
WolfPal 2.0: Feedback and recommender system for
course selection

Neel Kapadia
North Carolina State

University
Raleigh, NC, US

ntkapadi@ncsu.edu

Rohan Chandavarkar
North Carolina State

University
Raleigh, NC, US

rgchanda@ncsu.edu

Sainag Shetty
North Carolina State

University
Raleigh, NC, US

sgshetty@ncsu.edu
Rohit Naik

North Carolina State
University

Raleigh, NC, US
rtnaik@ncsu.edu

ABSTRACT
In today’s competitive world students need to take certain
decisions in their academic life which seem to be easy but
have a major impact on their future. Choosing the right
courses in their degree program at the right time is one
such decision making task which is of great relevance to
a student’s academic and professional future. Apart from
contributing to the grade point average and shaping up the
resume, the course selection also affects the qualitative fac-
tors like the student’s interest in the degree program. Since
the decision of coming out with a proper course plan di-
rectly affects the career of the student, this decision should
be a well informed one. The students rely on various sources
and use multiple techniques to find out the best courses for
them which fit in their credit-based study. We thought of
contributing to one such platform which brings together all
such resources and help the students in making this course
plan.

The platform has the functionalities of interacting with
peers and discuss important points like professor reviews,
average grades, course structure. We added new function-
alities in the platform using latest techniques like natural
language processing so that the factor of student’s inter-
ests and skill-sets is considered more strongly in the course
planning. Moreover, we extracted course information from
NCSU Course Catalog which replaced the earlier static database.
Another important feature we added in the web application
was the file upload functionality so that users can add syl-
labus of respective courses.

Keywords
Course Feedback, Course Recommendation, Keyword Ex-
traction

1. INTRODUCTION
The task of planning the courses is one of the most im-

portant tasks in a student’s life. Students rely on a lot
of resources which are scattered all around and not all re-
sources give the students a perfect strategy to choose the
right courses for them. The task of course selection is taken
seriously by students all over the globe and it is necessary

that all the resources are utilized in conjunction to give a
course plan to the students which will be beneficial for them.

There are hundreds of universities in North America and
huge number of students pursuing advanced degrees in these
universities. During the application phase, the students se-
lect certain universities based on the area of specialization
and the courses offered in that field. So it would be unfair
for the students if they do not get the right courses after
taking admission due to lack of resources or lack of commu-
nication. Wolfpal, a course planning assistant, is a platform
which aims to resolve these shortcomings and come up with
a good course plan for the students. We have added new
functionalities to this novel approach of course planning by
applying latest techniques available.

1.1 Previous Functionalities
Wolfpal 1.0 was a highly efficient platform which had im-

portant functionalities like chatting with peers about the
courses, average grades of previous batches, course struc-
ture. These parameters were judged accurately by experi-
ence of similar people and a chatting platform for the same
serves the purpose. Moreover, the platform also had a bot
functionality where in the students can get answers to cer-
tain queries related to planning of courses. The system also
provided a list to the students for the course plan and also
displayed course information from the course catalog to the
students.

1.2 New Functionalities
The main aim of our new functionalities was to capture

maximum students’ interests, requirements and skills to sug-
gest them a course plan.

1. We added a functionality of suggesting courses by map-
ping course descriptions with keywords. We used Nat-
ural Language Processing techniques for the same.

2. The course details are now extracted directly from the
NCSU Course Catalog, thus replacing the earlier static
database which was designed by manually entering the
course details.

3. Another functionality we added was a file uploader
so that students could add syllabus of the courses for



Figure 1: Activity Diagram

other users to view thereby giving the students more
information about the courses.

2. MOTIVATION
The dilemma of deciding which course to take is a major

problem faced by every student. With a plethora of options
and not a very reliable source of information, this task only
becomes more difficult. Take the case of North Carolina
State University, specifically the Computer Science stream,
there are around 125 different courses. A student needs to
study and find out which amongst these courses best suits
his/her interest, which is a lot of work. Assuming it takes
about 15 minutes to find out what the course has to offer,
doing that for all of the possible courses takes 31.25 hours.
Also, this is based on the condition that, all of the informa-
tion about that course is readily available.

