
accessed. An item has global visibility if it can be referenced in every source file constituting the
program. Otherwise, it has local visibility.

W

watch window

The window in CodeView that displays watch statements and their values. A variable or expression is
watchable only while execution is occurring in the section of the program (context) in which the item is
defined.

window

A discrete area of the screen in PWB or CodeView used to display part of a file or to enter statements.

window commands

Commands that work only in CodeView’s window mode. Window commands consist of function keys,
mouse selections, CTRL and ALT key combinations, and selections from pop-up menus.

window mode

The mode in which CodeView displays separate windows, which can change independently. CodeView
has mouse support and a wide variety of window commands in window mode.

word

A data unit containing 16 bits (2 bytes). It can store values from 0 to 65,535 (or -32,768 to +32,767).

Reference

Microsoft® MASM

Assembly-Language Development System

Version 6.1

For MS-DOS® and Windows™ Operating System

Microsoft Corporation

Information in this document is subject to change without notice. Companies, names,
and data used in examples herein are fictitious unless otherwise noted. No part of this
document may be reproduced or transmitted in any form or by any means, electronic

Reference
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 354

or mechanical, for any purpose, without the express written permission of Microsoft
Corporation.

© 1987, 1991, 1992 Microsoft Corporation. All rights reserved.

Microsoft, MS, MS-DOS, XENIX, CodeView, and QuickC are registered trademarks
and Windows and Windows NT are trademarks of Microsoft Corporation in the USA
and other countries.

U.S. Patent No. 4955066

IBM is a registered trademark of International Business Machines Corporation.

Intel is a registered trademark and 386, 387, 486 are trademarks of Intel Corporation.

Timings and encodings in this manual are used with permission of Intel and come from
the following publications:

Intel Corporation, iAPX 86, 88, 186, and 188 User’s Manual, Programmer’s
Reference. Santa Clara, Calif. 1985.

Intel Corporation, iAPX 286 Programmer’s Reference Manual including the iAPX 286
Numeric Supplement. Santa Clara, Calif. 1985.

Intel Corporation. 80386 Programmer’s Reference Manual. Santa Clara, Calif. 1986.

Intel Corporation. 80387 80-bit CHMOS III Numeric Processor Extension. Santa
Clara, Calif. 1987.

Intel Corporation. i486 Microprocessor Data Sheet. Santa Clara, Calif. 1989.

Document No. DB35749-1292

Printed in the United States of America.

Introduction

This Microsoft® Macro Assembler Reference lists all MASM instructions, directives, statements, and
operators. It also serves as a quick reference to the Programmer’s WorkBench commands, and the
commands for Microsoft utilities such as LINK and LIB. This book documents features of MASM
version 6.1, and
is part of a complete MASM documentation set. Other titles in the set are:

Getting Started — Explains how to perform all the tasks necessary to install and begin running MASM

Introduction
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 355

6.1 on your system.

Environment and Tools — Describes the development tools that are included with MASM 6.1: the
Programmer’s WorkBench, CodeView debugger, LINK, EXEHDR, NMAKE, LIB, and other tools and
utilities. A detailed tutorial on the Programmer’s WorkBench teaches the basics of creating and
debugging MASM code in this full-featured programming environment. A complete list of utilities and
error messages generated by ML is also included.

Programmer’s Guide — Provides information for experienced assembly-language programmers on the
features of the MASM 6.1 language. The appendixes cover the differences between MASM 5.1, MASM
6.0, and MASM 6.1, and the Backus-Naur Form for grammar notation to use in determining the syntax
for any MASM language component.

Document Conventions

The following document conventions are used throughout this book:

Example Description

SAMPLE 2ASM Uppercase letters indicate filenames, segment names, registers and
terms used at the command line.

KEY TERMS Bold type indicates text that must be typed exactly as shown. This
includes assembly-language instructions, directives, symbols, operators,
and keywords in other languages.

placeholders Italics indicate variable information supplied by the user.
Examples This typeface indicates example programs, user input, and screen output.

[[optional items]] Double brackets indicate that the enclosed item is optional.

{choice1 | choice2} Braces and a vertical bar indicate a choice between two or more items.
You must choose one of the items unless double square brackets
surround the braces.

Repeating elements... Three dots following an item indicate that you may type more items
having the same form.

SHIFT+F1 Small capital letters indicate key names.

Chapter 1 Tools

MicrosoftCodeViewDebugger
The Microsoft® CodeView® debugger runs the assembled or compiled program while simultaneously
displaying the program source code, program variables, memory locations, processor registers, and
other pertinent information.

Syntax

CV [[options]] executablefile [[arguments]]

CVW [[options]] executablefile [[arguments]]

Chapter 1 Tools
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 356

Options

Option Action

/2 Permits the use of two monitors.

/8 Uses 8514/a as Windows display, and VGA as debugger display
(CVW only).

/25 Starts in 25-line mode.

/43 Starts in 43-line mode.

/50 Starts in 50-line mode.

/B Starts in black-and-white mode.

/Ccommands Executes commands on startup.

/F Exchanges screens by flipping between video pages (CV only).

/G Eliminates refresh snow on CGA monitors.

/I[[0 | 1]] Turns nonmaskable-interrupt and 8259-interrupt trapping on (/I1) or off
(/I0).

/Ldllfile Loads DLL dllfile for debugging (CVW only).

/K Disables installation of keyboard monitors for the program being
debugged (CV only).

/M Disables CodeView use of the mouse. Use this option when
debugging an application that supports the mouse.

/N[[0 | 1]] /N0 tells CodeView to trap nonmaskable interrupts; /N1 tells it not to
trap.

/R Enables 80386/486 debug registers (CV only).

/S Exchanges screens by changing buffers (primarily for use with
graphics programs) (CV only).

/TSF Toggles TOOLS.INI entry to read/not read the CURRENT.STS file.

Environment Variables

Variable Description

HELPFILES Specifies path of help files or list of help filenames.

INIT Specifies path for TOOLS.INI and CURRENT.STS files.

Chapter 1 Tools

MicrosoftCodeViewDebugger
The Microsoft® CodeView® debugger runs the assembled or compiled program while simultaneously
displaying the program source code, program variables, memory locations, processor registers, and
other pertinent information.

Syntax

CV [[options]] executablefile [[arguments]]

CVW [[options]] executablefile [[arguments]]

Chapter 1 Tools
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 357

Options

Option Action

/2 Permits the use of two monitors.

/8 Uses 8514/a as Windows display, and VGA as debugger display
(CVW only).

/25 Starts in 25-line mode.

/43 Starts in 43-line mode.

/50 Starts in 50-line mode.

/B Starts in black-and-white mode.

/Ccommands Executes commands on startup.

/F Exchanges screens by flipping between video pages (CV only).

/G Eliminates refresh snow on CGA monitors.

/I[[0 | 1]] Turns nonmaskable-interrupt and 8259-interrupt trapping on (/I1) or off
(/I0).

/Ldllfile Loads DLL dllfile for debugging (CVW only).

/K Disables installation of keyboard monitors for the program being
debugged (CV only).

/M Disables CodeView use of the mouse. Use this option when
debugging an application that supports the mouse.

/N[[0 | 1]] /N0 tells CodeView to trap nonmaskable interrupts; /N1 tells it not to
trap.

/R Enables 80386/486 debug registers (CV only).

/S Exchanges screens by changing buffers (primarily for use with
graphics programs) (CV only).

/TSF Toggles TOOLS.INI entry to read/not read the CURRENT.STS file.

Environment Variables

Variable Description

HELPFILES Specifies path of help files or list of help filenames.

INIT Specifies path for TOOLS.INI and CURRENT.STS files.

CVPACK

The CVPACK utility reduces the size of an executable file that contains CodeView debugging
information.

Syntax

CVPACK [[options]] exefile

Options

Option

Action

CVPACK
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 358

/HELP Calls QuickHelp for help on CVPACK.

/P Packs the file to the smallest possible size.

/? Displays a summary of CVPACK command-line syntax.

EXEHDR

The EXEHDR utility displays and modifies the contents of an executable-file header.

Syntax

EXEHDR [[options]] filenames

Options

Option Action

/HEA:number Option name: /HEA[[P]]. Sets the heap allocation field to number
bytes for segmented-executable files.

/HEL Option name: /HEL[[P]]. Calls QuickHelp for help on EXEHDR.

/MA:number Option name: /MA[[X]]. Sets the maximum memory allocation to
number paragraphs for DOS executable files.

/MI:number Option name: /MI[[N]]. Sets the minimum memory allocation to
number paragraphs for DOS executable files.

/NE Option name: /NE[[WFILES]]. Enables support for HPFS.

/NO Option name: /NO[[LOGO]]. Suppresses the EXEHDR copyright
message.

/PM:type Option name: /PM[[TYPE]]. Sets the application type for Microsoft
Windows®, where type is one of the following: PM (or WINDOWAPI),
VIO (or WINDOWCOMPAT), or NOVIO (or NOTWINDOWCOMPAT).

/R Option name: /R[[ESETERROR]]. Clears the error bit in the header of
a Windows executable file.

/S:number Option name: /S[[TACK]]. Sets the stack allocation to number bytes.

Option Action

/V Option name: /V[[ERBOSE]]. Provides more information about
segmented-executable files, including the default flags in the segment
table, all run-time relocations, and additional fields from the header.

/? Option name: /?. Displays a summary of EXEHDR command-line
syntax.

EXP

The EXP utility deletes all files in the hidden DELETED subdirectory of the current or specified
directory. EXP is used with RM and UNDEL to manage backup files.

Syntax

EXP
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 359

EXP [[options]] [[directories]]

Options

Option

Action

/HELP Calls QuickHelp for help on EXP.

/Q Suppresses display of deleted files.

/R Recurses into subdirectories of the current or specified directory.

/? Displays a summary of EXP command-line syntax.

HELPMAKE

The HELPMAKE utility creates help files and customizes the help files supplied with Microsoft
language products.

Syntax

HELPMAKE {/E[[n]] | /D[[c]] | /H | /?} [[options]] sourcefiles

Options

Option

Action

/Ac Specifies c as an application-specific control character for the help
database, marking a line that contains special information for internal
use by the application.

/C Indicates that the context strings are case sensitive so that at run time
all searches for help topics are case sensitive.

/D Fully decodes the help database.

Option

Action

/DS Splits the concatenated, compressed help database into its
components, using their original names. No decompression occurs.

/DU Decompresses the database and removes all screen formatting and
cross-references.

/E[[n]] Creates (“encodes”) a help database from a specified text file (or files).
The optional n indicates the amount of compression to take place. The
value of n can range from 0 to 15.

/H[[ELP]] Calls the QuickHelp utility. If HELPMAKE cannot find QuickHelp or the
help file, it displays a summary of HELPMAKE command-line syntax.

/Kfilename Specifies a file containing word-separator characters. This file must
contain a single line of characters that separate words. ASCII
characters from 0 to 32 (including the space) and character 127 are
always separators. If the /K option is not specified, the following
characters are also considered separators: !”#&’()*+-,/:;<=>?@[\]^_`{\}~

HELPMAKE
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 360

/L Locks the generated file so that it cannot be decoded by HELPMAKE
at a later time.

/NOLOGO Suppresses the HELPMAKE copyright message.

/Ooutfile Specifies outfile as the name of the help database. The name outfile is
optional with the /D option.

/Sn Specifies the type of input file, according to the following values for n:

/S1 Rich Text Format

/S2 QuickHelp Format

/S3 Minimally Formatted ASCII

/T During encoding, translates dot commands to application-specific
commands. During decoding, translates application commands to dot
commands. The /T option forces /A:.

/V[[n]] Sets the verbosity of the diagnostic and informational output,
depending on the value of n. The value of n can range from 0 to 6.

/Wwidth Sets the fixed width of the resulting help text in number of characters.
The value of width can range from 11 to 255.

/? Displays a summary of HELPMAKE command-line syntax.

H2INC

The H2INC utility converts C header (.H) files into MASM-compatible include (.INC) files. It translates
declarations and prototypes, but does not translate code.

Syntax

H2INC [[options]] filename.H

Options

Option*

Action

/C Passes comments in the .H file to the .INC file.

/Fa[[filename]] Specifies that the output file contain only equivalent MASM
statements. This is the default.

/Fc[[filename]] Specifies that the output file contain equivalent MASM statements plus
original C statements converted to comment lines.

/HELP Calls QuickHelp for help on H2INC.

/Ht Enables generation of text equates. By default, text items are not
translated.

/Mn Instructs H2INC to explicitly declare the distances for all pointers and
functions.

/Ni Suppresses the expansion of nested include files.

/Zn string Adds string to all names generated by H2INC. Used to eliminate name
conflicts with other H2INC-generated include files.

/Zu Makes all structure and union tag names unique.

/? Displays a summary of H2INC command-line syntax.

H2INC
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 361

*H2INC also supports the following options from Microsoft C, version 6.0 and higher: /AC, /AH, /AL, /AM, /AS, /AT, /D, /F, /Fi,
/G0, /G1, /G2, /G3, /G4, /Gc, /Gd, /Gr, /I, /J, /Tc, /U, /u, /W0, /W1, /W2, /W3, /W4, /X, /Za, /Zc, /Ze, /Zp1, /Zp2, /Zp4.

EnvironmentVariables

Variable Description

CL Specifies default command-line options.

H2INC Specifies default command-line options. Appended after the CL
environment variable.

INCLUDE Specifies search path for include files.

IMPLIB

The IMPLIB utility creates import libraries used by LINK to link dynamic-link libraries with applications.

Syntax

IMPLIB [[options]] implibname {dllfile... | deffile...}

Options

Option Action

/H Option name: /H[[ELP]]. Calls QuickHelp for help on IMPLIB.

/NOI Option name: /NOI[[GNORECASE]]. Preserves case for entry names
in DLLs.

/NOL Option name: /NOL[[OGO]]. Suppresses the IMPLIB copyright
message.

/? Option name: /?. Displays a summary of IMPLIB command-line
syntax.

LIB

The LIB utility helps create, organize, and maintain run-time libraries.

Syntax

LIB inlibrary [[options]] [[commands]] [[, [[listfile]] [[, [[outlibrary]]]]]] [[;]]

Options

Option Action

/H Option name: /H[[ELP]]. Calls QuickHelp for help on LIB.

/I Option name: /I[[GNORECASE]]. Tells LIB to ignore case when
comparing symbols (the default). Use to combine a library marked
/NOI with an unmarked library to create a new case-insensitive library.

/NOE Option name: NOE[[XTDICTIONARY]]. Prevents LIB from creating an

LIB
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 362

extended dictionary.

/NOI Option name: /NOI[[GNORECASE]]. Tells LIB to preserve case when
comparing symbols. When combining libraries, if any library is marked
/NOI, the output library is case sensitive, unless /IGN is specified.

/NOL Option name: /NOL[[OGO]]. Suppresses the LIB copyright message.

Option Action

/P:number Option name: /P[[AGESIZE]]. Specifies the page size (in bytes) of a
new library or changes the page size of an existing library. The default
for a new library is 16.

/? Option name: /?. Displays a summary of LIB command-line syntax.

Commands

Operator Action

+name Appends an object file or library file.

–name Deletes a module.

–+name Replaces a module by deleting it and appending an object file with the
same name.

*name Copies a module to a new object file.

–*name Moves a module out of the library by copying it to a new object file and
then deleting it.

LINK

The LINK utility combines object files into a single executable file or dynamic-link library.

Syntax

LINK objfiles [[, [[exefile]] [[, [[mapfile]] [[, [[libraries]] [[, [[deffile]]]]]]]]]] [[;]]

Options

Option Action

/A:size Option name: /A[[LIGNMENT]]. Directs LINK to align segment data in
a segmented-executable file along the boundaries specified by size
bytes, where size must be a power of two.

/B Option name: /B[[ATCH]]. Suppresses prompts for library or object
files not found.

/CO Option name: /CO[[DEVIEW]]. Adds symbolic data and line numbers
needed by the Microsoft CodeView debugger. This option is
incompatible with the /EXEPACK option.

/CP:number Option name: /CP[[ARMAXALLOC]]. Sets the program’s maximum
memory allocation to number of 16-byte paragraphs.

/DO Option name: /DO[[SSEG]]. Orders segments in the default order
used by Microsoft high-level languages.

Option Action

LINK
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 363

/DS Option name: /DS[[ALLOCATE]]. Directs LINK to load all data starting
at the high end of the data segment. The /DSALLOC option is for
assembly-language programs that create MS-DOS .EXE files.

/E Option name: /E[[XEPACK]]. Packs the executable file. The
/EXEPACK option is incompatible with /INCR and /CO. Do not use
/EXEPACK on a Windows-based application.

/F Option name: /F[[ARCALLTRANSLATION]]. Optimizes far calls. The
/FARCALL option is automatically on when using /TINY. The /PACKC
option is not recommended with /FARCALL when linking a
Windows-based program.

/HE Option name: /HE[[LP]]. Calls QuickHelp for help on LINK.

/HI Option name: /HI[[GH]]. Places the executable file as high in memory
as possible. Use /HIGH with the /DSALLOC option. This option is for
assembly-language programs that create MS-DOS .EXE files.

/INC Option name: /INC[[REMENTAL]]. Prepares for incremental linking
with ILINK. This option is incompatible with /EXEPACK and /TINY.

/INF Option name: /INF[[ORMATION]]. Displays to the standard output the
phase of linking and names of object files being linked.

/LI Option name: /LI[[NENUMBERS]]. Adds source file line numbers and
associated addresses to the map file. The object file must be created
with line numbers. This option creates a map file even if mapfile is not
specified.

/M Option name: /M[[AP]]. Adds public symbols to the map file.

/NOD[[:libraryname]] Option name: /NOD[[EFAULTLIBRARYSEARCH]]. Ignores the
specified default library. Specify without libraryname to ignore all
default libraries.

/NOE Option name: /NOE[[XTDICTIONARY]]. Prevents LINK from searching
extended dictionaries in libraries. Use /NOE when redefinition of a
symbol causes error L2044.

/NOF Option name: /NOF[[ARCALLTRANSLATION]]. Turns off far-call
optimization.

/NOI Option name: /NOI[[GNORECASE]]. Preserves case in identifiers.

/NOL Option name: /NOL[[OGO]]. Suppresses the LINK copyright message.

Option Action

/NON Option name: /NON[[ULLSDOSSEG]]. Orders segments as with the
/DOSSEG option, but with no additional bytes at the beginning of the
_TEXT segment (if defined). This option overrides /DOSSEG.

/NOP Option name: /NOP[[ACKCODE]]. Turns off code segment packing.

/PACKC[[:number]] Option name: /PACKC[[ODE]]. Packs neighboring code segments
together. Specify number bytes to set the maximum size for physical
segments formed by /PACKC.

