
Design	Document	–	PcapXray																		Srinivas	Piskala	Ganesh	Babu	–	spg349	and	N13138339	

	
	 	 	 		 PcapXray	Design	Specification	
	
Goal:	

• Given	a	Pcap	File,	plot	a	network	diagram	displaying	hosts	in	the	network,	network	traffic,	highlight	
important	traffic	and	Tor	traffic	as	well	as	potential	malicious	traffic	including	data	involved	in	the	
communication.	

	
Problem:	

• Investigation	of	a	Pcap	file	takes	a	long	time	given	initial	glitch	to	start	the	investigation	
o Faced	by	every	forensics	investigator	and	anyone	who	is	analyzing	the	network	

Location:	https://github.com/Srinivas11789/PcapXray	
Solution:	Speed	up	the	investigation	process	

• Make	a	network	diagram	with	the	following	features	from	a	Pcap	file	
o Tool	Highlights:	

§ Network	Diagram	–	Summary	Network	Diagram	of	full	network	
§ Information:		

• Traffic	with	Server	Details	
• Tor	Traffic	
• Possible	Malicious	traffic	
• Data	Obtained	from	Packet	in	Report	–	Device/Traffic/Payloads	
• Device	Details	

	
Components:	

• Mandatory:	
o Network	Diagram		
o Device/Traffic	Details	and	Analysis	
o Malicious	Traffic	Identification	
o Tor	Traffic	
o GUI	–	a	gui	with	options	to	upload	pcap	file	and	display	the	network	diagram	

• Optional	but	Useful:	
o Files	Exchanged	
o Server	Details	in	traffic	

	
Block	Diagram:	
	

	
	
	

	
	
	
	
	

Pcap	
File	

Json	DB	

Main	

Front	End	

Tk	
Widget	
GUI	

PcapRead	
Module	

Tor/malicious	

PlotMAP	

Back	End	

TrafficInfo	



Design	Document	–	PcapXray																		Srinivas	Piskala	Ganesh	Babu	–	spg349	and	N13138339	

Method	or	Process	Description:	
	

- Module1	–	main.py	-	Main	(Driver):	
o Main	program	driver		
o Drives	the	whole	Application	by	spawning	a	TK	widget	interface	

- Module2	–	userInterface.py	–	GUI:	
o Used	Tk	and	Ttk	Widget	for	the	Graphical	User	Interface	
o Designed	a	UI	with	three	frames,		

§ First	frame,	accepting	input	file	from	the	user	and	Button	action,	an	added	gimmick	
of	progress	bar	showing	progressing	scenario	

§ Second	frame,	providing	options	to	select	from	a	list	to	display	different	graphs	in	
the	third	frame	

§ Third	frame	initially	contains	a	label	displaying	the	tool	information	
• Based	on	the	option	setting	at	second	frame,	it	displays	different	graphs	in	the	third	frame	

§ Button	action	calls	packet	read	to	initially	perform	pcap	reading	and	update	the	
json	database	or	dictionary	

§ Option	action	or	option	variable	trace	observes	change	in	the	option	value	and	
triggers	function	call	to	plotLan	or	draw	graph	and	display		
	

- Module3	–	pcapReader.py	–	Pcap	Reading:	
o Reads	the	given	packet	capture	file	and	populates	a	dictionary	of	various	information	of	the	

packets	
§ First	Key	of	the	Dictionary	is	DB[ip]	–	collects	the	private	Ips		
§ Second	Key	of	the	Dictionary	is	TCP	or	UDP	–	Basis	of	communication	
§ Third	Key	of	the	Dictionary	is	HTTP,	HTTPS,	Ports	Connected	information	
§ Few	other	keys	collecting	the	HTTP	Servers,	Payload	also	are	segregated	
§ Json	DB	Structure:	

• DB[PrivateIp]		
o TCP	

§ HTTP	
• Server	
• Payload	

§ HTTPS	
§ PortsConnected	

o UDP	
§ PortsConnected	

o Ethernet	
	

- Module4	–	plotLanNetwork.py	–	Network	Graph	Drawing:	
o Uses	graphviz	module	to	plot	network	graph	
o Classifies	all	the	private	IP	in	the	network	from	the	packetDB	into	nodes	
o Traces	all	the	traffic	based	on	the	category	under	consideration	and	draws	edges	
o Style	added	to	differentiate	different	traffic	

	
- Module	5	–	torTrafficHandle.py	–	Tor	Traffic	Detection:	

o Obtains	consensus	data	from	the	tor	authority	nodes	using	the	stem	library	and	matches	all	
the	destination	address	of	packets	to	view	any	match		

o Classifies	destination	of	such	an	address	as	a	potential	Tor	traffic	displayed	with	a	white	
edge	
	



Design	Document	–	PcapXray																		Srinivas	Piskala	Ganesh	Babu	–	spg349	and	N13138339	

- Module	6	–	maliciousTrafficIdentifier.py	–	Malicious	Traffic	Detection:	
o Obtains	the	Non-resolved	IP	address	(by	reverse	DNS	lookup)	or	connection	to	any	

unknown	ports	or	not	well-known	ports	are	assumed	to	be	a	malicious	connection	
o Well	known	ports	database	is	kept	small	as	of	now	with	the	most	well-known	ports	such	

as	53,	80,	443.	It	should	be	updated	with	a	proper	db	of	well-known	ports	to	compare	
against.	
	

