Why so aggressive? Low Extra Delay Background Traffic
(LEDBAT) in WebRTC

Riccardo Reale
Peerialism AB / KTH - Royal
Institute of Technology,

~ Stockholm, Sweden
riccardo@peerialism.com

ABSTRACT

In this paper, we present what is, to the best of our knowl-
edge, the first implementation of LEDBAT for the WebRTC
framework. By providing support for LEDBAT, we enable
the development of data-intensive peer-to-peer (P2P) appli-
cations on top of WebRTC, such as large scale file-sharing
and content delivery. This work constitutes the first step
in the process of studying and improving WebRTC’s data
transport protocol stack in the context of a real use-case,
such as P2P video streaming.

Categories and Subject Descriptors

C.2.2 [Computer-Communication Networks]: Network

Protocols; C.2.4 [Computer-Communication Networks]:

Distributed Systems

General Terms

Experimentation, Performance, Measurement

Keywords
LEDBAT, WebRTC, Peer-to-peer

1. INTRODUCTION

Recently, WebRTC has been steadily gaining popularity
fueled by the inclusion in most of the browsers on the mar-
ket. The WebRTC standard mandates the multimedia and
peer-to-peer connectivity stacks for real-time services, once
provided by external plugins, to be built directly into the
browser. That means that features of those stacks, such
as video acquisition/encoding, encryption and NAT traver-
sal, are made available to developers through HTML5 APIs.
WebRTC was mainly designed as a framework to facilitate
video and audio conferencing but it does include support
for building other types of peer-to-peer applications, such
as CDN accellerators [7] and video streaming platforms [8].

Although WebRTC currently provides many features, it
lacks support for low priority transfers. Low priority is an

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

Anton Blomberg
Stockholm University,
Stockholm, Sweden
anton@naetet.se

Roberto Roverso
Peerialism AB, Stockholm,
Sweden
roberto@peerialism.com

DataChannel

SCTP ] [ uTP

[ )
[ )
[ Session (DTLS) ]
[ )

NAT Traversal (ICE, STUN, TURN)

[ Transport (UDP) ]

[ Network (IP) ]
Figure 1: Modified WebRTC protocol stack

essential requirement for P2P data-intensive applications,
e.g. BitTorrent and streaming platforms [9], which utilize
this feature to avoid disrupting traffic generated by both web
browsing and low delay VoIP applications. Support for low
priority is provided in P2P network stacks by a delay-based
congestion control protocol such as LEDBAT [1]. LEDBAT
achieves low priority behaviour by completely yielding to
other TCP traffic on the same network and by keeping the
delay on a link fixed to a low and constant target.

In this paper, we present what is, to the best of our knowl-
edge, the first implementation of LEDBAT for the WebRTC
framework. By providing support for LEDBAT, we en-
able the development of data-intensive P2P applications on
top of WebRTC. In our specific case however, the interest
in LEDBAT is motivated by the the needs of a commer-
cial peer-assisted streaming application called Hive Stream-
ing [6]. Hive utilizes low priority traffic to prefetch data
from other peers ahead of the playback deadline without
disrupting other traffic in the network.

Besides including LEDBAT in WebRTC, our greater goal
is to study the functionality and performance of WebRTC’s
transport protocols in order to address possible shortcom-
ings that would prevent wide adoption of this technology.
For that, as the next step, we intend to provide a detailed
analysis of the behavior of WebRTC’s transport protocols in
a real use-case, that is video streaming.

In order to promote adoption of our WebRTC implemen-
tation and other improvements to the WebRTC stack, we
make our code available as open-source at [2].

2. LEDBAT IN WEBRTC

In WebRTC, transfer of arbitrary data over encrypted
P2P channels is a feature provided by the DataChannel ab-
straction.

The DataChannel API make use of the Stream Control
Transfer protocol (SCTP) [3] protocol in order to manage
data transfers. SCTP is a message-oriented protocol that



provides a variety of options on data transfer to accomodate
the needs of different types of applications. When setting
up a DataChannel, WebRTC applications may choose in-
or out-of-order delivery and reliable or unreliable delivery.
Regarding congestion control, the latest version of SCTP in-
cluded in WebRTC make use of the same algorithm found
in H-TCP [4]. The main characteristic of H-TCP is that
it delivers the same priority as TCP in low bandwidth net-
works while trying to better exploit high delay but large
bandwidth links compared to TCP.

The current version of WebRTC’s DataChannel incorpo-
rates a user-level SCTP implementation * written in C' and
built on top of UDP. SCTP interfaces with a security layer,
Datagram Transport Layer Security (DTLS), which adds en-
cryption and integrity to all traffic sent through a DataChan-
nel session. All data sent through that session is carried over
connections that have been established using the ICE NAT
Traversal protocol, last layer of the WebRTC protocol stack.

