
Sebastian Proksch
S.Proksch@tudelft.nl

Luís Cruz
L.Cruz@tudelft.nl

Continuous {Integration,
Delivery, Deployment}

Release Engineering for Machine Learning Applications
(REMLA, CS4295)

1

Goal of today...
•Differentiate the various continuous X buzzwords
•Understand the setup and the goals of a basic delivery
pipeline
•Use semantic versioning in your projects
•Understand challenges in dependency resolution
•Get a first glimpse in the capabilities of GitLab that go
beyond a simple build server

2

Continuous <Enter Buzzword here>

3

A Basic Delivery Pipeline

4Inspired by “Continuous Delivery”, Humble & Farley, Addison Wesley

Environment gets
more “production-
like” from left to right.

Modern Processes
merge roles (“DevOps”)

Commit Level
Compile
Unit tests
Assembly

Static Analysis

Artifact Repository

Version Control

Automated
Acceptance Testing
Setup Environment

Deploy
Integration Testing

User Acceptance Tests
Setup Environment

Deploy
Manual Testing

Performance/Capacity Tests
Configure Environment

Deploy
Performance Tests

Production
Configure Environment

Deploy

ConfigSource Code

Operator

Tester

Developer

Binaries

BinariesBinaries

Configuration Management
• Infrastructure as Code
(Environment Setup)
•Configuration as Code
(Component Interaction)

5

We will cover this topic, when we talk about Kubernetes.

Deployment Workflow

6

Build & Unit
Tests

Version
Control

Acceptance
Tests Release Developer

F

P

F

P

P

P

Automation is key
for timely feedback!

Continuous ...

7

Continuous
Integration

Continuous
Delivery

Continuous
Deployment

Continuous
Experimentation

Continuous Integration
• Integrate changes
• Trunk-based development (Fowler’s definition)
•Pipeline-centric development (everybody else’s def.)

•Quality assurance
•Maintainability

8

Dfsg f dgdf
asd aa sdd
sdsd sd dsd
sdsdsd sdd
s dsl fjhfj ss
fhdj fjd dsfg

Dfsg f dgdf
asd aa sdd
sdsd sd dsd
sdsdsd sdd
s dsl fjhfj ss
fhdj fjd dsfg

Dfsg f dgdf
asd aa sdd
sdsd sd dsd
sdsdsd sdd
s dsl fjhfj ss
fhdj fjd dsfgDfsg f dgdf

asd aa sdd
sdsd sd dsd
sdsdsd sdd
s dsl fjhfj ss
fhdj fjd dsfg

Dfsg f dgdf
asd aa sdd
sdsd sd dsd
sdsdsd sdd
s dsl fjhfj ss
fhdj fjd dsfgDfsg f dgdf

asd aa sdd
sdsd sd dsd
sdsdsd sdd
s dsl fjhfj ss
fhdj fjd dsfg

Automated Build
Build Logs

Continuous Delivery
•Automate packaging
•Configuration
•Versioning
•Automated acceptance testing
•“One-click Deployments”

9

“make every change releasable”

Continuous Deployment
•Automated User Acceptance Tests
•Prepare/configure environment
• Infrastructure as code

10

“release every change”

Continuous Experimentation
•“Testing on live”
•Release to subsets of your users
•Monitor effect of changes
•Release decision based on monitoring results

11

“release every potential change”

???

Application Types

12

What does Continuous Delivery mean for...
•Webapps?
•Machine Learning Models?
•Downloaded Application?
•Mobile App/App Stores?
•Software library?

13

14

What are the challenges/ benefits/
requirements/... when you want to

apply CD for various application types?

Release Personas / Stereotypes
•Standalone Installation
• Isolated (“Text Editor”)
•Collaborative (“Discord”)

•Webservices (“No installation”)
• Integrated
•Plugins
• Libraries

15This list is by no means meant to be exhaustive and only serves as a starting point for a discussion.

There is no “one size fits all”
solution for CD.

16

Webservice

Library

Focus of this course
•Libraries (Friday)
•Webservices (next week, containerization)
• ...? (maybe you have another idea for your project)

17

Versioning

18

Unique Versions

19

Ordered Versions

20Credits: Wikipedia

Semantic Versioning
Given a version number MAJOR.MINOR.PATCH, increment...
• the MAJOR version when you make incompatible API changes,
• the MINOR version when you add functionality in a backwards

compatible manner, and
• the PATCH version when you make backwards compatible bug fixes.
Additional labels for pre-release and build metadata are available as
extensions to the MAJOR.MINOR.PATCH format.

21

https://semver.org/

Unique & Ordered & “Meaningful”

Example Versions
•1 (non-semantic)
•1.2 (non-semantic)
•1.2.3
•2.43.0-beta
•0.1.3-SNAPSHOT (Maven specific?!)
•0.0.1-20210419-134715

22

Interpretation and order of this
version identifiers depends on
the concrete ecosystem.

