
Low Level Design (LLD)

Advance Image Downloader/Extractor 1

Advance Image Downloader/Extractor

Low Level Design Document

Written By Harshad Kadam, Shreyas
Parab

Revision Number 1.0

Last date of revision 31-08-2021

Low Level Design (LLD)

Advance Image Downloader/Extractor 2

Document Version Control

Date Issued Version Description Author

31/08/2021 1 Initial LLD – V1.0 Shreyas Parab

Low Level Design (LLD)

Advance Image Downloader/Extractor 3

Contents

Document Version Control. 2

Abstract. 4

1 Introduction 5

1.1 Why this Low-Level Design Document? 5

1.2 Scope ………..5

1.3 Constraints …………………………………………………………………………………………………….5

1.4 Definitions ……………………………………………………………………………………………………..5

2 Technical Specifications ………………………………………………………………………………………..6

2.1 Architecture Design ……………………………………………………………………………………….6

2.2 User Interface ………………………………………………………………………………………………..6

2.3 Schedulers …………………………………………………………………………………………………….7

2.4 Email Notification …………………………………………………………………………………………7

2.5 Web Scrapping ………………………………………………………………………………………………8

2.6 Database ……………………………………………………………………………………………………….8

2.7 File Creation …………………………………………………………………………………………………..9

2.8 Event Log ……………………………………………………………………………………………………….9

2.9 Error Handling ………………………………………………………………………………………………10

2.10 Deployment ………………………………………………………………………………………………….10

3 Technology Stack …………………………………………………………………………………………………11

4 User’s Flow …….11

5 Test Cases ………12

Low Level Design (LLD)

Advance Image Downloader/Extractor 4

Abstract

In this time, the images are the most important data source. Be it a training Computer vision

model on this, Finding the appealing wallpaper images, going through hundreds of crafts

and arts varieties on single click or finding the news related to specific company for market

analysis images are crucial in this scenario. This app does exactly what it says, it can

download up to 500 images of any kind at any date and time. User just have to submit the

query and the download link will be ready to download the images once process is

completed.

Low Level Design (LLD)

Advance Image Downloader/Extractor 5

1. Introduction

1.1 Why this Low-Level Design Document?

The purpose of this document is to provide a detailed description of the Advance

Image Downloader/Extractor system. It will explain the purpose and features of the

system, the interfaces of the system, what system will do, the constraints under

which it must operate and how the system will react to external process. This

document is intended for developers of the system.

1.2 Scope

This is a web-based application, and it is designed to download the images of the

search query that user puts in.

1.3 Constraints

Internet connection is a constraint for the application. Since the application fetched

the data from the database and the internet, it is crucial that there is an Internet

connection for the application to function. Since the user can make multiple requests

at same time, it may be forced to queue incoming requests and therefore increase

the time it takes to provide the response.

1.4 Definitions

Term Description

Database Collection of all the information
monitored by the system

IDE Integrated Development Environment

Heroku Heroku Cloud Service

Low Level Design (LLD)

Advance Image Downloader/Extractor 6

2. Technical Specifications
2.1 Architecture Design

2.2 User Interface

The User Interface of this application is made using HTML, CSS, JavaScript and Bootstrap.

HTML, CSS and Bootstrap are used for giving the custom style for the web app and also the

skeleton is designed here. JavaScript is used for restricting the user not enter the past dates.

The UI part consist of three pages which are as following:

a. Home Page

Low Level Design (LLD)

Advance Image Downloader/Extractor 7

b. Error Page

c. Job Submitted Page

2.3 Schedulers

The backend of this application is designed using Flask framework. Since this is the

Job based web application user's request are submitted as a job request which will

be queued until the given time comes.

For the implementation of schedulers, apscheduler library is been used. Using the

apscheduler, we were able to handle the multiple requests of users and allow them

to run at the specified time.

2.4 Email Notification

The user feedback is must for any application to support the great user experience.