/PACKD[[:number]] Option name: /PACKD[[ATA]]. Packs neighboring data segments
together. Specify number bytes to set the maximum size for physical
segments formed by /PACKD. This option is for Windows only.

/PAU Option name: /PAU[[SE]]. Pauses during the link session for disk
changes.

/PM:type Option name: /PM[[TYPE]]. Specifies the type of Windows-based
application where type is one

LINK
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 364

of the following: PM (or WINDOWAPI), VIO
(or WINDOWCOMPAT), or NOVIO
(or NOTWINDOWCOMPAT).

/ST:number Option name: /ST[[ACK]]. Sets the stack size to number bytes, from
1 byte to 64K.

/T Option name: /T[[INY]]. Creates a tiny-model MS-DOS program with a
.COM extension instead of .EXE. Incompatible with /INCR.

/? Option name: /?. Displays a summary of LINK command-line syntax.

Note Several rarely used options not listed here are described in Help.

EnvironmentVariables

Variable Description

INIT Specifies path for the TOOLS.INI file.

LIB Specifies search path for library files.

LINK Specifies default command-line options.

TMP Specifies path for the VM.TMP file.

MASM

The MASM program converts command-line options from MASM style to ML style, adds options to
maximize compatibility, and calls ML.EXE.

Note MASM.EXE is provided to maintain compatibility with old makefiles. For new makefiles, use the
more powerful ML driver.

Syntax

MASM [[options]] sourcefile [[, [[objectfile]] [[, [[listingfile]]
[[, [[crossreferencefile]]]]]]]] [[;]]

Options

Option

Action

/A Orders segments alphabetically. Results in a warning. Ignored.

/B Sets internal buffer size. Ignored.

/C Creates a cross-reference file. Translated to /FR.

/D Creates a Pass 1 listing.Translated to F1/ST.

/Dsymbol[[=value]] Defines a symbol. Unchanged.

/E Emulates floating-point instructions. Translated to /FPi.

/H Lists command-line arguments. Translated to /help.

/HELP Calls QuickHelp for help on the MASM driver.

/I pathname Specifies an include path. Unchanged.

/L Creates a normal listing. Translated to /Fl.

/LA Lists all. Translated to /Fl and /Sa.

MASM
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 365

/ML Treats names as case sensitive. Translated to /Cp.

/MU Converts names to uppercase. Translated to /Cu.

/MX Preserves case on nonlocal names. Translated to /Cx.

/N Suppresses table in listing file. Translated to /Sn.

/P Checks for impure code. Use OPTION READONLY. Ignored.

/S Orders segments sequentially. Results in a warning. Ignored.

/T Enables terse assembly. Translated to /NOLOGO.

/V Enables verbose assembly. Ignored.

Option Action

/Wlevel Sets warning level, where level = 0, 1, or 2.

/X Lists false conditionals. Translated to /Sx.

/Z Displays error lines on screen. Ignored.

/ZD Generates line numbers for CodeView. Translated to /Zd.

/ZI Generates symbols for CodeView. Translated to /Zi.

EnvironmentVariables

Variable Description

INCLUDE Specifies default path for .INC files.

MASM Specifies default command-line options.

TMP Specifies path for temporary files.

ML

The ML program assembles and links one or more assembly-language source files. The command-line
options are case sensitive.

Syntax

ML [[options]] filename [[[[options]] filename]]... [[/link linkoptions]]

Options

Option

Action

/AT Enables tiny-memory-model support. Enables error messages for
code constructs that violate the requirements for .COM format files.
Note that this is not equivalent to the .MODEL TINY directive.

/Bl filename Selects an alternate linker.

/c Assembles only. Does not link.

/Cp Preserves case of all user identifiers.

/Cu Maps all identifiers to uppercase (default).

/Cx Preserves case in public and extern symbols.

/Dsymbol[[=value]] Defines a text macro with the given name. If value is missing, it is
blank. Multiple tokens separated by spaces must be enclosed in

ML
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 366

quotation marks.

/EP Generates a preprocessed source listing (sent to STDOUT). See /Sf.

/Fhexnum Sets stack size to hexnum bytes (this is the same as /link
/STACK:number). The value must be expressed in hexadecimal
notation. There must be a space between /F and hexnum.

Option Action

/Fefilename Names the executable file.

/Fl[[filename]] Generates an assembled code listing. See /Sf.

/Fm[[filename]] Creates a linker map file.

/Fofilename Names an object file.

/FPi Generates emulator fixups for floating-point arithmetic (mixed-language
only).

/Fr[[filename]] Generates a Source Browser .SBR file.

/FR[[filename]] Generates an extended form of a Source Browser .SBR file.

/Gc Specifies use of FORTRAN- or Pascal-style function calling and
naming conventions. Same as OPTION LANGUAGE:PASCAL.

/Gd Specifies use of C-style function calling and naming conventions.
Same as OPTION LANGUAGE:C.

/H number Restricts external names to number significant characters. The default
is 31 characters.

/help Calls QuickHelp for help on ML.

/I pathname Sets path for include file. A maximum of 10 /I options is allowed.

/nologo Suppresses messages for successful assembly.

/Sa Turns on listing of all available information.

/Sc Adds instruction timings to listing file.

/Sf Adds first-pass listing to listing file.

/Sg Turns on listing of assembly-generated code.

/Sl width Sets the line width of source listing in characters per line. Range is 60
to 255 or 0. Default is 0. Same as PAGE width.

/Sn Turns off symbol table when producing a listing.

/Sp length Sets the page length of source listing in lines per page. Range is 10 to
255 or 0. Default is 0. Same as PAGE length.

/Ss text Specifies text for source listing. Same as SUBTITLE text.

/St text Specifies title for source listing. Same as TITLE text.

/Sx Turns on false conditionals in listing.

/Ta filename Assembles source file whose name does not end with the .ASM
extension.

/w Same as /W0.

/Wlevel Sets the warning level, where level = 0, 1, 2, or 3.

Option Action

/WX Returns an error code if warnings are generated.

/Zd Generates line-number information in object file.

/Zf Makes all symbols public.

/Zi Generates CodeView information in object file.

ML
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 367

/Zm Enables M510 option for maximum compatibility with MASM 5.1.

/Zp[[alignment]] Packs structures on the specified byte boundary. The alignment may
be 1, 2, or 4.

/Zs Performs a syntax check only.

/? Displays a summary of ML command-line syntax.

QuickAssemblerSupport

For compatibility with QuickAssembler makefiles, ML recognizes these options:

Option

Action

/a Orders segments alphabetically in QuickAssembler. MASM 6.1 uses
the .ALPHA directive for alphabetical ordering and ignores /a.

/Cl Equivalent to /Cp.

/Ez Prints the source for error lines to the screen. MASM 6.1 ignores this
option.

/P1 Performs one-pass assembly. MASM 6.1 ignores this option.

/P2 Performs two-pass assembly. MASM 6.1 ignores this option.

/s Orders segments sequentially. MASM 6.1 uses the .SEQ directive for
sequential ordering and ignores /s.

/Sq Equivalent to /Sl0 /Sp0.

EnvironmentVariables

Variable

Description

INCLUDE Specifies search path for include files.

ML Specifies default command-line options.

TMP Specifies path for temporary files.

NMAKE

The NMAKE utility automates the process of compiling and linking project files.

Syntax

NMAKE [[options]] [[macros]] [[targets]]

Options

Option Action

/A Executes all commands even if targets are not out-of-date.

/C Suppresses the NMAKE copyright message and prevents nonfatal error or warning
messages from being displayed.

/D Displays the modification time of each file when the times of targets and dependents
are checked.

NMAKE
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 368

/E Causes environment variables to override macro definitions within description files.

/F filename Specifies filename as the name of the description file to use. If a dash (–) is entered
instead of a filename, NMAKE reads the description file from the standard input
device. If /F is not specified, NMAKE uses MAKEFILE as the description file. If
MAKEFILE does not exist, NMAKE builds command-line targets using inference
rules.

/HELP Calls QuickHelp for help on NMAKE.

/I Ignores exit codes from commands in the description file. NMAKE continues
executing the rest of the description file despite the errors.

/N Displays but does not execute commands from the description file.

/NOLOGO Suppresses the NMAKE copyright message.

/P Displays all macro definitions, inference rules, target descriptions, and the
.SUFFIXES list.

/Q Checks modification times of command-line targets (or first target in the description
file if no command-line targets are specified). NMAKE returns a zero exit code if all
such targets are up-to-date and a nonzero exit code if any target is out-of-date. Only
preprocessing commands in the description file are executed.

/R Ignores inference rules and macros that are predefined or defined in the TOOLS.INI
file.

/S Suppresses display of commands as they are executed.

/T Changes modification times of command-line targets (or first target in the description
file if no command-line targets are specified) to the current time. Only preprocessing
commands in the description file are executed. The contents of target files are not
modified.

/X filename Sends all error output to filename, which can be either a file or a device. If a dash (–)
is entered instead of a filename, the error output is sent to the standard output
device.

/Z Internal option for use by the Microsoft Programmer’s WorkBench (PWB).

/? Displays a summary of NMAKE command-line syntax.

Environment Variable

Variable Description

INIT Specifies path for TOOLS.INI file, which may contain macros, inference rules, and
description blocks.

PWB (Programmer's WorkBench)

The Microsoft Programmer’s WorkBench (PWB) provides an integrated environment for developing
programs in assembly language. The command-line options are case sensitive.

Syntax

PWB [[options]] [[files]]

Options

Option Action

PWB (Programmer's WorkBench)
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 369

/D[[init]] Prevents PWB from examining initialization files, where init is one or
more of the following characters:

A Disable autoload extensions (including language-specific
extensions and Help).

S Ignore CURRENT.STS.

T Ignore TOOLS.INI.

If the /D option does not include an init character, it is equivalent to
specifying /DAST (all files and extensions ignored).

/e cmdstr Executes the command or sequence of commands at start-up. The
entire cmdstr argument must be placed in double quotation marks if it
contains a space. If cmdstr contains literal double quotation marks,
place a backslash (\) in front of each double quotation mark. To
include a literal backslash in the command string, use double
backslashes (\\).

/m mark Moves the cursor to the specified mark instead of moving it to the last
known position. The mark can be a line number.

/P[[init]] Specifies a program list for PWB to read, where init can be:

Ffile Read a foreign program list (one not created using
PWB).

L Read the last program list. Use this option to start
PWB in the same state you left it.

Pfile Read a PWB program list.

/r Starts PWB in no-edit mode. Functions that modify files are
disallowed.

Option Action

[[/t]] file... Loads the specified file at startup. The file specification can contain
wildcards. If multiple files are specified, PWB loads only the first file.
When the Exit function is invoked, PWB saves the current file and
loads the next file in the list. Files specified with /t are temporary;
PWB does not add them to the file history on the File menu.

No other options can follow /t on the command line. Each temporary
file must be specified in a separate /t option.

/? Displays a summary of PWB command-line syntax.

Environment Variables

Variable

Description

HELPFILES Specifies path of help files or list of help filenames.

INIT Specifies path for TOOLS.INI and CURRENT.STS files.

TMP Specifies path for temporary files.

PWBRMAKE

PWBRMAKE converts the .SBR files created by the assembler into database .BSC files that can be

PWBRMAKE
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 370

read by the Microsoft Programmer’s WorkBench (PWB) Source Browser. The command-line options
are case sensitive.

Syntax

PWBRMAKE [[options]] sbrfiles

Options

Option

Action

/Ei filename
/Ei (filename...)

Excludes the contents of the specified include files from the database. To
specify multiple filenames, separate them with spaces and enclose the list in
parentheses.

/Em Excludes symbols in the body of macros. Use /Em to include only macro
names.

/Es Excludes from the database every include file specified with an absolute path
or found in an absolute path specified in the INCLUDE environment variable.

/HELP Calls QuickHelp for help on PWBRMAKE.

/Iu Includes unreferenced symbols.

/n Forces a nonincremental build and prevents truncation of .SBR files.

/o filename Specifies a name for the database file.

/v Displays verbose output.

/? Displays a summary of PWBRMAKE command-line syntax.

QuickHelp

The QuickHelp utility displays Help files. All MASM reserved words and error messages can be used
for topic.

Syntax

QH [[options]] [[topic]]

Options

Option Action

/d filename Specifies either a specific database name or a path where the
databases are found.

/lnumber Specifies the number of lines the QuickHelp window should occupy.

/mnumber Changes the screen mode to display the specified number of lines,
where number is in the range 25 to 60.

/p filename Sets the name of the paste file.

/pa[[filename]] Specifies that pasting operations are appended to the current paste
file (rather than overwriting the file).

/q Prevents the version box from being displayed when QuickHelp is
installed as a keyboard monitor.

QuickHelp
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 371

/r command Specifies the command that QuickHelp should execute when the right
mouse button is pressed. The command can be one of the following
letters:

l Display last topic

i Display history of help topics

w Hide window

b Display previous topic

e Find next topic

t Display contents

/s Specifies that clicking the mouse above or below the scroll box
causes QuickHelp to scroll by lines rather than pages.

Option Action

/t name Directs QuickHelp to copy the specified section of the given topic to
the current paste file and exit. The name may be:

All Paste the entire topic

Syntax Paste the syntax only

Example Paste the example only

If the topic is not found, QuickHelp returns an exit code
of 1.

/u Specifies that QuickHelp is being run by a utility. If the topic specified
on the command line is not found, QuickHelp immediately exits with
an exit code of 3.

EnvironmentVariables

Variable

Description

HELPFILES Specifies path of help files or list of help filenames.

QH Specifies default command-line options.

TMP Specifies directory of default paste file.

RM

The RM utility moves a file to a hidden DELETED subdirectory of the directory containing the file. Use
the UNDEL utility to recover the file and the EXP utility to mark the hidden file for deletion.

Syntax

RM [[options]] [[files]]

Options

Option Action

/F Deletes read-only files without prompting.

/HELP Calls QuickHelp for help on RM.

RM
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 372

/I Inquires for permission before removing each file.

/K Keeps read-only files without prompting.

/R directory Recurses into subdirectories of the specified directory.

/? Displays a summary of RM command-line syntax.

UNDEL

The UNDEL utility moves a file from a hidden DELETED subdirectory to the parent directory. UNDEL is
used along with EXP and RM to manage backup files.

Syntax

UNDEL [[{option | files}]]

Options

Option

Action

/HELP Calls QuickHelp for help on UNDEL.

/? Displays a summary of UNDEL command-line syntax.

Chapter 2 Directives

Topical Cross-reference for Directives

Code Labels

ALIGN EVEN

LABEL ORG

Conditional Assembly

ELSE ELSEIF ELSEIF2

ENDIF IF IF2

IFB/IFNB IFDEF/IFNDEF IFDIF/IFDIFI

IFE IFIDN/IFIDNI

Conditional Control Flow

.BREAK .CONTINUE .ELSE

.ELSEIF .ENDIF .ENDW

.IF .REPEAT .UNTIL/

.UNTILCXZ .WHILE

Conditional Error

.ERR .ERR2 .ERRB

Chapter 2 Directives
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 373

.ERRDEF .ERRDIF/.ERRDIFI .ERRE

.ERRIDN/.ERRIDNI .ERRNB .ERRNDEF

.ERRNZ

Data Allocation

ALIGN BYTE/SBYTE DWORD/SDWORD

EVEN FWORD LABEL

ORG QWORD REAL4

REAL8 REAL10 TBYTE

WORD/SWORD

Equates

=

EQU

TEXTEQU

Listing Control

.CREF .LIST .LISTALL

.LISTIF .LISTMACRO .LISTMACROALL

.NOCREF .NOLIST .NOLISTIF

.NOLISTMACRO PAGE SUBTITLE

.TFCOND TITLE

Macros

ENDM EXITM GOTO

LOCAL MACRO PURGE

Miscellaneous

ASSUME COMMENT ECHO

END INCLUDE INCLUDELIB

OPTION POPCONTEXT PUSHCONTEXT

.RADIX

Procedures

ENDP INVOKE PROC

PROTO USES

Processor

.186 .286 .286P

.287 .386 .386P

.387 .486 .486P

.8086 .8087 .NO87

Repeat Blocks

ENDM FOR FORC

Chapter 2 Directives
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 374

GOTO REPEAT WHILE

Scope

COMM EXTERN EXTERNDEF

INCLUDELIB PUBLIC

Segment

.ALPHA ASSUME .DOSSEG

END ENDS GROUP

SEGMENT .SEQ

Simplified Segment

.CODE .CONST .DATA

.DATA? .DOSSEG .EXIT

.FARDATA .FARDATA? .MODEL

.STACK .STARTUP

String

CATSTR INSTR

SIZESTR SUBSTR

Structure and Record

ENDS RECORD STRUCT

TYPEDEF UNION

Directives

name = expression
Assigns the numeric value of expression to name. The symbol may be redefined later.

.186
Enables assembly of instructions for the 80186 processor; disables assembly of instructions
introduced with later processors. Also enables 8087 instructions.

.286
Enables assembly of nonprivileged instructions for the 80286 processor; disables assembly of
instructions introduced with later processors. Also enables 80287 instructions.

.286P
Enables assembly of all instructions (including privileged) for the 80286 processor; disables
assembly of instructions introduced with later processors. Also enables 80287 instructions.

.287
Enables assembly of instructions for the 80287 coprocessor; disables assembly of instructions
introduced with later coprocessors.

.386

Directives
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 375

Enables assembly of nonprivileged instructions for the 80386 processor; disables assembly of
instructions introduced with later processors. Also enables 80387 instructions.

.386P
Enables assembly of all instructions (including privileged) for the 80386 processor; disables
assembly of instructions introduced with later processors. Also enables 80387 instructions.

.387
Enables assembly of instructions for the 80387 coprocessor.

.486
Enables assembly of nonprivileged instructions for the 80486 processor.

.486P
Enables assembly of all instructions (including privileged) for the 80486 processor.

.8086
Enables assembly of 8086 instructions (and the identical 8088 instructions); disables assembly of
instructions introduced with later processors. Also enables 8087 instructions. This is the default
mode for processors.

.8087
Enables assembly of 8087 instructions; disables assembly of instructions introduced with later
coprocessors. This is the default mode for coprocessors.

ALIGN [[number]]
Aligns the next variable or instruction on a byte that is a multiple of number.

.ALPHA
Orders segments alphabetically.

ASSUME segregister:name [[, segregister:name]]...
ASSUME dataregister:type [[, dataregister:type]]...
ASSUME register:ERROR [[, register:ERROR]]...
ASSUME [[register:]] NOTHING [[, register:NOTHING]]...

