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Abstract

Federated Learning (FL) enables distributed
clients to collectively train a global model with-
out revealing their private data, and for efficiency
clients synchronize their gradients periodically.
However, this can lead to the inaccuracy in model
convergence due to inconsistent data distribu-
tions among clients. In this work, we find that
there is a strong correlation between FL accu-
racy loss and the synchronization frequency, and
seek to fine tune the synchronization frequency
at training runtime to make FL efficient and also
accurate. Specifically, we show that only the gra-
dients can be utilized in frequency tuning deci-
sions under the FL privacy requirement, and in-
troduce a novel metric called gradient consis-
tency, which can effectively reflect the training
status despite the instability of realistic FL sce-
narios. We further propose a heuristic algorithm,
Gradient-Instructed Frequency Tuning (GIFT),
that multiplicatively increases the synchroniza-
tion frequency once a FL process is diagnosed
to stagnate. We have implemented GIFT in Py-
Torch, and large-scale evaluations show that it
can improve FL accuracy by up to 10.7% with
the same communication cost.

1. Introduction

Federated learning (FL) (Konecny et al., 2016; McMahan
et al.,, 2016) emerges as a popular paradigm that allows
edge clients to collaboratively train models without sharing
their local private data. In typical FL scenarios, the hard-
ware resources on edge devices—especially the network
bandwidth—are usually constrained. To reduce the overall
training cost, the de facto FL. mechanism is FedAvg, under
which each client trains with its local dataset for multiple
iterations before performing a synchronization.
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Nonetheless, a well-known challenge for FL is that the
local datasets on clients are not identically and indepen-
dently distributed (i.e., being non-IID). Compared to cen-
tralized training with the datasets combined, FedAvg with
non-IID datasets suffers salient accuracy loss. When train-
ing a CNN model with 100 clients, we observe an accuracy
loss of up to 77% (§2.2). With both theoretical and ex-
perimental explorations, we find that model training using
FedAvg will stagnate prematurely with suboptimal param-
eters, a phenomena we call premature stagnation. More-
over, the accuracy loss under FedAvg has a strong corre-
lation with the synchronization frequency: A higher accu-
racy would require a higher frequency. Therefore, there is
a clear trade-off in setting the FedAvg synchronization fre-
quency: alower frequency reduces communication cost but
compromises the accuracy performance. To make FL both
accurate and efficient, we need to strategically increase the
FedAvg synchronization frequency during the FL process.

The key question is, when and how to tune the synchro-
nization frequency? While some related works (Wang &
Joshi, 2019; Wang et al., 2019) also focus on frequency
tuning, we find that they neglect the distinct characteristics
of FL and thus fall short (§4). Specifically, we summa-
rize three design requirements for frequency tuning in FL.
First, under the privacy constraint, frequency tuning deci-
sions shall be made purely based on gradients—the only in-
formation allowed to be collected from clients. That is, any
other information, e.g., local data distributions, local loss
values or accuracies, cannot be used. Second, since many
clients may dynamically join or leave the FL process, our
solution should work smoothly with excellent stability and
scalability. Moreover, our frequency tuning method should
be generally applicable regardless of the specific model or
dataset distribution pattern. To quickly recap, our objective
in this work is to design a privacy-preserving, practical,
and generic frequency tuning method for FedAvg so that it
performs well in both accuracy and efficiency.

Our first challenge is to find a gradient-based signal to indi-
cate the instantaneous training status, which can be used to
inform the synchronization frequency tuning. We find that
the consistency of gradients from different clients is a good
candidate. Our theoretical analysis shows that the gradient
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from each client is composed of a global component and a
local-error one: the former is identical for all the clients,
while the latter differs as it is determined by the local sam-
ple distribution. When training under a given synchroniza-
tion frequency, the global component slowly shrinks and
the local one gradually dominates; finally the FL process
enters a stagnation stage where gradients from different
clients well counteract with each other. Therefore, by mea-
suring the gradient consistency level, we can effectively
gauge the model training status with privacy preserved.

Furthermore, considering that massive clients may dynam-
ically participate in training with noisy samples, we must
ensure that our metric is practical. That is, our metric
should be robust to the systematic and statistical distur-
bance and be computation- and memory-efficient despite
the vast client number. Using a series of smoothing and
pooling techniques, we propose a novel metric called Gra-
dient Consistency, which effectively reflects how fast the
model parameters can move towards the true optimum.

