
ECE5881/6881 Real Time System Design 

Pendulum Design Exercise 
A/Prof Lindsay Kleeman, Monash University. 

 
 

0 Aim 
 To develop a real time system to sense the motion of a pendulum and reproduce 
the same motion with a DC motor driving a pointer.  The following learning objectives 
will be achieved by completing this design exercise: 
 

1. Develop and practise real time embedded system design, testing and debugging 
techniques. 

2. Understand the trade-off between hardware and software implementations in a 
real time embedded system by studying a software hardware co-design problem. 

3. Interpret timing information from a sensor and its relationship to a physical 
system. 

4. Design modules that respond to sensor changes within hard deadlines. 
5. Use Mathematical modelling of a physical system to guide real time design and 

implementation. 
6. Design a PID motor controller with PWM output to produce desired motions in 

real time. 

 

1 Equipment 
 

• Altera Quartus/ NIOS II development software 
• DE2 FPGA Development Board 
• Pendulum mechanical system with: 

o Free swinging pendulum with variable position weight 
o Light beam retro reflective sensor 
o Slotted asymmetric mask mounted on the end of the pendulum 
o Co-axial DC motor with quadrature optical shaft encoder 

• Interface Electronics with a 12 V plug pack power supply and sensor/motor 
connections. 
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Photos Above of Old Kit: Pendulum Apparatus showing DE2 board (0), Interface 
Electronics (1), Pendulum (2), Motor (3) driving Perspex disk with red position marker, 
gearbox (4) and co-axial encoder (5), Light Beam sensor (6) with asymmetric mask (7) 
and reflector (8). 
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Photo Above of New Kit – Yellow circled numbers: 1: 12V power connector; 2: ribbon 
cable connector for DE2 board; 3: combined motor gearbox and encoder; 4: 3D printed 
beam sensor mask; 5: 3D printed 45 degree constrained pivot for pendulum; 6: pendulum 
clip for safe transporting. 
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2 Risk Assessment 
 
There is the unlikely risk that the pendulum may strike a user or other people in the lab.  
For this reason the following precautions must be observed: 
 

1. Ensure that the equipment is positioned away from people and in the centre of the 
bench with the swinging pendulum on the far side of the user. 

2. Ensure that the pendulum constraint is present and working – this is a fishing line 
in the old red kit and 3D printed plastic barrier in the new kit, labelled 5 above.  It 
must prevent the pendulum swinging more than 45 degrees from the bottom rest 
position.  The limit restricts the energy of the swing and prevents the pendulum 
becoming unbalanced due to large swing excursions. 

3. Keep hands and face clear of the bottom of the pendulum when it is operating. 
4. Do not use the pendulum if the clear disk with red line is damaged or fractured 

since this may have sharp edges. 
 
 

3 Background and Preliminary Work 
 
Pendulum motion is a well understood behaviour that can be simply modelled 
Mathematically.  For small angles of deviation of the pendulum from its rest position, the 
motion approximates simple harmonic motion.  Simple harmonic motion is characterised 
by an acceleration being proportional to the displacement.   
 
Derive the equations of motion for a pendulum of length R to a point mass m and small 
angle from rest of θ.   Start by showing that the force component acting perpendicular to 
the pendulum (that is acting in the positive direction of angle) is -m g sinθ ≅ − m g θ   for 
small angles θ  where g is the acceleration due to gravity.  Use this result to find a 2nd 
order differential equation in θ and check that a sinusoidal solution exists with amplitude 
A, period T and phase angle φ.  Find the period of this sinusoidal solution in terms of g 
and R. What is the maximum speed of the pendulum?  Given the maximum speed and 
period, find the maximum amplitude A of the angle.  These equations allow you to 
characterise the pendulum motion given measurements of its period, direction and speed. 
 
In practice some energy is lost on each cycle due to friction in the pendulum bearing and 
air resistance.  The amplitude of the swinging pendulum therefore decreases gradually.  
However sufficient accuracy can be obtained for our purposes if we assume there are no 
losses over each half period of motion and update the motion estimate at the end of each 
half cycle. 
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A light beam is mounted at the bottom of the pendulum path as shown in the photos 
above.  The beam shines onto the corner cube reflector on the other side of the swinging 
pendulum and the corner cube returns the beam in the opposite direction to its arrival. 
The beam sensor output is a logic signal that is 1 when the beam is detected and 0 when 
the beam is blocked.   A mask shape shown below is used to cut the beam in a particular 
pattern.  What is the purpose of this mask shape? 