This is achieved by using the smtplib library of python. This library provides the

interface to send the email on the given recipient’s email address. The Gmail is used

https://apscheduler.readthedocs.io/en/stable/userguide.html
https://docs.python.org/3/library/smtplib.html

Low Level Design (LLD)

Advance Image Downloader/Extractor 8

as an email client to send the notification to the user. There are three types of email

notification that the user can receive.

a. Job started – Once the current date and time is equal to the scheduled date and

time user will be notified by the email that the scheduling job has started.

b. Job ended – Once the images get downloaded and files are created at server

side, user will get notified with the download link over an email.

c. Job error – If there is some error occurs at the backend side, the user will get

notified of the same by receiving the job error notification.

2.5 Web Scrapping
The images need to be downloaded and then stored inside the database for further

processing. This downloading from the internet part is done using selenium and

google-chrome-driver. User’s search query will be fed to selenium web browser

which will find the images related to search query and then inserted into the

databases.

2.6 Database

The images which are scrapped using the selenium has to be stored somewhere and

hence we have used the Cassandra Database for the same. Rather than storing the

images inside the database, we are just storing the URL of the images to make it

more space efficient in that case. The following database schema we have used:

https://selenium-python.readthedocs.io/
https://chromedriver.chromium.org/downloads
https://www.datastax.com/

Low Level Design (LLD)

Advance Image Downloader/Extractor 9

It consists of three columns, req_id (datatype = uuid) is a unique request id which

will be generated for each user request. Email (datatype = string) is the email

address of the user who have requested for the images. url (datatype = string) is the

link of the images which needs to be downloaded from the server.

Here all the three columns are set as the primary key, since all the three must have

to be unique at every case (To not have duplicate images url inside the database)

2.7 Files Creation

Once the images url is saved inside the database. This URL’s will be then used to

download the images from the server using the python’s request library. These

downloaded images are then saved inside the temporary folder which will be then

zipped and send as file once user clicks on the download link from email. This files

which are created are then deleted after certain interval of time (usually 30

minutes). Also, the database records will get wiped out from the database after this

time.

2.8 Event Log

The system should log every event so that the user will know what process is running
internally. Logging is implemented using python’s standard logging library.
Initial step-by-step description:
1. The system identifies at what step logging required.
2. The system should be able to log each and every system flow.
3. Developer can choose logging method. You can choose logging file as well.
4. System must be able to handle logging at greater scale because it helps debugging

the issue and hence it is mandatory to do.

https://docs.python-requests.org/en/master/index.html
https://docs.python.org/3/howto/logging.html

Low Level Design (LLD)

Advance Image Downloader/Extractor 10

2.9 Error Handling
Error handling is done in two ways:
1. UI part – If user performs some incorrect action on UI, then the error page will be

shown to the user which will have the appropriate error message.

2. Email Part – If the error comes while handling the user request at the backend,
then user will receive an email regarding the same and repeating the job
submission again.

2.10 Deployment

The deployment of this web app is done on Heroku cloud. Deployment steps are as
follows:

1. You can go over this GitHub repo to clone the app
https://github.com/Sparab16/Advance-Image-Downloader

2. Create a new virtual environment
3. Setup the config files given in the repository
4. Create a new environment on Heroku
5. Install two build packs in the environment

a. https://github.com/heroku/heroku-buildpack-chromedriver
b. https://github.com/heroku/heroku-buildpack-google-chrome

6. Run the following commands in the terminal in your project root directory
a. If you haven’t already logged into Heroku account

$ heroku login

b. Deploy your changes

$ git add .

