

•describe differences in (historic) server hosting styles
•name challenges in service hosting
•explain basic concepts of Docker
•create and run your own Docker image
•deploy a distributed system using Docker Compose
•name high-level concepts and terminology of K8s

45

