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Abstract

Deep neural networks (DNNs) generally learn parameters from massive amounts1

of high-quality training data to provide superb prediction performance. Classical2

machine learning approaches centralize decentralized data dispersed across devices3

in a common site for effective training but raise serious concerns of data privacy.4

In this paper, we design, implement, and evaluate MistNet, a privacy-preserving5

model training system that enables the cloud and the edge devices to collaboratively6

perform neural network training without revealing users’ data as well as model7

parameters. MistNet partitions a DNN model into two parts, a lightweight feature8

extractor at the edge side to generate meaningful features from the raw training data,9

and a classifier including the most model layers at the cloud to be iteratively trained10

for specific tasks. Different from prior work, the feature extractor is transferred11

from pre-trained models for similar application domains and kept fixed during12

training, which eliminates the need to synchronize feature extractors across devices.13

Furthermore, MistNet enhances privacy via applying local differential privacy14

(LDP) to the intermediate features and assess the privacy leakage with two kinds15

of common attacks - membership inference and feature inversion attacks. We16

conduct an experimental study on multiple models and datasets, demonstrating that17

by choosing an appropriate partition layer and privacy budget, MistNet achieves18

acceptable model utility while greatly reducing privacy leakage from the released19

intermediate features.20

1 Introduction21

Deep neural networks (DNN) have been successfully applied to a wide range of areas including22

vision, speech, and natural language [1, 2, 3]. The superior prediction ability of DNN models relies on23

large amounts of data. Meanwhile, with the proliferation of mobile and IoT technology, tremendous24

valuable data are generated by edge devices but live in silos. There is an increasing demand to learn25

from the dispersed data, so as to better support machine learning (ML) tasks at the edge. However, in26

the most conventional training paradigm, models are placed at a central site. It requires collecting27

training data from users, which raises concerns about data privacy and violates data protection laws.28

As a result, privacy issues turn to be a barrier for empowering edge intelligence, and collaborative29

training without sharing the input training data is highly desired.30

Recently, two learning paradigms have emerged to address this issue: federated learning [4] and31

split learning [5, 6]. Federated learning pushes the whole model to the edge and model gradients are32

exchanged across devices to learn a shared model. As DNNs have become deeper and more complex,33

model training has incurred prohibitive costs in computational resources, which poses a substantial34

challenge to resource-constrained devices. Split learning evolves to train the first few layers of the35
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neural network at the edge and transmit the intermediate features to cloud servers with abundant36

computational resources to facilitate training the rest of the training.37

However, the existing split learning method [5, 6] trains the model in a sequential fashion across edge38

devices, which slows down the training process - an edge device has to receive updated weights from39

the last trained device before training on its local data. There is a need to enable parallel local training40

among distributed edge devices. Exposing the intermediate features instead of the training data is41

assumed to be safer, but is it sufficient to protect the privacy of the training data? Recent study [7]42

devises an inversion attack to recover the inputs from the intermediate features even in the black-box43

setting without the need to know the parameters of the model at the edge.44

In this paper, we propose MistNet1, a privacy-preserving collaborative training framework, in which45

we divide the neural network into two parts, the first few layers as a feature extractor at the edge and46

the rest layers as a classifier at the cloud. We design the feature extractor based on an insight from47

transfer learning [8]: the early layer features are general to many datasets and tasks. Take computer48

vision tasks for example, we initialize the feature extractor with weights pre-trained on large public49

datasets like ImageNet [9]. The feature extractor thus is ready to produce meaningful features without50

the need to be further trained with the rest model on cloud servers. It thus supports edge devices to51

perform training in parallel by eliminating the need to synchronize updated feature extractors. To52

ensure that intermediate features do not reveal sensitive information about any particular training53

record, we adopt the rigorous local differential privacy technique - Randomized Response (RR),54

which was introduced by Warner et al. [10] for collecting sensitive statistics from survey respondents55

and later widely deployed in real systems by Google [11] and Apple [12]. Subject to RR constraints,56

we discretize the features of the partition layer by constraining the values to either 1 or 0. Each57

feature value will be independently randomized before leaving the edge devices, thus no raw features58

are leaked. The probability to preserve the original value is determined by the privacy budget ε. A59

small value of privacy budget ε strictly guarantees privacy, but also detriments model utility. We have60

limited understanding of the range of ε values for reasonable privacy-accuracy trade-off in practice.61

