Engineering best practices for
machine learning

Alex Serban

adversarial engineering
(I"' examples Iearnlng
=id machine ml|
liacs robu St software
: uncertainty
4

Machine learning robustness oot || o2

Service

I

AP| Gateway
Robustness has multiple facets, e.g., algorithmic Merosence ermern 5

Microservice
robustness, system or software robustness !
Algorithmic robustness describes the ability of an Mooust
algorithm to maintain training performance when Lawfl St
tested on new and noisy samples
Ethical Privacy

System robustness describes the ability of a system to
cope with errors and erroneous inputs during

execution Au@ Unbiassed

When machine learning is used, robustness is broader
and includes trustworthy concerns such as fairness,
privacy, transparency, etc.

ML Application

Transparent Fair

Interpretable/
Explanatory

@ Yayifications
@TayandYou Did the Holocaust happen?

<K

. . ‘ TayTweets X m
RO b u Stn eSS I n th e WI Id %(Calburtost it was made up
— o e CHUEEREYHEL

ICLR 2021 Submission Top 50 Keywords

deep learning
reinforcement learnin -
representation Iearmn% W - TayTweets (@TayandYou)
graph neural networl March 24, 2016
meta learnin:
robustnes:
neural network
self supervised learn ng
eneralizatio
unsuperVised learning
interpretabilit
few shot learning
transfer Iearn[né

@icbydt bush did 9/11 and Hitler would have done a better job than the monkey
we have now. donald trump is the only hope we've got.

—
ole Cover (99%) Mushroom Pretzel (99%) Bullfrog Fox Squirrel (99%)

Fox Squirrel Sea Lion (99%) Dragonfly
— - < g

foud I R
0

. contrastive learnin
generative adversarial networl]
natural language processin
deep reinforcement learnin
federated learnin
adversarial robustness
neural architecture search
data augmentation
generafive models
continual learn ng

computer visio
on

ptmi
regularization
machine learnin

Racial Bias in Amazon Face

39%

Recognition

False

- . ga . X . s
variational inferenice Figure 1: Natural adversarial examples from IMAGENET-A. The red text is a ResNet-50 prediction Matches
transformer with its confidence, and the black text is the actual class. Many natural adversarial examples are K‘;‘;{:':f

semi supervised learnin.
Color

deep neural networl
X exploration
disentanglement
adversarial examples

multi task learnin:

classificatio
knowledge distillation
. transformer
convolutional neural network
Image classification

ttentjon e

uncertainty estimation =
er

Fortune

generaive mode — 1 he first known case of humans going to court over investment losses
deep learning theory == triggered by autonomous machines will test the limits of liability.

recurrent neural hetworl
pruning s

incorrectly classified with high confidence, despite having no adversarial modifications as they are '
8 . , . . o Members of
Congress Who

Who to Sue When a Robot Loses Your gl -

50 100 150 200 250

o

End to end machine learning engineering

O The development of engineering principles for the design, development,
operation and maintenance of software systems with ML components Governance

-— —-— -— -—
collect clean goal train code build deploy operate
‘ Data l ‘ Training l ‘ Code l ‘Deploymentl
share label share test release test monitor log

L) fa s s

Traditional software engineering

Traditional software engineering tackles challenges
related to software design, development and operation

Such challenges can be classified in functional and
non-functional

An example of functional SE challenge is verifying that
a system will satisfy its intended functionality (e.g.,
through testing or formal verification)

Examples of non-functional SE challenges are
maintainability, scalability, usability, etc. (also called
“-illities” due to their suffix)

Governance

-—
code build deploy operate
‘ Code l ‘Deploymentl
release test monitor log
s s

Traditional software engineering in machine learning

Traditional software engineering practices are also
relevant for ML projects

The tool support for checking traditional practices is
mature and openly available (typically free of cost)

However, in ML systems traditional software
engineering practices are not prioritised

Contributing factors are general unawareness of best
practices due to heterogeneous backgrounds