Dependency Resolution

23

Well defined Maven Version?

24

Maven Version Ranges

25https://cwiki.apache.org/confluence/display/MAVENOLD/Dependency+Mediation+and+Conflict+Resolution

Deterministic Version Resolution?

26

Lesson Learned #1: Fix Versions!
•Fixing specific versions is essential
•Builds become repeatable and deterministic
•Can be auto-updated, e.g., through automated PRs
•“Latest” is not a fixed version

27

Unexpected Effect of Transitive Dependencies
•Transitive dependencies might conflict
•Dependency resolution
• Try to solve constraints (Matcher)
•Use newest match
• If no match, use declaration that is

”nearest”to A
•Might(!) work!

•Sometimes, resolution in A necessary
28

A-1.0.0

B-1.0.0 C-1.0.0

D-1.0.0 D-2.0.0

LL#2: Minimize Dependencies
•Unnecessary dependencies bloat client
•Excessive dependencies increase conflict potential
•Dependencies might not be available
(Java vs. Android)
•Use commons packages for utils and data structures

29

Managing Versions

30

Trunk-Based Development + Release Tags

31

(GitHub Model)

What about
bugfix releases?

develop

main v2.0

Branches Tags

v1.2

Release Branches

32

develop

release-2.0

v1.0

release-1.0

Branch Tag

v1.0.1

v1.0.7

release-1.1

v1.1.1

v1.1.4

v1.1

v2.0main

Time-based Versions
•Pre-releases (“Snaphots”)
•Timed Builds (e.g., “Nightlies”)
•CI/CD evangelists would say they are not necessary
•Used when releasing is expensive
• .. or environment changes frequently

(or at least more frequent than product)
•Usually used in addition to proper versioning scheme

33

Where to store the version information?
•As a static field in a class?
• In a file? pom.xml?
•As a repository tag?
•What happens should you forget to update?
•Who is bumping version numbers?
•Who gets to decide on major/minor/patch?
•Does the build server get write access to the repo?

34

Again, no single solution
is always superior...

GitLab Pipelines

35

Stages & Jobs
• Jobs are smallest unit of a pipeline
•Stages group jobs
•Default stages exist (build, test, deploy)
•A pipeline orchestrates execution of stages and jobs
•Stages are run sequentially, jobs in parallel

36

37https://about.gitlab.com/blog/2020/12/10/basics-of-gitlab-ci-updated/

Trigger
•All jobs are considered when a pipeline triggers
•Commit
•Manual trigger
•API trigger

•Execution can be controlled though
•Use only / except to limit job to certain branches or
tags
•Use when as start criterion, by default: on_success
(always, manual, delayed, on_failure)

38

Artifacts
•Every job gets access to the checked-out repository
•All changes in the working dir are isolated
•Use artifact directive to preserve outputs for
upcoming stages (e.g., packaged jar file)
•Use cache directive to preserve outputs between job
executions (e.g., downloaded Maven dependencies)

39

Pipeline Execution
•Pipeline steps are executed on runners in containers
•Base image can be changed
(e.g., Java image for compilation, Docker image for
packaging, ...)

40

GitLab
Shared
RunnerShared
RunnerShared
RunnerShared
RunnerShared
Runner

Shared
RunnerShared
RunnerShared
RunnerShared
RunnerPrivate
Runner

Hosted Your Organization

Script Line
•Prepare environment with before_script
statements
•Actual task is done by invoking all lines in script
•Can be bash script, a build tool, a provisioning tool, ...

41

Environments
•GitLab can deploy to environments
•Provides a full history of deployments to each
environment.
•Tracks your deployments, so you always know what is
deployed on your servers.
•Useful for Kubernetes, e.g., gradual rollouts

42

... and much more.

43

https://docs.gitlab.com/ee/ci/README.html

Deploy Targets

44

File Share
•Programs
•Websites
•Use simple transfer utilities, like ftp or scp

45

Artifact Repository
•A released artifact has an unique name
(Maven: Group ID, Artifact ID, version)
•Central Repository to store and manage artifacts
• “Mavenized” Git Repository
•Package/Container Registry of Repository Providers
• Specialized Repository Software, like Artifactory
•Maven Central

•Gives clients a unified access to well-defined deps
46

Application Server / Cluster
•Deployment/Configurations
•Often either a final, manual trigger...
• ... or webhooks to trigger updates
•Automated update is key for continuous
experimentation
•GitLab: when: delayed trigger for gradual rollout

47

Outlook

48

Follow-up Problems
•Client heterogeneity
•Data Format Migration
•Endpoint Versioning
•API Design & API Deprecation
•Detecting Breaking Changes (Semantic)
• ...

49

Conclusion

50

After today's lecture, you can...
•tell the difference between continuous integration,
delivery, deployment, and experimentation
•describe a basic delivery pipeline
•explain the concepts behind semantic versioning
•describe basic release/version strategies
•describe the basic elements of a GitLab pipeline and
you know how to find more information

51