Enables error-checking for register values. After an ASSUME is put into effect, the assembler
watches for changes to the values of the given registers. ERROR generates an error if the register
is used. NOTHING removes register error-checking. You can combine different kinds of
assumptions in one statement.

.BREAK [[.IF condition]]
Generates code to terminate a .WHILE or .REPEAT block if condition is true.

[[name]] BYTE initializer [[, initializer]] ...
Allocates and optionally initializes a byte of storage for each initializer. Can also be used as a
type specifier anywhere a type is legal.

name CATSTR [[textitem1 [[, textitem2]] ...]]
Concatenates text items. Each text item can be a literal string, a constant preceded by a %, or
the string returned by a macro function.

.CODE [[name]]
When used with .MODEL, indicates the start of a code segment called name (the default segment
name is _TEXT for tiny, small, compact, and flat models, or module_TEXT for other models).

Directives
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 376

COMM definition [[, definition]] ...
Creates a communal variable with the attributes specified in definition. Each definition has the
following form:

[[langtype]] [[NEAR | FAR]] label:type[[:count]]

The label is the name of the variable. The type can be any type specifier (BYTE, WORD, and so
on) or an integer specifying the number of bytes. The count specifies the number of data objects
(one is the default).

COMMENT delimiter [[text]]
[[text]]

[[text]] delimiter [[text]]

Treats all text between or on the same line as the delimiters as a comment.

.CONST
When used with .MODEL, starts a constant data segment (with segment name CONST). This
segment has the read-only attribute.

.CONTINUE [[.IF condition]]
Generates code to jump to the top of a .WHILE or .REPEAT block if condition is true.

.CREF
Enables listing of symbols in the symbol portion of the symbol table and browser file.

.DATA
When used with .MODEL, starts a near data segment for initialized data (segment name _DATA).

.DATA?
When used with .MODEL, starts a near data segment for uninitialized data (segment name _BSS).

.DOSSEG
Orders the segments according to the MS-DOS segment convention: CODE first, then segments
not in DGROUP, and then segments in DGROUP. The segments in DGROUP follow this order:
segments not in BSS or STACK, then BSS segments, and finally STACK segments. Primarily
used for ensuring CodeView support in MASM stand-alone programs. Same as DOSSEG.

DOSSEG
Identical to .DOSSEG, which is the preferred form.

DB
Can be used to define data like BYTE.

DD
Can be used to define data like DWORD.

DF
Can be used to define data like FWORD.

DQ
Can be used to define data like QWORD.

Directives
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 377

DT
Can be used to define data like TBYTE.

DW
Can be used to define data like WORD.

[[name]] DWORD initializer [[, initializer]]...
Allocates and optionally initializes a doubleword (4 bytes) of storage for each initializer. Can also
be used as a type specifier anywhere a type is legal.

ECHO message
Displays message to the standard output device (by default, the screen). Same as %OUT.

.ELSE
See .IF.

ELSE
Marks the beginning of an alternate block within a conditional block. See IF.

ELSEIF
Combines ELSE and IF into one statement. See IF.

ELSEIF2
ELSEIF block evaluated on every assembly pass if OPTION:SETIF2 is TRUE.

END [[address]]
Marks the end of a module and, optionally, sets the program entry point to address.

.ENDIF
See .IF.

ENDIF
See IF.

ENDM
Terminates a macro or repeat block. See MACRO, FOR, FORC, REPEAT, or WHILE.

name ENDP
Marks the end of procedure name previously begun with PROC. See PROC.

name ENDS
Marks the end of segment, structure, or union name previously begun with SEGMENT, STRUCT,
UNION, or a simplified segment directive.

.ENDW
See .WHILE.

name EQU expression
Assigns numeric value of expression to name. The name cannot be redefined later.

name EQU <text>
Assigns specified text to name. The name can be assigned a different text later. See TEXTEQU.

Directives
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 378

.ERR [[message]]
Generates an error.

.ERR2 [[message]]
.ERR block evaluated on every assembly pass if OPTION:SETIF2 is TRUE.

.ERRB <textitem> [[, message]]
Generates an error if textitem is blank.

.ERRDEF name [[, message]]
Generates an error if name is a previously defined label, variable, or symbol.

.ERRDIF[[I]] <textitem1>, <textitem2> [[, message]]
Generates an error if the text items are different. If I is given, the comparison is case insensitive.

.ERRE expression [[, message]]
Generates an error if expression is false (0).

.ERRIDN[[I]] <textitem1>, <textitem2> [[, message]]
Generates an error if the text items are identical. If I is given, the comparison is case insensitive.

.ERRNB <textitem> [[, message]]
Generates an error if textitem is not blank.

.ERRNDEF name [[, message]]
Generates an error if name has not been defined.

.ERRNZ expression [[, message]]
Generates an error if expression is true (nonzero).

EVEN
Aligns the next variable or instruction on an even byte.

.EXIT [[expression]]
Generates termination code. Returns optional expression to shell.

EXITM [[textitem]]
Terminates expansion of the current repeat or macro block and begins assembly of the next
statement outside the block. In a macro function, textitem is the value returned.

EXTERN [[langtype]] name [[(altid)]] :type [[, [[langtype]] name [[(altid)]] :type]]...
Defines one or more external variables, labels, or symbols called name whose type is type. The
type can be ABS, which imports name as a constant. Same as EXTRN.

EXTERNDEF [[langtype]] name:type [[, [[langtype]] name:type]]...
Defines one or more external variables, labels, or symbols called name whose type is type. If
name is defined in the module, it is treated as PUBLIC. If name is referenced in the module, it is
treated as EXTERN. If name is not referenced, it is ignored. The type can be ABS, which imports
name as a constant. Normally used in include files.

EXTRN
See EXTERN.

.FARDATA [[name]]

Directives
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 379

When used with .MODEL, starts a far data segment for initialized data (segment name
FAR_DATA or name).

.FARDATA? [[name]]
When used with .MODEL, starts a far data segment for uninitialized data (segment name
FAR_BSS or name).

FOR parameter [[:REQ | :=default]] , <argument [[, argument]]...>
 statements

ENDM
Marks a block that will be repeated once for each argument, with the current argument
replacing parameter on each repetition. Same as IRP.

FORC
parameter, <string> statements

ENDM
Marks a block that will be repeated once for each character in string, with the current
character replacing parameter on each repetition. Same as IRPC.

[[name]] FWORD initializer [[, initializer]]...
Allocates and optionally initializes 6 bytes of storage for each initializer. Also can be used as a
type specifier anywhere a type is legal.

GOTO macrolabel
Transfers assembly to the line marked :macrolabel. GOTO is permitted only inside MACRO, FOR,
FORC, REPEAT, and WHILE blocks. The label must be the only directive on the line and must be
preceded by a leading colon.

 name GROUP segment [[, segment]]...
Add the specified segments to the group called name.

.IF condition1
statements

[[.ELSEIF condition2
statements]]

[[.ELSE
statements]]

.ENDIF
Generates code that tests condition1 (for example, AX > 7) and executes the statements if
that condition is true. If an .ELSE follows, its statements are executed if the original condition
was false. Note that the conditions are evaluated at run time.

IF expression1
 ifstatements

[[ELSEIF expression2
 elseifstatements]]

[[ELSE

Directives
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 380

 elsestatements]]

ENDIF
Grants assembly of ifstatements if expression1 is true (nonzero) or elseifstatements if
expression1 is false (0) and expression2 is true. The following directives may be substituted for
ELSEIF: ELSEIFB,

ELSEIFDEF, ELSEIFDIF, ELSEIFDIFI, ELSEIFE, ELSEIFIDN, ELSEIFIDNI, ELSEIFNB, and
ELSEIFNDEF. Optionally, assembles elsestatements if the previous expression is false. Note
that the expressions are evaluated at assembly time.

IF2 expression
IF block is evaluated on every assembly pass if OPTION:SETIF2 is TRUE. See IF for complete
syntax.

IFB textitem
Grants assembly if textitem is blank. See IF for complete syntax.

IFDEF name
Grants assembly if name is a previously defined label, variable, or symbol. See IF for complete
syntax.

IFDIF[[I]] textitem1, textitem2
Grants assembly if the text items are different. If I is given, the comparison is case insensitive.
See IF for complete syntax.

IFE expression
Grants assembly if expression is false (0). See IF for complete syntax.

IFIDN[[I]] textitem1, textitem2
Grants assembly if the text items are identical. If I is given, the comparison is case insensitive.
See IF for complete syntax.

IFNB textitem
Grants assembly if textitem is not blank. See IF for complete syntax.

IFNDEF name
Grants assembly if name has not been defined. See IF for complete syntax.

INCLUDE filename
Inserts source code from the source file given by filename into the current source file during
assembly. The filename must be enclosed in angle brackets if it includes a backslash, semicolon,
greater-than symbol, less-than symbol, single quotation mark, or double quotation mark.

INCLUDELIB libraryname
Informs the linker that the current module should be linked with libraryname. The libraryname must
be enclosed in angle brackets if it includes a backslash, semicolon, greater-than symbol,
less-than symbol, single quotation mark, or double quotation mark.

name INSTR [[position,]] textitem1, textitem2
Finds the first occurrence of textitem2 in textitem1. The starting position is optional. Each text
item can be a literal string, a constant preceded by a %, or the string returned by a macro function.

INVOKE expression [[, arguments]]

Directives
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 381

Calls the procedure at the address given by expression, passing the arguments on the stack or in
registers according to the standard calling conventions of the language type. Each argument
passed to the procedure may be an expression, a register pair, or an address expression (an
expression preceded by ADDR).

IRP
See FOR.

IRPC
See FORC.

name LABEL type
Creates a new label by assigning the current location-counter value and the given type to name.

name LABEL [[NEAR | FAR | PROC]] PTR [[type]]
Creates a new label by assigning the current location-counter value and the given type to name.

.LALL
See .LISTMACROALL.

.LFCOND
See .LISTIF.

.LIST
Starts listing of statements. This is the default.

.LISTALL
Starts listing of all statements. Equivalent to the combination of .LIST, .LISTIF, and
.LISTMACROALL.

.LISTIF
Starts listing of statements in false conditional blocks. Same as .LFCOND.

.LISTMACRO
Starts listing of macro expansion statements that generate code or data. This is the default. Same
as .XALL.

.LISTMACROALL
Starts listing of all statements in macros. Same as .LALL.

LOCAL localname [[, localname]]...
Within a macro, LOCAL defines labels that are unique to each instance of the macro.

LOCAL label [[[count]]] [[:type]] [[, label [[[count]]] [[type]]]]...
Within a procedure definition (PROC), LOCAL creates stack-based variables that exist for the
duration of the procedure. The label may be a simple variable or an array containing count
elements.

name MACRO [[parameter [[:REQ | :=default | :VARARG]]]]...
 statements

ENDM [[value]]
Marks a macro block called name and establishes parameter placeholders for arguments
passed when the macro is called. A macro function returns value to the calling statement.

Directives
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 382

.MODEL memorymodel [[, langtype]] [[, stackoption]]
Initializes the program memory model. The memorymodel can be TINY, SMALL, COMPACT,
MEDIUM, LARGE, HUGE, or FLAT. The langtype can be C, BASIC, FORTRAN, PASCAL,
SYSCALL, or STDCALL. The stackoption can be NEARSTACK or FARSTACK.

NAME modulename
Ignored.

.NO87
Disallows assembly of all floating-point instructions.

.NOCREF [[name[[, name]]...]]
Suppresses listing of symbols in the symbol table and browser file. If names are specified, only
the given names are suppressed. Same as .XCREF.

.NOLIST
Suppresses program listing. Same as .XLIST.

.NOLISTIF
Suppresses listing of conditional blocks whose condition evaluates to false (0). This is the default.
Same as .SFCOND.

.NOLISTMACRO
Suppresses listing of macro expansions. Same as .SALL.

OPTION optionlist
Enables and disables features of the assembler. Available options include CASEMAP, DOTNAME,
NODOTNAME, EMULATOR, NOEMULATOR, EPILOGUE, EXPR16, EXPR32, LANGUAGE,
LJMP, NOLJMP, M510, NOM510, NOKEYWORD, NOSIGNEXTEND, OFFSET, OLDMACROS,
NOOLDMACROS, OLDSTRUCTS, NOOLDSTRUCTS, PROC, PROLOGUE, READONLY,
NOREADONLY, SCOPED, NOSCOPED, SEGMENT, and SETIF2.

ORG expression
Sets the location counter to expression.

%OUT
See ECHO.

PAGE [[[[length]], width]]
Sets line length and character width of the program listing. If no arguments are given, generates a
page break.

PAGE +
Increments the section number and resets the page number to 1.

POPCONTEXT context
Restores part or all of the current context (saved by the PUSHCONTEXT directive). The context
can be ASSUMES, RADIX, LISTING, CPU, or ALL.

label PROC [[distance]] [[langtype]] [[visibility]] [[<prologuearg>]]
[[USES reglist]] [[, parameter [[:tag]]]]...
statements

Directives
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 383

label ENDP
Marks start and end of a procedure block called label. The statements in the block can be
called with the CALL instruction or INVOKE directive.

label PROTO [[distance]] [[langtype]] [[, [[parameter]]:tag]]...
Prototypes a function.

PUBLIC [[langtype]] name [[, [[langtype]] name]]...
Makes each variable, label, or absolute symbol specified as name available to all other modules in
the program.

PURGE macroname [[, macroname]]...
Deletes the specified macros from memory.

PUSHCONTEXT context
Saves part or all of the current context: segment register assumes, radix value, listing and cref
flags, or processor/coprocessor values. The context can be ASSUMES, RADIX, LISTING, CPU,
or ALL.

[[name]] QWORD initializer [[, initializer]]...
Allocates and optionally initializes 8 bytes of storage for each initializer. Also can be used as a
type specifier anywhere a type is legal.

.RADIX expression
Sets the default radix, in the range 2 to 16, to the value of expression.

name REAL4 initializer [[, initializer]]...
Allocates and optionally initializes a single-precision (4-byte) floating-point number for each
initializer.

name REAL8 initializer [[, initializer]]...
Allocates and optionally initializes a double-precision (8-byte) floating-point number for each
initializer.

name REAL10 initializer [[, initializer]]...
Allocates and optionally initializes a 10-byte floating-point number for each initializer.

recordname RECORD fieldname:width [[= expression]]
[[, fieldname:width [[= expression]]]]...

Declares a record type consisting of the specified fields. The fieldname names the field, width
specifies the number of bits, and expression gives its initial value.

.REPEAT
statements

.UNTIL condition
Generates code that repeats execution of the block of statements until condition becomes
true. .UNTILCXZ, which becomes true when CX is zero, may be substituted for .UNTIL. The
condition is optional with .UNTILCXZ.

REPEAT expression

statements
ENDM

Directives
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 384

Marks a block that is to be repeated expression times. Same as REPT.

REPT
See REPEAT.

.SALL
See .NOLISTMACRO.

name SBYTE initializer [[, initializer]]...
Allocates and optionally initializes a signed byte of storage for each initializer. Can also be used
as a type specifier anywhere a type is legal.

name SDWORD initializer [[, initializer]]...
Allocates and optionally initializes a signed doubleword (4 bytes) of storage for each initializer.
Also can be used as a type specifier anywhere a type is legal.

name SEGMENT [[READONLY]] [[align]] [[combine]] [[use]] [['class']]

 statements

name ENDS
Defines a program segment called name having segment attributes align (BYTE, WORD,
DWORD, PARA, PAGE), combine (PUBLIC, STACK, COMMON, MEMORY, AT address,
PRIVATE), use (USE16, USE32, FLAT), and class.

.SEQ
Orders segments sequentially (the default order).

.SFCOND
See .NOLISTIF.

name SIZESTR textitem
Finds the size of a text item.

.STACK [[size]]
When used with .MODEL, defines a stack segment (with segment name STACK). The optional
size specifies the number of bytes for the stack (default 1,024). The .STACK directive
automatically closes the stack statement.

.STARTUP
Generates program start-up code.

STRUC
See STRUCT.

name STRUCT [[alignment]] [[, NONUNIQUE]]
 fielddeclarations

name ENDS
Declares a structure type having the specified fielddeclarations. Each field must be a valid
data definition. Same as STRUC.

name SUBSTR textitem, position [[, length]]

Directives
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 385

Returns a substring of textitem, starting at position. The textitem can be a literal string, a constant
preceded by a %, or the string returned by a macro function.

SUBTITLE text
Defines the listing subtitle. Same as SUBTTL.

SUBTTL
See SUBTITLE.

name SWORD initializer [[, initializer]]...
Allocates and optionally initializes a signed word (2 bytes) of storage for each initializer. Can also
be used as a type specifier anywhere a type is legal.

[[name]] TBYTE initializer [[, initializer]]...
Allocates and optionally initializes 10 bytes of storage for each initializer. Can also be used as a
type specifier anywhere a type is legal.

name TEXTEQU [[textitem]]
Assigns textitem to name. The textitem can be a literal string, a constant preceded by a %, or the
string returned by a macro function.

.TFCOND
Toggles listing of false conditional blocks.

TITLE text
Defines the program listing title.

name TYPEDEF type
Defines a new type called name, which is equivalent to type.

name UNION [[alignment]] [[, NONUNIQUE]]

 fielddeclarations
[[name]] ENDS

Declares a union of one or more data types. The fielddeclarations must be valid data definitions.
Omit the ENDS name label on nested UNION definitions.

.UNTIL
See .REPEAT.

.UNTILCXZ
See .REPEAT.

.WHILE condition
statements

.ENDW
Generates code that executes the block of statements while condition remains true.

WHILE expression
statements

ENDM
Repeats assembly of block statements as long as expression remains true.

Directives
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 386

[[name]] WORD initializer [[, initializer]]...
Allocates and optionally initializes a word (2 bytes) of storage for each initializer. Can also be used
as a type specifier anywhere a type is legal.

.XALL
See .LISTMACRO.

.XCREF
See .NOCREF.

.XLIST
See .NOLIST.

Chapter 3 Symbols and Operators

Topical Cross-reference for Symbols

Date and Time Information

@Date

@Time

Environment Information

@Cpu

@Environ

@Interface

@Version

File Information

@FileCur

@FileName

@Line

Macro Functions

@CatStr

@InStr

@SizeStr

@SubStr

Miscellaneous

$? @@:

@B @F

Segment Information

@code @CodeSize @CurSeg

Chapter 3 Symbols and Operators
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 387

@data @DataSize @fardata

@fardata? @Model @stack

@WordSize

Topical Cross-reference for Operators

Arithmetic

* + -

. / []

MOD

Control Flow

! != &

&& < < =

= = > > =

||

Logical and Shift

AND NOT OR

SHL SHR XOR

Macro

! % &

;; <>

Miscellaneous

’’ “ ” :

:: ; CARRY?