Based on gradient consistency, we devise a simple yet
effective frequency tuning algorithm called Gradient-
Instructed Frequency Tuning (GIFT). While some related
works (Wang & Joshi, 2019; Wang et al., 2019) choose to
calculate the ideal frequency, they require rigorous assump-
tions (e.g. convexity and smoothness of the loss function or
certain data distribution pattern) to work, which limits the
applicability of the solution in cases with complex models
or arbitrarily non-IID data. To be widely applicable, our
GIFT algorithm is a simple and generic heuristic: once the
gradient consistency stabilizes at a small value close to zero
(indicating the occurrence of premature stagnation), we in-
crease the synchronization frequency by a fixed scaler. We
further extend the solution to allow the frequency to be
slightly decreased when frequent synchronization is less
necessary (e.g. at the FL commencement).

We have implemented GIFT with PyTorch and evaluated
its performance in a 100-node Amazon EC2 cluster em-
ulating real-world FL setups. Our evaluation shows that
GIFT can improve the model accuracy and resource effi-
ciency substantially: for example, it can improve the con-
vergence accuracy of VGG-16 by 10.7% with a time reduc-
tion of 58.1% (after a fixed number of synchronizations).
Meanwhile, compared to existing frequency-tuning meth-
ods, GIFT saves the training time by 28.9% given the same
accuracy target in addition to the privacy-preserving and
practicality benefits.

Our contributions in this work are three-fold. First, we
identify the correlation between synchronization frequency
and model accuracy for FedAvg with both mathemati-
cal proofs and testbed measurements. Second, with a
novel metric of Gradient Consistency we propose GIFT, a
privacy-preserving, practical, and generic frequency-tuning

heuristic that makes FL accurate and efficient. Third, we
have implemented GIFT in PyTorch and evaluated it in
large-scale testbed with realistic setups.

2. Research Background

2.1. A Primer on Federated Learning

Machine learning (ML) models, such as deep neural net-
works, are widely used for a range of applications to attain
state-of-the-art performance (Krizhevsky et al., 2012; Col-
lobert et al., 2011; Sutskever et al., 2014). However, in
many real-world scenarios, training samples are privacy-
sensitive and dispersed on distributed clients like IoT de-
vices, cellphones, banks and hospitals (McMahan et al.,
2016; Zhang et al., 2020). To train models without central-
izing such private data, an increasingly popular technique
is federated learning (FL) (Konec¢ny et al., 2016; McMahan
et al., 2016), under which clients locally refine the model
parameters with their private data and only communicate
the model updates to the FL server. Compared with cen-
tralized model training, FL is confronted with two distinct
performance challenges:

1) Privacy Constraint. To protect data privacy, the infor-
mation exchanged between clients and the FL server can
only be model updates (Bonawitz et al., 2019), and mean-
while samples cannot be shuffled across clients. Since the
local samples of an IoT device or edge user are generated
under particular location environment or user preference,
the samples on different clients are usually not identically
and independently distributed (i.e., being non-IID).

2) Inferior Resources. Compared with dedicated com-
puting servers, FL clients like IoT devices or cellphones
suffer from remarkable limitation in computation and com-
munication resources. In particular, given the limited band-
width between clients and the FL server, model update
synchronization is often a severe performance bottleneck.
Moreover, in realistic scenarios the clients may dynami-
cally join or leave the FL process (Bonawitz et al., 2019).

FedAvg To reduce the communication cost, the FedAvg
algorithm (Konec¢ny et al., 2016; McMabhan et al., 2016) has
become the de facto FL mechanism, which dictates each
client to perform multiple local iterations before synchro-
nizing their updates. Yet, due to the non-IID data, FedAvg
on the other hand would compromise the model conver-
gence accuracy. Next we show the severity and omnipres-
ence of this problem with testbed measurements emulating
realistic data distribution patterns.

2.2. Measurements on FedAvg Accuracy Loss

There have been a series of research works (Zhao et al.,
2018; Wang et al., 2019) revealing FedAvg accuracy loss
under non-IID data setup, usually by partitioning the en-
tire dataset according to sample label class in a non-
overlapping manner. Yet, this setup is not realistic: samples
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Figure 1: Test accuracy of LeNet-5 when trained under FedAvg
with non-IID data. Non-IID label distribution causes severe accu-
racy loss, and insufficient feature diversity also matters.

on each client are in fact generated independently, and their
label class compositions often overlap (although the con-
crete composition ratio may be different). Moreover, exist-
ing measurements treat “non-IID data” simply as “non-IID
labels” and ignore the impact of sample features. Our ex-
perimental setup in this part will make up in both aspects.