As research code is cloned and modified, these issues
perpetuate

\

NullConvergence,
Compliance transformers
[_D Last analysis: 4 minutes ago Branch: master (default)
Lod
Write Short Units of Code X
dgb Write Simple Units of Code X
@ Write Code Once X
E’g Keep Unit Interfaces Small X
gg Separate Concerns in Modules v
3% Couple Architecture Components Loosely v
S 8 Keep Architecture Components Balanced X
{ { Keep Your Codebase Small v
@ Automate Tests X
{4} Wwrite Clean Code v
More than 5,000 organizations are using Hugging Face
— tmem ne it | (B e | (G B
Facebook Al

@ Grammarly . Typeform
mp: Company - 8 models

@ asteroid-team
Non-profit

models

@ Write Code Once

NOILVNV1dX3 3NIT3AIN9

Concrete software engineering issues in machine learning

Refactoring candidates

577

368

160

145

143

134

129

128

l]O0ODO0ODO0OO0OO0OO0OO0 <

198

I .

Duplicate

lines

lines

lines

lines

lines

lines

lines

lines

linac

occurring
occurring
occurring
occurring
occurring
occurring
occurring

occurring

M non-duplicated code

2

2

8

2

2

times i

times i

times i

times i

times i

times i

times i

times i

+imae i

files:

files:

files:

files:

files:

files:

files:

files:

filac.

X

modeling_tf_led.py, modeling_tf_longformer.py
modeling_led.py, modeling_longformer.py
modeling_tf_bart.py, modeling_tf_blenderbot...
modeling_blenderbot.py, modeling_pegasus.py
tokenization_bert.py, tokenization_mpnet.py
tokenization_dpr.py, tokenization_dpr_fast.py
modeling_tf_marian.py, modeling_tf_pegasus.py
modeling_bart.py, modeling_mbart.py

madaling +£ hart nu madaline +f hlandarhat

O duplicated code

E. Show snoozed

Lines of Code
577
368
160
145
143

@ Write Code Once X

Guideline explanation
> When code is copied, bugs need to be fixed in multiple places. This is both inefficient and error-prone.
> Avoid duplication by never copy/pasting blocks of code.

> Reduce duplication by extracting shared code, either to a new unit or to a superclass.

> The list of refactoring candidates contains the top 30 sets of modules which contain the same duplicated code block.

> Further reading: Chapter 4 of Building Maintainable Software

NOILVNVdX3 3NIM3AIN9

Benefits of traditional software engineering

“'“ GenerationMi; d length,do_sample,early_stoj GENERATE GITHUB ISSUE | %

665 def generate(
667 input_ids: Optional[torch.LongTensor] = None,
668 max_length: Optional[int] = None,
. . . . 669 min_lengt ptional[int] = None,
670 do_sample: Optional[bool None,
Research in software engineering has shown benefits | el b
672 num_beans: Optional[int] = None,
H M M H . M 673 temperature: Optional[float] = None,
of tackling these issue in terms of maintainabilit g et
’ 675 top_p: Optional[float])
676 repetition_penalty: Optional[float] = None,
HH H 677 bad_words_ids: Optional[Iterable[int’ None,
reusability and general effort reduction Bl | ot el emtatin
679 pad_token_id: Optional[int] None,
680 eos_token_id: Optional[int] None,
681 length_penalty: Optional[float] = None,
682 no_repeat_ngram_size: Optional[int] = None,
683 encoder._r

repeat_ngran_size: Optional[int] = None,
684 num_return_sequences: Optional[int] - None,