In order to implement LEDBAT support in WebRTC, we
opted to directly integrate the uTP library [5] in the We-
bRTC protocol stack as an optional alternative to SCTP.
uTP is the reference open-source implementation of LED-
BAT and is provided by BitTorrent. Similarly to SCTP,
uTP provides reliability, in-order delivery and is layered
over UDP. Given the similarities between the protocols, we
were able to easily integrate uTP with the existing WebRTC
stack. That, by developing a translation layer that interpret
API requests from the DataChannel layer for the uTP layer.
Besides that, we modified the DataChannel API to be able
to choose between SCTP and uTP as transport protocol
when setting up a data channel. Finally, we were able to
channel all data processed by the uTP implementation into
the DTLS processing. The resulting structure of the We-
bRTC stack is shown in Figure 1.

3. PRELIMINARY RESULTS

We conducted a preliminary evaluation of our solution
in a controlled network environment consisting of two host
machines, a sender and a receiver, running Ubuntu Linux
with kernel 3.11.0-12 connected through a 100 Mbps link.
We used Dummynet on the sender host, configured to cap
the outgoing traffic to 1 Mbps, with 100 ms base delay and
60KB of queue buffer to simulate a typical WAN gateway
scenario.

In order to test our implementation, we developed a test
application in C that generates traffic using the WebRTC
Native DataChannel API to emulate the traffic of a data-
intensive browser application. Our test application can be
configured to initialize either a STCP DataChannel, or a
LEDBAT DataChannel.

Both hosts run our test application and a separate TCP
traffic generator to obtain traffic competing on the same
network resources. TCP file transfer uses TCP Cubic, the
default Linux congestion control. Finally, a third host acts
as a server to handle the WebRT'C session signalling between
the sender and the receiver.

As metrics, we utilize the throughput of the DataChan-
nel LEDBAT transfers when competing against TCP traf-
fic, and the Round Trip Time (RTT) measured on the link.
With these two metrics, we verify that LEDBAT transfers
indeed yield to TCP and, at the same time, we evaluate the

"http:/ /sctp.fh-muenster.de/sctp-user-land-stack.html

1000 —RTT
@ 500 ‘ !
€ 200
100 , !
1.0 — total
1 — LEDBAT 1
— LEDBAT 2
@ 1 —TCP
S 054
s i
oH———r—r———"A=———t——
0 50 100 150 200 250 300 350

seconds
Figure 2: Two DataChannel LEDBAT streams sharing a

1Mbit/s bottleneck with a TCP stream

1000 —RTT
@ 500 [
£ 200 ~
100 ]
] — total
1.0 — SCTPA1
1 — SCTP 2
K 1 — TCP
S o5
0 e e e
0 50 100 150 200 250 300 350

seconds
Figure 3: Two DataChannel SCTP streams sharing a

1Mbit/s bottleneck with a TCP stream

relative increase on the one-way delay, which directly affects
latency and, therefore, web browsing responsiveness.

Figure 2 shows the throughput evolution of two DataChan-
nel LEDBAT streams and a single TCP stream, starting
at 60 seconds from each other. The corresponding Round
Trip Time is also shown above. The two LEDBAT flows, as
expected, utilize all available bandwidth, until they quickly
and completely release the bottleneck in favour of the higher
priority TCP flow. The increase in the RTT due to the pres-
ence of LEDBAT flows is limited to 100 millisecond, which
is the default target delay configuration in uTP. Note that
the number of LEDBAT streams doesn’t affect the amount
of extra delay introduced.

For direct comparison and validation that the normal be-
havior of SCTP was not affected, Figure 3 shows the same
experiment performed configuring our test application to
use DataChannel SCTP streams. Besides fairly sharing the
link with the TCP transfer as expected, each of the SCTP
streams introduce a large amount of extra-delay on the link
as TCP does.

4. REFERENCES

| http://tools.ietf.org/html/rfc6817.
] https://github.com/Peerialism/webrtc-ledbat.
] http://www.ietf.org/rfc/rfc2960.txt.
| http://www.hamilton.ie/net/htcp.htm.
[5] https://github.com/bittorrent/libutp.
| Hive streaming. http://www.hivestreaming.com.
] Peercdn. https://peercdn.com/.

| J. Nurminen, A. Meyn, E. Jalonen, Y. Raivio, and b. y.
Marrero, R. P2P media streaming with HTML5 and
WebRTC (Demo).
[9] R. Roverso, S. El-Ansary, and S. Haridi. Smoothcache:
Http-live streaming goes peer-to-peer. In IFIP
NETWORKING 2012.



