Continuous {Integration,
Dellvery, Deployment}

ring for Machine Learning Applications
(REMLA, CS4295)

Goal of today...

e Differentiate the various continuous X buzzwords

* Understand the setup and the goals of a basic delivery
pipeline

* Use semantic versioning in your projects
* Understand challenges in dependency resolution

*Get a first glimpse in the capabilities of GitLab that go
beyond a simple build server

Continuous <Enter Buzzword here>

A Basic Delivery Pipeline

e —
Source Code 8 Developer Version Control

8 Tester User Acceptance Tests
- Setup Environment D
5 Deploy
v § Manual Testing
. v A
Commit Level Automated ; .
Compile Acceptance Testing § Performg nce/Capamty Tests :
Unit tests |——®| Setup Environment —————P ConﬁgugeErl\c\)/lronment <
Assembly Deploy 5 Performaacg Tests :
Static Analysis Integration Testing . x
B'n?”es ; ; ; Production
: —®| Configure Environment
. 8 Operator Deploy
\V Binaries Binaries /1\

Artifact Repository

Configuration Management

e Infrastructure as Code

* Configuration as Code

Deployment Workflow

Build & Unit Acceptance
Release
Tests

Continuous ...

Continuous
Integration

Continuous Integration

*|ntegrate changes

* Trunk-based development
* Pipeline-centric development

* Quality assurance
* Maintainability

| Build Logs
Automated Build

Continuous Delivery

* Automate packaging

* Configuration e
*\ersioning | '
* Automated acceptance testing

* “One-click Deployments”

“make every change releasable”

Continuous Deployment

* Automated User Acceptance Tests
* Prepare/configure environment
*|nfrastructure as code

CONTINUOUS

DEPLOYMENT

“release every change”

10

Continuous Experimentation

* “Testing on live”

*Release to subsets of your users

* Monitor effect of changes

* Release decision based on monitoring results

>

Application Types

What does Continuous Delivery mean for...

* Webapps?

* Machine Learning Models?
* Downloaded Application?
* Mobile App/App Stores?
*Software library?

4
S What are the challenges/ benefits/
requirements/... when you want to

apply CD for various application types?

Release Personas / Stereotypes

e Standalone Installation

e |solated
e Collaborative

\Webservices

*|ntegrated
* Plugins
* Libraries

Focus of this course

e Libraries

\Webservices
o 7

Versioning

*—o—0—0—0—0—0—0—0—

Unique Versions

I» master First pass for next OOPP iteration
Last version of last year.

Refactor path information, to make them con...

Generation of group templates for a given .cs...

Final version before publishing the rubrics.

First release candidate.

Incorporated feedback and first complete ver...

Split down monolithic rubric into multiple files.

Initial version of the rubric-template generator.

a8f3507
83c57f2
69f4baf
1bdfec9
967d6c8
a7d211f
4fa9bdd
ed31817
8ffafc2

Sebastian Proksch -
Sebastian Proksch -
Sebastian Proksch -
Sebastian Proksch -
Sebastian Proksch -
Sebastian Proksch -
Sebastian Proksch -
Sebastian Proksch -

Sebastian Proksch -

19

Ordered Versions

V'T'E Windows 10 versions
Support until (and support status by color)
Home
Version | Codename Marketing name Build Release date Pro Enterprise
Pro Education Education LTec Mobile
Pro for Workstations
1507 | Threshold 1 N/A 10240 July 29, 2015 May 9, 2017 October 14, 2025 N/A
1511 | Threshold 2 November Update 10586 | November 10, 2015 October 10, 2017 April 10, 2018 N/A January 9, 2018
1607 | Redstone 1 | Anniversary Update | 14393 August 2, 2016 April 10, 2018[°] April 9, 2019 October 13, 2026 | October 9, 2018
1703 | Redstone 2 Creators Update 15063 April 5, 20179 October 9, 2018/°) October 8, 2019!" June 11,2019
1709 | Redstone 3 | Fall Creators Update | 162999 | October 17, 2017 April 9, 2019 October 13, 2020!" N/A January 14, 2020
1803 | Redstone 4 April 2018 Update 17134 April 30, 2018 | November 12, 2019 May 11, 2021 i
1809 | Redstone 5 | October 2018 Update | 17763 | November 13, 2018/ | November 10, 2020 January 9, 2029
1903 19H1 May 2019 Update 18362 May 21, 2019 December 8, 2020
1909 19H2 November 2019 Update | 18363 | November 12, 2019 May 11, 2021 May 10, 2022 N/A
2004 20H1 May 2020 Update 19041 May 27, 2020 December 14, 2021 N/A
20H2 20H2 October 2020 Update 19042 October 20, 2020 May 10, 2022 May 9, 2023
21H1 21H1 TBA 19043 TBA 18 months
Legend: | | Old version, unsupported!! | | Older version, supported™ | | Latest version!” | |Latest preview version'

[show]

Semantic Versioning

Given a version number , increment...