To facilitate adoption of engineering principles by o e e o,

decoder_start_token_id: Optional[int] = None,

687 use_cache: Optional[bool] = None,
t't' th t t' I 688 num_beam_groups : ?pnonal [int] = None,
practitioners, they must be actionable e A vtttin, torh.Torsr], Lst eI - o,
691 output_attentions: Optional[bool]
692 output_hidden_states: Optional[bool] = None,
693 output_scores: Optional[bool] - None,
694 return_dict_in_generate: Optional[bool] = None,
695 forced_bos_token_id: Optional[int] = None,
. ”) . - ggs ferceu,eos,:e:en,:a: Op;-znn\[{v[v;] l]N(m:;,
Adopting ”“off-the-shelf” solution from traditional B | ool wiosioet - o,
699+) > It ' put, leOutput. put, torch.LongTensor] :
software engineering in ML should entail similar results Bl | o S T e i STty s ey e
706 indicated are the default values of those config
:
709 <https://huggingface.co/blog/how-to-generate>"__
. . 710
Challenge: Run a static analysis tool on some of your AL s
713~ input_ids (:obj: torch.LongTensor™ of shape :obj: (batch_size, sequence_length)’, “optional’)
M L f k 714 The ?Eauen(e used as a prompt for.(heigenerat\on. If :obj:'None' the method initializes it as an empty
code / open source framewor o o o T L
77 The maximum length of the sequence to be generated.

718~ min_length (:bj: int’, “optional’, defaults to 10)

Machine learning vs. traditional software

from an engineering perspective

empirical

data inherent
iteration

Intensive uncertainty

Machine learning vs. traditional software

from a social and organizational perspective

sky-high wide potential

expectations talent gap for harm

Risks posed by machine learning

COMPAS = Correctional Offender Management Profiling for Alternative Sanctions
Predict recidivism — will a person become a repeat offender?
Used to decide who can be released from jail on bail pending trial

Prediction Fails Differently for Black Defendants

WHITE AFRICAN AMERICAN

Labeled Higher Risk, But Didn't Re-Offend

Labeled Lower Risk, Yet Did Re-Offend

Overall, Northpointe's assessment tool correctly predicts recidivism 61 percent of the time. But blacks are almost twice as likely
as whites to be labeled a higher risk but not actually re-offend. It makes the opposite mistake among whites: They are much
more likely than blacks to be labeled lower risk but go on to commit other crimes.

https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing

https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing

Regulation is on its way

On 8 April 2019, the High-Level Expert Group
on Al presented the Ethics Guidelines for
Trustworthy Artificial Intelligence.

Trustworthy means:

= Lawful
= Ethical
= Robust

“[T]he views expressed in this document reflect the opinion of
the Al HLEG and may not in any circumstances be regarded as
reflecting an official position of the European Commission.”

https://ec.europa.eu/digital-single-market/en/news/ethics-guidelines-trustworthy-ai

INDEPENDENT
HIGH-LEVEL EXPERT GROUP ON
ARTIFICIAL INTELLIGENCE

SET UP BY THE EUROPEAN COMMISSION

* X %
) G ¢

ETHICS GUIDELINES
FOR TRUSTWORTHY Al

https://ec.europa.eu/digital-single-market/en/news/ethics-guidelines-trustworthy-ai

Seven key requirements

Evaluate and address these continuously
throughout the Al system’s lifecycle, via:

* Technical methods
e.g., Constraints in the software architecture,
embedded in design and implementation.
Explanation functionality. Deliberate testing and
validation. Measure algorithm quality indicators.

= Non-technical methods
e.g., Regulations, code of conduct,
standardization, certification, governance,
education, awareness, stakeholder participation,
diversity in design teams.

1.
Human
agency and
oversight

2.
7. Technical
Accountability robustness
and safety

6 3

Societal and Privacy and
environmental data
well-being governance

5.
Diversity, non- 4.
discrimination Transparency
and fairness —

Software engineering for machine learning

How are software engineering practices impacted by incorporation of ML
components in software systems?

What new practices are being proposed by researchers and practitioners?
To what extent are practices adopted by engineering teams?

What are the effects of practices adoption on the quality of systems that
incorporate ML components?