Non-IID Evaluation in a Realistic Manner Instead of
by partitioning the initial dataset, we independently draw
(with replacement) each client’s samples following the
Dirichlet distribution (Yurochkin et al., 2019; Hsu et al.,
2019), which controls the class composition via a concen-
tration parameter . With o — o0, the client holds sam-
ples evenly from each class; with o — 0, the client holds
samples only from one class. This setup can faithfully
emulate the scenario that a user gradually accumulates lo-
cal samples with certain preference. With this methodol-
ogy, we train the LeNet-5 model (LeCun et al., 1998) on
CIFAR-10 dataset (Krizhevsky & Hinton, 2009) with 100
clients (with a synchronization frequency of once-per-100-
iterations; please refer to §6.1 for the detailed setup). As
shown in Fig. 1a, there is a clear relationship between the
final accuracy and data non-IID level. In particular, when
o = 0.01 (under which 91% clients host no more than two
classes each), the accuracy is only 0.15, suffering a loss of
77% compared with that of centralized training (0.65).

Omnipresence of Non-IID Data due to Feature Insuf-
ficiency In the literature, non-IID data usually refers to
non-IID labels, yet we find that the impact of non-IID prob-
lem is much more common than that. When many small
datasets compose a large virtual dataset as in FL, there also
exists the non-IID problem even if each partition has identi-
cal label composition. In fact, sample features are also part
of the loss function; due to the shortage of feature diver-
sity, a small partition may fail to represent the full dataset
even when its class composition resembles the global one.
To verify that, we evenly partition the CIFAR-10 dataset to
100 clients ensuring that they share the same class distri-
bution. Compared to the case where each client holds the

whole dataset, as shown in Fig. 1b, there is still an accu-
racy loss of 16%. Therefore, the non-IID problem is in fact
omnipresent for FL irrespective of the label distribution.

Observing the severity and omnipresence of the negative
impact of non-IID data on FedAvg, we ask: why there is
such accuracy loss and how to mitigate it? In the following
section, we explore the answers through both theoretical
analysis and testbed measurements.

3. Motivative Exploration

In this section, we first build a mathematical model on the
factors causing the accuracy loss under FedAvg, and then
confirm our theoretical findings with a toy example as well
as testbed measurements.

Symbol Description In our FL setup, there are N clients
each with alocal dataset D; (¢ = 1,2, ..., N). The local loss
function on client-i is L' (w) = ﬁ > sep, l(s,w) and the
global loss function (the true optimization target assuming
full IID dataset) is L* (w) = ﬁ Pseup, 1(s,w). Letwj
be the local parameter on client-; after refined for k itera-
tions from wy, and wj, be the ideal parameter when refined
with IID dataset also for k iterations from wgy. Under the
convexity and smoothness assumptions (described in ap-
pendix) we can derive the following lemma:

Lemma 1 (Two Components in Local Gradients). Let
ul = wi — wy be the accumulated gradients' on client-
i after T iterations, then u' = uX + eb, where ur is
the ideal gradient attained with IID data representing the
global component, and €' is the local-error component:
T—1
¢y ==Y [VL (Wi)=VL* (wi) + (V2L (wf), i —wi)]-
k=0
The proof of Lemma 1 is in appendix. This lemma im-
plies that the gradient error of each FL client is related
to the gap between its local loss landscape (i.e., VL (w)
and V2L!(w)) and the global one. Moreover, regarding
the aggregated gradient after a synchronization round, with
Lemma 1 we further have the following Theorem 1:

Theorem 1 (Error of Aggregated Gradient After a Round).
Let i; = + sz\i1 ul and d(t) = U, — u* be the error
of aggregated gradient after each client locally refines the
parameter for T iterations from wy, then

2 N
[d(r) = (7—1)% Iy (V2L (wo), VL (wo)-VL* (wo)) || -
[ i=1

! While the synchronized content in FL can be parameters in-
stead of gradients, they are essentially equivalent as explained
in (McMahan et al., 2016). Meanwhile, by gradient, we refer
to the accumulated update in a round with learning rate 7 inte-
grated in. In this sense, our analysis in this work is independent to
the specific gradient generating scheme or learning rate scheme,
and can be extended to other SGD variants like Adam (Diederik
P. Kingma, 2017) and AdaGrad (Duchi et al., 2011).
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Figure 2: During the local iterations, each FL client may already
reach its local optimum (—2 and 10), yielding an aggregated pa-
rameter of 4 instead of the true optimum 0. This procedure repeats
in each round, indicating the occurrence of premature stagnation.