We thus assess the privacy leakage with two common attacks against ML models, model inversion,62

and membership inference attack. We summarize our major contributions as follows:63

• We propose MistNet, which uses a fixed-weight pre-trained feature extractor to generate64

meaningful features and further apply local differential privacy on features to enhance65

privacy.66

• Besides from privacy budget ε, we use model inversion and membership inference attack to67

quantitatively assess the privacy leakage.68

• We experimentally show that MistNet achieves good prediction accuracy while preserving69

privacy under different models, datasets, and parameter settings.70

2 Preliminaries71

2.1 Distributed Collaborative Learning72

To support training on a substantial amount of training data from different sources, distributed collabo-73

rative learning emerges to enable multiple parties to contribute to learning a shared model. Depending74

on where the model is located, distributed collaborative learning systems can be categorized into the75

following paradigms.76

Federated Learning. To build a more privacy-friendly collaborative training approach, Google77

proposes federated learning [4] to enable participating devices collaboratively to train a shared model,78

while keeping the training data on mobile devices. As illustrated in Figure 1a, each mobile device79

trains the model with its local data for several local epochs, and push the local updated parameters to80

the central server, where these updates are aggregated to compute a new model with model averaging.81

The updated global model is then sent back to edge devices in the next round. During the whole82

training procedure, only model parameters are shared, while the training data is kept locally at the83

devices.84

1MistNet is a combination of the words Mist and Neural Network. This name reflects the fact that preventing
users’ data from being revealed is like putting a mist around them.
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Figure 1: Two distributed collaborative learning paradigms: federated learning and split learning

Split Learning. Instead of pushing the whole model to the edge, split learning [5, 6] is proposed as85

an alternative collaborative training approach, where a neural network model is partitioned between86

the cloud and edge. As shown in Figure 1b, with the training data, an edge device trains the network87

up to the partition layer and sends the intermediate features of the partition layer to the cloud. Upon88

receiving the features, the cloud takes over training the remaining layers to complete the forward89

pass. In the backward pass, with the gradients of the partition layer backpropagated from the cloud,90

the edge device updates local model parameters. For consistency of local models among devices,91

the edge device then synchronizes the updated model with the next device scheduled to participate92

in training. The sequential training manner results in severe under-utilization of resources on edge93

devices. Only one edge device is active in training with the cloud at any specific point in time. Split94

learning preserves privacy in a way that only the intermediate features are sent out to the cloud while95

the training data are still left to the edge devices. Unfortunately, transmitting features still has the risk96

to leak sensitive information of the input data. Recent work [7] shows the possibility to accurately97

recover the input image from the intermediate features even without access to the edge device.98

2.2 Local Differential Privacy99

Differential privacy is a statistical definition of privacy that is used to publish aggregate information100

about the entire population while constraining the privacy leakage of each individual. As a kind of101

differential privacy, local differential privacy (LDP) works without assuming a trusted data collector.102

The data owners directly add noise to their data before sharing them with the untrusted data collector,103

which provides a much stronger privacy guarantee [13, 14]. We provide a formal definition of local104

differential privacy below. As the privacy budget ε measures the extent of privacy leakage of the105

random mechanism π. A lower value of ε means more privacy.106

Definition 2.1 (ε-LDP [13]). An random mechanism π : X → Y satisfies ε-local differential privacy,107

where ε ≥ 0, if and only if for any inputs x, x′ ∈ X and y ∈ Y , we have Pr[π(x) = y] ≤108

eεPr[π(x′) = y].109

Randomized response (RR) [10] is a typical mechanism to implement LDP. It is initially proposed110

as a survey technique to collect answers to sensitive binary questions. The respondent uses a111

randomization method like a coin flip to randomize the answer "yes" or "no". She answers the112

question truthfully if the coin comes up heads, otherwise returns a false answer. Assume that we113

use a biased coin and the probability to provide a truthful answer (coin flip result is head) is p. The114

mechanism satisfies ε-differential privacy with p = eε

1+eε .115

2.3 Attacks against ML Models116

We concentrate on two types of attacks against ML models which are closely related to our work and117

suitable to be used to assess the privacy leakage.118

Feature Inversion Attack As a specific case of model inversion attack [15], feature inversion attack119