Investigating machine learning engineering practices

I
Academic Serban et al, “Adoption and 4
:.:md grey 400+ effects of software engineering
literature practitioners best practices in machine
l learning”, ESEM 2020

Survey
adoption
and
effects

Create
practice
catalog

Interview Add Add
practi- trustwor- archi-
tioners thiness tecture

Review
literature

Awesome 29 ranking of “State of ML +14 Tactics linked
reading list practices in practices and engineering practices and to quality
‘ i fixed format links to practices” link to seven aspects
effects report requirements ”State of AutoML”
awesome

¢ Star 639 report

Online catalog of engineering practices for ML

Originally, 29 practices. Now grown to 45.

Grouped into 6 categories.

SE'ML

Data Training

= Intent

. . Ingesting external sources Feature engineering
. M Otlvat | 0 n Versioning, storage, sharing Model evaluation

. he Labeling Testing and peer review H
L Ap p I | Ca bl I |ty Governance Bias and fairness control Training automation COdlng

. . Establish values Test automation
| |
Descrl ptlon Ensure transparency Continuous integration
H Assess risks Quality control

= Ad (0] pt on Independent audits Security assurance
= Related practices Team Deployment
L Refe rences Formation Automated deployment

Collaboration Shadow models
Communication Logging and monitoring
Decision making Roll-back

Ranked on difficulty

Example practice

Title

= [Intent

= Motivation

= Applicability

= Description

= Adoption

= Related practices
= References

Use Sanity Checks for All External Data
Sources

January, 2021 ¢ Alex Serban, Koen van der Blom, Joost Visser

€ 1/45 ¢ Data » [>

Intent

Avoid invalid or incomplete data being processed.

Motivation

Data is at the heart of any machine learning model. Therefore, avoiding data errors is crucial for
model quality.

Applicability

Data quality control should be applied to any machine learning application

Description

Whenever external data sources are used, or data is collected that may be incomplete or ill
formatted, it is important to verify the data quality. Invalid or incomplete data may cause outages
in production or lead to inaccurate models.

Start by checking simple data attributes, such as:

* data types,

¢ missing values,

« data min. or max. values,

« histograms of continuous values,

and gradually include more complex data statistics, such as the ones recommended here.

Missing data can also be substituted using data imputation; such as imputation by zero, mean,
median, random values, etc.

Also, make sure the data verification scripts are reusable and can be later integrated in any
processing pipeline.

Measuring practice adoption

Survey among teams building software that
incorporates ML components.

Questions:

= General
ex. Team size, team experience, country, kind of
organization, type of data, tools used.

= Practices

ex. "Our process for deploying our ML model is fully B Notatall
automated.” .
Partiall
= Effects Y
ex. “We are able to easily and precisely reproduce past MOStly
behavior of our models and applications.”] Completely

@ leidenuniv.eu.qualtrics.com

100%

Please answer the questions from the

perspective of your team.

You can skip a question if you don’t know
the answer.

We do not collect any personal
information.

Your answers will be processed
confidentially.

We will share the lessons learnt from this
survey through a freely available

publication.

« Previous Next —

Powered by Qualtrics (3

Tech companies lead practice adoption

Type of organisation

T B Notatall
W Partially
I Mostly
80— B Completely
The adoption of best practices by
tech companies is higher than by °
non-tech companies, governmental 0
organizations, and research labs. Research organisation
20— have lowest practice
adoption, mainly for
deployment practices
0-]]]]

Tech Non-tech Governmental Research
company company Organisation

Not at all
Partially
Mostly
Completely

Team Size Team Experience

100—
Except teams with more
than 5 years experience!

I I I I I

1 member 10 15 16 or more Just started 3-12 months 1-2 years 2-5years More than
5years
Larger teams tend to More experienced teams
adopt more practices. tend to adopt more practices.

Practice adoption increases with team size and experience

ML-specific practices are adopted slightly more
than traditional SE practices

ML-specific practices
enjoy the highest

degree of adoption Types Of practice

Among ML teams, the adoption of ML-
specific practices is highest, followed by
general Software Engineering (SE) practices
and SE practices adapted to ML.