For a student, all of this is a lot of work given there is
hardly any guidance. The aim of WolfPal is to reduce the
effort put in by the student to do this work. The applica-
tion integrates the resources provided by the university with
the remarks of the students on a course, who had taken the
course earlier, which will be ideal for the tackling the prob-
lem of lack of information. Generally, students are aware
of certain keywords or domains in their field of study and
not exactly the course titles. This observation prompted
us to add the functionalities of suggesting courses based on
keywords and domains. Before enrolling into a course, a
student is also interested in knowing about the work load
and grading system of the course. By adding the file upload

functionality to upload syllabus, we attempt to address this
requirement of the student.

3. LITERATURE REVIEW
Taking good courses is a very important necessity in the

career of every student. Despite steady work done related to
course recommendation and feedback system, course selec-
tion remains a challenging process for any graduate student.
In the following section we will discuss the previous works re-
lated to course recommendation and feedback system along
with their shortcomings.

3.1 WolfPal 1.0
WolfPal 1.0[1] an interactive platform that aims toward

helping students with selecting courses for their graduation.
It tries to integrate the resources provided by the university
with the remarks of the students on a course, who had taken
the course earlier which will be ideal for the tackling the
problem of lack of information. Thus, it tries to give the
student an idea of how and what to expect from a particular
course. The system will provide a way for the student to
connect to other students for sharing any information or
queries about courses. The system also gives a chatbot for
course recommendation.

The shortcomings from this current version of the appli-
cation can be described as follows:

• Chatbot integrated into a Web GUI isn’t intuitive:

The application helps in course recommendation using
a chatbot that recommends courses. But the problem



here is that whilst using a Web Based GUI having a
bot which does a QA is very intuitive.

• The keyword filtering of the courses is not effective:

While the system does have the feature of filtering out
courses by putting in keywords, this filtering technique
is not guaranteed to produce ideal results as also no-
ticed during testing.

3.2 Course feedback system
”Course feedback system”[2] provides three features. One

is a forum that can share short reviews for each course with
like and dislike button that can increase its reliability. The
second feature is a feedback system that senior students
could answer eight questions for each course, such as num-
bers of project, number of assignment, course knowledge
and so on. The third feature is a suggestion system that
helps student search courses by 8 filters based on the data
from second feature. We think this system is a more reliable
and a more feedback friendly system than the previous one,
because of its separate review and feedback, as well as grad-
ing criteria (questions) by multiple choice to prevent typing
errors.

3.3 An Automated Recommender System for
Course Selection

This paper[3] presents a collaborative recommender sys-
tem that recommends university elective courses to students
by exploiting courses that other similar students had taken.
The system employs an association rules mining algorithm
as an underlying technique to discover patterns between
courses. The system tries to recommend elective courses to
students based on what other similar students have taken. It
finds similar students and then apply association rule min-
ing algorithm on their courses to create courses association
rules. Discovered courses association rules are used to get
recommendation.

4. CHANGES FROM EXISTING SYSTEM
We added the following new features to the application -

4.1 Course suggestions based on keyword map-
ping

Introduction: This feature particularly targets the im-
provement of the keyword search functionality in the web
application.

Motivation: The main reason for adding this function-
ality was the results of the evaluation of WolPal 1.0. The
course search based on keywords was an important function-
ality and we wanted to at least improve if not perfect how it
operates. Also, according to our initial discussions with our
mentor, Ken Tu, we finalized that this was a great feature
where we could implement along with the use of Natural
Language Processing techniques. Also, sometimes the name
of the course is misleading or under representative of what
the course actually is. It requires more than the course name
for a student to make a decision about a course. Hence,
searching based only on the course title won’t be of help to
the students.

Solution: From the course description that we fetched
using the web scraping, we removed all the possible stop
words and other irrelevant words. After which the words
were stemmed and lemmatized using the NLTK library in

Python, thereby fetching keywords for a courses. Repeating
this process for all courses available, we then mapped these
keywords onto a bucket of keywords that segregated them
into topics using Topic Modelling approach. Also, we ex-
tracted keywords from the user’s interest description. Then
we matched those keywords with the topic map and display
the corresponding matching courses with all the details of
those courses. This will ensure all round information for the
user.