Theorem 1 shows that the error of aggregated gradient
is determined by two factors: first by the inconsistency
of clients’ loss curvatures (V2L (wp), which crucially af-
fects || Zf;l(VzLi(wo), V L (wo)—VL*(wo)) || given that
SN [V L (wo)—VL*(wo)] = 0), and second by the num-
ber of local iterations within a round (7). Regarding the
model convergence status, we derive Theorem 2:

Theorem 2 (Premature Stagnation). Suppose the FL pro-
cess ultimately stagnates at parameter @*, and w* =
argmin L*(w) is the ideal parameter under IID dataset.
Then 3C > 0 such that ||o* — w*||> C(7 — 1).

This theorem shows that the FL process would stagnate
with suboptimal parameters, a phenomena we call prema-
ture stagnation. To better elaborate premature stagnation,
we first resort to a toy example with quadratic loss func-
tions, and then experimentally show that frequency tuning
can help to get out of premature stagnation.

A Toy Example for Premature Stagnation  Our exam-
ple is shown in Fig. 2 where there are two clients with dif-
ferent loss functions (with unequal curvatures): L!(w) =
(w+2)? and L?(w) = (w —10)?. The ideal loss function
with IID data is L*(w) = 3[L'(w) + L*(w)] = 2w? + 12,
with the optimal parameter w* be 0. Yet, during the local
iterations each client is essentially refining its parameter to-
wards the local optimum (—2 and 10, respectively), and a
late synchronization may yield an aggregated parameter of
4. Such a process would repeat in the following rounds,
meaning that FL stagnates at a suboptimal state.

Effect of Frequency Tuning As indicated by Theo-
rem 2, an intuitive idea to combat premature stagnation
is by increasing the synchronization frequency (i.e., re-
ducing 7). We experimentally verify this with both con-
vex (SVM) and non-convex (LeNet-5) models. The SVM
model is trained upon 50,000 randomly-generated points
of 2 classes, with two clients each holding only 1 class;
the LeNet-5 model is trained upon CIFAR-10, also with
2 clients each holding only 5 classes. The initial 7 is
500, and once premature stagnation occurs we change it
to 1. In Fig. 3, for each model we depict the variation of
a randomly-selected parameter as well as the instantaneous
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Figure 3: For FL with two clients over non-IID data, by increas-
ing the synchronization frequency (at epoch 20/1000), the sam-
pled global parameter can get closer to the true optimum, and the
models can attain a higher accuracy. The dashed lines show the
measured variables under the initial frequency for reference.

model accuracy. After increasing the synchronization fre-
quency, with higher-quality gradients, the parameter can
get out of stagnation and achieve better model accuracy.

To summarize, in this section we find that a higher FL ac-
curacy requires a higher synchronization frequency. Yet,
a higher frequency would on the other hand sacrifice the
communication efficiency. Therefore, to make FedAvg ac-
curate and also efficient, we need to strategically increase
the synchronization frequency during the training process.
Next we survey the related works on that topic.

4. Prior Arts and Their Limitations

On addressing the statistical heterogeneity (i.e., non-IID
data) in FL, existing solutions can be broadly categorized
into three types: data complementing, optimization rectify-
ing and frequency tuning.

Data Complementing  Data complementing means to
reduce data non-IID level by copying common samples to
each client (Zhao et al., 2018), or by augmenting clients’
local datasets with auxiliary samples generated from GAN
models (Jeong et al., 2018). Yet these methods may incur
large computation, communication or storage overheads.

Optimization Rectifying  To mitigate the training di-
vergence among clients with non-IID data, Li et al. (2018)
and Jeong et al. (2018) proposed to add an extra regulariz-
ing term to the loss function, and another work (Li et al.,
2019) proposed to add a specific momentum to the opti-
mizer. Meanwhile, Huang et al. (2018) introduced a two-
phase training mechanism: clients receive the average loss
as the feedback, and only those with a loss value large
enough can enter a second phase to refine the global model.
Yet, these methods require substantial modifications to the
initial FL process and, as suggested by Theorem 1, still suf-
fer accuracy loss due to inconsistent loss curvatures.

