Longest Common Subsequence

Tanveer Muttaqueen
Student ID : 1505002

Subangkar Karmaker Shanto
Student ID : 1505015

August 3, 2018

Contents

[L__Introduction|

12 Subsequence|
2.1 Subsequence|.

[2.1.2 Example of Subsequences:|

2.2 ongest Common Subsequence|

|3__Problem Solving Techniques|

3.1 rute Force Technique|o oo
3.2 ynamic Programming Approach|.
3.2.1 Applicability for DP|
13.2.2 Optimal Substructure|
3.2.3 Overlapping Sub-Problems|

4 Solving LCS: Brute Force Technique)

[Solving LCS: Dynamic Programming Approach|
[5.1 Stucture of LOS problem|
5.2 ecursive Structure of the Subproblem|.
5.3 omputing length of the LCS|

6 Improvement|

[T_Conclusionl

15

16

Chapter 1

Introduction

This report briefly illustrates the well known problem Longest Common Subse-
quence. Longest Common Subsequence, in short LCS is the problem of finding
the common subsequence of some sequences that has the longest length among
all other subsequences of them.

Basically in LCS, we find longest common subsequence of two string. We
can also find longest common subsequence of more than two strings but that is
much more complicated. So here we will limit out discussion to finding longest
common subsequence of two string.

So in this problem we will have two string as input and our output will be
a single string that is the longest common subsequence of the above two.

Chapter 2

Subsequence

2.1 Subsequence

2.1.1 Definition:

Given two sequences X = (z1, To,...,Zy,) and Z = (21, 22,...,2), We say that
Z is a subsequence of X if there is a strictly increasing sequence of k indices i1,
Q9yyip (1 <4y < g < ... < i < m)suchthat Z = (@, Tiyyeor, Ty,)-

Informally sequential elements in subsequence must have strictly increasing
sequence in the original sequence.

2.1.2 Example of Subsequences:

Let’s consider a string X = (BEGINNING)

Main Sequence (BEGINNING)
Subsequences (BGN), (INNING), (BIS) etc.
Not Subsequence | (EBG), (NINNIG), (BGL) etc.

Let’s consider another string Y = (BACDB)

Main Sequence (BACDB)
Subsequences (BDB), (CDB), (BCB) etc.
Not Subsequence | (DCA), (BDA), (CDA) etc.

2.2 Longest Common Subsequence

A longest common subsequence is any string that is of the longest length among
any common subsequences. Obviously there can be more than on subsequence
with the longest length. In that case any of those subsequences is a optimal
solution by definition. Here are some examples,

1. Original Sequences: S = (BDCB), T = (BACDB)
e Common Subsequences: (B), (BD), (BCB) etc.

e Longest Common Subsequence: (BCB)

2. Original Sequences: S = (DABKC), T = (APBCK)

e Common Subsequences: (A), (AB), (ABK), (ABC) etc.
e Longest Common Subsequence: (ABK), (ABC)

3. Original Sequences: S = (ABCD), T = (PQRS)

¢ Common Subsequences: NO common subsequences

e Longest Common Subsequence: NO longest common subsequences

Chapter 3

Problem Solving Techniques

There are many well established methodology and algorithms for problem solv-
ing. Brute force technique, Divide and conquer, Dynamic Programming are
some popular examples of such methodologies. Here we will discuss Brute force
technique and Dynamic Programming approach as both of them are relevant to
our problem.

3.1 Brute Force Technique

Brute force is a type of algorithm that tries a large number of patterns to solve
a problem. It is often mentioned as Brute Force Search or Ezxhaustive Search.
Brute Force Search is a very general problem-solving technique that consists of
systematically enumerating all possible candidates for the solution and checking
whether each candidate satisfies the problem’s statement.

For example, a brute-force algorithm to find the divisors of a natural number n
would enumerate all integers from 1 to n, and check whether each of them divides
n without remainder. A brute-force approach for the eight queens puzzle would
examine all possible arrangements of 8 pieces on the 64-square chessboard, and,
for each arrangement, check whether each (queen) piece can attack any other.

While a brute-force search is simple to implement, and will always find a
solution if it exists, its cost is proportional to the number of candidate solutions
— which in many practical problems tends to grow very quickly as the size of
the problem increases. Therefore, brute-force search is typically used when the
problem size is limited, or when there are problem-specific heuristics that can
be used to reduce the set of candidate solutions to a manageable size. The
method is also used when the simplicity of implementation is more important
than speed.