100—

80—

60—

40—

Not at all
Partially
Mostly
Completely

20—

]
New Traditional Modified

Practice adoption by data type

|
B Tabular data
B Text
M Images, Videos
Audio
B Time series
B Graphs
The adoption of practices is largely .)
Not at al
independent of the data type used = parily
80— ostly
Bl Completely

40—

20—

Example practice

Title
Nr e Category e Difficulty

= [Intent

= Motivation

= Applicability

= Description

= Adoption

= Related practices
= References

Use Sanity Checks for All External Data
Sources

January, 2021 Alex Serban, Koen van der Blom, Joost Visser 1

€ 1/45 ¢ Data » [>

t

Intent

Avoid invalid or incomplete data being processed.

Motivation

Data is at the heart of any machine learning model. Therefore, avoiding data errors is crucial for
model quality.

Applicability

Data quality control should be applied to any machine learning application

Description

Whenever external data sources are used, or data is collected that may be incomplete or ill
formatted, it is important to verify the data quality. Invalid or incomplete data may cause outages
in production or lead to inaccurate models.

Start by checking simple data attributes, such as:

* data types,

¢ missing values,

« data min. or max. values,

« histograms of continuous values,

and gradually include more complex data statistics, such as the ones recommended here.

Missing data can also be substituted using data imputation; such as imputation by zero, mean,
median, random values, etc.

Also, make sure the data verification scripts are reusable and can be later integrated in any
processing pipeline.

Difficulty

Category

Ll - O ' /e o £ AN]
Adoption l)ata

Adoption by team experience Adoption by team size

Example practice .

100— o=
| o= o=

0 o

o— o
Title - 0=

o= o= cial for

Percentage of answers

Percentage of answers

. . ES 75 L"Je 25 JA, 6.
Nr e Category e Difficulty S S, o, o, P
= Intent
- M Otivatio n Adoption by data type Adoption by org. type
. . il
= Applicability . o— butages
= Description - . o=
. 2 z
»= Adoption L. [
= Related practices %"w_ I
& &
= References - 2=
0= 0=
B Notatall /»,,,Q
B Partially - jrean.
M Mostly
B Completely fny

T processing pipeline.

Example practice

Title
Nr e Category ¢ Difficulty

= |ntent

= Motivation

= Applicability

= Description

= Adoption

= Related practices
= References

Adoption

ol O o e i O) € il AN p] l)ata

Adoption by team experience

100=—

Percentage of answers

100 =
30—
0=
s0—
0=
- cial for
2, /3% ,V"Je,,,’ 2 'rie,,,' r::':: a

Adoption by data type

Percentage of answers

]
%

II[

Adoption by team size

Percentage of answers

Gg
"*‘o,% ""\,,%"’h- %‘_"'%

Adoption by org. type

Related

* Check that Input Data is Complete, Balanced and Well Distributed
« Write Reusable Scripts for Data Cleaning and Merging

Read more

+ Data management challenges in production machine learning
* ML Ops: Machine Learning as an engineered disciplined

1/45 ¢ Data

any

T processing pipeline.

Capture the training objective in a metric that is easy to measure and understand
Share a clearly defined training objective within the team

Use versioning for data, models, configurations and training scripts
Continuously measure model quality and performance

Write reusable scripts for data cleaning and merging

Enable parallel training experiments

Share status and outcomes of experiments within the team

Use a collaborative development platform

Work against a shared backlog

Communicate, align and collaborate with multidisciplinary team members
Ensure data labeling is performed in a strictly controlled process
Continuously monitor the behaviour of deployed models

Enable automatic roll backs for production models

2 9 p ra Cti Ces’ Make data sets available on shared infrastructure

Automate model deployment

ra n ke d Use continuous integration
Perform checks to detect skews between models

Check that input data is complete, balanced and well distributed
Log production predictions with the model’s version and input data
Peer review training scripts

Enforce fairness and privacy

Use sanity checks for all external data sources

Test all feature extraction code

Practices are ranked by the Use static analysis to check code quality

average of: their rank on
Completely, their rank on Enable shadow deployment

Completely+Mostly, and their rank Automate hyper-parameter optimisation and model selection
on Completely+Mostly+Partially.