Frequency Tuning  As elaborated in §3, frequency tun-
ing is a promising approach to make FedAvg accurate and
also efficient, which is the research focus of this paper. In
the literature, there have been a series of works (Wang &
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Joshi, 2019; Wang et al., 2019; Haddadpour et al., 2019)
on tuning the accuracy-efficiency trade-off by frequency
control. Although with various assumptions (e.g. convex
or non-convex, IID labels or non-IID labels) or optimizing
targets (e.g. communication rounds or time cost), they do
share a common methodology: First deriving a formula de-
picting the exact relationship between the synchronization
frequency and the metric to optimize, and then work out
the ideal frequency by solving that optimization problem.

However, we argue that such formula-based frequency-
tuning methods are deficient in three aspects:

1) Privacy. As elaborated in §2, the privacy constraint
of FL stipulates that only model updates can be transmit-
ted, and other client-side information such as local loss
or accuracy values can not be collected by the FL server.
Nonetheless, the formulas in those works require collect-
ing the local loss value of each client to calculate the ideal
frequency. The AFL algorithm (Wang et al., 2019) even
demands the knowledge of local data distributions, which
severely violates FL'’s privacy constraint.

2) Practicality. A well-known system challenge for FL
is that clients may dynamically join or leave the training
process at random time (Bonawitz et al., 2019). Mean-
while, in realistic FL applications like GBoard (Yang
et al., 2018), hundreds or thousands of clients may simul-
taneously participate in FL, incurring a scalability chal-
lenge. However, existing formula-based methods ignore
such challenges and may suffer instable performance and
large computing or storage overhead.

3) Generality. Although theoretically sound, the solution
validity of those works largely relies on a series of rigorous
assumptions and ground-truth knowledge. For example,
AdaComm (Wang & Joshi, 2019) and AFL (Wang et al.,
2019) derive their solutions with convexity assumptions
not holding for deep neural networks; meanwhile, Ada-
Comm and LUPA-SGD (Haddadpour et al., 2019) assume
IID label distributions and AFL assumes a bounded data
distribution divergence; moreover, AFL requires a series of
ground-truth knowledge like the smoothness constant, the
Lipschitz constant as well as the gradient variance bound,
which are hard to obtain in reality. Dependence on such
assumptions and ground-truth knowledge often impede the
applicability of these methods in real-world FL scenarios;
we argue that theoretical analysis is more appropriate for
qualitative elaboration instead of for direct calculation.

Objective  Motivated by the above discussions, our ob-
jective in this paper is to design a privacy-preserving, prac-
tical and generic frequency tuning algorithms for FedAvg
that can make FL accurate and also resource-efficient. In
the next section, we will elaborate our solution with the
three design requirements simultaneously satisfied.

5. Gradient-Instructed Frequency Tuning

In this second, we propose Gradient-Instructed Frequency
Tuning (GIFT), a privacy-preserving, practical and generic
frequency tuning algorithm for efficient and accurate FL.
We first show that gradient statistics is an appropriate an-
gle to learn FL training status, and then propose a practical
metric called Gradient Consistency, based on which we fi-
nally devise a generic heuristic for frequency tuning.

5.1. Learn Training Status From Gradient Statistics

Our first challenge is to find an effective signal that can re-
veal instantaneous training status under the FL privacy con-
straint. On the one hand, client-side information like local
loss or accuracy values or local data distributions cannot
be remotely collected, and on the other hand, in realistic
scenarios with evolving trends, it is hard to maintain an up-
to-date validating dataset on the FL server. Therefore, the
only information we can utilize are the gradients.

Then, can we really learn the training status from gradi-
ents? Yes we can. While an individual gradient may ex-
hibit strong randomness, we find that there actually exists a
clear statistical pattern for gradients across different clients.
In fact, we have observed an interesting phenomena called
gradient bifurcation, meaning that the gradients from dif-
ferent FL clients are consistent in the beginning but con-
flicting later as training proceeds. We next elaborate this
phenomena with theoretical explanations, toy examples as
well as testbed measurements.

Gradient Bifurcation From Lemma 1, we learn that the
local gradient u® can be decoupled into a global component
u* and a local-error component e’: The former is identical
for all the clients, while the latter is related to the hetero-
geneity of clients’ local loss surfaces. At FL commence-
ment where the parameter is far away from the optimum,
the loss function landscapes (e.g., VZL(w)) are similar
across different clients (due to L(w) smoothness or equiv-
alently V L(w) Lipchitz-ness), meaning that u* dominates
u? and this yields a strong gradient consistency. In contrast,
when the model parameter w moves close to the optimal re-
gion, uX would shrink (due to convexity) while the hetero-
geneity of loss landscape (e.g., the curvature V2L (w)) am-
plifies, meaning that it is the error component e’ that dom-
inates u’. Consequently, gradients from different clients
would gradually bifurcate in a FL process.