DUP OVERFLOW? PARITY?

SIGN? ZERO?

Record

MASK

WIDTH

Relational

EQ GE GT

LE LT NE

Segment

:

LROFFSET

OFFSET

Topical Cross-reference for Operators
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 388

SEG

Type

HIGH HIGHWORD LENGTH

LENGTHOF LOW LOWWORD

OPATTR PTR SHORT

SIZE SIZEOF THIS

TYPE

Predefined Symbols

$
The current value of the location counter.

?
In data declarations, a value that the assembler allocates but does not initialize.

@@:
Defines a code label recognizable only between label1 and label2, where label1 is either start of
code or the previous @@: label, and label2 is either end of code or the next @@: label. See @B
and @F.

@B
The location of the previous @@: label.

@CatStr(string1 [[, string2...]])
Macro function that concatenates one or more strings. Returns a string.

@code
The name of the code segment (text macro).

@CodeSize
0 for TINY, SMALL, COMPACT, and FLAT models, and 1 for MEDIUM, LARGE, and HUGE
models (numeric equate).

@Cpu
A bit mask specifying the processor mode (numeric equate).

@CurSeg
The name of the current segment (text macro).

@data
The name of the default data group. Evaluates to DGROUP for all models except FLAT. Evaluates
to FLAT under the FLAT memory model (text macro).

@DataSize
0 for TINY, SMALL, MEDIUM, and FLAT models, 1 for COMPACT and LARGE models, and 2 for
HUGE model (numeric equate).

@Date

Predefined Symbols
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 389

The system date in the format mm/dd/yy (text macro).

@Environ(envvar)
Value of environment variable envvar (macro function).

@F
The location of the next @@: label.

@fardata
The name of the segment defined by the .FARDATA directive (text macro).

@fardata?
The name of the segment defined by the .FARDATA? directive (text macro).

@FileCur
The name of the current file (text macro).

@FileName
The base name of the main file being assembled (text macro).

@InStr([[position]], string1, string2)
Macro function that finds the first occurrence of string2 in string1, beginning at position within
string1. If position does not appear, search begins at start of string1. Returns a position integer or
0 if string2 is not found.

@Interface
Information about the language parameters (numeric equate).

@Line
The source line number in the current file (numeric equate).

@Model
1 for TINY model, 2 for SMALL model, 3 for COMPACT model, 4 for MEDIUM model, 5 for LARGE
model, 6 for HUGE model, and 7 for FLAT model (numeric equate).

@SizeStr(string)
Macro function that returns the length of the given string. Returns an integer.

@SubStr(string, position [[, length]])
Macro function that returns a substring starting at position.

@stack
DGROUP for near stacks or STACK for far stacks (text macro).

@Time
The system time in 24-hour hh:mm:ss format (text macro).

@Version
610 in MASM 6.1 (text macro).

@WordSize
Two for a 16-bit segment or 4 for a 32-bit segment (numeric equate).

Predefined Symbols
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 390

Operators

expression1 + expression2
Returns expression1 plus expression2.

expression1 – expression2
Returns expression1 minus expression2.

expression1 * expression2
Returns expression1 times expression2.

expression1 / expression2
Returns expression1 divided by expression2.

–expression
Reverses the sign of expression.

expression1 [expression2]
Returns expression1 plus [expression2].

segment: expression
Overrides the default segment of expression with segment. The segment can be a segment
register, group name, segment name, or segment expression. The expression must be a constant.

expression. field [[. field]]...
Returns expression plus the offset of field within its structure or union.

[register]. field [[. field]]...
Returns value at the location pointed to by register plus the offset of field within its structure or
union.

<text>
Treats text as a single literal element.

“text”
Treats “text” as a string.

’text’
Treats ’text’ as a string.

!character
Treats character as a literal character rather than as an operator or symbol.

;text
Treats text as a comment.

;;text
Treats text as a comment in a macro that appears only in the macro definition. The listing does
not show text where the macro is expanded.

%expression
Treats the value of expression in a macro argument as text.

Operators
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 391

¶meter&
Replaces parameter with its corresponding argument value.

ABS
See the EXTERNDEF directive.

ADDR
See the INVOKE directive.

expression1 AND expression2
Returns the result of a bitwise AND operation for expression1 and expression2.

count DUP (initialvalue [[, initialvalue]]...)
Specifies count number of declarations of initialvalue.

expression1 EQ expression2
Returns true (–1) if expression1 equals expression2, or returns false (0) if it does not.

expression1 GE expression2
Returns true (–1) if expression1 is greater-than-or-equal-to expression2, or returns false (0) if it is
not.

expression1 GT expression2
Returns true (–1) if expression1 is greater than expression2, or returns false (0) if it is not.

HIGH expression
Returns the high byte of expression.

HIGHWORD expression
Returns the high word of expression.

expression1 LE expression2
Returns true (–1) if expression1 is less than or equal to expression2, or returns false (0) if it is not.

LENGTH variable
Returns the number of data items in variable created by the first initializer.

LENGTHOF variable
Returns the number of data objects in variable.

LOW expression
Returns the low byte of expression.

LOWWORD expression
Returns the low word of expression.

LROFFSET expression
Returns the offset of expression. Same as OFFSET, but it generates a loader resolved offset,
which allows Windows to relocate code segments.

expression1 LT expression2
Returns true (–1) if expression1 is less than expression2, or returns false (0) if it is not.

Operators
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 392

MASK {recordfieldname | record}
Returns a bit mask in which the bits in recordfieldname or record are set and all other bits are
cleared.

expression1 MOD expression2
Returns the integer value of the remainder (modulo) when dividing expression1 by expression2.

expression1 NE expression2
Returns true (–1) if expression1 does not equal expression2, or returns false (0) if it does.

NOT expression
Returns expression with all bits reversed.

OFFSET expression
Returns the offset of expression.

OPATTR expression
Returns a word defining the mode and scope of expression. The low byte is identical to the byte
returned by .TYPE. The high byte contains additional information.

expression1 OR expression2
Returns the result of a bitwise OR operation for expression1 and expression2.

type PTR expression
Forces the expression to be treated as having the specified type.

[[distance]] PTR type
Specifies a pointer to type.

SEG expression
Returns the segment of expression.

expression SHL count
Returns the result of shifting the bits of expression left count number of bits.

SHORT label
Sets the type of label to short. All jumps to label must be short (within the range –128 to +127
bytes from the jump instruction to label).

expression SHR count
Returns the result of shifting the bits of expression right count number of bits.

SIZE variable
Returns the number of bytes in variable allocated by the first initializer.

SIZEOF {variable | type}
Returns the number of bytes in variable or type.

THIS type
Returns an operand of specified type whose offset and segment values are equal to the current
location-counter value.

.TYPE expression
See OPATTR.

Operators
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 393

TYPE expression
Returns the type of expression.

WIDTH {recordfieldname | record}
Returns the width in bits of the current recordfieldname or record.

expression1 XOR expression2
Returns the result of a bitwise XOR operation for expression1 and expression2.

Run-Time Operators

The following operators are used only within .IF, .WHILE, or .REPEAT blocks and are evaluated at run
time, not at assembly time:

expression1 == expression2
Is equal to.

expression1 != expression2
Is not equal to.

expression1 > expression2
Is greater than.

expression1 >= expression2
Is greater than or equal to.

expression1 < expression2
Is less than.

expression1 <= expression2
Is less than or equal to.

expression1 || expression2
Logical OR.

expression1 && expression2
Logical AND.

expression1 & expression2
Bitwise AND.

!expression
Logical negation.

CARRY?
Status of carry flag.

OVERFLOW?
Status of overflow flag.

Run-Time Operators
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 394

PARITY?
Status of parity flag.

SIGN?
Status of sign flag.

ZERO?
Status of zero flag.

Chapter 4 Processor

Topical Cross-reference for Processor Instructions

Arithmetic

ADC ADD DEC

DIV IDIV IMUL

INC MUL NEG

SBB SUB XADD#

BCD Conversion

AAA AAD AAM

AAS DAA DAS

Bit Operations

AND BSF§ BSR§

BT§ BTC§ BTR§

BTS§ NOT OR

RCL RCR ROL

ROR SAR SHL/SAL

SHLD§ SHR SHRD§

XOR

Compare

BT§ BTC§ BTR§

BTS§ CMP CMPS

CMPXCHG# TEST

Conditional Set

SETA/SETNBE§ SETAE/SETNB§ SETB/SETNAE§

SETBE/SETNA§ SETC§ SETE/SETZ§

SETG/SETNLE§ SETGE/SETNL§ SETL/SETNGE§

SETLE/SETNG§ SETNC§ SETNE/SETNZ§

SETNO§ SETNP/SETPO§ SETNS§

Chapter 4 Processor
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 395

SETO§ SETP/SETPE§ SETS§

* 80186–80486 only. † 80286–80486 only.
§ 80386–80486 only. # 80486 only.

Conditional Transfer

BOUND* INTO JA/JNBE

JAE/JNB JB/JNAE JBE/JNA

JC JCXZ/JECXZ JE/JZ

JG/JNLE JGE/JNL JL/JNGE

JLE/JNG JNC JNE/JNZ

JNO JNP/JPO JNS

JO JP/JPE JS

Data Transfer

BSWAP# CMPXCHG# LDS/LES

LEA LFS/LGS/LSS§ LODS

MOV MOVS MOVSX§

MOVZX§ STOS XADD#

XCHG XLAT/XLATB

Flag

CLC CLD CLI

CMC LAHF POPF

PUSHF SAHF STC

STD STI

Input/Output

IN INS*

OUT OUTS*

Loop

JCXZ/JECXZ LOOP

LOOPE/LOOPZ LOOPNE/LOOPNZ

* 80186–80486 only. † 80286–80486 only.
§ 80386–80486 only. # 80486 only.

Process Control

ARPL† CLTS† LAR†

LGDT/LIDT/LLDT† LMSW† LSL†

LTR† SGDT/SIDT/SLDT† SMSW†

STR† VERR† VERW†

MOV special§ INVD# INVLPG#

WBINVD#

Processor Control

Chapter 4 Processor
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 396

HLT LOCK

NOP WAIT

Stack

PUSH PUSHF PUSHA*

PUSHAD* POP POPF

POPA* POPAD* ENTER*

LEAVE*

String

MOVS LODS STOS

SCAS CMPS INS*

OUTS* REP REPE/REPZ

REPNE/REPNZ

Type Conversion

CBW CWD

CWDE§ CDQ§

BSWAP#

Unconditional Transfer

CALL INT IRET

RET RETN/RETF JMP

* 80186–80486 only. † 80286–80486 only.
§ 80386–80486 only. # 80486 only.

Chapter 4 Processor

Topical Cross-reference for Processor Instructions

Arithmetic

ADC ADD DEC

DIV IDIV IMUL

INC MUL NEG

SBB SUB XADD#

BCD Conversion

AAA AAD AAM

AAS DAA DAS

Bit Operations

AND BSF§ BSR§

Chapter 4 Processor
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 397

BT§ BTC§ BTR§

BTS§ NOT OR

RCL RCR ROL

ROR SAR SHL/SAL

SHLD§ SHR SHRD§

XOR

Compare

BT§ BTC§ BTR§

BTS§ CMP CMPS

CMPXCHG# TEST

Conditional Set

SETA/SETNBE§ SETAE/SETNB§ SETB/SETNAE§

SETBE/SETNA§ SETC§ SETE/SETZ§

SETG/SETNLE§ SETGE/SETNL§ SETL/SETNGE§

SETLE/SETNG§ SETNC§ SETNE/SETNZ§

SETNO§ SETNP/SETPO§ SETNS§

SETO§ SETP/SETPE§ SETS§

* 80186–80486 only. † 80286–80486 only.
§ 80386–80486 only. # 80486 only.

Conditional Transfer

BOUND* INTO JA/JNBE

JAE/JNB JB/JNAE JBE/JNA

JC JCXZ/JECXZ JE/JZ

JG/JNLE JGE/JNL JL/JNGE

JLE/JNG JNC JNE/JNZ

JNO JNP/JPO JNS

JO JP/JPE JS

Data Transfer

BSWAP# CMPXCHG# LDS/LES

LEA LFS/LGS/LSS§ LODS

MOV MOVS MOVSX§

MOVZX§ STOS XADD#

XCHG XLAT/XLATB

Flag

CLC CLD CLI

CMC LAHF POPF

PUSHF SAHF STC

STD STI

Input/Output

Chapter 4 Processor
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 398

IN INS*

OUT OUTS*

Loop

JCXZ/JECXZ LOOP

LOOPE/LOOPZ LOOPNE/LOOPNZ

* 80186–80486 only. † 80286–80486 only.
§ 80386–80486 only. # 80486 only.

Process Control

ARPL† CLTS† LAR†

LGDT/LIDT/LLDT† LMSW† LSL†

LTR† SGDT/SIDT/SLDT† SMSW†

STR† VERR† VERW†

MOV special§ INVD# INVLPG#

WBINVD#

Processor Control

HLT LOCK

NOP WAIT

Stack

PUSH PUSHF PUSHA*

PUSHAD* POP POPF

POPA* POPAD* ENTER*

LEAVE*

String

MOVS LODS STOS

SCAS CMPS INS*

OUTS* REP REPE/REPZ

REPNE/REPNZ

Type Conversion

CBW CWD

CWDE§ CDQ§

BSWAP#

Unconditional Transfer

CALL INT IRET

RET RETN/RETF JMP

* 80186–80486 only. † 80286–80486 only.
§ 80386–80486 only. # 80486 only.

Chapter 4 Processor
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 399

Interpreting Processor Instructions

The following sections explain the format of instructions for the 8086, 8088, 80286, 80386, and 80486
processors. Those instructions begin on page 64.

Flags
Only the flags common to all processors are shown. If none of the flags is affected by the instruction,
the flag line says No change. If flags can be affected, a two-line entry is shown. The first line shows
flag abbreviations as follows:

Abbreviation Flag

O Overflow

D Direction

I Interrupt

T Trap

S Sign

Z Zero

A Auxiliary carry

P Parity

C Carry

The second line has codes indicating how the flag can be affected:

Code Effect

1 Sets the flag

0 Clears the flag

? May change the flag, but the value is not predictable

blank No effect on the flag

± Modifies according to the rules associated with the flag

Syntax

Each encoding variation may have different syntaxes corresponding to different addressing modes. The
following abbreviations are used:

reg A general-purpose register of any size.

segreg One of the segment registers: DS, ES, SS, or CS (also FS or GS on the 80386–80486).

accum An accumulator register of any size: AL or AX (also EAX on the 80386–80486).

mem A direct or indirect memory operand of any size.

label A labeled memory location in the code segment.

src,dest A source or destination memory operand used in a string operation.

immed A constant operand.

In some cases abbreviations have numeric suffixes to specify that the operand must be a particular
size. For example, reg16 means that only a 16-bit (word) register is accepted.

Interpreting Processor Instructions
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 400

Examples

One or more examples are shown for each syntax. Their position is not related to the clock speeds in
the right column.

Interpreting Processor Instructions

The following sections explain the format of instructions for the 8086, 8088, 80286, 80386, and 80486
processors. Those instructions begin on page 64.

Flags
Only the flags common to all processors are shown. If none of the flags is affected by the instruction,
the flag line says No change. If flags can be affected, a two-line entry is shown. The first line shows
flag abbreviations as follows:

Abbreviation Flag

O Overflow

D Direction

I Interrupt

T Trap

S Sign

Z Zero

A Auxiliary carry

P Parity

C Carry

The second line has codes indicating how the flag can be affected:

Code Effect

1 Sets the flag

0 Clears the flag

? May change the flag, but the value is not predictable

blank No effect on the flag

± Modifies according to the rules associated with the flag

Syntax

Each encoding variation may have different syntaxes corresponding to different addressing modes. The
following abbreviations are used:

reg A general-purpose register of any size.

segreg One of the segment registers: DS, ES, SS, or CS (also FS or GS on the 80386–80486).

accum An accumulator register of any size: AL or AX (also EAX on the 80386–80486).

mem A direct or indirect memory operand of any size.

Interpreting Processor Instructions
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 401

label A labeled memory location in the code segment.

src,dest A source or destination memory operand used in a string operation.

immed A constant operand.

In some cases abbreviations have numeric suffixes to specify that the operand must be a particular
size. For example, reg16 means that only a 16-bit (word) register is accepted.

Examples

One or more examples are shown for each syntax. Their position is not related to the clock speeds in
the right column.

ClockSpeeds

Column 3 shows the clock speeds for each processor. Sometimes an instruction may have more than
one clock speed. Multiple speeds are separated by commas. If several speeds are part of an
expression, they are enclosed in parentheses. The following abbreviations are used to specify
variations:

EA Effective address. This applies only to the 8088 and 8086 processors, as described in the next
section.

b,w,d Byte, word, or doubleword operands.

pm Protected mode.

n Iterations. Repeated instructions may have a base number of clocks plus a number of clocks for
each iteration. For example, 8+4n means 8 clocks plus 4 clocks for each iteration.

noj No jump. For conditional jump instructions, noj indicates the speed if the condition is false and
the jump is not taken.

m Next instruction components. Some control transfer instructions take different times depending on
the length of the next instruction executed. On the 8088 and 8086, m is never a factor. On the 80286,
m is the number of bytes in the instruction. On the 80386–80486, m is the number of components.
Each byte of encoding is a component, and the displacement and data are separate components.

W88,88 8088 exceptions. See “Timings on the 8088 and 8086 Processors,” following.

Clocks can be converted to nanoseconds by dividing 1 microsecond by the number of megahertz
(MHz) at which the processor is running. For example, on a processor running at 8 MHz, 1 clock
takes 125 nanoseconds (1000 MHz per nanosecond / 8 MHz).

The clock counts are for best-case timings. Actual timings vary depending on wait states, alignment of
the instruction, the status of the prefetch queue, and other factors.

Timings on the 8088 and 8086 Processors

Because of its 8-bit data bus, the 8088 always requires two fetches to get a 16-bit operand. Therefore,
instructions that work on 16-bit memory operands take longer on the 8088 than on the 8086. Separate
8088 timings are shown in parentheses following the main timing. For example, 9 (W88=13) means
that the 8086 with any operands or the 8088 with byte operands take 9 clocks, but the 8088 with word
operands takes 13 clocks. Similarly, 16 (88=24) means that the 8086 takes 16 clocks, but the 8088
takes 24 clocks.