Basic algorithm

In order to apply brute-force search to a specific class of problems, one must
implement four procedures, first,next, valid, and output. These procedures
should take as a parameter the data P for the particular instance of the problem
that is to be solved, and should do the following:

1. first (P): generate a first candidate solution for P.
2. next (P, ¢): generate the next candidate for P after the current one c.
3. valid (P, ¢): check whether candidate c is a solution for P.

4. output (P, ¢): use the solution ¢ of P as appropriate to the application.

The next procedure must also tell when there are no more candidates for
the instance P, after the current one c. A convenient way to do that is to return
a "null candidate”, some conventional data value A that is distinct from any
real candidate. Likewise the first procedure should return A if there are no
candidates at all for the instance P. The brute-force method is then expressed
by the algorithm.

1 ¢+ first(P)

2 while ¢ # A do

3 if valid(P,c) then
4 output(P, c)

5 ¢ < next(P,c)

3.2 Dynamic Programming Approach

Dynamic programming is both a mathematical optimization method and a com-
puter programming method. The method was developed by Richard Bellman
in the 1950s. In both contexts it refers to simplifying a complicated problem by
breaking it down into simpler sub-problems in a recursive manner. While some
decision problems cannot be taken apart this way, decisions that span several
points in time do often break apart recursively. Likewise, in computer science,
if a problem can be solved optimally by breaking it into sub-problems and then
recursively finding the optimal solutions to the sub-problems, then it is said to
have optimal substructure.

3.2.1 Applicability for DP

There are two key attributes that a problem must have in order for dynamic
programming to be applicable. Those are

e Optimal Substructure
e Overlapping Sub-Problems

If a problem can be solved by combining optimal solutions to non-overlapping
sub-problems, the strategy is called ”divide and conquer” instead of dynamic
programming. This is why merge sort and quick sort are not classified as dy-
namic programming problems.

3.2.2 Optimal Substructure

Optimal substructure means that the solution to a given optimization problem
can be obtained by the combination of optimal solutions to its sub-problems.
Such optimal substructures are usually described by means of recursion.

For example, given a graph G=(V,E), the shortest path p from a vertex u to a
vertex v exhibits optimal substructure: take any intermediate vertex w on this
shortest path p. If p is truly the shortest path, then it can be split into sub-
paths pl from u to w and p2 from w to v such that these, in turn, are indeed the
shortest paths between the corresponding vertices (by the simple cut-and-paste
argument). Hence, one can easily formulate the solution for finding shortest
paths in a recursive manner, which is what the Bellman—Ford algorithm or the
Floyd—Warshall algorithm does.

3.2.3 Overlapping Sub-Problems

Overlapping sub-problems means that the space of sub-problems must be small,
that is, any recursive algorithm solving the problem should solve the same sub-
problems over and over, rather than generating new sub-problems.

For example, consider the recursive formulation for generating the Fibonacci
series: F; = F;_1 + F;_o, with base case F; = F» = 1. Then Fy3 = Fyo + Fy1,
and Fyo = Fy1 + Fy9. Now Fjy; is being solved in the recursive sub-trees of both
Fy3 as well as Fy5. Even though the total number of sub-problems is actually
small (only 43 of them), we end up solving the same problems over and over if
we adopt a naive recursive solution such as this. Dynamic programming takes
account of this fact and solves each sub-problem only once. This can be achieved
in either of two ways:

e Top-down approach: This is the direct fall-out of the recursive formu-
lation of any problem. If the solution to any problem can be formulated
recursively using the solution to its sub-problems, and if its sub-problems
are overlapping, then one can easily memoize or store the solutions to
the sub-problems in a table. Whenever we attempt to solve a new sub-
problem, we first check the table to see if it is already solved. If a solution
has been recorded, we can use it directly, otherwise we solve the sub-
problem and add its solution to the table.

e Bottom-up approach: Once we formulate the solution to a problem
recursively as in terms of its sub-problems, we can try reformulating the
problem in a bottom-up fashion: try solving the sub-problems first and use
their solutions to build-on and arrive at solutions to bigger sub-problems.
This is also usually done in a tabular form by iteratively generating so-
lutions to bigger and bigger sub-problems by using the solutions to small
sub-problems. For example, if we already know the values of Fy; and Fjyq,
we can directly calculate the value of Fys.