[7] is recently devised for the edge-cloud collaborative learning system. The neural network fθ is120

split into two parts: fθ1 and fθ2 between the edge and the cloud. The adversary aims to recover the121

input data sample x0 from the intermediate layer features fθ1(x0)in both white-box and block-box122
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settings. In the white-box setting, the adversary is assumed to compromise with participant and123

knows the structure and parameters of model fθ1(x0). The adversary performs gradient descent124

technique on fθ1 to find a generated sample x whose intermediate fθ1(x) is the most similar tofθ1(x0)125

and at the same time following the same distribution as the input data. Recovering inputs is more126

challenging in the black-box setting, where the information of fθ1 is totally unknown to the adversary.127

Suppose the attacker can feed arbitrary inputs to fθ1 and receive the corresponding outputs, the128

attacker accordingly trains a network to approximate the inversion function of fθ1 and then converts129

the intermediate output into the input sample with the trained network.130

Membership Inference Attack Membership inference attack aims to find out whether a given131

sample is used to train a model or not, which is considered as a direct privacy breach. For example,132

knowing a patient record is used to train models for diagnosis (disease presence) reveals that the133

patient has the disease. Shokri et al. [16] introduces membership inference in the block-box ML134

setting where the model is not accessible by the attacker. The attacker firstly trains multiple "shadow135

models" to imitate the behavior of the target model and then trains the binary attack model with the136

labeled inputs and outputs of the shadow models. Taking a data sample’s prediction output queried137

from the target model as input, the binary attack model infers whether the data sample is a member or138

non-member of the target model’s training dataset.139

3 Related Work140

The idea of neural network partition in MistNet is inspired by a large body of previous work141

[17, 18, 19, 20, 21, 22]. These work mainly focus on optimizing performance (eg., latency and142

accuracy) and cost (eg., communication and computation overhead) without considering data privacy.143

We break related work on protecting data privacy into the following three categories, injecting noise144

on the intermediate features, censoring the intermediate features with private feature extractor, and145

leveraging secure computation techniques.146

Noise Injection. Several efforts [23, 24] inject noise to reduce the mutual information between the147

input and the intermediate features. They assume that the attacker performs sensitive secondary148

inferences. It is unknown whether these noises could successfully defend other types of attacks.149

Differential privacy provides strict privacy guarantees in the worst-case scenario without knowing the150

types of privacy attacks. There exist different mechanisms to apply differential privacy mechanisms151

on the intermediate features, such as the Laplace mechanism [25], the Gaussian mechanism [26] adds152

Gaussian noise. MistNet extracts binarized features and perturb them with local differential privacy153

technique - randomized response.154

Private Feature Extractor. To defend against attacks while not sacrificing much accuracy, proposals155

[27, 28] use adversarial training to find an appropriate feature extractor from two respects - the156

number of layers and the strategy to prune output channels of the partition layer. DPFE [24] and157

DeepObfuscator [29] train the feature extractor to hide information about sensitive attributes while158

keeping useful features for the target task.159

Secure Computation. Secure computation techniques recently are used to deal with privacy-160

preserving machine learning. The first line is to use cryptographic protocols such as secure multi-party161

computation (MPC) [30, 31] and homomorphic encryption (HE) [32, 33, 34]. Two or more parties162

collaboratively train a neural network on encrypted data from clients without the need to decrypt163

them. However, the computational and communication cost is usually prohibitively high, which164

makes these cryptographic techniques too heavy to be deployed at resource-constrained edge devices.165

The second line leverages trusted execution environments (TEE) [35, 36, 37] such as Intel SGX [38]166

and ARM TrustZone [39] to protect the training data. Training data is used within an isolated secure167

environment which is invisible to unauthorized adversaries. Nevertheless, the potential drawbacks168

are the limited scalability of TEEs and the vulnerability to side-channel attacks.169

4 Design170

In this section, we present MistNet, a framework for privacy-preserving collaborative training between171

the cloud and the edge. We first provide an overview of the framework and then the role of every172

component of our architecture. Lastly, we show how the intermediate features are perturbed with173

local differential privacy to provide a strong privacy guarantee.174
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4.1 Workflow of MistNet175