 
 

4 Method 

4.0 Setting up and Testing the Equipment. 
 
1. Connect: 

• the ribbon cable to the inside JP1 connector 
• D9 connector (encoder and light beam)  
• motor cable 
• 12V power supply – ensure power is OFF when making connections. 

  
2. Power the DE2 board before the interface board. 
3. Power the Interface 12V supply.  The red and orange interface box LEDs and the beam 

sensor LED should then be illuminated.  The orange beam sensor LED should turn on 
when the red visible beam is unobstructed. 

 
Test the equipment by using Quartus to download to the DE2 board the motor.sof file 
provided on the Moodle site – note that there are two versions corresponding to the old 
and new kit.  The following functions and displays are then available: 

 
 KEY[0] press for a reset 
 SW[9:0] is the signed 10 bit binary input to the PWM motor control 
 

10 mm           20 mm 

10 mm 
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 HEX3-HEX0 displays SW[9:0] in decimal. 
 
 LEDG[0] is the Hbridge_PWM 
 LEDG[1] is the Hbridge_InB 
 LEDG[2] is the Hbridge_InA 
 
 LEDG[5] = beam; 
 LEDG[6] = enA; 
 LEDG[7] = enB; 
 
 HEX7-HEX4 displays encoder angle count from reset 
 where the encoder has 2000 counts per revolution for the old red pendulum kit 
and 1200 counts per revolution for the new kit. 
 

Test that the encoder counts in both directions without losing steps – you can apply a 
reset with KEY[0] when the red disk line points downwards as a reference. 
 
Test the motor drives in both directions using positive and negative binary SW values.  
SW[9] is the sign bit. 
 
Check that the beam sensor is working as the pendulum moves slowly past. 
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4.1 Software Encoder Interface 
 
The aim of this section is to accumulate and display the encoder shaft angle of the motor 
from the A and B outputs of the incremental encoder.  The operation of an incremental 
shaft encoder is described in the lectures.  Here are the detailed steps: 
 

1. Create a new Quartus Verilog project with a NIOS-II processor and SOPC 
modules.  Parallel port modules should be included that are configured as: 
• inputs from the encoder that generate interrupts on both rising and falling 

edges,   
• outputs for the HEX displays for the angle and  
• input from a KEY pushbutton to reset the encoder angle 
• inputs from the SW switches for selecting angle units for display –see 4 below. 
• Outputs for bit twiddling monitoring of the ISR latency on an oscilloscope. 
• JTAG UART 
• University Program SSRAM as described in the RTSchedLab. 
• Interval timer for a 1 msec real time interrupt. 

 
Ensure you allocate pins appropriately – see Appendix A at the end of these notes. 

 
2. Create a new NIOS-II IDE uCOS-II Hello World project. 
 
3. Write an interrupt service routine (ISR) to handle the changes in encoder A and B 

signals that updates an angle counter. 
 
4. Display the angle with sign on HEX 7 segment that displays in native 2000/1200 

counts per revolution or degrees depending on a SW input. 
 
By timing the interrupt latency using GPIO bit toggling and monitoring on a CRO (see 
the Interrupt Latency Lab in ECE3073), estimate the maximum speed that the shaft can 
rotate with your software interface.  Compare this with the specification of maximum 
speed in the data sheet on the unit webpage for the shaft encoder. 
 
Max speed of rotation achievable =  …………………………………… (RPM) 

4.2 HDL Encoder Interface 
 
Achieve the same functionality as in the previous section except replace the ISR with a 
Verilog HDL design discussed in lectures and clocked at 50 MHz,.  The output of the 
Verilog Encoder module should be a 32 bit signed angle counter that is interfaced to the 
NIOS processor with a synchronous PIO module.  Estimate the maximum speed 
achievable for this hardware solution and again compare this with the encoder data sheet. 
 
Max speed of rotation achievable =  …………………………………… (RPM) 
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4.3 Motor Pulse Width Modulation (PWM) Interface 
 
The aim in this section is to implement a hardware digital PWM module.  This takes a 
binary input of N bits called PWM_data_input representing a desired average motor 
voltage and asserts the output PWM_out 1 to turn on an H-bridge so that it supplies full 
voltage to the motor or 0 for 0 Volts to the motor.  The average motor voltage is arranged 
by the PWM module to be proportional to the binary input of the PWM module.  The 
duty cycle of the output is equal to the N bit input/2N in the case of an unsigned input of 
Part 1 below.  The PWM output is synchronised to the PWM clock.  There are 2N clock 
cycles in a fundamental cycle of the PWM.  The PWM_out is high for the first 
PWM_input number of clock cycles and low for the remainder.  This can be implemented 
with a binary counter and comparator and described in Verilog with a single always block.  
Note that the fundamental cycle is the period of the fundamental frequency of the output 
digital signal coming out of the PWM module – that is if you looked at the Fourier series 
representing the output then is lowest frequency component would be the 1/(fundamental 
cycle).  The fundamental frequency needs to be much higher than the motor response 
frequencies for the averaging to work well in practice.  It is often possible to hear the 
fundamental frequency of the PWM drive coming from a motor when it is within audible 
frequencies of 20-20 kHz.  