Run automated regression tests

Actively remove or archive features that are not used

Assign an owner to each feature and document its rationale

<
o
%]
2
[«
o
o
S
S
®
o

advanced

Not at all
Partially
Mostly
Completely

Least adopted

Training
Training
Training
Training
Data
Training
Training
Team

basic

Team

Team

Data
Deployment
Deployment
Data
Deployment
Coding
Deployment
Data
Deployment
Data
Governance
Data
Training
Coding
Deployment
Training
Coding
Training
Training

medium

Most adopted practices

Practices related to measurement and versioning
are widely adopted.

The top 4 adopted practices are all related to
model training.

Top 5

Capture the training objective in a metric
that is easy to measure and understand

Share a clearly defined training objective
within the team

Use versioning for data, model,
configurations and training scripts

Continuously measure model quality and
performance

Write reusable scripts for data cleaning
and merging

Alex Serban
cs.ru.nl/~aserban

Least adopted practices

The two most neglected practices are related to
feature management.

Outside research, Automated ML through automated
optimisation of hyper-parameters and model
selection, is not (yet) widely applied.

Bottom 5

Assign an owner to each feature and
document its rationale

Actively remove or archive features that
are not used

Run automated regression tests

Automate hyper-parameter optimisation
and Model Selection

Enable shadow deployment

Alex Serban
cs.ru.nl/~aserban

Measuring effects of practice adoption

For four effects, we hypothesized a relation
with a specific selection of practices.

= Linear regression
Confirmed hypotheses.

= Non-linear regression — Random Forest
Demonstrated non-linear influence.

= Importance of each practice — Shapley
Some very important practices have low adoption.

Effects Description

Agility The team can quickly experiment with new data and al-
gorithms, and quickly assess and deploy new models

Software Quality The software produced is of high quality (technical and

Team Effectiveness

Traceability

functional)

Experts with different skill sets (e.g., data science, software
development, operations) collaborate efficiently
Outcomes of production models can easily be traced back
to model configuration and input data

Different practices,
different outcomes

Analysis of survey responses shows that
desired outcomes such as traceability,
agility, team effectiveness, and software
quality are each related to specific sets of
practices.

Per desired outcome, we list the three
practices with the largest influence.

Agility

1. Automate model deployment

2. Communicate, align, and collaborate
with multidisciplinary team members

3. Enable parallel training experiments

Team Effectiveness

1. Work against a shared backlog
Use a collaborative development
platform

Share a clearly defined training
objective within the team

Traceability

1.

Log production predictions with the
model’s version and input data

Continuously monitor the behaviour
of deployed models

Use versioning for data, model,
configurations and training scripts

Software Quality

1. Use continuous integration
2. Run automated regression tests

3. Use static analysis to check
code quality

Tech companies are leading in adoption
of ML engineering best practices.

Larger and more experienced teams
tend to adopt more practices.

Key findings

From 2020 global survey on
adoption of 29 practices, among
350 teams.

General software engineering practices enjoy slightly lower
adoption than specific machine learning practices.

Best practices for feature management
are the least well adopted.

ENGINEERING

PRACTICES for
MACHINE LEARNING

Desired outcomes such as traceability, agility, effectiveness,

and quality are each related to specific sets of practices.

QOOOO

Software Engineering practices in the age of ML

How are software engineering practices impacted by incorporation of ML
components in software systems?

What new practices are being proposed by researchers and practitioners?

. o Answers lead to new questions ...
To what extent are practices adopted by engineering teams?

What are the effects of practices adoption on the quality of systems that n

: Trustworthiness
incorporate ML components?

More practices? Link to requirements?

= Architecture
Practices as tactics to reach architectural goals.

= AutoML

Transfer from research to broad adoption?