The gradient bifurcation phenomena can be illustrated also
with Fig. 2. When the initial parameter is far away from
the optima region (—2 to 10), say —100, the gradients from
both clients would be consistently positive; yet when the
parameter moves across —2, the gradient of client-1 would
become negative, conflicting with that of client-2.

We further verify gradient bifurcation with testbed mea-
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Figure 4: When training LeNet-5 with 2 clients under FedAvg, the
gradients of two randomly-chosen parameters gradually bifurcate.
surements. We train the LeNet-5 model following the setup
in Fig. 3b (two clients with non-IID data), and measure the
instantaneous gradient values of two randomly-selected pa-
rameters on both clients. As depicted in Fig. 4, the gra-
dients for both parameters would bifurcate after around
round-100, the extent of which exhibits a clear correlation
with the model convergence status (expressed in accuracy).

To summarize, gradient bifurcation can effectively signal
the FL training status without privacy leakage. Yet, realis-
tic FL. may be much more complex than the testbed setup
of Fig. 4, exhibiting distinct stability and scalability chal-
lenges. Next, we propose a practical metric to quantify the
level of gradient bifurcation for real-world FL scenarios.

5.2. Gradient Consistency: A Practical Metric

To quantify the extent of gradient bifurcation, we propose
an intuitive metric: C' = % This metric depicts the
effective portion of the aggrbegazed gradient that does help
the model to move towards the true optimum. Obviously,
C is 1 when all the gradients are of the same direction,
and is 0 if they well counteract with each other, i.e., when
premature stagnation occurs. Nonetheless, this metric is
not practical for real-wold FL. To be clear, we summarize
the practicality challenges of FL as follows:

1) Stability Challenge. Since samples processed in each
SGD iteration are chosen randomly, client gradients often
fluctuate drastically, as can be seen in Fig. 4. Such statis-
tical instability may inundate the desired gradient patterns.
Besides, in real-world FL setup the active clients are also
unstable: FL clients may join or leave the federation ran-
domly during training, and meanwhile, the FL server usu-
ally collects gradients from only a portion of the clients
whoever reporting the earliest, so as to avoid waiting for
stragglers (Bonawitz et al., 2019). A practical metric must
be robust to such statistical and system instability.

2) Scalability Challenge. In commercial FL applications
the number of clients may be quite large. Our metric should
scale well in computing or storage overhead.

To tackle those challenges, we incorporate smoothing and
pooling techniques in our metric design.

Smoothing  To address statistical instability, we smooth

the raw gradients with their historical values. To maintain
low storage overhead, instead of window-based smooth-
ing method, we calculate their exponential moving average
(EMA). That is, let ui’r be the local gradient of client-7 in
™ round, we maintain @’ , = Bya(ul,) = f* @, | +
(1 —B) *ul, instead of u’ ,.

Pooling  Given the system instability and the large client
quantity, it is nonetheless memory-inefficient and even in-
feasible to maintain ﬂim for each client. Therefore, we fur-
ther propose bilateral gradient pooling. That is, the FL
server only maintains two EMASs: one to absorb the posi-
tive gradient values from any client, and the other the neg-
ative ones. This way, we can get a stable gradient statistics
pattern despite the unstable client participation.

Combining the above smoothing and pooling techniques,
we define our metric, Gradient Consistency, as:

e L\ I {P B (3, Relu(ut,,))
(| P 14 1| N |l N;=Ema ()2, -Relu(-u} ).

Gradient Consistency is therefore a practical metric that
can represent how fast (in terms of the useful share out of
the aggregated gradient) the model is being refined to the
true optimum. In particular, it indicates the occurrence of
premature stagnation by stabilizing to a small value close to
zero®. Next we elaborate how to tune the synchronization
frequency with Gradient Consistency.

5.3. A Generic Frequency Tuning Algorithm

While it might be possible to set 7 by building a formula
on the ideal Gradient Consistency under a given setup, this
would inevitably requires a series of rigorous assumptions
and ground-truth knowledge as in the formula-based re-
lated works (§4), which however limits its applicability.
Therefore, to make our solution generally applicable for
various models or dataset distributions, we propose a sim-
ple heuristic: once Gradient Consistency suggests that pre-
mature stagnation occurs, we divide 7 by a scaler (e.g., 2).
With a higher frequency, it can be expected that the FL pro-
cess can reach a higher accuracy before it saturates again.