For example, a 10 bit unsigned PWM_data_input we would need 210 = 1024 clock 
cycles to complete one fundamental PWM cycle.  If the PWM_data_input was 50 then 
the output is asserted for 50 out of the 1024 clock cycles or approximately 5% of full 
voltage.  If a fundamental PWM frequency of around 10 kHz is used, then due to the 
motor dynamics being much slower than this, the motor “sees” only the average. What is 
the frequency of the PWM counter update for a 10 kHz fundamental and 10 bit 
PWM_data_input? 

 
PWM counter update frequency =   …………………….  Hz 

 
The PWM module will be implemented in hardware here since a software solution is 
impractical.  Why? 
 

4.3.1 Unsigned PWM 
 
Start with the simple unsigned PWM Verilog module template below.  Complete the 
module so that the counter count increments on system clock rising edges whenever the 
clock enable CE_in is 1.  CE_in is defined elsewhere so that CE_in=1 for one clock 
period every k clock periods and 0 the rest of the time.  This provides a mechanism to 
divide down the system clock rate whilst maintain the same system 50 MHz  clock.  A 
similar approach  was taken with the “microsecond counter” in the Real Time Scheduling 
lab where a CE was asserted once every 50 clock cycles of the 50 MHz system clock.   

When the counter count is less than the PWM_data_input,  PWM_out should be 1 
otherwise 0.  It would be a good idea to only allow PWM_data_input to affect the  
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PWM_out at the end of each PWM fundamental period rather than allowing it to change 
mid cycle and produce pulses that are not synchronised correctly.  

Simulate your design to check that the timing is correct – you may wish to reduce 
the PWM_IN_SIZE parameter to 4 to limit the duration of the simulations.  If you have 
forgotten how to simulate a Verilog project, consult this tutorial document or see the 
resources section of the unit website: 
 
ftp://ftp.altera.com/up/pub/Tutorials/DE2/Digital_Logic/tut_quartus_intro_verilog.pdf 
 
You must ALWAYS check the hardware synthesized from your HDL description in 
Quartus by using the menu Tools->netlist viewers-> RTL view. 
 
module PWM(clk_in, CE_in, synch_reset_in, PWM_data_input, PWM_out) 
 
parameter PWM_IN_SIZE = 10;  // this is a constant that can be overridden when  

     // Instantiating this module 
input     clk_in, CE_in, synch_reset_in;  

// synch_reset_in must be synchronised to clk_in 
input [PWM_IN_SIZE-1:0]  PWM_data_input;   
output reg    PWM_out;   

// out=1 in proportion to[ecse1]  magnitude of  
// PWM_data_input/2**[PWM_IN_SIZE]      

reg [PWM_IN_SIZE-1:0]  count;  
// … other local signals declared here 

always @(posedge clk_in) 
 if (synch_reset_in) 
  … 
 else if (CE_in) begin 
 
  … 
 end 
endmodule 
  
 
Use a simple Quartus Verilog project to connect the SW[9:0] switches to your 
PWM_data_input and LEDR outputs and design a CE_in so that the fundamental PWM 
frequency is close to 10 kHz for the 50 MHz clock.  Drive the H-bridge logic lines with 
an appropriate pin assignment – see Appendix A and the H-bridge data sheet on the unit 
webpage.  Test your design with different PWM inputs.  Show your demonstrator the 
PWM_out on a CRO by using free pins on the outer GPIO lines of the DE2 board.  (See 
ECE3073 Interrupt Latency lab for details). 
 
 
 
 

ftp://ftp.altera.com/up/pub/Tutorials/DE2/Digital_Logic/tut_quartus_intro_verilog.pdf
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4.3.2 Signed PWM 
Extend your design from Part 1 to a signed 2’s complement version, so that the motor can 
be driven in both directions.   Need a quick refresher on 2’s complement notation? See 
 

http://en.wikipedia.org/wiki/Two's_complement 
 
Note that you will need to find (in hardware) the magnitude of a 2’s complement binary 
number for comparison with the PWM counter.  Here is a simple way to achieve this: 
 
wire [PWM_IN_SIZE-1:0] magn   

= (data_in[PWM_IN_SIZE-1]? 1'b0-data_in : data_in); 
 

Simulate and test your solution by driving the motor in both directions.  Show your 
demonstrator the PWM_out on a CRO.   
 