Figure 2 illustrates the collaborative training process between the edge and the cloud. To protect176

sensitive training data from being abused and support training complex models, we separate a model177

into two parts between the edge and cloud. The lightweight first few layers of the neural network178

are placed at the edge devices as the feature extractor. The rest layers with heavy computation are179

offloaded to the powerful cloud servers as the cloud classifier to make predictions. We detail the180

workflow of the local feature extractor and cloud classifier below.181

Local Feature Extractor. As explained in §2, maintaining consistency of feature extractors among182

edge devices hinders parallel training, which lowers the efficiency of training among a large scale of183

edge devices. Taking the factor into account, MistNet uses a fixed feature extractor thus eliminate184

the need to perform synchronization among edge devices. To obtain meaningful features, the local185

feature extractor is transferred from pre-trained models that work on a similar application domain via186

transfer learning. Yosinski et al. [8] quantify the transferability of features from different layers in187

deep neural networks. Features from the early layers are more general than that from later layers,188

which show more flexibility to adapt to a wide range of related datasets and tasks. Meanwhile, to189

keep the feature extractor simple and lightweight, the partition point in MistNet is usually set at a190

very early layer in the model. The extracted features thus show high generalization capability and191

are ubiquitous to various tasks. Moreover, the feature extractor is less sensitive to the changes of192

input data, which provides the possibility to apply a fixed pre-trained feature extractor during training.193

With the fixed pre-trained feature extractor, edge devices transform the input training data into feature194

representations in parallel and send them to the cloud for the rest of the training. Thereafter, edge195

devices do not need to repeatedly send the feature representations for the same batch of training196

samples, nor receive backward-propagated feedbacks from the cloud.197

As indicated in previous work [7], the value of intermediate features has the potential risk to reveal198

sensitive information about the input data. The volume of feature representations of the early layer199

in some models can be even larger than the raw input data, which incurs high communication costs.200

The intermediate representations should be transmitted in a secure and communication-efficient way.201

In MistNet, edge devices binarize each activation value with 1 bit and perturb the binarized feature202

representations conforming to local differential privacy before sending them to the cloud. We further203

explain the perturbing mechanism in §4.2.204

Cloud Classifier. Upon receiving the perturbed feature representations from the edge devices, the205

cloud iteratively trains the rest layers of the network with stochastic gradient descent (SGD) algorithm206

to minimize the loss for a specific task. To reduce the communication cost, intermediate features207

for input samples without any data augmentation effect are transmitted to the cloud. We further208

apply random cropping on the intermediate features of each input sample as the data augmentation209

technique to alleviate overfitting. We have the intermediate features of each input sample reshuffled210

at each epoch during training. As shown in [8, 40], fine-tuning model on new related tasks is faster to211

converge to near optimum than training from scratch. We thus initialize the parameter weights for the212

cloud classifier with the transferred weights from the pre-trained model. During the backward pass,213

the cloud classifier does not need to propagate the loss back to the edge devices and only parameters214

of the cloud classifier are updated.215
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Figure 2: The overview of MistNet architecture. MistNet partitions the model between the edge and
the cloud platform. The edge uses a pre-trained feature extractor to transform the local input data into
a set of feature maps. Each edge device quantizes each activation into 1-bit and sends the randomized,
differentially private version of the binarized feature values to the cloud platform. The partial model
at the cloud platform is trained with the perturbed features collected from the edge devices.
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4.2 Differentially Private Feature Representations216

In this section, we detail how to protect the sensitive information about the training inputs from217

being revealed from the feature representations. Without assuming a trusted data collector, we apply218

local differential privacy to the intermediate feature representations from edge devices. The LDP219

mechanism we apply in MistNet is based on the randomized response method [10], which is widely220

deployed in practical systems [11, 12].221

We denote the local feature extractor at the edge as f : Rd → Rr, which transforms local data222

x ∈ X into feature representations A, with r = dim(A). With unary encoding [11], we encode each223

real-value feature Ai of the feature representations A into a bit Bi, whose value is either 1 or 0. The224

binarization function we use is as the following:225

Bi =

{
1 if Ai > 0;
0 if Ai ≤ 0.