Moreover, we also incorporate an extension that allows the
synchronization frequency to be modestly decreased at the
beginning of the FL process. As implied in Theorem 1,
the gradient error is correlated to both 7 and the hetero-
geneity of loss surface curvatures { V2 L(w)}. Since at the
FL commencement {V?L!(w)} are usually similar among
clients, there is a relatively large tolerance for 7. For ex-
ample, if in Fig. 2 the gradients from two clients are both
positive, it is not that necessary to do frequent synchro-
nization. To explore such optimization space, we tenta-

2 When stabilizing, it may not reach zero exactly because gra-
dient fluctuation can not be fundamentally eliminated with EMA.
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tively increase T every a few rounds, in a linear manner un-
til premature stagnation occurs. Yet, since relaxing 7 may
hurt the computation efficiency (due to lower-quality gra-
dients) and the initial 7 is usually set large in practice, we
enable frequency relaxing optionally only when optimizing
the number of communication rounds.

Combining the Gradient Consistency metric with the above
frequency tuning heuristic, we name our solution-kit as
Gradient-Instructed Frequency Tuning, or GIFT. We have
implemented GIFT in PyTorch, and next we evaluate its
performance with prototype deployments.

6. Evaluation

In this section, we evaluate GIFT with large-scale testbed
experiments. We start with end-to-end comparisons be-
tween GIFT and standard FedAvg in a 100-node cluster
emulating realistic FL setup, and then justify its superiority
over existing formula-based methods. Finally we examine
the effectiveness of the frequency relaxation extension.

6.1. Experimental Setup

Hardware Setup  We emulate real-world FL scenarios
with 100 m5 . 1arge instances on Amazon EC2, each with
2 vCPU cores and 8GB RAM (similar with a smart phone).
Meanwhile, resembling modern Internet condition?, the
bandwidth of each client is configured to be 25Mbps. The
FL server is a c5.9x1large instance with 10Gbps band-
width. Moreover, to emulate dynamic user participation,
we let each client delay for a random period before report-
ing its gradient, and in each round the FL server only col-
lects 40% gradients reported the earliest.

Training Setup Models trained in our evaluation are
LeNet-5 (LeCun et al., 1998), VGG-16 (Simonyan & Zis-
serman, 2014) and a LSTM network (containing 2 recurrent
layers with a hidden size of 64). LeNet-5 and VGG-16 are
trained on the CIFAR-10 dataset (Krizhevsky & Hinton,
2009) and the LSTM network is trained on the KeyWord
Spotting (KWS) dataset—a subset of the Speech Com-
mands dataset (Warden, 2018) including 10 key words.
Similar to §2.2, the local dataset on each client is ﬁ in
size of the standard one, in which the sample labels fol-
low a Dirichlet distribution with « set to 1 (a modest non-
IID level). We set the learning rates to 0.01 (LeNet-5), 0.1
(VGG-16) and 0.05 (KWS), with a respective weight decay
of 0.01, 0.0005 and 0.01. The default frequency is once-
per-100-iterations (i.e., 7 = 100). The EMA smoothing
factor 3 in GIFT is 0.9, and we halve 7 once Gradient Con-
sistency no longer decreases for two consecutive rounds.

3https://www.atlasandboots.com/remote-work/countries-
with-the-fastest-internet-in-the-world/, Accessed: 2021-02-04
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Figure 5: Test accuracy with and without GIFT, accompanied by

the frequency 7 and Gradient Consistency C' under GIFT.
Table 1: Time Cost and Accuracy Attained After 1000 Rounds.

Model Scheme Time (h) Accuracy (%)
s %
oo TamE 5 o
s T @

6.2. End-to-End Evaluation

Visual Observation In Fig. 5, we show the (best-ever)
test accuracy when training the three models under FedAvg
(with and without GIFT), accompanied by the instanta-
neous Gradient Consistency (C') and synchronization fre-
quency (7) of GIFT. It shows that there is a salient accuracy
enhancement once 7 is halved under GIFT, finally yield-
ing a much better accuracy. Meanwhile, we notice that C'
does follow a decreasing pattern®, consistent with our pre-
vious analysis in §5.1. Moreover, there is usually a short
burst of C' each time 7 is halved, suggesting that a higher
frequency can mitigate gradient conflicting level and help
refine model parameters consistently towards the optimum.