4.2 Upload syllabus functionality
Introduction: This functionality refers to an upload but-

ton and a back end architecture to handle file uploads from
the users of the system and at the same time allowing them
to download syllabus of uploaded subjects.

Motivation: Currently, the data in the system was up-
loaded by the developers themselves, which won’t work in
the longer term. It might cause unnecessary overhead on
the developers’ end, of maintaining the syllabus files on the
portal and adding additional files. This idea won’t be prac-
tical and the time spent by developers can instead be used
for developing other important features.

Solution: Hence, we have implemented a file upload func-
tionality in the web application so that students can upload
syllabus files for others to view. We have used the refile
gem for adding this functionality. By using the gem instead
of developing the functionality from scratch, we get mul-
tiple benefits such as - configurable backends, convenient
integration with ORMs, on the fly manipulation of images
and other files, streaming IO for fast and memory friendly
uploads, effortless direct uploads, support for multiple file
uploads, and many more. Thus, we get a fully secure, ro-
bust and versatile feature for our application and can also
get to spend more time on other features.

4.3 Adding courses dynamically from NCSU
Course Catalog

Introduction: This feature aims at making the display
of courses cleaner in the backend.

Motivation: It was one of the sought after features from
the previous evaluations of WolfPal 1.0. Dynamic course
content retrieval could lead to opening many doors for the
project scope such as easily adding courses from other de-
partments and expanding the user base of the application.
Further, this also leads to saving of the developers’ time to
manually get course descriptions from the catalog. Also,
it ensures that the descriptions that are updated or new
courses which are added, get updated in the system without
extra effort.

Solution: To implement this, there were a few challenges
that we faced. The course catalog page from which the de-
scriptions were to be extracted was not a page with all the
details given directly. The page had a dialog box, in which
we needed to enter parameters which then led us to the next
page having the course descriptions. To implement this, we
wrote a selenium script which entered the parameters in the
dialogue box and took us to the next page which was then
used to extract the course content. The same procedure was
done for all the different departments to get courses from all
departments.

4.4 Fetching courses by domain
Introduction: This feature aims at giving a list view of



courses according to the domain they belong to such as De-
velopment, Systems, Data Science, Networking, Electronics,
Robotics, etc.

Motivation: Many times students want to know what
courses does the university has to offer in a particular field
of study which happens to be their liking. In such cases, it
becomes very helpful for the students to have such a list of
courses in front of them.

Solution: With the help of topic modeling, we create a
mapping between courses and topics. When a user requests
for a domain, the domain name is mapped with topic and
corresponding courses are returned.

5. IMPLEMENTATION PLAN

5.1 Previous Modules

5.1.1 Graduate Plan Formation:
This features enables students to easily look for impor-

tant details of the course like course description, syllabus,
schedule, instructor, workload, grade distribution, projects,
fieldwork, and also student can access the dedicated forum
of each course to view the thread of discussions or raise rel-
evant query which can be answered by the students who has
already enrolled in that course. Moreover, students can use
the combination of filters to search the course on the basis
of the keywords, semester, project, core or fieldwork. This
feature also includes an option for students to add or remove
courses to the the plan. With the help of this feature, a new
student can be provided with a proper blueprint of his entire
university schedule till he/she graduates. Having access to
such a significant resource before even stepping foot on uni-
versity premises will show a marked upturn in a student’s
academic performance.

5.1.2 PalTalk: student communication
The application provides a platform for students to com-

municate with relevant peers in the university which can
help new students to discuss any queries related to course
selection. Moreover, this platform provides an option to
send a private message to any peer. We have tried to make
this platform as generic as possible to promote communi-
cation by providing a public platform to interact with all
students. This will help resolve any doubts a student pos-
sesses. A university-wide open forum promotes communi-
cation between the students to a previously unprecedented
level. The academic study will be helped with department-
specific and course-specific threads on this forum, to pro-
vide an open platform for communication. Additionally, this
feature keeps the students more involved in campus life by
keeping them informed about the upcoming events in the
university. Specific threads of communication can also be
created for this.

5.2 Use Cases

1. login/signup

This is the authentication module where the users cre-
ate a new account or login to their existing accounts.