- Module	7	–	communicationDetailsFetch.py	–	Traffic	Details	Fetch	
o Ipwhois:	

§ Ipwhois	details	are	fetched	with	the	ipwhois	library	
§ Every	ip	is	resolved	for	the	whois	information	and	the	report	is	updated	
§ This	feature	already	exists	but	is	kept	disabled	to	achieve	performance	and	speed	(Ex:	

scenario	to	solve:	Some	pcap	files	contain	over	100	hosts)	
o Reverse	dns	lookup:	

§ Reverse	dns	lookup	is	performed	with	the	socket	library	which	is	default	and	domain	
name	is	obtained	from	gethostbyaddr	function	
	

- Module	8	–	deviceDetailsFetch.py	–	Device	Details	Fetch	
o Device	details	are	obtained	from	the	Ethernet	key	of	the	packet	DB	

§ For	each	private	IP	the	mac	OUI	is	compared	with	the	OUI	database	and	information	is	
fetched	

- Module	9	–	reportGen.py	–	Report	Generator	
o Report	generator	module	generates	report	at	a	given	path,	

§ Device	details	
§ Communication	details	
§ HTTPPayload	details		

o Copies	all	the	Json	database	contents	into	the	files	based	on	the	category	

	
Output:	

- Provides	network	graph	of	all	the	different	traffic	–	Tor,	Malicious,	All,	HTTP	and	HTTPS	
- Create	a	Report	Folder	to	dump	all	the	“PNG”	files	of	different	graphs	

o Generates	files	with	information	from	the	database	
	
Python	Libraries	Used:		-	All	these	libraries	are	required	for	functionality	

• Tkinter	and	TTK	–	Install	from	pip	or	apt-get	–	Ensure	Tkinter	and	graphviz	is	installed	(Most	Linux	
contain	by	default)		
o apt	install	python-tk	
o apt	install	graphviz	

• All	these	are	included	in	the	requirements.txt	file	
o Scapy	–	rdpcap	to	read	the	packets	from	the	pcap	file		
o Ipwhois	–	to	obtain	whois	information	from	ip	
o Netaddr	–	to	check	ip	information	type	
o Pillow	–	image	processing	library	
o Stem	–	tor	consensus	data	fetch	library	
o pyGraphviz	–	plot	graph	
o Networkx	–	plot	graph	
o Matplotlib	–	plot	graph	

	
	
	



Design	Document	–	PcapXray																		Srinivas	Piskala	Ganesh	Babu	–	spg349	and	N13138339	

Demo:	Screen	shots:	Initial	Screen	
	

	
	
Result	Screen:	
	

	



Design	Document	–	PcapXray																		Srinivas	Piskala	Ganesh	Babu	–	spg349	and	N13138339	

Challenges:	
• Unstability	of	the	TK	GUI:	

o Decision	on	the	GUI	between	Django	and	TK,	settled	upon	tk	for	a	simple	local	interface,	
but	the	unstability	of	the	tk	gui	caused	a	number	of	problems	

• Graph	Plotting:	
o Plotting	a	proper	network	graph	which	is	readable	from	the	data	obtained	was	quite	an	effort,	

used	different	libraries	to	arrive	at	one.	
• Performance	and	Timing:	

o The	performance	and	timing	of	the	total	application	was	a	big	challenge	with	different	data	
gathering	and	output	generation	
	

Known	Bugs:	
• Memory	Hogging	

o Sometimes	memory	hogging	occurs	when	lower	RAM	is	present	in	the	system	as	the	data	stored	
in	the	memory	from	the	pcap	file	is	huge	

§ Should	be	Fixed	by	moving	data	into	a	database	than	the	memory	itself	
• Race	Condition	

o Due	to	mainloop	of	the	TK	gui,	other	threads	could	undergo	a	race	condition	
§ Should	be	fixed	by	moving	to	a	better	structured	TK	implementation	or	Web	GUI	

• Tk	GUI	Unstability:	
o Same	reason	as	above	

	
• Current	Fix	in	rare	occasions:	If	any	of	the	above	issue	occurs	the	progress	bar	keeps	running	and	no	

output	is	generated,	a	restart	of	the	app	would	be	required.	
	

Future:	
• Change	the	database	from	JSON	to	sqlite	or	prominent	database,	due	to	memory	hogging	
• Change	fronend	to	web	based	such	as	Django	
• Make	the	application	more	stable	

	
References:	

• https://graphviz.gitlab.io/_pages/doc/info/lang.html	
• https://www.swharden.com/wp/2010-03-03-viewing-large-images-with-scrollbars-using-python-tk-and-pil/	
• https://stackoverflow.com/questions/40025616/multithreading-from-a-tkinter-app	
• https://stackoverflow.com/questions/6893968/how-to-get-the-return-value-from-a-thread-in-python	
• https://pythonhaven.wordpress.com/2009/12/09/generating_graphs_with_pydot/	
• http://graphviz.readthedocs.io/en/stable/examples.html	
• https://medium.com/@vworri/extracting-the-payload-from-a-pcap-file-using-python-d938d7622d71	
• http://isrg.blogs.southwales.ac.uk/2009/09/16/graphviz-python-and-tk/	
• http://www.tkdocs.com/tutorial/firstexample.html	
• https://graph-tool.skewed.de/static/doc/index.html	
• https://networkx.github.io/documentation/networkx-1.10/reference/classes.multidigraph.html	
• http://isrg.blogs.southwales.ac.uk/2009/09/16/graphviz-python-and-tk/	
• http://matthiaseisen.com/articles/graphviz/	
• https://stem.torproject.org/tutorials/mirror_mirror_on_the_wall.html	
• http://effbot.org/tkinterbook/frame.html	
• https://pythonprogramming.net/styling-gui-bit-using-ttk/	
• https://stackoverflow.com/questions/6865792/fresh-tutorial-on-tkinter-and-ttk-for-python-3	
• http://coreygoldberg.blogspot.com/2009/12/python-3-tkinter-ttk-tk-themed-widgets_07.html	