Chapter 4

Solving LCS: Brute Force
Technique

4.1 Solution

Suppose we are to find LCS of string X and Y. Then we can enumerate all
subsequences of X, and check whether they are subsequences of Y and then
take the longest one among them.

4.2 Time Complexity

Suppose X has length n and Y has length m.
e Checking = O(n) time per subsequence.

e 2™ subsequences of Y (each bit-vector of length m determines a distinct
subsequence of Y).

Worst-case running time = O(n2™) = exponential time.

4.3 Remarks

Although we can go with this algorithm for smaller values of m and n, we will
not be able to solve this problem for strings having larger length i.e 100. So we
need faster algorithms. Hence dynamic programming is in preference.

Chapter 5

Solving LCS: Dynamic
Programming Approach

We already know the properties that are required for a problem to be eligible
to be solved with dynamic programming . LCS exhibits both Optimal sub-
structure and Overlapping sub-problems property. Hence we can use dynamic
programming to solve it. Now we will discuss the method of solving LCS with
dynamic programming in detail.

5.1 Stucture of LCS problem

The structure of LCS can be represented as below: Suppose X = (z1x2..2.,) ,
Y = {y1y2...yn) and Z = (z125...2) is their longest commmon subsequence.
Now we have:

1. If x,,, = yn then zx = z,, = yn. So Zp_1 is an LCS of X,,,_1 and Y,,_;.
2. If x,, # ym and zp # x,, then Zjy is an LCS of X,,,_; and Y,,.
3. If x, # ym and zp # y, then Zy is an LCS of X,,, and Y,,_;.

Note: Xm—l = <I1£C2..£L‘m_1>7 Yn—l = <y1y2---yn—1> and Zk'—l = <2122~-~Zk,—1>~

10

5.2 Recursive Structure of the Subproblem

From the optimal substructure stated in the previous subsection, we know that,
to find the LCS of X and Y, we just need to go through the following procedure:

e if z, =y, find the LCS of X,,_; and ¥;,_1 and then append z,, (or y,).

e if z,, # y,,,, find the LCS of X,,,_1 and Y,,, and the LCS of X,,, and Y,,_1,
then pick the longer one.

We can see a overlapping subproblems attribute from this recursive struc-
ture. For example, when finding the LCS of X and Y, we may need to find
the LCS of X and Y,,_; and the LCS of X,,_1 and Y first; and these two both
depend on one subproblem, to find the LCS of X,, 1 and Y,,_1.

So let us build the recursive relations among the optimal values of the sub-
problems. Denote c[i,j] as the length of X; and Y;. When i=0 or j=0, the LCS
of X; and Yj is an empty sequence, so c[i,j]=0, otherwise the recursive relation
can be defined as:

0 ifi=0o0rj=0
cli,jl=<cli—1,7—1] ifi,7 >0 and z; = y;
max(cli —1,7],clt,5 —1]) if4,5 >0 and x; # y;

5.3 Computing length of the LCS

Using the recursive formula defined above, we can easily contrive an algorithm
to compute cli,j], but the execution time will grow exponentially with the length
of input. Since there are only ©(m * n) subproblems in the subproblem space,
we can use the bottom-up approach to improve efficiency.

The LCS_LENGTH(X,Y) algorithm takes X = (z122..2) and Y = (y1y2...yn)
as inputs and then outputs two matrices c[0..m, 0..n] and b[l..m, 1..n]. c[i,j]
stores the length of LCS(X;, Y;) and b[i,j] stores where c[i,j] gets its value
from (this will be explained later). At the end of the algorithm, the length of
LCS(X,Y) will be stored at c[m,n].

11

LCS_LENGTH(X,Y)
1 m = length[X]
2 n = length[Y]
3 fori:=1tom do
4 c[i,0] :=0
5 for j ;=1 to n do
6 cl0,4]:=0
7 for i :=1 to m do
8 for j:=1ton do

9 if z; = y; then

10 cfij]=cli—1,j—1]+1

11 bli, j] ="\

12 else if c[i — 1, j] > c[i,j — 1] then
13 cliyj] == c[i — 1, 4]

14 bli, j] :="1"

15 else

16 cli, jl == c[i, j — 1]

17 bli, j] :="+'

18 return (c,b)

—.

Gl B WN| RO —
—| Tl >| O| >| %
OO0 OoOooK|o
iR R ~olol O~
=== = oo W N
NN H==O O TWw
WINR=olo -

Table 5.1: table ¢

—.