“Interestingly, for VGG-16 the stagnating value of C'in Fig. 5b
is not close to 0. We find that this is because VGG-16 is a large,
over-parameterized model (Neyshabur et al., 2018) and, due to ir-
regular landscapes like flat minima (Hochreiter & Schmidhuber,
1997), some parameters may keep moving to a certain direction
even after model converges. That said, it does not affect the effec-
tiveness of GIFT because C' still stagnates as expected.
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Figure 6: Comparison among GIFT and formula-based methods.

Quantitative Comparison = We further make quantitative
performance comparison between GIFT and standard Fe-
dAvg in Table 1, which lists the time cost and accuracy
attained when training each model for 1000 rounds. Ta-
ble 1 reveals that the performance benefit of GIFT lies in
two perspectives. First, GIFT can help the FL process to
achieve a higher accuracy by getting out of premature stag-
nation timely. Second, GIFT can also improve the compu-
tation efficiency by switching to a higher frequency when
appropriate: Otherwise with an over-large 7 the local pa-
rameters often saturate and then oscillate locally, which is
a wastage of computing power. As a result, under GFT,
each model can achieve a higher accuracy with less time
consumption. For example, GFT can reduce LeNet-5 train-
ing time by 58.9% while improving the accuracy by 9%.

6.3. Comparison with Formula-based Methods

We implement AFL (Wang et al., 2019) and Ada-
Comm (Wang & Joshi, 2019), two typical formula-based
frequency tuning methods, also in PyTorch. AFL directly
works out a fixed 7 given the resource budget and a series
of ground truth knowledge (like the Lipchitz constant and
gradient variance bound); AdaComm divides the training
process into short intervals and adjust 7 for each interval
based on variation of the instantaneous loss. In our eval-
uation, we obtain the ground-truth knowledge required by
AFL via a trial run, and the initial frequency of AdaComm
is selected via grid search. Moreover, since such formula-
based methods do not consider system instability (e.g., par-
tial client participation), for fair comparison we switch to a
50-node cluster with full client participation.

Fig. 6 shows the instantaneous accuracy and synchroniza-
tion frequency when training LeNet-5 and LSTM under
GIFT, AFL and AdaComm. It shows that GFT can yield the
best model accuracy under a fixed time budget (2 hours).
For example, given a LeNet-5 accuracy target of 0.6, the
time consumption under GFT is 28.9% less than Ada-
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Figure 7: Frequency relaxation can yield faster accuracy increase.

Comm, and 61.2% less than AFL. Regarding the reasons
behind, for AFL the fixed frequency calculated is too small
to be communication-efficient in the beginning, and is on
the other hand too large to attain high accuracy in the end.
For AdaComm, since its formulation is based IID label dis-
tribution, the formula on 7 is actually inaccurate for re-
alistic FL setup. Moreover, due to loss plateaus problem
(i.e., accuracy improved but loss not so), the training loss
is sometimes not a good indicator of the training status’.

6.4. Effect of Frequency Relaxation

We further evaluate the effectiveness of frequency relax-
ation in cases where only the communication cost is cared.
To be specific, we increase 7 by 5 once C keeps decreas-
ing for 10 consecutive rounds, and Fig. 7 depicts the test-
ing accuracy (against communication rounds) when train-
ing LeNet-5 and LSTM with the previous 50-node cluster.
For both models, frequency relaxation can yield a prompter
accuracy improvement especially in the early stage. For ex-
ample, after training LeNet-5 for 500 rounds, it can achieve
a test accuracy of 0.55, 5.1% better than that without fre-
quency relaxation.

7. Conclusion

In this work, to attain better model accuracy and re-
source efficiency in FL, we have proposed GIFT, a privacy-
preserving, practical and generally-applicable frequency
tuning scheme. It gauges the model training status with a
novel metric called Gradient Consistency, based on which
it then multiplicatively increases or linearly decreases the
synchronization frequency. Prototype evaluations in realis-
tic FL setups have demonstrated the superiority of GIFT in
both accuracy and efficiency performance.

3Considering that the training loss may get stuck on plateaus
or fluctuate due to noises, AdaComm degrades their method to
naive frequency scaling once the loss no longer decreases. Yet we
find in Fig. 6 that the accuracy achievements of AdaComm largely
comes from such a boundary-case heuristic.
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