(1)

We concatenate these bits as a binary string B = (B1, B2, B3, ..., Br). Then we apply randomized226

response defined in Eq. (2) to perturb each bit Bi in B independently and submit the noisy version B̃227

to the cloud. Each bit is preserved as its true value with probability p or responded with the other228

value with probability q. We have p = 1− q in this setting. The privacy budget ε is calculated with229

Theorem 4.1.230

P (B̃i = 1) =

{
p if Bi = 1;
q if Bi = 0.

(2)

Theorem 4.1. Local feature extractor with randomized response defined in Eq. (2) satisfies ε-local231

differential privacy given that p ≥ q, where ε = r · ln p
q .232

See appendix A for the proof.233

5 Evaluation234

We evaluate the performance of MistNet on PyTorch and seek to answer the following questions: (1)235

How does MistNet perform with different privacy budgets for popular neural network models (§5.2)?236

(2) How does the partition layer selection affect the performance (§5.3)? (3) Whether MistNet is237

effective to defend model inversion and membership inference attack (§5.4)?238

5.1 Experimental Setup239

Datasets and Models. We evaluate MistNet for image classification on CIFAR-10 [41] and SVHN240

[42] dataset. CIFAR-10 has 10 classes and contains 60,000 32×32 color pixel images with 3 RGB241

channels (50,000 training images and 10,000 testing images). SVHN is a MNIST-like dataset of242

32×32 images, including 73,257 training digits and 26,032 testing digits. To pre-train neural network243

models, we use ImageNet32×32 images extracted from CINIC dataset [43], which downsamples part244

of the original ImageNet images from 224×224 to 32×32 resolution with the Box algorithm from the245

Pillow Python library2. These Imagenet32×32 images have the same 10 classes as CIFAR-10 (the246

number of images for train/validation/test is 70,000/70,000/70,000 respectively) but do not include247

any image in neither CIFAR-10 dataset nor SVHN dataset. The models we choose are ResNet-18248

[44] and VGG-16 [45].249

Compared Schemes. We compare MistNet with the conventional training paradigm, centralized250

learning (CL), which collects data from users in a central site to train the model.251

Evaluation Metrics. The performance of MistNet is evaluated from accuracy and privacy. Specifi-252

cally, we detail how membership inference and model inversion attacks are used to assess privacy253

risks. For membership inference attack, we adopt two metrics, precision (the fraction of records254

inferred as members actually are members of the training dataset) and recall (the fraction of records255

which are correctly inferred as training samples over all training samples) as privacy metrics, which256

2https://python-pillow.org

6



0 50 100 150 200
Epochs

60

70

80

90

100

Ac
cu

ra
cy

 (%
)

MistNet, =0.5(p=0.62)
MistNet, =1.0(p=0.73)
MistNet, =2.0(p=0.88)
MistNet,w/o LDP
Centralized Learning

(a) ResNet-18, CIFAR-10

0 50 100 150 200
Epochs

60

70

80

90

100

Ac
cu

ra
cy

 (%
)

MistNet, =0.5(p=0.62)
MistNet, =1.0(p=0.73)
MistNet, =2.0(p=0.88)
MistNet,w/o LDP
Centralized Learning

(b) ResNet-18, SVHN

0 50 100 150 200
Epochs

60

70

80

90

100

Ac
cu

ra
cy

 (%
)

MistNet, =0.5(p=0.62)
MistNet, =1.0(p=0.73)
MistNet, =2.0(p=0.88)
MistNet,w/o LDP
Centralized Learning

(c) VGG-16, CIFAR-10

0 50 100 150 200
Epochs

60

70

80

90

100

Ac
cu

ra
cy

 (%
)

MistNet, =0.5(p=0.62)
MistNet, =1.0(p=0.73)
MistNet, =2.0(p=0.88)
MistNet,w/o LDP
Centralized Learning

(d) VGG-16, SVHN

Figure 3: Comparison among MistNet with varying privacy budgets, MistNet without local differential
privacy and Centralized Learning for ResNet-18 and VGG-16 on CIFAR-10 and SVHN. ResNet-18
is partitioned at Block 1 and VGG-16 is partitioned at Conv 2.
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Figure 4: Comparison among MistNet with different partition layers for ResNet-18 and VGG-16 on
CIFAR-10 and SVHN.