2. get list of courses by name

The users search for a particular course by the name
of the course or the course number. A direct mapping

Figure 2: PalTalk

Figure 3: Architecture Diagram



Figure 4: Use Case Diagram

Figure 5: Using columns in Github Projects for
planning

Figure 6: Using Wiki in Github for planning

between the search and the course name/number is
done and the course(s) is/are returned.

3. get list of courses by keyword

The users search for courses by keyword. For example,
if the user enters the keyword ”computer science” then
all courses related to that keyword will be displayed.
It involves a topic modeling approach which maps each
course to topic(s).

4. get list of courses according to area of interest

The users search for courses by their area of interest.
For example, if the user enters the keyword ”i am in-
terested in data science” then related courses to the
domain of data science will be displayed. Using NLP,
the search term is broken down and mapped to the
course map, which contains the topic and the course.

5. get/give information about courses on discussion fo-
rum

The users can provide information on the courses they
attended or get information on the courses they wish
to attend on the discussion forum. Basically it is a
chat-based application where the users can interact
and share information

6. upload syllabus of course

Students can enter the pdf file of the syllabus of the
courses they took. Once a user uploads a syllabus this
is available to all users of the application.

7. extract keywords from NLP

The system extracts keywords from the abstract the
user provides. Using the Stemmer and Lemmatizer of
the nltk library, the course description is broken down
into keywords after removing the stopwords.

8. get courses from university course catalog

The system get the list of courses from the university
course catalog. Using the NCSU course catalog, the
selenium webdriver scrapes it to dynamically load the
courses into the database.

9. display list of courses

System displays the list of courses after mapping the
keywords with the courses

5.3 Software Engineering Lifecycle and Prac-
tices

5.3.1 Software Engineering Lifecycle
We followed Agile methodologies for implementing the ap-

plication. We met twice every week meetings in which we
deployed basic implementations/improvements of the appli-
cation and discussed the issues, ideas and future work.

The steps of SDLC we followed:

1. Requirement Analysis

In the initial week of the project, we worked on decid-
ing the scope of the project. We estimated the time
and resource requirement for the project. Deciding the
scope of the project was important because we didn’t



Figure 7: Story-board

want to set requirements which are impossible to im-
plement. Also, we had to make some decisions such as
whether to have a bot or continue focusing on the web
page, which we were able to make easily by making
columns on the Project section of Github and listing
down pros and cons as shown in Figure 5. Also, we
made a wiki page for ease of planning the features 6

2. Design

After deciding the scope, we worked on technologies
to be used, use case diagram, activity diagram and se-
quence diagram of the application. We also created a
Gantt chart to plan the work throughout our project.
We spent proper time on planning and designing the
system we had thought of before going on to the im-
plementation.

3. Implementation

The implementation phase followed the design phase.
After all the planning was completed, we could seam-
lessly move to the implementation. We kept on report-
ing all the progress information through regular team
meetings.

4. Testing

Since the application is focused for student use, we per-
formed Beta Testing and invited 20 students to eval-
uate our application. We received some great inputs
from the testers and worked on the changes required.

5.3.2 Software Engineering Practices
We used the following Software Engineering Practices for

our project:

1. Agile Methodology

We used Agile[4] methodology for development of our
application. So the features were built initially as small
incremental features, and then the final one was built
on top of those. We are making use of the storyboard
feature provided by Github to form issues and then
resolve them as you can see in Figure 7.

2. Code Review

Code Review[5] practices are followed by creating dif-
ferent branches on Github other than master and work-
ing on those before pushing on master. In this way, we
try to reduce bugs and error in our code. Everyone’s
code was reviewed by the all other team members be-
fore committing any file to the master branch.

3. Pair Programming

Pair programming[6] is an agile software development
technique in which two programmers work together at
one workstation. One, the driver, writes code while
the other, the observer or navigator, reviews each line
of code as it is typed in. The two programmers switch
roles frequently. While reviewing, the observer also
considers the ”strategic” direction of the work, coming
up with ideas for improvements and likely future prob-
lems to address. This is intended to free the driver to



Figure 8: Gantt Chart

focus all of their attention on the ”tactical” aspects of
completing the current task, using the observer as a
safety net and guide. We, being a group of 4, formed
2 groups and did pair programming for the core func-
tionality of the system. This helped debug errors faster
and because of it more than 1 member now knows how
the module functions. Thus, if 1 of the programmers is
not available, then there is always a backup for urgent
changes or issues.