Does your design ever output the full range from 0 to full scale – that is have the H-
bridge always driving 0V to the case where the H-bridge is always full scale voltage in 
both positive and negative directions? 
 
 
……………………………………………………………………………………. 
 
 

http://en.wikipedia.org/wiki/Two's_complement
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4.4 PID Implementation with a uCOS-II Task 
 
A PID (Proportional Integral Differential) controller is commonly used to control DC 
motors. The input is an error defined as the difference between the desired and encoder 
positions for the motor shaft angle.   The aim of the PID controller is to reduce the error 
as much as possible subject to the dynamics of the DC motor and its mechanical load via 
appropriate feedback of a voltage to the motor.  The implementation equation suitable for 
our application is 
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• Kp, Kd and Ki are the proportional, differential and integral gains respectively and 
En=desired angle – encoder angle represents the error at time step n.   

 
• We are using fixed point integer representations for the gains and errors.  Note 

that we have incorporated rounding of integer division into the above expression 
with the two 128 additions.   

 
• The divisions by 256 indicate that we are storing 16 fractional bits for Ki and 8 

fractional bits in Kp and Kd.    
 

• Integer multiplication, addition and subtraction can cause overflow.  Choose 
appropriate numbers of bits in your representations to avoid multiplier overflows.  
With addition and subtraction, check for overflow and apply saturation to the 
results of each addition or subtraction.  Overflow in addition and subtraction can 
be detected by looking at the sign bits of the operands and results alone.  For 
example adding two positive integers with a negative result indicates overflow.  If 
overflow occurs, the result should be set to the maximum/minimum allowable 
number if the result should have been positive/negative.   Also the final 
conversion to a limited (say 10) number of motor voltage bits for the PWM 
module should be a saturating conversion rather than a simple truncation – the 
sign must be preserved correctly in the conversion. 

 
Implement and test the PID controller in a single uCOS-II task that runs every 10 
millisecond.  Here are some of the steps that need to be completed: 
 

1. Check that correct numerical results are obtained for corner test cases using 
printf statements or the debugger.   

 
2. Verify that numerical overflow is handled correctly by varying gains and 

injecting synthetic errors and checking that the output is well behaved.   Check 
largest gains and maximum/minimum positive/negative errors. 
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3. Measure the execution time in microseconds of your PID calculation to ensure 
that the code does not overrun 10 millisecond (assuming a 100 Hz servo rate). 
This can be done by using bit twiddling and a CRO or using the microsecond 
timer that was used in the RTSched Lab.   
 
Your measured PID execution time = ……………..   usec 

 
4. Tune the gains of the PID controller by observing the step response of the system.  

You should think about an interface that uses the SW as inputs to change the 
gains without re-compiling your program.  Start with increasing Kp with Ki and Kd 
both zero until significant overshoot occurs.  Decrease Kp by around 20-50%.  
Adjust Ki  to remove steady state error.  Adjust Kd to reduce overshoot. There is a 
good discussion in Wikipedia that is helpful:  

http://en.wikipedia.org/wiki/PID_controller 
 

5. By using printf  statements, record the step response of your tuned PID 
controller. That is create a 45 degree step of 250 encoder old or 150 encoder new 
counts in the desired position at time 0.  Print the time and encoder position every 
5 msec for 1000 msec and plot this using Excel or Matlab for including in your 
final report.  Be careful not to cause delay in the PID loop when collecting this 
data.  What is your step response time to reach and stay within 10% of the final 
target?   You should be able to achieve a step response in under 400 milliseconds 
with less than 10% overshoot. 

 
In your report, discuss the choice of 10 milliseconds as your servo sample time of the 
PID controller.  Hint: what is the range of encoder counts between successive samples 
with a given the servo sample time?  How does this affect the derivative estimate in 
integer encoder counts per servo sample time? 

 

http://en.wikipedia.org/wiki/PID_controller
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4.5 Beam Sensor Interface 
 
Connect the light beam sensor to a PIO or parallel port that generates interrupts on both 
edges.  The beam ISR should update a record of the times in milliseconds and the values 
of the last n sensor readings.   
 
What is the minimum choice for n?  …………………………………………………. 
 