are consistent with previous work [16, 46, 47]. To quantify the quality of images recovered by model257

inversion attack, we use two commonly used image quality metrics, peak signal-to-noise ratio (PSNR)258

as well as the structural similarity index measure (SSIM). PSNR quantifies the pixel-level reconstruc-259

tion quality of the image, which can be expressed as the ratio of the maximum possible value of a260

signal to the cumulative squared error between the reconstructed image and the original image. SSIM261

measures the reconstructed image quality by taking into account the structural information perceived262

by the human vision system including structure, luminance, and contrast.263

5.2 Impact of Privacy Budget ε264

In this section, we vary privacy budgets ε per feature to investigate its impact on model accuracy. As265

indicated in Sec. 2.2, the value of ε is proportional to the probability p of reporting the true value266

of each feature in the intermediate features. The smallest value of ε can be 0, which is equivalent267

to absolute privacy. The lowest value of ε we show in our experiments is 0.5, whose corresponding268

probability for each feature to report the true value is 62%. We evaluate MistNet with a range of269

privacy budgets ε ∈ {0.5, 1, 2} and use MistNet without LDP (i.e., do not randomize the intermediate270

features and is equivalent to ε = +∞) and centralized learning as two baselines. We partition271

ResNet-18 at Block 1 and VGG-16 at Conv 2 (the partition strategy is explained in Sec. 5.3), which272

both are early layers. In Figure 3, we observe that strong privacy is provided at the sacrifice of the273

utility. With a smaller value of ε (stricter privacy guarantee), the accuracy decreases and MistNet274

converges slower. Particularly, the performance of MistNet without LDP for both datasets achieves275

similar performance as centralized learning, which demonstrates the effectiveness of the pre-trained276

feature extractor.277

5.3 Impact of Partition Layers278

We explore the robustness of MistNet to different partition layers. More specifically, we partition279

the ResNet-18 model into 4 fused layer blocks (Block 1-4), with each containing 4 convolution and280

batch normalization layers. The VGG-16 model has 13 convolutional layers and is partitioned after281

convolutional layer 2, 4, 7 10, and 13. As shown in Figure 4, MistNet is robust to most partition282

layers and achieves acceptable utility. In most cases, partitioning at an earlier layer (i.e., Block 1 for283

ResNet-18 and Conv 2 for VGG-16) achieves better performance. The possible reason is twofold.284

First, the transferability of an earlier layer is better and partitioning at an earlier layer leaves more285

space to fine-tune the rest model to adapt to the perturbed features. Second, features from an earlier286

layer generally have more dimensions which contain redundant information. We also notice that287
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Table 1: Comparison of the quality of reconstructed images from features generated by different
schemes with model inversion attack (ResNet-18 and CIFAR-10).

SSIM PSNR

ε = 0.5 ε = 1 ε = 2 w/o LDP CL ε = 0.5 ε = 1 ε = 2 w/o LDP CL

Block 1 0.354 0.576 0.728 0.775 0.918 12.941 14.126 15.531 16.314 21.028

Block 2 0.211 0.306 0.453 0.515 0.690 12.466 12.918 13.621 14.099 15.724

Block 3 0.165 0.170 0.205 0.206 0.303 12.311 12.422 12.538 12.616 13.010

Block 4 0.155 0.154 0.149 0.169 0.164 12.274 12.296 12.299 12.314 12.366

Table 2: Membership inference attacks on different schemes (ResNet-18 and CIFAR-10).

Precision Recall

ε = 0.5 ε = 1 ε = 2 w/o LDP CL ε = 0.5 ε = 1 ε = 2 w/o LDP CL

Block 1 0.5194 0.5488 0.5778 0.5973 0.5952 0.5267 0.6021 0.6962 0.7201 0.7551
Block 2 0.4988 0.5275 0.5673 0.5847 — 0.4860 0.5539 0.6595 0.7104 —
Block 3 0.5033 0.5155 0.5427 0.5788 — 0.4924 0.5371 0.5959 0.7101 —
Block 4 0.4997 0.5020 0.4991 0.5070 — 0.4975 0.5038 0.5030 0.5136 —

model partitioned at the last convolutional layer achieves reasonable performance for CIFAR-10 while288

performing poorly for SVHN. As described in Sec. 5.1, the chosen ImageNet images for pre-training289

models have the same classes with CIFAR-10. CIFAR-10 dataset is more similar than SVHN dataset.290