5.4 Technology Stack

1. Python(nltk)

• Python is powerful and fast, plays well with oth-
ers, runs everywhere, is friendly & easy to learn,
is open source[7]. Python provides plethora of li-
braries which can be used to solve almost every
problem. Also, it is an easy to use and easy to
learn language.

• The primary reasons for selecting python to de-
velop the core algorithm were:

(a) suitable libraries available

(b) team comfort with python

• We used this language for natural language pro-
cessing using the python nltk library. The Natu-
ral Language Toolkit (NLTK)[8] is an open source
Python library for Natural Language Processing.

2. Javascript

• We used javascript as a scripting language be-
tween the front-end and back-end.

• Javascript is used for validation of forms.

• JavaScript, often abbreviated as JS, is a high-
level, interpreted programming language. It is a
language which is also characterized as dynamic,
weakly typed, prototype-based and multi-paradigm.
Alongside HTML and CSS, JavaScript is one of
the three core technologies of World Wide Web
content engineering.[9]

3. Ruby on Rails

• Our system uses Ruby on Rails[10] under the hood
which provides ease of development using MVC
architecture.

• The vast available list of Ruby gems (similar to
Java packages) helps with the development of a
lot of features such as Authentication and Forum,
with ease.

4. Bootstrap

• Bootstrap is a free front-end framework for faster
and easier web development.

• Bootstrap includes HTML and CSS based design
templates for typography, forms, buttons, tables,
navigation, models, image carousels and many
other, as well as optional JavaScript plugins[11]

• Bootstrap also gives you the ability to easily cre-
ate responsive designs.

• We used bootstrap templates for styling our web-
page. Bootstrap templates provide many easy-to-
use style for various functionalities such as forms,
buttons, tables etc.

5. SQLite

• SQLite is a relational database management sys-
tem contained in a C programming library.

• In contrast to many other database management
systems, SQLite is not a client server database
engine.

• We used SQLite3[12] because it is the default database
for Rails applications.

6. Selenium WebDriver

• Selenium WebDriver[13] accepts commands (sent
in Selenese, or via a Client API) and sends them
to a browser. This is implemented through a
browser-specific browser driver, which sends com-
mands to a browser, and retrieves results.

• We use the Selenium WebDriver to extract course
information from NCSU Course Catalog.

• For the purpose of our application, we use the
Chrome Driver as the browser driver.

5.5 Challenges Faced

1. New Technologies

The project was implemented in Ruby and Coffee-
Script. It was a challenge to learn these technologies
and implement the project in such a short span of time.
Eventually, we were able to overcome the challenge in
the limited amount of time.

2. SQLite Database

The data we had for the project was unstructured and
hence more suited for MongoDB NoSQL format. Since
the existing system used SQLite database, we first
needed to learn about it and also it was difficult to
convert our data into a structured format.



3. Time Management

There was a phase in the project when we were not
getting enough time for meetings due to varying sched-
ules. In such a situation, we used Google Hangouts for
conducting such meetings.

6. RESULTS
WolfPal 2.0 is an improvement from the initial iteration.

Based on the reviews obtained and the future scope[1] of the
previous version, this iteration has some key areas which
has been improved. This new iteration implements 4 key
improvements:

1. Dynamic course retrieval:

The application uses the selenium webdriver to scrap
courses from the NCSU Course Catalog. Unlike the
first version in which the courses were hardcoded into
the application file. Now, it dynamically fetches all
the courses and their details. This feature not only
gets more details of the courses but also gives way for
easy future expansion of the project.

Figure 9: Displaying list of courses

2. Upload syllabus functionality:

This feature allowed previous takers of the course to
add the syllabus of that course. This is an important
feature because it helps others in deciding whether or
not to take a course.

3. Content-based Keyword search:

Unlike the previous iteration of this feature, now the
keyword is more content-based i.e. it maps the the
user entry to a topic modeling map(course map) using
Natural Language Processing.

4. Fetching courses by domain:

The application allows to search and filter courses by
domain like Software Development, Data Science, Ma-
chine Learning, among others.