On the 8088 and 8086, the effective address (EA) value must be added for instructions that operate on

ClockSpeeds
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 402

memory operands. A displacement is any direct memory or constant operand, or any combination of
the two. The following shows the number of clocks to add for the effective address:

Components EA Clocks Examples

Displacement 6 mov ax,stuff
mov ax,stuff+2

Base or index 5 mov ax,[bx]
mov ax,[di]

Displacement
plus base or index

9 mov ax,[bp+8]
mov ax,stuff[di]

Base plus index (BP+DI, BX+SI) 7 mov ax,[bx+si]
mov ax,[bp+di]

Components EA Clocks Examples

Base plus index (BP+SI, BX+DI) 8 mov ax,[bx+di]
mov ax,[bp+si]

Base plus index plus displacement
(BP+DI+disp, BX+SI+disp)

11 mov ax,stuff[bx+si]
mov ax,[bp+di+8]

Base plus index
plus displacement (BP+SI+disp,
BX+DI+disp)

12 mov ax,stuff[bx+di]
mov ax,[bp+si+20]

Segment override EA+2 mov ax,es:stuff
mov ax,ds:[bp+10]

Timings on the 80286-80486 Processors

On the 80286–80486 processors, the effective address calculation is handled by hardware and is
therefore not a factor in clock calculations except in one case. If a memory operand includes all three
possible elements — a displacement, a base register, and an index register — then add one clock.
On the 80486, the extra clock is not always used. Examples are shown in the following.

mov ax,[bx+di] ;No extra
mov ax,array[bx+di] ;One extra
mov ax,[bx+di+6] ;One extra

Note 80186 and 80188 timings are different from 8088, 8086, and 80286 timings. They are not shown
in this manual. Timings are also not shown for protected-mode transfers through gates or for the virtual
8086 mode available on the 80386–80486 processors.

Interpreting Encodings

Encodings are shown for each variation of the instruction. This section describes encoding for all
processors except the 80386–80486. The encodings take the form of boxes filled with 0s and 1s for
bits that are constant for the instruction variation, and abbreviations (in italics) for the following variable
bits or bitfields:

d Direction bit. If set, do memory to register; the reg field is the destination. If clear, do register to
memory or register to register; the reg field is the source.

a Accumulator direction bit. If set, move accumulator register to memory. If clear, move memory to
accumulator register.

w Word/byte bit. If set, use 16-bit or 32-bit operands. If clear, use 8-bit operands.

Interpreting Encodings
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 403

s Sign bit. If set, sign-extend 8-bit immediate data to 16 bits.

mod Mode. This 2-bit field gives the register/memory mode with displacement. The possible values
are shown below:

mod Meaning

00 This value can have two meanings:
 If r/m is 110, a direct memory operand is used.
 If r/m is not 110, the displacement is 0 and an indirect memory operand is
 used. The operand must be based, indexed, or based indexed.

01 An indirect memory operand is used with an 8-bit displacement.

10 An indirect memory operand is used with a 16-bit displacement.

11 A two-register instruction is used; the reg field specifies the destination and the r/m field
specifies the source.

reg Register. This 3-bit field specifies one of the general-purpose registers:

reg 16/32-bit if w=1 8-bit if w=0

000 AX/EAX AL

001 CX/ECX CL

010 DX/EDX DL

011 BX/EBX BL

100 SP/ESP AH

101 BP/EBP CH

110 SI/ESI DH

111 DI/EDI BH

The reg field is sometimes used to specify encoding information rather than a register.

sreg Segment register. This field specifies one of the segment registers:

sreg Register

000 ES

001 CS

010 SS

011 DS

100 FS

101 GS

r/m Register/memory. This 3-bit field specifies a register or memory r/m operand.

If the mod field is 11, r/m specifies the source register using the reg field codes. Otherwise, the field
has one of the following values:

r/m Operand Address

000 DS:[BX+SI+disp]

001 DS:[BX+DI+disp]

Interpreting Encodings
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 404

010 SS:[BP+SI+disp]

011 SS:[BP+DI+disp]

100 DS:[SI+disp]

101 DS:[DI+disp]

110 SS:[BP+disp]*

111 DS:[BX+disp]

* If mod is 00 and r/m is 110, then the operand is treated as a direct memory operand. This means that the operand [BP] is
encoded as [BP+0] rather than having a short-form like other register indirect operands. Encoding [BX] takes one byte,
but encoding [BP] takes two.

disp Displacement. These bytes give the offset for memory operands. The possible lengths (in bytes)
are shown in parentheses.

data Data. These bytes give the actual value for constant values. The possible lengths (in bytes) are
shown in parentheses.

If a memory operand has a segment override, the entire instruction has one of the following bytes as a
prefix:

Prefix Segment

00101110 (2Eh) CS

00111110 (3Eh) DS

00100110 (26h) ES

00110110 (36h) SS

01100100 (64h) FS

01100101 (65h) GS

Example

As an example, assume you want to calculate the encoding for the following statement (where
warray is a 16-bit variable):

 add warray[bx+di], -3

First look up the encoding for the immediate-to-memory syntax of the ADD instruction:

100000sw mod,000,r/m disp (0, 1, or 2) data (0, 1, or 2)

Since the destination is a word operand, the w bit is set. The 8-bit immediate data must be
sign-extended to 16 bits to fit into the operand, so the s bit is also set. The first byte of the instruction
is therefore 10000011 (83h).

Since the memory operand can be anywhere in the segment, it must have a 16-bit offset
(displacement). Therefore the mod field is 10. The reg field is 000, as shown in the encoding. The r/m
coding for [bx+di+disp] is 001. The second byte is 10000001 (81h).

The next two bytes are the offset of warray. The low byte of the offset is stored first and the high byte
second. For this example, assume that warray is located at offset 10EFh.

The last byte of the instruction is used to store the 8-bit immediate value –3 (FDh). This value is
encoded as 8 bits (but sign-extended to 16 bits by the processor).

The encoding is shown here in hexadecimal:

83 81 EF 10 FD

Interpreting Encodings
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 405

You can confirm this by assembling the instruction and looking at the resulting assembly listing.

Interpreting 80386-80486 Encoding Extensions

This book shows 80386–80486 encodings for instructions that are available only on the 80386–80486
processors. For other instructions, encodings are shown only for the 16-bit subset available on all
processors. This section tells how to convert the 80286 encodings shown in the book to 80386–80486
encodings that use extensions such as 32-bit registers and memory operands.

The extended 80386–80486 encodings differ in that they can have additional prefix bytes, a Scaled
Index Base (SIB) byte, and 32-bit displacement and immediate bytes. Use of these elements is
closely tied to the segment word size. The use type of the code segment determines whether the
instructions are processed in 32-bit mode (USE32) or 16-bit mode (USE16). Current versions of
MS-DOS® and Microsoft® Windows™ use 16-bit mode only. Windows NT uses 32-bit mode.

The bytes that can appear in an instruction encoding are:

16-Bit Encoding

Opcode mod-reg-r/m disp immed

(1-2) (0-1) (0-2) (0-2)

32-Bit Encoding

Address-Size
(67h) Operand-Size

(66h) Opcode
mod-reg-r/m

Scaled
Index Base

disp immed

(0-1) (0-1) (1-2) (0-1) (0-1) (0-4) (0-4)

Additional bytes may be added for a segment prefix, a repeat prefix, or the LOCK prefix.

Address-Size Prefix

The address-size prefix determines the segment word size of the operation. It can override the default
size for calculating the displacement of memory addresses. The address prefix byte is 67h. The
assembler automatically inserts this byte where appropriate.

In 32-bit mode (USE32 or FLAT code segment), displacements are calculated as 32-bit addresses.
The effective address-size prefix must be used for any instructions that must calculate addresses as
16-bit displacements. In 16-bit mode, the defaults are reversed. The prefix must be used to specify
calculation of 32-bit displacements.

Operand-Size Prefix

The operand-size prefix determines the size of operands. It can override the default size of registers or

32-Bit Encoding
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 406

memory operands. The operand-size prefix byte is 66h. The assembler automatically inserts this byte
where appropriate.

In 32-bit mode, the default sizes for operands are 8 bits and 32 bits (depending on the w bit). For most
instructions, the operand-size prefix must be used for any instructions that use 16-bit operands. In
16-bit mode, the default sizes are 8 bits and 16 bits. The prefix must be used for any instructions that
use 32-bit operands. Some instructions use 16-bit operands, regardless of mode.

Encoding Differences for 32-Bit Operations

When 32-bit operations are performed, the meaning of certain bits or fields is different from their
meaning in 16-bit operations. The changes may affect default operations in 32-bit mode, or 16-bit mode
operations in which the address-size prefix or the operand-size prefix is used. The following fields may
have a different meaning for 32-bit operations from their meaning as described in the “Interpreting
Encodings” section:

w Word/byte bit. If set, use 32-bit operands. If clear, use 8-bit operands.

s Sign bit. If set, sign-extend 8-bit and 16-bit immediate data to 32 bits.

mod Mode. This field indicates the register/memory mode. The value 11 still indicates a
register-to-register operation with r/m containing the code for a 32-bit source register. However, other
codes have different meanings as shown in the tables in the next section.

reg Register. The codes for 16-bit registers are extended to 32-bit registers. For example, if the reg
field is 000, EAX is used instead of AX. Use of 8-bit registers is unchanged.

sreg Segment register. The 80386 has the following additional segment registers:

sreg Register

100 FS

101 GS

r/m Register/memory. If the r/m field is used for the source register, 32-bit registers are used as for
the reg field. If the field is used for memory operands, the meaning is completely different from the
meaning used for 16-bit operations, as shown in the tables in the next section.

disp Displacement. This field is 4 bytes for 32-bit addresses.

data Data. Immediate data can be up to 4 bytes.

Scaled Index Base Byte

Many 80386–80486 extended memory operands are too complex to be represented by a single
mod-reg-r/m byte. For these operands, a value of 100 in the r/m field signals the presence of a second
encoding byte called the Scaled Index Base (SIB) byte. The SIB byte is made up of the following fields:

ss index base

ss Scaling Field. This two-bit field specifies one of the following scaling factors:

ss Scale

00 1

01 2

10 4

11 8

32-Bit Encoding
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 407

index Index Register. This three-bit field specifies one of the following index registers:

index Register

000 EAX

001 ECX

010 EDX

011 EBX

100 no index

101 EBP

110 ESI

111 EDI

Note ESP cannot be an index register. If the index field is 100, the ss field
must be 00.

base Base Register. This 3-bit field combines with the mod field to specify the base register and the
displacement. Note that the base field only specifies the base when the r/m field is 100. Otherwise,
the r/m field specifies the base.

The possible combinations of the mod, r/m, scale, index, and base fields are as follows:

32-Bit Encoding
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 408

If a memory operand has a segment override, the entire instruction has one of the prefixes discussed
in the preceding section, “Interpreting Encodings,” or one of the following prefixes for the segment
registers available only on the 80386–80486:

Prefix Segment

01100100 (64h) FS

01100101 (65h) GS

Example

Assume you want to calculate the encoding for the following statement (where warray is a 16-bit
variable). Assume that the instruction is used in 16-bit mode.

 add warray[eax+ecx*2], -3

First look up the encoding for the immediate-to-memory syntax of the ADD instruction:

32-Bit Encoding
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 409

100000sw mod,000,r/m disp (0, 1, or 2) data (1 or 2)

This encoding must be expanded to account for 80386–80486 extensions. Note that the instruction
operates on 16-bit data in a 16-bit mode program. Therefore, the operand-size prefix is not needed.
However, the instruction does use 32-bit registers to calculate a 32-bit effective address. Thus the first
byte of the encoding must be the effective address-size prefix, 01100111 (67h).

The opcode byte is the same (83h) as for the 80286 example described in the “Interpreting Encodings”
section.

The mod-reg-r/m byte must specify a based indexed operand with a scaling factor of two. This operand
cannot be specified with a single byte, so the encoding must also use the SIB byte. The value 100 in
the r/m field specifies an SIB byte. The reg field is 000, as shown in the encoding. The mod field is 10
for operands that have base and scaled index registers and a 32-bit displacement. The combined mod,
reg, and r/m fields for the second byte are 10000100 (84h).

The SIB byte is next. The scaling factor is 2, so the ss field is 01. The index register is ECX, so the
index field is 001. The base register is EAX, so the base field is 000. The SIB byte is 01001000 (48h).

The next 4 bytes are the offset of warray. The low bytes are stored first. For this example, assume
that warray is located at offset 10EFh. This offset only requires 2 bytes, but 4 must be supplied
because of the addressing mode. A 32-bit address can be safely used in 16-bit mode as long as the
upper word is 0.

The last byte of the instruction is used to store the 8-bit immediate value –3 (FDh). The encoding is
shown here in hexadecimal:

67 83 84 48 00 00 EF 10 FD

Instructions

This section provides an alphabetical reference to the instructions for the 8086, 8088, 80286, 80386,
and 80486 processors.

AAA ASCII Adjust After Addition

Adjusts the result of an addition to a decimal digit (0–9). The previous addition instruction should place
its 8-bit sum in AL. If the sum is greater than 9h, AH is incremented and the carry and auxiliary carry
flags are set. Otherwise, the carry and auxiliary carry flags are cleared.

Flags

 O D I T S Z A P C
? ? ? ± ? ±

Encoding

00110111

Syntax Examples CPU Clock Cycles

AAA aaa 88/86
286

8
3

AAA ASCII Adjust After Addition
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 410

386
486

4
3

AAD ASCII Adjust Before Division

Converts unpacked BCD digits in AH (most significant digit) and AL (least significant digit) to a binary
number in AX. This instruction is often used to prepare an unpacked BCD number in AX for division by
an unpacked BCD digit in an 8-bit register.

Flags

 O D I T S Z A P C
? ± ± ? ± ?

Encoding

11010101 00001010

Syntax Examples CPU Clock Cycles

AAD aad 88/86
286
386
486

60
14
19
14

AAM ASCII Adjust After Multiply

Converts an 8-bit binary number less than 100 decimal in AL to an unpacked BCD number in AX. The
most significant digit goes in AH and the least significant in AL. This instruction is often used to adjust
the product after a MUL instruction that multiplies unpacked BCD digits in AH and AL. It is also used
to adjust the quotient after a DIV instruction that divides a binary number less than 100 decimal in AX
by an unpacked BCD number.

Flags

 O D I T S Z A P C
? ± ± ? ± ?

Encoding

11010100 00001010

Syntax Examples CPU Clock Cycles

AAM aam 88/86
286
386
486

83
16
17
15

AAS ASCII Adjust After Subtraction
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 411

AAS ASCII Adjust After Subtraction

Adjusts the result of a subtraction to a decimal digit (0–9). The previous subtraction instruction should
place its 8-bit result in AL. If the result is greater than 9h, AH is decremented and the carry and
auxiliary carry flags are set. Otherwise, the carry and auxiliary carry flags are cleared.

Flags

 O D I T S Z A P C
? ? ? ± ? ±

Encoding

00111111

Syntax Examples CPU Clock Cycles

AAS aas 88/86
286
386
486

8
3
4
3

ADCAdd with Carry

Adds the source operand, the destination operand, and the value of the carry flag. The result is
assigned to the destination operand. This instruction is used to add the more significant portions of
numbers that must be added in multiple registers.

Flags

 O D I T S Z A P C
± ± ± ± ± ±

Encoding

000100dw mod,reg,r/m disp (0, 1, or 2)

Syntax Examples CPU Clock Cycles

ADC reg,reg adc dx,cx 88/86
286
386
486

3
2
2
1

ADC mem,reg adc WORD PTR m32[2],dx 88/86
286
386
486

16+EA (W88=24+EA)
7
7
3

ADC reg,mem adc dx,WORD PTR m32[2] 88/86
286
386
486

9+EA (W88=13+EA)
7
6
2

Encoding

ADCAdd with Carry
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 412

100000sw mod, 010,r/m disp (0, 1, or 2) data (1 or 2)

Syntax Examples CPU Clock Cycles

ADC reg,immed adc dx,12 88/86
286
386
486

4
3
2
1

ADC mem,immed adc WORD PTR m32[2],16 88/86
286
386
486

17+EA (W88=23+EA)
7
7
3

Encoding

0001010w data (1 or 2)

Syntax Examples CPU Clock Cycles

ADC accum,immed adc ax,5 88/86
286
386
486

4
3
2
1

ADD Add

Adds the source and destination operands and puts the sum in the destination operand.

Flags

 O D I T S Z A P C
± ± ± ± ± ±

Encoding

000000dw mod,reg,r/m disp (0, 1, or 2)

Syntax Examples CPU Clock Cycles

ADD reg,reg add ax,bx 88/86
286
386
486

3
2
2
1

ADD mem, reg add total, cx
add array[bx+di], dx

88/86
286
386
486

16+EA (W88=24+EA)
7
7
3

ADD reg,mem add cx,incr
add dx,[bp+6]

88/86
286
386
486

9+EA (W88=13+EA)
7
6
2

Encoding

ADD Add
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 413

100000sw mod, 000,r/m disp (p,1, or2) data (1or2)

Syntax Examples CPU Clock Cycles

ADD reg,immed add bx,6 88/86
286
386
486

4
3
2
1

ADD mem,immed add amount,27
add pointers[bx][si],6

88/86
286
386
486

17+EA (W88=23+EA)
7
7
3

Encoding

0000010w data (1 or 2)

Syntax Examples CPU Clock Cycles

ADD accum,immed add ax,10 88/86
286
386
486

4
3
2
1

AND Logical AND

Performs a bitwise AND operation on the source and destination operands and stores the result in the
destination operand. For each bit position in the operands, if both bits are set, the corresponding bit of
the result is set. Otherwise, the corresponding bit of the result is cleared.

Flags

 O D I T S Z A P C
0 ± ± ? ± 0

Encoding

001000dw mod,reg,r/m disp (0, 1, or 2)

Syntax Examples CPU Clock Cycles

AND reg,reg and dx,bx 88/86
286
386
486

3
2
2
1

AND mem,reg and bitmask,bx
and [bp+2],dx

88/86
286
386
486

16+EA (W88=24+EA)
7
7
3

AND reg,mem and bx,masker
and dx,marray[bx+di]

88/86
286
386
486

9+EA (W88=13+EA)
7
6
2

AND Logical AND
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 414

Encoding

100000sw mod, 100, r/m disp (0, 1, or 2) data (1 or 2)

Syntax Examples CPU Clock Cycles

AND reg,immed and dx,0F7h 88/86
286
386
486

4
3
2
1

AND mem,immed and masker, 100lb 88/86
286
386
486

17+EA(W88=24+EA)
7
7
3

Encoding

0010010w data (1 or 2)

Syntax Examples CPU Clock Cycles

AND accum,immed and ax,0B6h 88/86
286
386
486

4
3
2
1

ARPL Adjust Requested Privilege Level

80286–80486 Protected Only Verifies that the destination Requested Privilege Level (RPL) field
(bits 0 and 1 of a selector value) is less than the source RPL field. If it is not, ARPL adjusts the
destination RPL to match the source RPL. The destination operand should be a 16-bit memory or
register operand containing the value of a selector. The source operand should be a 16-bit register
containing the test value. The zero flag is set if the destination is adjusted; otherwise, the flag is
cleared. ARPL is useful only in 80286–80486 protected mode. See Intel documentation for details on
selectors and privilege levels.