Features from later layers still transfer well for CIFAR-10.291

5.4 Effect of Attack Mitigation292

Feature Inversion Attack. We consider feature inversion attacks under the white-box setting293

where the attacker has access to the feature extractor at the edge, since white-box attacks are more294

challenging to defend than block-box attacks. In Table 1, we show the quality of images recovered295

from features generated by different schemes. Images are recovered from raw features for centralized296

learning. As indicated in [7], a recovered image with SSIM value below 0.3 is considered to be297

unrecognizable. We observe that, with ResNet-18 model partitioned at different layers, the value298

of SSIM for MistNet with various privacy budgets is consistently significantly lower than that for299

centralized learning, which demonstrates the effectiveness of applying LDP on the partition layer in300

protecting images from being recovered from the intermediate features. Partitioning ResNet-18 with301

ε = 0.5 at Block 2 achieves a good trade-off between accuracy and privacy.302

Membership Inference Attack. We perform membership inference attacks on the model trained303

with different schemes. As membership inference is a binary classification, the precision and recall304

value is always between 0.5 and 1. The value of 0.5 is equivalent to random guessing, which indicates305

that there is no privacy leakage. Table 2 shows that the precision and recall decreases with the value306

of ε and is reduced to around 0.5 with ε = 0.5, while MistNet without LDP and centralized learning307

still remain a high precision and recall. An interesting observation is that ResNet-18 partitioned at308

Block 4 mitigates membership inference attacks even with a large ε. This is because the trainable309

cloud classifier only includes a linear layer, which is not sufficient to fit the training records.310

6 Conclusion311

In this paper, we presented MistNet as a privacy-preserving collaborative training system for resource-312

constrained edge devices. Our method uses a pre-trained feature extractor to eliminate the need313

to synchronize local weights across edge devices and enhances privacy by applying LDP to the314

intermediate features. We extensively evaluate MistNet with various settings on a variety of models,315

datasets, and attacks. The results show that MistNet partitioned at most layers with privacy budget316

ε = 0.5 achieves acceptable utility while effectively reducing privacy leakage.317
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Broader Impact318

Distributed machine learning is a widely used computing paradigm to learn from gigantic amounts of319

data generated by edge devices. Our work can be used to enhance data privacy in distributed machine320

learning systems, which follows the recent trend to comply with the EU General Data Protection321

Regulation (GDPR) law. It is possibly adopted by application developers and service providers as a322

tool to collect personal data from users. The possible negative aspect is it will be harder for the service323

provider to regulate the submitted training data from users, and detecting data with a significant324

detrimental impact on the prediction performance will be challenging. It is not likely to directly raise325

any ethical issues.326
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A Proof of Theorem 4.1454

Proof. Given noisy binary vector B̃, for any x, x′ ∈ X we have:455

P [B̃|x]
P [B̃|x′]

=
P [B̃|B, x]P [B|x]
P [B̃|B′, x′]P [B′|x′]

=
P [B̃|B]

P [B̃|B′]

=

∏r
i=1 P [B̃i|Bi]∏rl
i=1 P [B̃i|B′

i]
=

r∏
i=1

P [B̃i|Bi]
P [B̃i|Bi]

≤
r∏
i

max

{
P [B̃i = 1|Bi = 1]

P [B̃i = 1|B′
i = 0]

,
P [B̃i = 0|Bi = 0]

P [B̃i = 0|B′
i = 1]

}

=

r∏
i=1

{
p

q

}
=

{
p

q

}r
where the second equality follows from the fact that the mapping from input x to binary vector B is456

deterministic, while the fifth inequality is based on the assumption that p ≥ q, under which we need457

not consider another two situations, where458

P [B̃i = 1|Bi = 0]

P [B̃i = 1|B′
i = 1]

=
q

p
or

P [B̃i = 0|Bi = 1]

P [B̃i = 0|B′
i = 0]

=
1− p
1− q

.459
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