The application involves assigns topics to each course
by breaking the description into keywords and then
mapping it onto a bucket of keywords which essentially
contains relevant keywords along with the topic. This
helps in assigning topics to courses.

Figure 10: User gets an option to upload syllabus

Figure 11: Syllabus upload confirmation

Figure 12: User searches by keyword



Figure 13: User searches by domain

7. EVALUATION

7.1 Evaluation Method
We used Beta Testing[14] as an evaluation measure for

our system. Beta testing is also sometimes referred to as
user acceptance testing (UAT) or end user testing. In this
phase of software development, applications are subjected to
real world testing by the intended audience for the software.
The experiences of the early users are forwarded back to
the developers who make final changes before releasing the
software commercially. We invited users to test our appli-
cation. They were given a specific set of instructions about
what the new functionalities were and how they Once they
completed testing, testers filled the evaluation form which
asked some basic questions about the functioning of the ap-
plication. Questions were based on ease of use, correctness
of results, understandability of the README etc. The eval-
uation form and responses are covered in detail in the next
section.

According to the feedback from the teaching staff about
the last report, we decided to modify the type of questions
we ask the users while they evaluate our system. We fo-
cused on making a questionnaire that does not guide the
users of the system to any particular response and keeps all
options equally tempting, which ensures that we get honest
feedback.

7.2 Questions and Results
The questions which we asked for our evaluation are as

follows:

1. How much would you rate the new Keyword
Search module (after integrating text analy-
sis)?

The users of the system were given a brief idea about
what the module does and then were asked to use the
module. Then we asked them to rate their experience
using this new search module in terms of the quality of
implementation, smoothness of flow, results obtained,
etc. We found that almost everyone liked the new
search module after integrating text analysis.

2. How much would you rate WolfPal 2.0?

We asked the users to rate how they found WolfPal 2.0
according to ease of use and functionalities.

Figure 14: Response for Question 1

The results showed that more than half the users rated
it 5 out of 5. Even though this were true, there were 7
out of the 20 evaluators who liked the system but did
not find it perfect and hence gave a 4 out of 5. We can
see this in a little more detail in the following sections.

Figure 15: Response for Question 2

3. How did the new Upload Syllabus functionality
work for you?

Here, we asked the users to rate the new upload syl-
labus functionality that we added to the existing sys-
tem. The options kind of gave a variety of options and
possible reactions users could have towards the new
feature - ranging from ”Great addition, well executed!”
to ”Bad implementation, bad idea!”.

Fortunately no one thought it was a bad idea and a
bad implementation. People actually liked the idea of
adding syllabus files. Some of them felt the implemen-
tation could have been better.

Figure 16: Response for Question 3

4. How did you find the course retrieval from NCSU
Course Catalog feature?

This question aimed at understanding how the dy-
namic course retrieval feature fared among the users.
Again the options were made as varied as possible to
make sure there was no bias in the questions and the
options too.



To our surprise, 100% of the users were really happy
seeing additional courses and data on the platform

Figure 17: Response for Question 4

5. Consider yourself as an incoming student. Do
you think this platform can be used to connect
with relevant peers?

This was kind of the concluding question to get a gen-
eral overview about the system and leaving thoughts
about the general sentiment about the platform in the
mind of the user.

We found that there was no one from the 20 evaluators
that had an average or below average feeling about the
system.

Figure 18: Response for Question 5

7.3 Improvements Suggested After Evaluation
The following are some of the valuable improvements which

were suggested by users who evaluated our web application:

1. The file upload functionality allows uploading
of pdf files only. It should also support other
file types

• The primary motivation to add the file upload
functionality in our system was to provide the
students an option to share course syllabus with
others.

• As the course syllabus are generally shared as pdf
files, we limited our functionality to pdf files.

• If needed, the functionality can be extended to
other file types in future.

2. Give the users a button so that they can fetch
the latest course details from NCSU Course
Catalog whenever they want to while using the
application.

• Ideally, the web application should contain the
functionality, but the time taken for the script
to fetch the details refrained us from integrating
that feature in our module.

• The NCSU Course Catalog is designed in such a
way that there is a popup for each course and the
details are present in the popup. So the script
needs to click on every popup to retrieve all the
details, which takes up a lot of time.