Flags

 O D I T S Z A P C
±

Encoding

01100011 mod,reg,r/m disp (0, 1, or 2)

Syntax Examples CPU Clock Cycles

ARPL reg,reg arpl ax,cx 88/86
286
386
486

—
10
20
9

ARPL mem,reg arpl selector,dx 88/86
286
386

—
11
21

ARPL Adjust Requested Privilege Level
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 415

486 9

BOUNDCheck Array Bounds

80286–80486 Only Verifies that a signed index value is within the bounds of an array. The
destination operand can be any 16-bit register containing the index to be checked. The source operand
must then be a 32-bit memory operand in which the low and high words contain the starting and
ending values, respectively, of the array. (On the 80386–80486 processors, the destination operand
can be a 32-bit register; in this case, the source operand must be a 64-bit operand made up of 32-bit
bounds.) If the source operand is less than the first bound or greater than the last bound, an interrupt 5
is generated. The instruction pointer pushed by the interrupt (and returned by IRET) points to the
BOUND instruction rather than to the next instruction.

Flags

No change

Encoding

01100010 mod,reg, r/m disp (2)

Syntax Examples CPU Clock Cycles

BOUND reg16,mem32
BOUND reg32,mem64*

bound di,base-4 88/86
286
386
486

—
noj=13†
noj=10†
noj=7

* 80386–80486 only.
† See INT for timings if interrupt 5 is called.

BSF/BSR Bit Scan

80386–80486 Only Scans an operand to find the first set bit. If a set bit is found, the zero flag is
cleared and the destination operand is loaded with the bit index of the first set bit encountered. If no
set bit is found, the zero flag is set. BSF (Bit Scan Forward) scans from bit 0 to the most significant
bit. BSR (Bit Scan Reverse) scans from the most significant bit of an operand to bit 0.

Flags

 O D I T S Z A P C
±

Encoding

00001111 10111100 mod, reg, r/m disp (0, 1, 2, or 4)

Syntax Examples CPU Clock Cycles

BSF reg16,reg16
BSF reg32,reg32

bsf cx,bx 88/86
286

—
—

BSF/BSR Bit Scan
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 416

386
486

10+3n*
6–42†

BSF reg16,mem16
BSF reg32,mem32

bsf ecx,bitmask 88/86
286
386
486

—
—
10+3n*
7–43§

Encoding

00001111 10111101 mod, reg, r/m disp (0, 1, 2, or 4)

Syntax Examples CPU Clock Cycles

BSR reg16,reg16
BSR reg32,reg32

bsr cx,dx 88/86
286
386
486

—
—
10+3n*
103 – 3n#

BSR reg16,mem16
BSR reg32,mem32

bsr eax,bitmask 88/86
286
386
486

—
—
10+3n*
104 – 3n#

* n = bit position from 0 to 31.
clocks = 6 if second operand equals 0.

† Clocks = 8 +
 4 for each byte scanned +
 3 for each nibble scanned +
 3 for each bit scanned in last nibble
 or 6 if second operand equals 0.

§ Same as footnote above, but add 1 clock.
n = bit position from 0 to 31.

clocks = 7 if second operand equals 0.

BSWAPByte Swap

80486 Only Takes a single 32-bit register as operand and exchanges the first byte with the fourth,
and the second byte with the third. This instruction does not alter any bit values within the bytes and is
useful for quickly translating between 8086-family byte storage and storage schemes in which the high
byte is stored first.

Flags

 No change

Encoding

00001111 11001 reg

Syntax Examples CPU Clock Cycles

BSWAP reg32 bswap eax
bswap ebx

88/86
286
386
486

—
—
—
1

BSWAPByte Swap
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 417

BT/BTC/BTR/BTS Bit Tests

80386–80486 Only Copies the value of a specified bit into the carry flag, where it can be tested by a
JC or JNC instruction. The destination operand specifies the value in which the bit is located; the
source operand specifies the bit position. BT simply copies the bit to the flag. BTC copies the bit and
complements (toggles) it in the destination. BTR copies the bit and resets (clears) it in the destination.
BTS copies the bit and sets it in the destination.

Flags

 O D I T S Z A P C
±

Encoding

00001111 10111010 mod, BBB*,r/m disp (0, 1, 2, or 4) data (1)

Syntax Examples CPU Clock Cycles

BT reg16,immed8† bt ax,4 88/86
286
386
486

—
—
3
3

BTC reg16,immed8†
BTR reg16,immed8†
BTS reg16,immed8†

bts ax,4
btr bx,17
btc edi,4

88/86
286
386
486

—
—
6
6

BT mem16,immed8† btr DWORD PTR [si],27
btc color[di],4

88/86
286
386
486

—
—
6
3

BTC mem16,immed8†
BTR mem16,immed8†
BTS mem16,immed8†

btc DWORD PTR [bx],27
btc maskit,4
btr color[di],4

88/86
286
386
486

—
—
8
8

Encoding

00001111 10BBB011* mod, reg, r/m disp (0, 1, 2, or 4)

Syntax Examples CPU Clock Cycles

BT reg16,reg16† bt ax,bx 88/86
286
386
486

—
—
3
3

BTC reg16,reg16†
BTR reg16,reg16†
BTS reg16,reg16†

btc eax,ebx
bts bx,ax
btr cx,di

88/86
286
386
486

—
—
6
6

Syntax Examples CPU Clock Cycles

BT/BTC/BTR/BTS Bit Tests
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 418

BT mem16,reg16† bt [bx],dx 88/86
286
386
486

—
—
12
8

BTC mem16,reg16†
BTR mem16,reg16†
BTS mem16,reg16†

bts flags[bx],cx
btr rotate,cx
btc [bp+8],si

88/86
286
386
486

—
—
13
13

* BBB is 100 for BT, 111 for BTC, 110 for BTR, and 101 for BTS.
† Operands also can be 32 bits (reg32 and mem32).

CALL Call Procedure

Calls a procedure. The instruction pushes the address of the next instruction onto the stack and jumps
to the address specified by the operand. For NEAR calls, the offset (IP) is pushed and the new offset
is loaded into IP.

For FAR calls, the segment (CS) is pushed and the new segment is loaded into CS. Then the offset
(IP) is pushed and the new offset is loaded into IP. A subsequent RET instruction can pop the address
so that execution continues with the instruction following the call.

Flags

 No change

Encoding

11101000 disp (2)

Syntax Examples CPU Clock Cycles

CALL label call upcase 88/86
286
386
486

19 (88=23)
7+m
7+m
3

Encoding

10011010 disp (4)

Syntax Examples CPU Clock Cycles

CALL label call FAR PTR job
call distant

88/86
286
386
486

28 (88=36)
13+m,pm=26+m*
17+m,pm=34+m*
18,pm=20*

Encoding

11111111 mod,010,r/m

Syntax Examples CPU Clock Cycles

CALL reg call ax 88/86 16 (88=20)

CALL Call Procedure
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 419

286
386
486

7+m
7+m
5

CALL mem16 call pointer 88/86 21+EA (88=29+EA)

CALL mem32† call [bx] 286
386
486

11+m
10+m
5

Encoding

11111111 mod,011,r/m

Syntax Examples CPU Clock Cycles

CALL mem32 call far_table[di] 88/86 37+EA (88=53+EA)

CALL mem48† call DWORD PTR [bx] 286
386
486

16+m,pm=29+m*
22+m,pm=38+m*
17,pm=20*

* Timings for calls through call and task gates are not shown, since they are used primarily in operating systems.
† 80386–80486 32-bit addressing mode only.

CBW Convert Byte to Word

Converts a signed byte in AL to a signed word in AX by extending the sign bit of AL into all bits of AH.

Flags

 No change

Encoding

10011000*

Syntax Examples CPU Clock Cycles

CBW cbw 88/86
286
386
486

2
2
3
3

* CBW and CWDE have the same encoding with two exceptions: in 32-bit mode, CBW is preceded by the operand-size byte
(66h) but CWDE is not; in 16-bit mode, CWDE is preceded by the operand-size byte but CBW is not.

CDQ Convert Double to Quad

80386–80486 Only Converts the signed doubleword in EAX to a signed quadword in the EDX:EAX
register pair by extending the sign bit of EAX into all bits of EDX.

Flags

CDQ Convert Double to Quad
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 420

 No change

Encoding

10011001*

Syntax Examples CPU Clock Cycles

CDQ cdq 88/86
286
386
486

—
—
2
3

* CWD and CDQ have the same encoding with two exceptions: in 32-bit mode, CWD is preceded by the operand-size byte
(66h) but CDQ is not; in 16-bit mode, CDQ is preceded by the operand-size byte but CWD is not.

CLC Clear Carry Flag

Clears the carry flag.

Flags

 O D I T S Z A P C
0

Encoding

11111000

Syntax Examples CPU Clock Cycles

CLC clc 88/86
286
386
486

2
2
2
2

CLD Clear Direction Flag

Clears the direction flag. All subsequent string instructions will process up (from low addresses to high
addresses) by increasing the appropriate index registers.

Flags

 O D I T S Z A P C
0

Encoding

11111100

Syntax Examples CPU Clock Cycles

CLD Clear Direction Flag
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 421

CLD cld 88/86
286
386
486

2
2
2
2

CLI Clear Interrupt Flag

Clears the interrupt flag. When the interrupt flag is cleared, maskable interrupts are not recognized
until the flag is set again with the STI instruction. In protected mode, CLI clears the flag only if the
current task’s privilege level is less than or equal to the value of the IOPL flag. Otherwise, a
general-protection fault occurs.

Flags

 O D I T S Z A P C
0

Encoding

11111010

Syntax Examples CPU Clock Cycles

CLI cli 88/86
286
386
486

2
3
3
5

CLTS Clear Task-Switched Flag

80286–80486 Privileged Only Clears the task-switched flag in the Machine Status Word (MSW) of
the 80286, or the CR0 register of the 80386–80486. This instruction can be used only in system
software executing at privilege level 0. See Intel documentation for details on the task-switched flag
and other privileged-mode concepts.

Flags

 No change

Encoding

00001111 00000110

Syntax Examples CPU Clock Cycles

CLTS clts 88/86
286
386
486

—
2
5
7

CMC Complement Carry Flag
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 422

CMC Complement Carry Flag

Complements (toggles) the carry flag.

Flags

 O D I T S Z A P C
±

Encoding

11110101

Syntax Examples CPU Clock Cycles

CMC cmc 88/86
286
386
486

2
2
2
2

CMP Compare Two Operands

Compares two operands as a test for a subsequent conditional-jump or set instruction. CMP does this
by subtracting the source operand from the destination operand and setting the flags according to the
result. CMP is the same as the SUB instruction, except that the result is not stored.

Flags

 O D I T S Z A P C
± ± ± ± ± ±

Encoding

001110dw mod, reg, r/m disp (0, 1, or 2)

Syntax Examples CPU Clock Cycles

CMP reg,reg cmp di,bx
cmp dl,cl

88/86
286
386
486

3
2
2
1

CMP mem,reg cmp maximum,dx
cmp array[si],bl

88/86
286
386
486

9+EA (W88=13+EA)
7
5
2

CMP reg,mem cmp dx,minimum
cmp bh,array[si]

88/86
286
386
486

9+EA (W88=13+EA)
6
6
2

Encoding

100000sw mod, 111,r/m disp (0, 1, or 2) data (1 or 2)

CMP Compare Two Operands
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 423

Syntax Examples CPU Clock Cycles

CMP reg,immed cmp bx,24 88/86
286
386
486

4
3
2
1

CMP mem,immed cmp WORD PTR [di],4
cmp tester,4000

88/86
286
386
486

10+EA (W88=14+EA)
6
5
2

Encoding

0011110w data (1 or 2)

Syntax Examples CPU Clock Cycles

CMP accum,immed cmp ax,1000 88/86
286
386
486

4
3
2
1

CMPS/CMPSB/CMPSW/CMPSD Compare String

Compares two strings. DS:SI must point to the source string and ES:DI must point to the destination
string (even if operands are given). For each comparison, the destination element is subtracted from
the source element and the flags are updated to reflect the result (although the result is not stored). DI
and SI are adjusted according to the size of the operands and the status of the direction flag. They are
increased if the direction flag has been cleared with CLD, or decreased if the direction flag has been
set with STD.

If the CMPS form of the instruction is used, operands must be provided to indicate the size of the data
elements to be processed. A segment override can be given for the source (but not for the destination).
If CMPSB (bytes), CMPSW (words), or CMPSD (doublewords on the 80386–80486 only) is used, the
instruction determines the size of the data elements to be processed.

CMPS and its variations are normally used with repeat prefixes. REPNE (or REPNZ) is used to find the
first match between two strings. REPE (or REPZ) is used to find the first mismatch. Before the
comparison, CX should contain the maximum number of elements to compare. After a REPNE CMPS,
the zero flag is clear if no match was found. After a REPE CMPS, the zero flag is set if no mismatch
was found.

When the instruction finishes, ES:DI and DS:SI point to the element that follows (if the direction flag is
clear) or precedes (if the direction flag is set) the match or mismatch. If CX decrements to 0, ES:DI
and DS:SI point to the element that follows or precedes the last comparison. The zero flag is set or
clear according to the result of the last comparison, not according to the value of CX.

Flags

 O D I T S Z A P C
± ± ± ± ± ±

Encoding

1010011w

CMPS/CMPSB/CMPSW/CMPSD Compare String
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 424

Syntax Examples CPU Clock Cycles

CMPS [[segreg:]] src, [[ES:]] dest
CMPSB [[[[segreg:[[src,]]ES:]] dest]]
CMPSW [[[[segreg:[[src,]]ES:]] dest]]
CMPSD [[[[segreg:[[src,]]ES:]] dest]]

cmps source,es:dest
repne cmpsw
repe cmpsb
repne cmpsd

88/86
286
386
486

22 (W88=30)
8
10
8

CMPXCHG Compare and Exchange

80486 Only Compares the destination operand to the accumulator (AL, AX, or EAX). If equal, the
source operand is copied to the destination. Otherwise, the destination is copied to the accumulator.
The instruction sets flags according to the result of the comparison.

Flags

 O D I T S Z A P C
± ± ± ± ± ±

Encoding

00001111 1011000b mod, reg, r/m disp (0, 1, or 2)

Syntax Examples CPU Clock Cycles

CMPXCHG mem,reg cmpxchg warr[bx],cx
cmpxchg string,bl

88/86
286
386
486

—
—
—
7–10

CMPXCHG reg,reg cmpxchg dl,cl
cmpxchg bx,dx

88/86
286
386
486

—
—
—
6

CWD Convert Word to Double

Converts the signed word in AX to a signed doubleword in the DX:AX register pair by extending the sign
bit of AX into all bits of DX.

Flags

 O D I T S Z A P C
± ± ± ± ± ±

Encoding

10011001*

Syntax Examples CPU Clock Cycles

CWD cwd 88/86
286

5
2

CWD Convert Word to Double
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 425

386
486

2
3

* CWD and CDQ have the same encoding with two exceptions: in 32-bit mode, CWD is preceded by the operand-size byte
(66h) but CDQ is not; in 16-bit mode, CDQ is preceded by the operand-size byte but CWD is not.

CWDE Convert Word to Extended Double

80386–80486 Only Converts a signed word in AX to a signed doubleword in EAX by extending the
sign bit of AX into all bits of EAX.

Flags

 No change

Encoding

10011000*

Syntax Examples CPU Clock Cycles

CWDE cwde 88/86
286
386
486

—
—
3
3

* CBW and CWDE have the same encoding with two exceptions: in 32-bit mode, CBW is preceded by the operand-size byte
(66h) but CWDE is not; in 16-bit mode, CWDE is preceded by the operand-size byte but CBW is not.

DAA Decimal Adjust After Addition

Adjusts the result of an addition to a packed BCD number (less than 100 decimal). The previous
addition instruction should place its 8-bit binary sum in AL. DAA converts this binary sum to packed
BCD format with the least significant decimal digit in the lower four bits and the most significant digit in
the upper four bits. If the sum is greater than 99h after adjustment, the carry and auxiliary carry flags
are set. Otherwise, the carry and auxiliary carry flags are cleared.

Flags

 O D I T S Z A P C
? ± ± ± ± ±

Encoding

00100111

Syntax Examples CPU Clock Cycles

DAA daa 88/86
286
386

4
3
4

DAA Decimal Adjust After Addition
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 426

486 2

DAS Decimal Adjust After Subtraction

Adjusts the result of a subtraction to a packed BCD number (less than 100 decimal). The previous
subtraction instruction should place its 8-bit binary result in AL. DAS converts this binary sum to
packed BCD format with the least significant decimal digit in the lower four bits and the most
significant digit in the upper four bits. If the sum is greater than 99h after adjustment, the carry and
auxiliary carry flags are set. Otherwise, the carry and auxiliary carry flags are cleared.

Flags

 O D I T S Z A P C
? ± ± ± ± ±

Encoding

00101111

Syntax Examples CPU Clock Cycles

DAS das 88/86
286
386
486

4
3
4
2

DEC Decrement

Subtracts 1 from the destination operand. Because the operand is treated as an unsigned integer, the
DEC instruction does not affect the carry flag. To detect any effects on the carry flag, use the SUB
instruction.

Flags

 O D I T S Z A P C
± ± ± ± ±

Encoding

1111111w mod, 001,r/m disp (0, 1, or 2)

Syntax Examples CPU Clock Cycles

DEC reg8 dec cl 88/86
286
386
486

3
2
2
1

DEC mem dec counter 88/86
286
386
486

15+EA (W88=23+EA)
7
6
3

DEC Decrement
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 427

Encoding

01001 reg

Syntax Examples CPU Clock Cycles

DEC reg16 dec ax 88/86 3

DEC reg32* 286
386
486

2
2
1

* 80386–80486 only.

DIV Unsigned Divide

Divides an implied destination operand by a specified source operand. Both operands are treated as
unsigned numbers. If the source (divisor) is 16 bits wide, the implied destination (dividend) is the DX:AX
register pair. The quotient goes into AX and the remainder into DX. If the source is 8 bits wide, the
implied destination operand is AX. The quotient goes into AL and the remainder into AH. On the
80386–80486, if the source is EAX, the quotient goes into EAX and the remainder into EDX.