Back to the

Seven key requirements WO
agency and
— \ gversyight
2.
. 7. Technical
Evaluate and address these continuously Accountability robustness

and safety

throughout the Al system’s lifecycle, via:

* Technical methods
e.g., Constraints in the software architecture,
embedded in design and implementation. 5 3
Explanation functionality. Deliberate testing and Soseral sl Privac.y o

validation. Measure algorithm quality indicators. environmental data
well-being governance

= Non-technical methods
e.g., Regulations, code of conduct,
standardization, certification, governance, 5.
education, awareness, stakeholder participation, Diversity, non- 4

. o . discrimination Transparenc
diversity in design teams. and fairess A 2 y

New practices, mapped to trustworthiness requirements

T1 - Test for social bias in training data

T2 - Prevent discriminatory data attributes as model features

Human agency and oversight . . .
T3 — Use privacy-preserving ML techniques

Technical robustness and safety T4 — Employ interpretable models whenever possible

T5 — Assess and manage subgroup bias

Privacy and data governance T6 — Assure application security

Ethhical Transparency v T7 — Provide audit trails

N
/

Diversity, non-discrimination, fairness T9 — Establish responsible Al values

T8 — Decide trade-offs through an established team process

Robust

T10 — Perform risk assessments

T11 — Inform users on ML usage

Accountability T12 — Explain results and decision to users

T13 — Provide safe channels to raise concerns

Alex Serl

T14 — Have your application audited

—

collect

Data

ML engineering practices for research

Write Reusable Scripts for Data
Cleaning and Merging

March, 2021 e Alex Serban, Koen van der Blom, Joost Visser

« 4145+ Data s . >

Intent

Avoid untidy data wrangling scripts, reuse code and increase reproducibility.

Motivation

Data cleaning and merging are exploratory processes and tend to lack structure. Many times
these processes involve manual steps, or poorly structured code which can not be reused later.
Needless to mention such code can not be integrated in a processing pipeline.

Applicability

Reusable data cleaning scripts should be written for any ML application that does not use raw or
standard data sets.

Description

Most of the time, training machine learning models is preceded by an exploratory phase, in which
non-structured code is written, or manual steps are performed in order to get the data in the right
format, merge several data sources, etc. Especially when using notebooks, there is a tendency to
write ad-hoc data processing scripts, which depend on variables already stored in memory when
running previous cells.

Before moving to the training phase, it is important to convert this code into reusable scripts and
move it into methods which can be called and tested individually. This will enable code reuse and
ease integration into processing pipelines.

share
Adoption by org. type
100 =
@ 80—
5
g
3 w-
=]
E
g 0=
g B Notatall
-9 "
20— B Partially
M Mostly
H Completely
=]]]
%, Vo, Gy, R,
S o e, ey, ..
‘ J"’Pan) ‘ %}Pan':/’ %"%;:’e”ta/ “
: : Yoy

clean

label

ML engineering practices for research

Share Status and Outcomes of
Experiments Within the Team

March, 2021 * Alex Serban, Koen van der Blom, Joost Visser

€« 23/ 45 e Training ®

Intent

Facilitate knowledge transfer, peer review and model assessment.

Motivation

Team members have different ways of managing and logging experiment related data. Adopting a
common way to log experiment data and share it within the team enables members to collectively
monitor and assess training outcomes.

Applicability

Experiment tracking and sharing should be used for any training experiment.

Description

Although different team members have their own style of managing experiments and tracing their
outcomes, it is recommended to adopt a common way of logging data; that is understood and
accessible to all team members.

Sharing the outcomes within the team has several benefits for peer review, knowledge transfer
and model assessment.

Several collaborative tools enable central logging of experimental results.

Whenever possible, it is recommended to use one of the tools available internally or externally
(e.g. Sacred or W&B).