• By adding a button to extract the features, the
user will have to wait for a long time to get results
after clicking the button, which is undesirable.

3. Do not restrict the courses only to CSC de-
partment. Students can choose courses from
multiple departments.

• Our system can be easily expanded to cover all
courses of the University. It is a one of the useful
future scopes of this project.

• We restricted the courses to CSC department due
to time constraint as our primary objective was
to expand the system functionalities across the
depth, and not breadth.

8. FUTURE SCOPE

• Increase the scope of the project in terms of
courses covered

The application now caters to students of the CSC
Department of North Carolina State University. It
could be expanded so as to include more departments
within NCSU and also to more universities. The appli-
cation could also include MOOCs from popular plat-
forms such as Coursera and Udacity.

• Fetching more personalized course recommen-
dation

It course recommendation system could be made more
personalized. It is a known fact that Resume is a doc-
ument which tells what the person’s interests are. It
gives an idea as to what skillsets the person possesses.
So if an module is made in WolfPal which parses a
person’s resume, it can then be used to fetch the per-
son’s skill sets among others which can then be used to
map it along with the Topic Modelling map, thereby
suggesting courses which are more relevant to her/him.

• Adding professor as the user

The application can have a specialized view for the
professors using which they can update the course de-
tails. They can also get an estimate of students who
are planning to enroll in the course and this estimate
can be used to plan the allotted rooms based on the
space required and sessions to the course. The pro-
fessors would also be able to help other user through
the forum. An interactive forum which includes the
professor as a user can be a boon to all students.

• Including the syllabus to build a better Topic
Modeling algorithm



The issue that we faced is that we could not use more
sophisticated topic modeling algorithms like latent Dirich-
let allocation algorithm because it requires more data.
It wasn’t readily available to us because we used the
course descriptions. However, if syllabus for each course
was available, then LDA could be used, since the amount
of text would be large. Thus, having a more efficient
and robust topic modeling technique.

• Integration with Moodle and MyPack

Now the application scrapes the course catalog of NCSU,
which doesn’t give a comprehensive information re-
garding the course. If a way could be found to access
the Moodle and MyPack system then the application
would have access to more details of the course such as
the course description, past courses of the student, as-
signments, among other academic related information.

• Rating and Feedback

Allowing the users to rate and give feedback to the
courses they have taken, this will allow potential takers
make better judgements of whether or not they want
to take that course.

9. CONCLUSION
WolfPal is a single go-to application for student who want

to get information on courses offered by NC State Univer-
sity. WolfPal provides a variety of options for the student to
decide which courses he/she should take. Student can get
course information based on name, keyword search. Addi-
tionally, if the student does not know the courses offered by
the university, he/she can search by keyword, and WolfPal
will give a list of courses which will fit his/her area of in-
terest and also satisfy the breadth requirements for the ma-
jor. The keyword search is more advanced with a context-
based approach, which uses a Topic Modeling approach that
makes it more efficient. Thus, WolfPal is a resourceful stand-
alone application for students who face difficulties selecting
courses.

10. REFERENCES
[1] WolfPal Report WolfPal CSC 520 Retrieved from:

https://github.com/ragarwa7/WolfPal/blob/

master/Reports/team-k_wolfpal_mar_report.pdf

[Accessed: 21-Mar-2018].

[2] R. Bhatt, D. Desai, L. Shi, and C. Zhao. Course
feedback system. Software Engineering, 2017.
Retrieved from: https://github.com/Rushi-Bhatt/

SE17-Team-K-CourseFeedbackSystem/blob/master/

Final_Report_MAY.pdf [Accessed: 21-Mar-2018].

[3] Al-Badarenah, Amer, and Jamal Alsakran. An
Automated Recommender System for Course
Selection. International Journal of Advanced
Computer Science and Applications 7.3 (2016):
1166-175.