O OO0 0O|I0oIK | O
=== =] ol g~
=== T |—|o|m| v
A= T = o] 7w
AT =T =| o=

G| sl w| | =o| -
—| T| > O| >| %

Table 5.2: table b

Table 5.3: tables for strings X=(ADAPT) and Y=(DBPT)

12

5.4 Construct the LCS

With the help of matirx b from LCS_LENGTH, we can construct the LCS of
X and Y. Starting from b[m,n], we can navigate the matrix according to the
direction of each ’arrow’:

e when b[i,j] = N, it means x; = y; is an element of LCS(X;,Y;) ie.
LCS(XZ, }/J) is LCS(Xi_l,Yj_l) appends xX; (OI‘ yj)

e when b[i,j] = 1, it means LCS(X,,Y;) is the same as LCS(X;_1,Y})

e when b[i,j] = <, it means LCS(X;,Y;) is the same as LCS(X,,Y)

PRINT-LCS (b, X, 4, 5)
1if : =0 o0rj=0 then
2 return
3 if bi, j] = “\” then
4 PRINT-LCS(b, X,i — 1,5 — 1)
5 print x;
6 else if b[i,j] = “1” then
7 PRINT-LCS(b, X, — 1,5)
8 else
9 PRINT-LCS(b, X,i,j — 1)

E.g., for two sequences X=(ADAPT) and Y=(DBPT), the results of LCS_.LENGTH()
and PRINT-LCS() can be shown as:

il o 1l 2 3] 4
1 D B P T
0 0 0 0 0 0

o
—
o
—
o
—_—
[a)

—_
—
—_
—

A
}

w
H |77 (> [C |»>
e
—>—>—>/—>
=
—
—
—
—
—
—_

—_
—
—_
—
[\
A
w

13

Lets explain this diagram. Firstly, LCS_.LENGTH() computes matrix ¢ and
matrix b from X and Y, and the cell at the ith row and jth column stores the
value of c[i,j] and the arrow pointing to next entry of b. At c[5,4], number 3
stands for the length of LCS(DPT). To re-construct the LCS, we just need to
follow the arrow from the lower right corner. Each _ on the path denotes an
element of the LCS.

So, according to the diagram, the procedure will finally print out: "DPT”

5.5 Complexity
e Each entity of the table can be computed in O(1) time

e There are |X| * |Y| entities to be filled. So total time complexity is
O(IX[-[Y]).

e Similarly total memory complexity is also O(|X|-|Y])

14

Chapter 6

Improvement

Unfortunately, unless something is said explicitly about input alphabet, no
known optimization on time complexity is possible.

But if the sample space is known then following optimizations can be applied,

e For problems with a bounded alphabet size, the Method of Four Russians
can be used to reduce the running time of the dynamic programming
algorithm by a logarithmic factor.

e For problems where S and T has no repeated alphabet, Longest common
subsequence problem can be reduced to Longest increasing subsequence.
Thus solving the problem in O(n - logn).

But memory optimization is certainly possible. In each state we only need last
two rows. So we can keep last two rows using even, odd sequence. Thus giving
memory complexity O(2-]Y])

15

Chapter 7

Conclusion

Longest Common Subsequence or LCS is a illustration of power of dynamic pro-
gramming in problem solving. Without using DP we would have a exponential
time complexity that is impossible to solve with existing computational power.

However, this well known LCS problem is the basis of data comparison
programs such as the diff utility, and has applications in bioinformatics. It is
also widely used by revision control systems such as Git for reconciling multiple
changes made to a revision-controlled collection of files. Even in medical science
LCS is an important problem. Fast DNA Sequence Clustering can be done based
on LCS.

Again more complicated problems have been made easier with idea of LCS
problem such that finding LCS of K-sequences, Longest Increasing Subsequence,
Finding if string is K-palindrome etc.

16

	Introduction
	Subsequence
	Subsequence
	Definition:
	Example of Subsequences:

	Longest Common Subsequence

	Problem Solving Techniques
	Brute Force Technique
	Dynamic Programming Approach
	Applicability for DP
	Optimal Substructure
	Overlapping Sub-Problems

	Solving LCS: Brute Force Technique
	Solution
	Time Complexity
	Remarks

	Solving LCS: Dynamic Programming Approach
	Stucture of LCS problem
	Recursive Structure of the Subproblem
	Computing length of the LCS
	Construct the LCS
	Complexity

	Improvement
	Conclusion