* the version when you make incompatible API changes,

* the version when you add functionality in a backwards
compatible manner, and

* the version when you make backwards compatible bug fixes.

Additional labels for and build are available as

extensions to the MAJOR.MINOR.PATCH format.

Example Versions

o]

e1.2

°1.2.3

*2.43.0-beta
*0.1.3-SNAPSHOT
*0.0.1-20210419-134715

Dependency Resolution

Well defined Maven Version?

<dependency>
<groupIld>commons—io</groupld>
<artifactId>commons—-io</artifactId>
<version>l.4</version>
</dependency>

24

Range

(,1.0]

1.0

[1.0]
[1.2,1.3]
[1.0,2.0)
[1.5,)
(,1.0],[1.2,)

(,1.1),(1.1,)

Maven Version Ranges

Meaning
x<=1.0

"Soft" requirement on 1.0 (just a recommendation - helps select the correct version if it matches all ranges)

Hard requirement on 1.0

1.2<=x<=13
10<=x<20
x>=15

X <= 1.0 or x >=1.2. Multiple sets are comma-separated

This excludes 1.1 if it is known not to work in combination with this library

25

Deterministic Version Resolution?

<dependency>
<groupld>commons—1io0</groupld>
<artifactId>commons—-io</artifactId>
<version>[,1.4)</version>
</dependency>

26

Lesson Learned #1: Fix Versions!

*Fixing specific versions is essential

*Builds become repeatable and deterministic

*Can be auto-updated, e.g., through automated PRs
e “Latest” is not a fixed version

Unexpected Effect of Transitive Dependencies

* Transitive dependencies might conflict

* Dependency resolution A-1.0.0
* Try to solve constraints (Matcher) / \
* Use newest match B-1.0.0 C-1.0.0

* |f no match, use declaration that is
"nearest”to A

* Might(!) work!
*Sometimes, resolution in A necessary

D-1.0.0 D-2.0.0

LL#2: Minimize Dependencies

* Unnecessary dependencies bloat client
* Excessive dependencies increase conflict potential
* Dependencies might not be available

* Use commons packages for utils and data structures

Managing Versions

Trunk-Based Development + Release Tags
(GitHub Model)

main

release-2.0

Release Branches

develop ‘

release-1.1

release-1.0

Branch

Time-based Versions

* Pre-releases

 Timed Builds

* ClI/CD evangelists would say they are not necessary
* Used when releasing is expensive
* .. or environment changes frequently

* Usually used in addition to proper versioning scheme

Where to store the version information?

* As a static field in a class?

*|In a file? pom.xml?

* As a repository tag?

* What happens should you forget to update?

*\Who is bumping version numbers?

*Who gets to decide on major/minor/patch?

*Does the build server get write access to the repo?

GitLab Pipelines

Stages & Jobs

*Jobs are smallest unit of a pipeline

e Stages group jobs

* Default stages exist

* A pipeline orchestrates execution of stages and jobs
*Stages are run sequentially, jobs in parallel

Build Test Staging Production

_ ARTIFACTS)
e —

https://about.gitlab.com/blog/2020/12/10/basics-of-gitlab-ci-updated/

37

Trigger

* All jobs are considered when a pipeline triggers
* Commit
* Manual trigger

* APl trigger
* Execution can be controlled though
*Use / to limit job to certain branches or
tags

*Use as start criterion, by default: on_success

Artifacts

*Every job gets access to the checked-out repository
* All changes in the working dir are isolated

*Use directive to preserve outputs for
upcoming stages

*Use directive to preserve outputs between job
executions

Pipeline Execution

*Pipeline steps are executed on runners in containers
*Base image can be changed

Hosted Your Organization

...

:) :]

' 1 ']

'] :]
Shared GitLab Private
Runner § Runner

...