$ git commit -am "Deployed on heroku"

$ git push heroku master

https://github.com/Sparab16/Advance-Image-Downloader
https://github.com/heroku/heroku-buildpack-chromedriver
https://github.com/heroku/heroku-buildpack-google-chrome

Low Level Design (LLD)

Advance Image Downloader/Extractor 11

3. Technology Stack

Front End HTML, CSS, JS, Bootstrap

Back End Python Flask, Selenium

Database Cassandra

Deployment Heroku

4. User’s Flow

Low Level Design (LLD)

Advance Image Downloader/Extractor 12

5. Test Cases

Test Case Description Request Body Expected Results

All fields with valid data {
 “search-query”:”Best hd
wallpaper”
“date”:”2021-09-20”
“time”:”11:41”
“email”:”wsq.wee@example.c
om”
“images”:”145”
}

Job will get queued (Success)

Empty string in search query
field

{
 “search-query”:””
“date”:”2021-09-20”
“time”:”11:41”
“email”:”wsq.wee@example.c
om”
“images”:”145”
}

User will get error message
that search query is required
(Failed)

Empty date in date field {
 “search-query”:”Best hd
wallpaper”
“date”:””
“time”:”11:41”
“email”:”wsq.wee@example.c
om”
“images”:”145”
}

User will get error message
that date is required (Failed)

selected date is less than
current date
(let’s say current date is “2021-
08-30” and current time is
“11:30”)

{
 “search-query”:”Best hd
wallpaper”
“date”:”2020-09-20”
“time”:”11:41”
“email”:”wsq.wee@example.c
om”
“images”:”145”
}

User will get error page
showing error message (Failed)

Low Level Design (LLD)

Advance Image Downloader/Extractor 13

Empty time in time field {
 “search-query”:”Best hd
wallpaper”
“date”:”2021-09-20”
“time”:””
“email”:”wsq.wee@example.c
om”
“images”:”145”
}

User will get error message
that time is required (Failed)

selected date and time is less
than current date and time
(let’s say current date is “2021-
08-30” and current time is
“11:30”)

{
 “search-query”:”Best hd
wallpaper”
“date”:”2021-08-30”
“time”:”11:28”
“email”:”wsq.wee@example.c
om”
“images”:”145”
}

User will get error page
showing error message (Failed)

Empty email in email field {
 “search-query”:”Best hd
wallpaper”
“date”:”2021-09-20”
“time”:”1:45”
“email”:””
“images”:”145”
}

User will get error message
that email is required (Failed)

Invalid email in email field {
 “search-query”:”Best hd
wallpaper”
“date”:”2021-09-20”
“time”:”11:45”
“email”:”wsq.wee@”
“images”:”145”
}

User will get error message
that email is invalid (Failed)

Empty string in no of images
field

{
 “search-query”:”Best hd
wallpaper”
“date”:”2021-09-20”
“time”:”11:41”
“email”:”wsq.wee@example.c
om”
“images”:””
}

User will get error message
that no of images is required
(Failed)

Low Level Design (LLD)

Advance Image Downloader/Extractor 14

Invalid string in no of images
field

{
 “search-query”:”Best hd
wallpaper”
“date”:”2021-09-20”
“time”:”11:41”
“email”:”wsq.wee@example.c
om”
“images”:”-1”
}

User will get error message
that no of images can should
be greater than 0 (Failed)

0 in no of images field {
 “search-query”:”Best hd
wallpaper”
“date”:”2021-09-20”
“time”:”11:41”
“email”:”wsq.wee@example.c
om”
“images”:”0”
}

User will get error message
that no of images should be
greater than 0 (Failed)

501 in no of images field {
 “search-query”:”Best hd
wallpaper”
“date”:”2021-09-20”
“time”:”11:41”
“email”:”wsq.wee@example.c
om”
“images”:”501”
}

User will get error message
that no of images can not be
greater than 500 (Failed)

On receiving download link ,
user clicks on link with in
expiration time

 zip will get downloaded
(Success)

Low Level Design (LLD)

Advance Image Downloader/Extractor 15

On receiving download link ,
user clicks on link after
expiration time

 Error page will be shown
saying invalid link (Failed)