The ISR should signal a semaphore.  Wait on this semaphore in a task that process new 
data whenever the light beam sensor changes.  The processing of the time/value 
information from the beam sensor needs to reliably and robustly determine when the 
pendulum crosses the beam sensor, and determine the speed and direction of that crossing.  
Beware that using a debugger may extend interrupt latency and corrupt the timing 
measurements.  Short printf statements can be used judiciously.  Test your sensor 
interpretation software with corner cases of pendulum behaviour:  namely small and large 
angle pendulum swings at different swing periods obtained by moving the mass to each 
end of the pendulum. 
 

4.6 Motion Generation – Mimicking the Pendulum 
In this section integrate all the previous modules and generate a matched sinusoidal 
motion that mimics the swinging pendulum.  One approach worth considering is to use a 
velocity based trajectory generator module driven by a higher level motion generator – 
see Appendix B. 
 
The purpose of the trajectory generator is to take a desired velocity from the motion 
generator and produce desired position outputs every PID servo loop cycle.  The velocity 
can then be updated at a slower rate than the servo loop time.  You need to choose how 
this is implemented: Verilog or a uCOS-II task.   Document the factors that have 
determined your choice in your notes. 
 
The motion generator is then responsible for producing velocity commands that 
approximate the perceived state of the pendulum.  In practice a quarter cycle of a 
sinusoidal motion is all that need be stored and around 10 waypoints can be used to 
approximate the sine function.  Associated with each waypoint can be a target time of 
arrival of the motor.  As time reaches each waypoint time, a new velocity command can 
be issued based on the current desired position and the target desired position at the end 
of the next waypoint.  Note that the PID controller provides the only feedback to the 
motor from the encoder – this results in a clean, simple controller design.  Should you 
choose to use encoder readings at the motion generator level, you run the risk of creating 
an interacting complicated and potentially poorly controlled system. 
 
Clearly the waypoints need to be updated when either the current times have expired or a 
new pendulum motion estimate arrives from the light beam sensor.  In your design extend 
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the previous pendulum cycle so that smooth motion is maintained, even if the light beam 
data is late in arriving. 
 
In your C code, do not use floating point variables or operations.  For example the use 
of floating point trigonometry functions such as sine and cosine are unnecessary and 
excessively slow.  All of you code should be using fixed point integer variables for 
calculations.  Refer to your lecture notes on fixed point arithmetic. 
 
Document the testing and results that you have performed.  The demonstrators will have 
standard test to check how well your implementation performs.   

5. Conclusion 
 
This pendulum project has involved many levels of modelling and design of a real time 
embedded system.  Hopefully you will have a much deeper understanding of the concepts 
that have been presented in lectures now! 

Appendix A:  Interface Electronics 
 
The following circuitry is contained in the interface electronics 

• H-bridge electronics for driving the DC motor. 
• Opto isolation and level translation of the H-bridge logic inputs and outputs to be 

compatible with the DE2 board 3.3 V DE2 inputs and outputs. 
• Level translation of the Light Beam sensor and opto isolation. 
• Connections to the optical encoder. 
• Voltage regulators for the DC motor and optical encoder. 
• Protection circuits. 

 
See the unit webpage for data sheets for the different components. 
 
Two independent 12V power supplies should be connected to the Red (positive) and 
Black (negative) banana plugs.  One supply powers the motor and the other the encoder 
and light beam sensor.  The motor supply is kept electrically isolated to reduce noise 
coupling into the DE2 board. 
 
The ribbon cable should be connected to the inner GPIO header (marked JP1 on the DE2 
board). 
 
Pin Assignments FOR NEW GENERATION KIT: 
Use the GPIO_0[?] versions when including symbolic pin names from the file DE2.csv. 
(* chip_pin = "D25" *) output Hbridge_InA; //GPIO_0[0] 
(* chip_pin = "J22" *) output Hbridge_PWM; //GPIO_0[1] 
(* chip_pin = "E26" *) output Hbridge_InB; //GPIO_0[2] 
(* chip_pin = "E25" *) input enAin; //GPIO_0[3] 
(* chip_pin = "F24" *) input enBin; //GPIO_0[4] 
(* chip_pin = "F23" *) input beam; //GPIO_0[5] 
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Pin Assignments FOR OLD GENERATION RED GEARBOX KIT: 
(* chip_pin = "D25" *) output Hbridge_InA;  //GPIO_0[0] 
(* chip_pin = "J22" *) output  Hbridge_InB;   //GPIO_0[1] 
(* chip_pin = "E26" *) output Hbridge_PWM; //GPIO_0[2] 
(* chip_pin = "E25" *) input encoderAin; //GPIO_0[3] 
(* chip_pin = "F24" *) input encoderBin; //GPIO_0[4] 
(* chip_pin = "F23" *) input beam;           //GPIO_0[5] 
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Appendix B –System Level Overview. 
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