Script Line

*Prepare environment with
statements

* Actual task is done by invoking all lines in
*Can be bash script, a build tool, a provisioning tool, ...

default:
image: python:3.8
before_script:
- apt-get update
- apt—-get install -y python3-pip
— pip install -r requirements.txt
stages:
= fest
— dummy
test:
script:
— coverage run —-m pytest
— coverage report

Environments

*GitLab can deploy to environments

* Provides a full history of deployments to each
environment.

*Tracks your deployments, so you always know what is
deployed on your servers.

* Useful for Kubernetes, e.g., gradual rollouts

... and much more.

https://docs.gitlab.com/ee/ci/README.html

allow_failure Allow job to fail. A failed job does not cause the pipeline to fail.
artifacts List of files and directories to attach to a job on success.
before_script Override a set of commands that are executed before job.

cache List of files that should be cache

Eoverage Gode coverage settings for a /v el {1 W[T Bl Q Search the docs... 1310 ~ Get free trial
dependencies Restrict which artifacts are passq _
environment Name of an environment to whict
e Limit whenjobs are not rested. - Mergie requests > W) GitLab Docs > GitLab CI/CD > Keyword reference for the .gitlab-ci.yml file
extends Configuration entries that this jot
Use Docker mages. Operations >
include Include external YAML files. CI/CD K d f f h ° I b [] I
v eyword reference for the .gitlab-ci.ym On this page
interruptible Defines if a job can be canceled \ Get started > f. I J
ob keywords
needs Execute jobs earlier than the stag I e ALL TIERS Y
— LimitwhenJobs ore createl Pipelines > Unavailable names for jobs
i a ult of a job to use X Custom default keyword values
e Upload the resu ot a ob o o Jobs > This document lists the configuration options for your GitLab .gitlab-ci.yml file. y
parallel How many instances of a job sho . Global keywords
release Instructs the runner to generate ¢ Va ra b | €s > o
¢ For a quick introduction to GitLab CI/CD, follow the quick start guide. stages

resource_group Limit job concurrency. Environments and S ‘ . workflow
retry When and how many times a ob deployments * For a collection of examples, see GitLab CI/CD Examples.
g List of conditions to evaluate and workflow:rules templates

Runners > e Toview alarge .gitlab-ci.yml file used in an enterprise, see the .gitlab—ci.yml .
script Shell script that is executed by a g g y p ! g y SWItCh between branch
Searais The CI/CD secrets the job needs. Cache and artifacts > file for gitlab. p!pel!nes and merge request
Use Docker services images. pipelines
stage Defines a job stage. gltlab'CIVmI v include
e e When you are editing your .gitlab-ci.yml file, you can validate it with the CI Lint tool.
tags List of tags that are used to selec -gitlab-ci_yml Variables With include
timeout Define a custom job-level timeou refe rence inCl ud e | oca |
trigger Defines a downstream pipeline tr
variables Define job variables on a job leve Validate syntax Cg Job keywords include:file
i When to run job. Pipeline Editor Multiple files from a project

A job is defined as a list of keywords that define the job’s behavior. include:remote
Include examples .
he k ’ lable f b include:template
The keywords available for jobs are: .
Docker % y J Nested includes
Integrate a database > . i - Additional includes examples

Deploy Targets

File Share

* Programs
* Websites
* Use simple transfer utilities, like or

Artifact Repository

* A released artifact has an unique name

* Central Repository to store and manage artifacts
* “Mavenized” Git Repository
* Package/Container Registry of Repository Providers
* Specialized Repository Software, like Artifactory
* Maven Central

*Gives clients a unified access to well-defined deps

Application Server [Cluster

* Deployment/Configurations
* Often either a final, manual trigger...
*...or webhooks to trigger updates

* Automated update is key for continuous
experimentation

*GitLab: when: delavyed trigger for gradual rollout

Outlook

Follow-up Problems

*Client heterogeneity

* Data Format Migration

* Endpoint Versioning

* APl Design & APl Deprecation

* Detecting Breaking Changes (Semantic)

Conclusion

After today's lecture, you can...

*tell the difference between continuous integration,
delivery, deployment, and experimentation

*describe a basic delivery pipeline
*explain the concepts behind semantic versioning
*describe basic release/version strategies

*describe the basic elements of a GitLab pipeline and
you know how to find more information