[4] Agile Methodology What is Agile? Retrieved from:
https://www.cprime.com/resources/

what-is-agile-what-is-scrum/[Accessed:21-Mar-
2018]

[5] Code Review Practices Code Review Wikipedia
Retrieved from: https://en.wikipedia.org/wiki/

Code_review[Accessed:21-Mar-2018]

[6] Pair Programming Pair Programming Wikipedia
Retrieved from: https://en.wikipedia.org/wiki/

Pair_programming[Accessed:21-Mar-2018]

[7] Python Documentation Python Retrieved from:
https://www.python.org/about/ [Accessed:
26-Mar-2018]

[8] NLTK Documentation NLTK Retrieved from:
https://www.nltk.org/install.html [Accessed:
26-Mar-2018]

[9] JavaScript Documentation JavaScript
Documentation Retrieved from:
https://en.wikipedia.org/wiki/JavaScript

[Accessed: 26-Mar-2018]

[10] Ruby on Rails Tutorial Ruby on Rails Guides
Retrieved from:
http://guides.rubyonrails.org/[Accessed:26-Mar-
2018]

[11] Bootstrap Tutorial Bootstrap W3Schools Retrieved
from: https://www.w3schools.com/bootstrap/

bootstrap_get_started.asp[Accessed:26-Mar-2018]

[12] SQlite3 Documnetation SQlite3 Documentation
Retrieved from:
https://www.sqlite.org/docs.html[Accessed:2-
Apr-2018]

[13] Selenium Wikipedia Information Selenium Wikipedia
Retrieved from: https://en.wikipedia.org/wiki/

Selenium_(software)[Accessed:1-Apr-2018]

[14] TechTarget What is Beta Testing? Retrieved from:
http:

//whatis.techtarget.com/definition/beta-test

[Accessed: 21-Mar-2018]

11. CHITS
1. GTT

2. GLO

3. KQE

4. SFV

5. VRS

6. LHT

7. SMJ

8. STW

9. MZA

10. KHZ

11. RXH

12. XUC

13. ZEC

14. PPN

15. BHC

16. VJK

17. HGW

18. SUZ

19. MOS

20. JBS

 https://github.com/ragarwa7/WolfPal/blob/master/Reports/team-k_wolfpal_mar_report.pdf
 https://github.com/ragarwa7/WolfPal/blob/master/Reports/team-k_wolfpal_mar_report.pdf
https://github.com/Rushi-Bhatt/SE17-Team-K-CourseFeedbackSystem/blob/master/Final_Report_MAY.pdf
https://github.com/Rushi-Bhatt/SE17-Team-K-CourseFeedbackSystem/blob/master/Final_Report_MAY.pdf
https://github.com/Rushi-Bhatt/SE17-Team-K-CourseFeedbackSystem/blob/master/Final_Report_MAY.pdf
https://www.cprime.com/resources/what-is-agile-what-is-scrum/
https://www.cprime.com/resources/what-is-agile-what-is-scrum/
https://en.wikipedia.org/wiki/Code_review
https://en.wikipedia.org/wiki/Code_review
https://en.wikipedia.org/wiki/Pair_programming
https://en.wikipedia.org/wiki/Pair_programming
https://www.python.org/about/
https://www.nltk.org/install.html 
https://en.wikipedia.org/wiki/JavaScript
http://guides.rubyonrails.org/
https://www.w3schools.com/bootstrap/bootstrap_get_started.asp
https://www.w3schools.com/bootstrap/bootstrap_get_started.asp
https://www.sqlite.org/docs.html
https://en.wikipedia.org/wiki/Selenium_(software)
https://en.wikipedia.org/wiki/Selenium_(software)
 http://whatis.techtarget.com/definition/beta-test
 http://whatis.techtarget.com/definition/beta-test

	Introduction
	Previous Functionalities
	New Functionalities

	Motivation
	Literature Review
	WolfPal 1.0
	Course feedback system
	An Automated Recommender System for Course Selection

	Changes from existing system
	Course suggestions based on keyword mapping
	Upload syllabus functionality
	Adding courses dynamically from NCSU Course Catalog
	Fetching courses by domain

	Implementation Plan
	Previous Modules
	Graduate Plan Formation:
	PalTalk: student communication

	Use Cases
	Software Engineering Lifecycle and Practices
	Software Engineering Lifecycle
	Software Engineering Practices

	Technology Stack
	Challenges Faced

	Results
	Evaluation
	Evaluation Method
	Questions and Results
	Improvements Suggested After Evaluation 

	Future Scope
	Conclusion
	References
	Chits