Flags

 O D I T S Z A P C
? ? ? ? ? ?

Encoding

1111011w mod, 110,r/m disp (0, 1, or 2)

Syntax Examples CPU Clock Cycles

DIV reg div cx
div dl

88/86
286
386
486

b=80–90,w=144–162
b=14,w=22
b=14,w=22,d=38
b=16,w=24,d=40

DIV mem div [bx]
div fsize

88/86

286
386
486

(b=86–96,w=150–168)+EA*
b=17,w=25
b=17,w=25,d=41
b=16,w=24,d=40

* Word memory operands on the 8088 take (158–176)+EA clocks.

ENTER Make Stack Frame

80286-80486 Only Creates a stack frame for a procedure that receives parameters passed on the
stack. When immed16 is 0, ENTER is equivalent to push bp, followed by mov bp,sp. The first
operand of the ENTER instruction specifies the number of bytes to reserve for local variables. The
second operand specifies the nesting level for the procedure. The nesting level should be 0 for

ENTER Make Stack Frame
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 428

languages that do not allow access to local variables of higher-level procedures (such as C, Basic, and
FORTRAN). See the complementary instruction LEAVE for a method of exiting from a procedure.

Flags

 No change

Encoding

11001000 data (2) data (1)

Syntax Examples CPU Clock Cycles

ENTER immed16,0 enter 4,0 88/86
286
386
486

—
11
10
14

ENTER immed16,1 enter 0,1 88/86
286
386
486

—
15
12
17

ENTER immed16,immed8 enter 6,4 88/86
286
386
486

—
12+4(n – 1)
15+4(n – 1)
17+3n

HLT Halt

Stops CPU execution until an interrupt restarts execution at the instruction following HLT. In protected
mode, this instruction works only in privileged mode.

Flags

 No change

Encoding

11110100

Syntax Examples CPU Clock Cycles

HLT hlt 88/86
286
386
486

2
2
5
4

IDIV Signed Divide

Divides an implied destination operand by a specified source operand. Both operands are treated as
signed numbers. If the source (divisor) is 16 bits wide, the implied destination (dividend) is the DX:AX
register pair. The quotient goes into AX and the remainder into DX. If the source is 8 bits wide, the

IDIV Signed Divide
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 429

implied destination is AX. The quotient goes into AL and the remainder into AH. On the 80386–80486,
if the source is EAX, the quotient goes into EAX and the remainder into EDX.

Flags

 O D I T S Z A P C
? ? ? ? ? ?

Encoding

1111011w mod, 111,r/m disp (0, 1, or 2)

Syntax Examples CPU Clock Cycles

IDIV reg idiv bx
idiv dl

88/86

286
386
486

b=101–112,w=
165–184
b=17,w=25
b=19,w=27,d=43
b=19,w=27,d=43

IDIV mem idiv itemp 88/86

286
386
486

(b=107–118,w=171–
190)+EA*
b=20,w=28
b=22,w=30,d=46
b=20,w=28,d=44

* Word memory operands on the 8088 take (175–194)+EA clocks.

IMUL Signed Multiply

Multiplies an implied destination operand by a specified source operand. Both operands are treated as
signed numbers. If a single 16-bit operand is given, the implied destination is AX and the product goes
into the DX:AX register pair. If a single 8-bit operand is given, the implied destination is AL and the
product goes into AX. On the 80386–80486, if the operand is EAX, the product goes into the EDX:EAX
register pair. The carry and overflow flags are set if the product is sign-extended into DX for 16-bit
operands, into AH for 8-bit operands, or into EDX for 32-bit operands.

Two additional syntaxes are available on the 80186–80486 processors. In the two-operand form, a
16-bit register gives one of the factors and serves as the destination for the result; a source constant
specifies the other factor. In the three-operand form, the first operand is a 16-bit register where the
result will be stored, the second is a 16-bit register or memory operand containing one of the factors,
and the third is a constant representing the other factor. With both variations, the overflow and carry
flags are set if the result is too large to fit into the 16-bit destination register. Since the low 16 bits of
the product are the same for both signed and unsigned multiplication, these syntaxes can be used for
either signed or unsigned numbers. On the 80386–80486, the operands can be either 16 or 32 bits
wide.

A fourth syntax is available on the 80386–80486. Both the source and destination operands can be
given specifically. The source can be any 16- or 32-bit memory operand or general-purpose register.
The destination can be any general-purpose register of the same size. The overflow and carry flags are
set if the product does not fit in the destination.

Flags

IMUL Signed Multiply
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 430

 O D I T S Z A P C
± ? ? ? ? ±

Encoding

1111011w mod, 101,r/m disp (0, 1, or 2)

Syntax Examples CPU Clock Cycles

IMUL reg imul dx 88/86
286
386
486

b=80–98,w=128–154
b=13,w=21
b=9–14,w=9–22,d=9–38*
b=13–18,w=13–26,d=13–42

IMUL mem imul factor 88/86
286
386
486

(b=86–104,w=134–160)+EA†
b=16,w=24
b=12–17,w=12–25,d=12–41*
b=13–18,w=13–26, d=13–42

* The 80386–80486 processors have an early-out multiplication algorithm. Therefore, multiplying an
8-bit or 16-bit value in EAX takes the same time as multiplying the value in AL or AX.

† Word memory operands on the 8088 take (138–164)+EA clocks.

Encoding

011010s1 mod, reg, r/m disp (0, 1, or 2) data (1 or 2)

Syntax Examples CPU Clock Cycles

IMUL reg16,immed
IMUL reg32,immed*

imul cx,25 88/86
286
386
486

—
21
b=9–14,w=9–22,d=9–38†
b=13–18,w=13–26,d=13–42

IMUL reg16,reg16,immed
IMUL reg32,reg32,immed*

imul dx,ax,18 88/86
286
386
486

—
21
b=9–14,w=9–22,d=9–38†
b=13–18,w=13–26,d=13–42

Syntax Examples CPU Clock Cycles

IMUL reg16,mem16,immed
IMUL reg32,mem32,immed*

imul bx,[si],6088/86
286
386
486

—
24
b=12–17,w=12–25,d=12–41†
b=13–18,w=13–26,d=13–42

Encoding

00001111 10101111 mod,reg,r/m disp (0, 1, or 2)

Syntax Examples CPU Clock Cycles

IMUL reg16,reg16
IMUL reg32,reg32*

imul cx,ax 88/86
286
386
486

—
—
w=9–22,d=9–38
b=13–18,w=13–26,d=13–42

IMUL reg16,mem16
IMUL reg32,mem32*

imul dx,[si] 88/86
286
386

—
—
w=12–25,d=12–41

IMUL Signed Multiply
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 431

486 b=13–18,w=13–26,d=13–42

* 80386–80486 only.
† The variations depend on the source constant size; destination size is not a factor.

IN Input from Port

Transfers a byte or word (or doubleword on the 80386–80486) from a port to the accumulator register.
The port address is specified by the source operand, which can be DX or an 8-bit constant. Constants
can be used only for port numbers less than 255; use DX for higher port numbers. In protected mode, a
general-protection fault occurs if IN is used when the current privilege level is greater than the value of
the IOPL flag.

Flags

 No change

Encoding

1110010w data (1)

Syntax Examples CPU Clock Cycles

IN accum,immed in ax,60h 88/86
286
386
486

10 (W88=14)
5
12,pm=6,26*
14,pm=9,29*†

Encoding

1110110w

Syntax Examples CPU Clock Cycles

IN accum,DX in ax,dx
in al,dx

88/86
286
386
486

8 (W88=12)
5
13,pm=7,27*
14,pm=8,28*†

* First protected-mode timing: CPL ≤ IOPL. Second timing: CPL > IOPL.
† Takes 27 clocks in virtual 8086 mode.

INC Increment

Adds 1 to the destination operand. Because the operand is treated as an unsigned integer, the INC
instruction does not affect the carry flag. If a signed carry requires detection, use the ADD instruction.

Flags

 O D I T S Z A P C
± ± ± ± ±

INC Increment
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 432

Encoding

1111111w mod,000,r/m disp (0, 1, or 2)

Syntax Examples CPU Clock Cycles

INC reg8 inc cl 88/86
286
386
486

3
2
2
1

INC mem inc vpage 88/86
286
386
486

15+EA (W88=23+EA)
7
6
3

Encoding

01000 reg

Syntax Examples CPU Clock Cycles

INC reg16
INC reg32*

inc bx 88/86
286
386
486

3
2
2
1

* 80386–80486 only.

INS/INSB/INSW/INSD Input from Port to String

80286-80486 Only Receives a string from a port. The string is considered the destination and must
be pointed to by ES:DI (even if an operand is given). The input port is specified in DX. For each
element received, DI is adjusted according to the size of the operand and the status of the direction
flag. DI is increased if the direction flag has been cleared with CLD or decreased if the direction flag
has been set with STD.

If the INS form of the instruction is used, a destination operand must be provided to indicate the size of
the data elements to be processed, and DX must be specified as the source operand containing the
port number. A segment override is not allowed. If INSB (bytes), INSW (words), or INSD (doublewords
on the 80386–80486 only) is used, the instruction determines the size of the data elements to be
received.

INS and its variations are normally used with the REP prefix. Before the repeated instruction is
executed, CX should contain the number of elements to be received. In protected mode, a
general-protection fault occurs if INS is used when the current privilege level is greater than the value of
the IOPL flag.

Flags

No change

Encoding

0110110w

INS/INSB/INSW/INSD Input from Port to String
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 433

Syntax Examples CPU Clock Cycles

INS [[ES:]] dest, DX ins es:instr,dx 88/86 —

INSB [[[[ES:]] dest, DX]] rep insb 286 5

INSW [[[[ES:]] dest, DX]] rep insw 386 15,pm=9,29*

INSD [[[[ES:]] dest, DX]] rep insd 486 17,pm=10,32*

* First protected-mode timing: CPL ≤ IOPL. Second timing: CPL > IOPL.

INT Interrupt

Generates a software interrupt. An 8-bit constant operand (0 to 255) specifies the interrupt procedure
to be called. The call is made by indexing the interrupt number into the Interrupt Vector Table (IVT)
starting at segment 0, offset 0. In real mode, the IVT contains 4-byte pointers to interrupt procedures.
In privileged mode, the IVT contains 8-byte pointers.

When an interrupt is called in real mode, the flags, CS, and IP are pushed onto the stack (in that
order), and the trap and interrupt flags are cleared. STI can be used to restore interrupts. See Intel
documentation and the documentation for your operating system for details on using and defining
interrupts in privileged mode. To return from an interrupt, use the IRET instruction.

Flags

 O D I T S Z A P C
0 0

Encoding

11001101 data (1)

Syntax Examples CPU Clock Cycles

INT immed8 int 25h 88/86
286
386
486

51 (88=71)
23+m,pm=(40,78)+m*
37,pm=59,99*
30,pm=44,71*

Encoding

11001100

Syntax Examples CPU Clock Cycles

INT 3 int 3 88/86
286
386
486

52 (88=72)
23+m,pm=(40,78)+m*
33,pm=59,99*
26,pm=44,71*

* The first protected-mode timing is for interrupts to the same privilege level. The second is for interrupts to a higher privilege
level. Timings for interrupts through task gates are not shown.

INTO Interrupt on Overflow
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 434

INTO Interrupt on Overflow

Generates Interrupt 4 if the overflow flag is set. The default MS-DOS behavior for Interrupt 4 is to return
without taking any action. For INTO to have any effect, you must define an interrupt procedure for
Interrupt 4.

Flags

 O D I T S Z A P C
± ±

Encoding

11001110

Syntax Examples CPU Clock Cycles

INTO into 88/86
286

386
486

53 (88=73),noj=4
24+m,noj=3,pm=(40,
78)+m*
35,noj=3,pm=59,99*
28,noj=3,pm=46,73*

* The first protected-mode timing is for interrupts to the same privilege level. The second is for interrupts to a higher privilege
level. Timings for interrupts through task gates are not shown.

INVD Invalidate Data Cache

80486 Only Empties contents of the current data cache without writing changes to memory. Proper
use of this instruction requires knowledge of how contents are placed in the cache. INVD is intended
primarily for system programming. See Intel documentation for details.

Flags

 No change

Encoding

00001111 00001000

Syntax Examples CPU Clock Cycles

INVD invd 88/86
286
386
486

—
—
—
4

INVLPG Invalidate TLB Entry

80486 Only Invalidates an entry in the Translation Lookaside Buffer (TLB), used by the
demand-paging mechanism in virtual-memory operating systems. The instruction takes a single

INVLPG Invalidate TLB Entry
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 435

memory operand and calculates the effective address of the operand, including the segment address. If
the resulting address is mapped by any entry in the TLB, this entry is removed. Proper use of INVLPG
requires understanding the hardware-supported demand-paging mechanism. INVLPG is intended
primarily for system programming. See Intel documentation for details.

Flags

 No change

Encoding

00001111 00000001 mod, reg, r/m disp (2)

Syntax Examples CPU Clock Cycles

INVLPG invlpg pointer[bx]
invlpg es:entry

88/86
286
386
486

—
—
—
12*

* 11 clocks if address is not mapped by any TLB entry.

IRET/IRETD Interrupt Return

Returns control from an interrupt procedure to the interrupted code. In real mode, the IRET instruction
pops IP, CS, and the flags (in that order) and resumes execution. See Intel documentation for details
on IRET operation in privileged mode. On the 80386–80486, the IRETD instruction should be used to
pop a 32-bit instruction pointer when returning from an interrupt called from a 32-bit segment. The F
suffix prevents epilogue code from being generated when ending a PROC block. Use it to terminate
interrupt service procedures.

Flags

 O D I T S Z A P C
± ± ± ± ± ± ± ± ±

Encoding

11001111

Syntax Examples CPU Clock Cycles

IRET iret 88/86 32 (88=44)

IRETD* 286 17+m,pm=(31,55)+m†

IRETF 386 22,pm=38,82†

IRETDF* 486 15,pm=20,36

* 80386–80486 only.
† The first protected-mode timing is for interrupts to the same privilege level within a task. The second is for interrupts to a

higher privilege level within a task. Timings for interrupts through task gates are not shown.

Jcondition Jump Conditionally
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 436

Jcondition Jump Conditionally

Transfers execution to the specified label if the flags condition is true. The condition is tested by
checking the flags shown in the table on the following page. If condition is false, no jump is taken and
program execution continues at the next instruction. On the 8086–80286 processors, the label given
as the operand must be short (between –128 and +127 bytes from the instruction following the jump).*
The 80386–80486 processors allow near jumps (–32,768 to +32,767 bytes). On the 80386–80486, the
assembler generates the shortest jump possible, unless the jump size is explicitly specified.

When the 80386–80486 processors are in FLAT memory model, short jumps range from –128 to +127
bytes and near jumps range from –2 to +2 gigabytes. There are no far jumps.

Flags

 No change

Encoding

0111cond disp (1)

Syntax Examples CPU Clock Cycles

Jcondition label jg bigger
jo SHORT too_big
jpe p_even

88/86
286
386
486

16,noj=4
7+m,noj=3
7+m,noj=3
3,noj=1

Encoding

00001111 1000cond disp (2)

Syntax Examples CPU Clock Cycles

Jcondition label† je next
jnae lesser
js negative

88/86
286
386
486

—
—
7+m,noj=3
3,noj=1

* If a source file for an 8086–80286 program contains a conditional jump outside the range of –128 to +127 bytes, the
assembler emits a level 3 warning and generates two instructions (including an unconditional jump) that are the equivalent
of the desired instruction. This behavior can be enabled and disabled with the OPTION LJMP and OPTION NOLJMP
directives.

† Near labels are only available on the 80386–80486. They are the default.

Jump Conditions

Opcode* Mnemonic Flags Checked Description

size 0010 JB/JNAE CF=1 Jump if below/not above or equal (unsigned
comparisons)

size 0011 JAE/JNB CF=0 Jump if above or equal/not below (unsigned
comparisons)

size 0110 JBE/JNA CF=1 or ZF=1 Jump if below or equal/not above (unsigned
comparisons)

size 0111 JA/JNBE CF=0 and ZF=0 Jump if above/not below or equal (unsigned
comparisons)

Jcondition Jump Conditionally
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 437

size 0100 JE/JZ ZF=1 Jump if equal (zero)

size 0101 JNE/JNZ ZF=0 Jump if not equal (not zero)

size 1100 JL/JNGE SF_OF Jump if less/not greater or equal (signed
comparisons)

size 1101 JGE/JNL SF=OF Jump if greater or equal/not less (signed
comparisons)

size 1110 JLE/JNG ZF=1 or SF_OF Jump if less or equal/not greater (signed
comparisons)

size 1111 JG/JNLE ZF=0 and SF=OF Jump if greater/not less or equal (signed
comparisons)

size 1000 JS SF=1 Jump if sign

size 1001 JNS SF=0 Jump if not sign

Opcode* Mnemonic Flags Checked Description

size 0010 JC CF=1 Jump if carry

size 0011 JNC CF=0 Jump if not carry

size 0000 JO OF=1 Jump if overflow

size 0001 JNO OF=0 Jump if not overflow

size 1010 JP/JPE PF=1 Jump if parity/parity even

size 1011 JNP/JPO PF=0 Jump if no parity/parity odd

* The size bits are 0111 for short jumps or 1000 for 80386–80486 near jumps.

JCXZ/JECXZ Jump if CX is Zero

Transfers program execution to the specified label if CX is 0. On the 80386–80486, JECXZ can be
used to jump if ECX is 0. If the count register is not 0, execution continues at the next instruction. The
label given as the operand must be short (between –128 and +127 bytes from the instruction following
the jump).

Flags

 No change

Encoding

11100011 disp (1)

Syntax Examples CPU Clock Cycles

JCXZ label
JECXZ label*

jcxz not found 88/86
286
386
486

18,noj=6
8+m,noj=4
9+m,noj=5
8,noj=5

* 80386–80486 only.

JMP Jump Unconditionally
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 438

JMP Jump Unconditionally

Transfers program execution to the address specified by the destination operand. Jumps are near
(between –32,768 and +32,767 bytes from the instruction following the jump), or short (between –128
and +127 bytes), or far (in a different code segment). Unless a distance is explicitly specified, the
assembler selects the shortest possible jump. With near and short jumps, the operand specifies a
new IP address. With far jumps, the operand specifies new IP and CS addresses.

When the 80386–80486 processors are in FLAT memory model, short jumps range from –128 to +127
bytes and near jumps range from –2 to +2 gigabytes.