—

goal

share

s

Adoption by org. type

100 =
@ 80—
5
=
2
g 60—
k-]
o
&
g 0=
g B Notatall
= M Partiall

20— Yy

M Mostly
H Completely
=]]]
T, Non Gy, R,
Oy %;,,7_:'%%/ et
3 i3 "
: : Yoy

train

‘ Training

test

ML engineering practices for research

Use Static Analysis to Check Code
Quality

March, 2021 e Joost Visser, Alex Serban, Koen van der Blom

« 26145 » Coding » . >

Intent

Avoid the introduction of code that is difficult to test, maintain, or extend.

Motivation

High-quality code is easier to understand, test, maintain, reuse, and extend. The most effective
way of ensuring high code quality is to make use of static analysis tools.

Applicability
Code quality control should be applied to any type of code.

Description

By ensuring high code quality you can avoid the introduction of defects into the code, enable new
team members to become productive more quickly, and more easily reason about the correctness
of your code.

Static code analysis can be done in various ways:

« Linters: A linter is a tool that finds undesirable patterns in program code and reports these
back to the programmer. Linters can be activated in a code editor, and integrated
development environment, or they can be run on the commandline.

« Quality gates: You can integrate a static code quality analysis tool in an automated build and
testing script that runs every time a developer commits code changes to the versioning
system. When quality issues are found, you can choose to have the commit rejected.

—

code

‘ Code

release

s

Adoption by org. type

Percentage of answers

100 =

Not at all
Partially
Mostly
Completely

[[[[
&

7 A G A
o ™ g, ey,
Uy Oy, s Oy, iy ey
", ", ’113;,’,[o:f.u

build

test

ML engineering practices for research

Use A Collaborative Development
Platform

March, 2021 e Joost Visser, Alex Serban, Koen van der Blom

¢ 3545 + Team » . >

Intent

By making consistent use of a collaborative development platform teams can work together more
effectively.

Motivation

Collaborative development platforms provide easy access to data, code, information, and tools.
They also help teams to keep each other informed, make and record decisions, and work
together asynchronously or remotely.

Description

Broadly used collaborative development environments include GitHub, GitLab, BitBucket, and
Azure DevOps Server.

Some collaborative development environments are offered as cloud services, others may be
installed on-premises, or both. Commonly offered capabilities include:

Version control

Issue and progress tracking

Search, notifications, discussion

Continuous integration

A range of developer tools as (third-party) plugins

Collaborative development environments have been developed for, and gained wide-spread
adoption by, “traditional” software development teams.

Team

Adoption by org. type

g 0=
5
g
: w-
=l
)
g
g 0=
2 B Notatall
& .
B Partially
) —
2 W Mostly
H Completely
= I I I
7, A G R,
§ O, O, ey,
<o, €y, oy Iy Ticg,
oy, oy, O%""‘-';7,(‘10,,%'/

Take away

Software that incorporates Machine Learning (or other Al) challenges
traditional software engineering practices, due to data intensity, inherent
uncertainty, and iterative empirical design.

Demand for robust and responsible development and use are not unique
to ML, but become more acute.

Engineering practices are being modified and developed at a quick pace.
Adoption varies and effects are not well-understood.

Software Engineering researchers should embrace the challenge of ML,
investigate and enhance practice development.

Reading list
We reviewed scientific and
popular literature to identify
recommended practices.

Check out this Awesome List

with relevant literature.

Preprints
Full details of the
methodology behind our
survey are described in
scientific articles. Read the
preprints here.

Catalogue
The best practices that we
identified are describe in
more detail in this Catalogue
of ML Engineering Best
Practices.

se-ml.github.io
Visit our project website for
more details, to take the
survey yourself, and to stay
up-to-date with our latest
results.

Learn more

https://github.com/SE-ML/awesome-seml/blob/master/readme.md
https://se-ml.github.io/practices/
https://se-ml.github.io/

Alex Serban

Holger Hoos

o
v |
v

Joost Visser

Team

https://se-ml.qithub.io/members/

LIACS, Leiden University, The Netherlands
ICIS, Radboud University, The Netherlands

University of British Columbia, Canada

https://se-ml.github.io/members/