Flags

 No change

Encoding

11101011 disp (1)

Syntax Examples CPU Clock Cycles

JMP label jmp SHORT exit 88/86
286
386
486

15
7+m
7+m
3

Encoding

11101001 disp (2*)

Syntax Examples CPU Clock Cycles

JMP label jmp close
jmp NEAR PTR distant

88/86
286
386
486

15
7+m
7+m
3

Encoding

11101010 disp (4*)

Syntax Examples CPU Clock Cycles

JMP label jmp FAR PTR close
jmp distant

88/86
286
386
486

15
11+m,pm=23+m†
12+m,pm=27+m†
17,pm=19†

Encoding

11111111 mod,100,r/m disp (0 or 2)

Syntax Examples CPU Clock Cycles

JMP reg16
JMP mem32§

jmp ax 88/86
286
386
486

11
7+m
7+m
5

JMP Jump Unconditionally
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 439

JMP mem16
JMP mem32§

jmp WORD PTR [bx]
jmp table[di]
jmp DWORD PTR [si]

88/86
286
386
486

18+EA
11+m
10+m
5

Encoding

11111111 mod,101,r/m disp (4*)

Syntax Examples CPU Clock Cycles

JMP mem32
JMP mem48§

jmp fpointer[si]
jmp DWORD PTR [bx]
jmp FWORD PTR [di]

88/86
286
386
486

24+EA
15+m,pm=26+m
12+m,pm=27+m
13,pm=18

* On the 80386–80486, the displacement can be 4 bytes for near jumps or 6 bytes for far jumps.
† Timings for jumps through call or task gates are not shown, since they are normally used only in operating systems.
§ 80386–80486 only. You can use DWORD PTR to specify near register-indirect jumps or FWORD PTR to specify far

register-indirect jumps.

LAHF Load Flags into AH Register

Transfers bits 0 to 7 of the flags register to AH. This includes the carry, parity, auxiliary carry, zero,
and sign flags, but not the trap, interrupt, direction, or overflow flags.

Flags

 No change

Encoding

10011111

Syntax Examples CPU Clock Cycles

LAHF lahf 88/86
286
386
486

4
2
2
3

LAR Load Access Rights

80286-80486 Protected Only Loads the access rights of a selector into a specified register. The
source operand must be a register or memory operand containing a selector. The destination operand
must be a register that will receive the access rights if the selector is valid and visible at the current
privilege level. The zero flag is set if the access rights are transferred, or cleared if they are not. See
Intel documentation for details on selectors, access rights, and other privileged-mode concepts.

Flags

 O D I T S Z A P C

LAR Load Access Rights
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 440

±

Encoding

00001111 00000010 mod, reg, r/m disp (0, 1, 2, or 4)

Syntax Examples CPU Clock Cycles

LAR reg16,reg16
LAR reg32,reg32*

lar ax,bx 88/86
286
386
486

—
14
15
11

LAR reg16,mem16
LAR reg32,mem32*

lar cx,selector 88/86
286
386
486

—
16
16
11

* 80386–80486 only.

LDS/LES/LFS/LGS/LSS Load Far Pointer

Reads and stores the far pointer specified by the source memory operand. The instruction moves the
pointer’s segment value into DS, ES, FS, GS, or SS (depending on the instruction). Then it moves the
pointer’s offset value into the destination operand. The LDS and LES instructions are available on all
processors. The LFS, LGS, and LSS instructions are available only on the 80386–80486.

Flags

 No change

Encoding

11000101 mod, reg, r/m disp (2)

Syntax Examples CPU Clock Cycles

LDS reg,mem lds si,fpointer 88/86
286
386
486

16+EA (88=24+EA)
7,pm=21
7,pm=22
6,pm=12

Encoding

11000100 mod, reg, r/m disp (2)

Syntax Examples CPU Clock Cycles

LES reg,mem les di,fpointer 88/86
286
386
486

16+EA (88=24+EA)
7,pm=21
7,pm=22
6,pm=12

Encoding

00001111 10110100 mod, reg, r/m disp (2 or 4)

LDS/LES/LFS/LGS/LSS Load Far Pointer
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 441

Syntax Examples CPU Clock Cycles

LFS reg,mem lfs edi,fpointer 88/86
286
386
486

—
—
7,pm=25
6,pm=12

Encoding

00001111 10110101 mod, reg, r/m disp (2 or 4)

Syntax Examples CPU Clock Cycles

LGS reg,mem lgs bx,fpointer 88/86
286
386
486

—
—
7,pm=25
6,pm=12

Encoding

00001111 10110010 mod, reg, r/m disp (2 or 4)

Syntax Examples CPU Clock Cycles

LSS reg,mem lss bp,fpointer 88/86
286
386
486

—
—
7,pm=22
6,pm=12

LEA Load Effective Address

Calculates the effective address (offset) of the source memory operand and stores the result in the
destination register. If the source operand is a direct memory address, the assembler encodes the
instruction in the more efficient MOV reg,immediate form (equivalent to MOV reg, OFFSET mem).

Flags

 No change

Encoding

10001101 mod, reg, r/m disp (2)

Syntax Examples CPU Clock Cycles

LEA reg16,mem
LEA reg32,mem*

lea bx,npointer 88/86
286
386
486

2+EA
3
2
1†

* 80386–80486 only.
† 2 if index register used.

LEAVE High Level Procedure Exit
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 442

LEAVE High Level Procedure Exit

Terminates the stack frame of a procedure. LEAVE reverses the action of a previous ENTER
instruction by restoring SP and BP to the values they had before the procedure stack frame was
initialized. LEAVE is equivalent to mov sp,bp, followed by pop bp.

Flags

 No change

Encoding

11001001

Syntax Examples CPU Clock Cycles

LEAVE leave 88/86
286
386
486

—
5
4
5

LES/LFS/LGS Load Far Pointer to Extra Segment

See LDS.

LGDT/LIDT/LLDT Load Descriptor Table

Loads a value from an operand into a descriptor table register. LGDT loads into the Global Descriptor
Table, LIDT into the Interrupt Vector Table, and LLDT into the Local Descriptor Table. These
instructions are available only in privileged mode. See Intel documentation for details on descriptor
tables and other protected-mode concepts.

Flags

 No change

Encoding

00001111 00000001 mod, 010,r/m disp (2)

Syntax Examples CPU Clock Cycles

LGDT mem48 lgdt descriptor 88/86
286
386
486

—
11
11
11

Encoding

00001111 00000001 mod, 011,r/m disp (2)

Syntax Examples CPU Clock Cycles

LGDT/LIDT/LLDT Load Descriptor Table
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 443

LIDT mem48 lidt descriptor 88/86
286
386
486

—
12
11
11

Encoding

00001111 00000000 mod, 010,r/m disp (0, 1, or 2)

Syntax Examples CPU Clock Cycles

LLDT reg16 lldt ax 88/86
286
386
486

—
17
20
11

LLDT mem16 lldt selector 88/86
286
386
486

—
19
24
11

LMSW Load Machine Status Word

80286-80486 Privileged Only Loads a value from a memory operand into the Machine Status Word
(MSW). This instruction is available only in privileged mode. See Intel documentation for details on the
MSW and other protected-mode concepts.

Flags

 No change

Encoding

00001111 00000001 mod, 110,r/m disp (0, 1, or 2)

Syntax Examples CPU Clock Cycles

LMSW reg16 lmsw ax 88/86
286
386
486

—
3
10
13

LMSW mem16 lmsw machine 88/86
286
386
486

—
6
13
13

LOCK Lock the Bus

Locks out other processors during execution of the next instruction. This instruction is a prefix. It must
precede an instruction that accesses a memory location that another processor might attempt to
access at the same time. See Intel documentation for details on multiprocessor environments.

LOCK Lock the Bus
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 444

Flags

 No change

Encoding

11110000

Syntax Examples CPU Clock Cycles

LOCK instruction lock xchg ax,sem 88/86
286
386
486

2
0
0
1

LODS/LODSB/LODSW/LODSD Load Accumulator from String

Loads the accumulator register with an element from a string in memory. DS:SI must point to the
source element, even if an operand is given. For each source element loaded, SI is adjusted according
to the size of the operand and the status of the direction flag. SI is incremented if the direction flag has
been cleared with CLD or decremented if the direction flag has been set with STD.

If the LODS form of the instruction is used, an operand must be provided to indicate the size of the
data elements to be processed. A segment override can be given. If LODSB (bytes), LODSW (words),
or LODSD (doublewords on the 80386–80486 only) is used, the instruction determines the size of the
data elements to be processed and whether the element will be loaded to AL, AX, or EAX.

LODS and its variations are not used with repeat prefixes, since there is no reason to repeatedly load
memory values to a register.

Flags

 No change

Encoding

1010110w

Syntax Examples CPU Clock Cycles

LODS [[segreg:]]src
LODSB [[[[segreg:]]src]]
LODSW[[[[segreg:]]src]]
LODSD [[[[segreg:]]src]]

lods es:source
lodsw

88/86
286
386
486

12 (W88=16)
5
5
5

LOOP/LOOPW/LOOPD Loop

Loops repeatedly to a specified label. LOOP decrements CX (without changing any flags) and, if the
result is not 0, transfers execution to the address specified by the operand. On the 80386–80486,
LOOP uses the 16-bit CX in 16-bit mode and the 32-bit ECX in 32-bit mode. The default can be
overridden with LOOPW (CX) or LOOPD (ECX). If CX is 0 after being decremented, execution
continues at the next instruction. The operand must specify a short label (between –128 and +127

LOOP/LOOPW/LOOPD Loop
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 445

bytes from the instruction following the LOOP instruction).

Flags

 No change

Encoding

11100010 disp (1)

Syntax Examples CPU Clock Cycles

LOOP label
LOOPW label*
LOOPD label*

loop wend 88/86
286
386
486

17,noj=5
8+m,noj=4
11+m
7,noj=6

* 80386–80486 only.

LOOPcondition/LOOPconditionW/LOOPconditionD Loop Conditionally

Loops repeatedly to a specified label if condition is met and if CX is not 0. On the 80386–80486, these
instructions use the 16-bit CX in 16-bit mode and the 32-bit ECX in 32-bit mode. This default can be
overridden with the W (CX) or D (ECX) forms of the instruction. The instruction decrements CX (without
changing any flags) and tests whether the zero flag was set by a previous instruction (such as CMP).
With LOOPE and LOOPZ (they are synonyms), execution is transferred to the label if the zero flag is
set and CX is not 0. With LOOPNE and LOOPNZ (they are synonyms), execution is transferred to the
label if the zero flag is cleared and CX is not 0. Execution continues at the next instruction if the
condition is not met. Before entering the loop, CX should be set to the maximum number of repetitions
desired.

Flags

 No change

Encoding

11100001 disp (1)

Syntax Examples CPU Clock Cycles

LOOPE label
LOOPEW label*
LOOPED label*
LOOPZ label
LOOPZW label*
LOOPZD label*

loopz again 88/86
286
386
486

18,noj=6
8+m,noj=4
11+m
9,noj=6

Encoding

11100000 disp (1)

Syntax Examples CPU Clock Cycles

LOOPNE label loopnz for_next 88/86 19,noj=5

LOOPcondition/LOOPconditionW/LOOPconditionD Loop Conditionally
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 446

LOOPNEW label*
LOOPNED label*
LOOPNZ label
LOOPNZW label*
LOOPNZD label*

286
386
486

8,noj=4
11+m
9,noj=6

* 80386–80486 only.

LSL Load Segment Limit

80286-80486 Protected Only Loads the segment limit of a selector into a specified register. The
source operand must be a register or memory operand containing a selector. The destination operand
must be a register that will receive the segment limit if the selector is valid and visible at the current
privilege level. The zero flag is set if the segment limit is transferred, or cleared if it is not. See Intel
documentation for details on selectors, segment limits, and other protected-mode concepts.

Flags

 O D I T S Z A P C
±

Encoding

00001111 00000011 mod, reg, r/m disp (0, 1, or 2)

Syntax Examples CPU Clock Cycles

LSL reg16,reg16
LSL reg32,reg32*

lsl ax,bx 88/86
286
386
486

—
14
20,25†
10

LSL reg16,mem16
LSL reg32,mem32*

lsl cx,seg_lim 88/86
286
386
486

—
16
21,26†
10

* 80386–80486 only.
† The first value is for byte granular; the second is for page granular.

LSS Load Far Pointer to Stack Segment

See LDS.

LTR Load Task Register

80286-80486 Protected Only Loads a value from the specified operand to the current task register.
LTR is available only in privileged mode. See Intel documentation for details on task registers and

LTR Load Task Register
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 447

other protected-mode concepts.

Flags

No change

Encoding

00001111 00000000 mod, 011,r/m disp (0, 1, or 2)

Syntax Examples CPU Clock Cycles

LTR reg16 ltr ax 88/86
286
386
486

—
17
23
20

LTR mem16 ltr task 88/86
286
386
486

—
19
27
20

MOV Move Data

Moves the value in the source operand to the destination operand. If the destination operand is SS,
interrupts are disabled until the next instruction is executed (except on early versions of the 8088 and
8086).

Flags

No change

Encoding

100010dw mod, reg, r/m disp (0, 1, or 2)

Syntax Examples CPU Clock Cycles

MOV reg,reg mov dh,bh
mov dx,cx
mov bp,sp

88/86
286
386
486

2
2
2
1

MOV mem,reg mov array[di],bx
mov count,cx

88/86
286
386
486

9+EA (W88=13+EA)
3
2
1

MOV reg,mem mov bx,pointer
mov dx,matrix[bx+di]

88/86
286
386
486

8+EA (W88=12+EA)
5
4
1

Encoding

1100011w mod, 000,r/m disp (0, 1, or 2) data (1 or 2)

MOV Move Data
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 448

Syntax Examples CPU Clock Cycles

MOV mem,immed mov [bx],15
mov color,7

88/86
286
386
486

10+EA (W88=14+EA)
3
2
1

Encoding

1011w reg data (1 or 2)

Syntax Examples CPU Clock Cycles

MOV reg,immed mov cx,256
mov dx,OFFSET string

88/86
286
386
486

4
2
2
1

Encoding

101000aw disp (2)

Syntax Examples CPU Clock Cycles

MOV mem,accum mov total,ax 88/86
286
386
486

10 (W88=14)
3
2
1

MOV accum,mem mov al,string 88/86
286
386
486

10 (W88=14)
5
4
1

Encoding

100011d0 mod,sreg, r/m disp (0, 1, or 2)

Syntax Examples CPU Clock Cycles

MOV segreg,reg16 mov ds,ax 88/86
286
386
486

2
2,pm=17
2,pm=18
3,pm=9

MOV segreg,mem16 mov es,psp 88/86
286
386
486

8+EA (88=12+EA)
5,pm=19
5,pm=19
3,pm=9

MOV reg16,segreg mov ax,ds 88/86
286
386
486

2
2
2
3

MOV mem16,segreg mov stack_save,ss 88/86
286
386
486

9+EA (88=13+EA)
3
2
3

MOV Move Data
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 449

MOV Move to/from Special Registers

80386–80486 Only Moves a value from a special register to or from a 32-bit general-purpose register.
The special registers include the control registers CR0, CR2, and CR3; the debug registers DR0, DR1,
DR2, DR3, DR6, and DR7; and the test registers TR6 and TR7. On the 80486, the test registers TR3,
TR4, and TR5 are also available. See Intel documentation for details on special registers.

Flags

 O D I T S Z A P C
? ? ? ? ? ?

Encoding

00001111 001000d0 11, reg*, r/m

Syntax Examples CPU Clock Cycles

MOV reg32, controlreg mov eax,cr2 88/86
286
386
486

—
—
6
4

MOV controlreg,reg32 mov cr0,ebx 88/86
286
386

486

—
—
CR0=10,CR2=4,CR3=5
4,CR0=16

Encoding

00001111 001000d1 11, reg*, r/m

Syntax Examples CPU Clock Cycles

MOV reg32,debugreg mov edx,dr3 88/86
286
386
486

—
—
DR0–3=22,DR6–7=14
10

MOV debugreg,reg32 mov dr0,ecx 88/86
286
386
486

—
—
DR0–3=22,DR6–7=16
11

Encoding

00001111 001001d0 11,reg*, r/m

Syntax Examples CPU Clock Cycles

MOV reg32,testreg mov edx,tr6 88/86
286
386
486

—
—
12
4,TR3=3

MOV testreg, reg32 mov tr7,eax 88/86
286

—
—

MOV Move to/from Special Registers
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 450

386
486

12
4,TR3=6

* The reg field contains the register number of the special register (for example, 000 for CR0, 011 for DR7, or 111 for TR7).

MOVS/MOVSB/MOVSW/MOVSD Move String Data

Moves a string from one area of memory to another. DS:SI must point to the source string and ES:DI
to the destination address, even if operands are given. For each element moved, DI and SI are adjusted
according to the size of the operands and the status of the direction flag. They are increased if the
direction flag has been cleared with CLD, or decreased if the direction flag has been set with STD.

If the MOVS form of the instruction is used, operands must be provided to indicate the size of the data
elements to be processed. A segment override can be given for the source operand (but not for the
destination). If MOVSB (bytes), MOVSW (words), or MOVSD (doublewords on the 80386–80486 only)
is used, the instruction determines the size of the data elements to be processed.

MOVS and its variations are normally used with the REP prefix.

Flags

No change

Encoding

1010010w

Syntax Examples CPU Clock Cycles

MOVS [[ES:]]dest,[[segreg:]]src
MOVSB [[[[ES:]]dest,[[segreg:]]src]]
MOVSW
[[[[ES:]]dest,[[segreg:]]src]]
MOVSD [[[[ES:]]dest,[[segreg:]]src]]

rep movsb
movs dest,es:source

88/86
286
386
486

18 (W88=26)
5
7
7

MOVSX Move with Sign-Extend

80386–80486 Only Moves and sign-extends the value of the source operand to the destination
register. MOVSX is used to copy a signed 8-bit or 16-bit source operand to a larger 16-bit or 32-bit
destination register.

Flags

No change

Encoding

00001111 1011111w mod, reg, r/m disp (0, 1, 2, or 4)

Syntax Examples CPU Clock Cycles

MOVSX Move with Sign-Extend
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 451

movsx ecx,bl
movsx bx,al

286
386
486

—
3
3

Syntax Examples CPU Clock Cycles

MOVSX reg,mem movsx cx,bsign
movsx edx,wsign
movsx eax,bsign

88/86
286
386
486

—
—
6
3

MOVZX Move with Zero-Extend

80386–80486 Only Moves and zero-extends the value of the source operand to the destination
register. MOVZX is used to copy an unsigned 8-bit or 16-bit source operand to a larger 16-bit or 32-bit
destination register.

Flags

No change

Encoding

00001111 1011011w mod, reg, r/m disp (0, 1, 2, or 4)

Syntax Examples CPU Clock Cycles

MOVZX reg,reg movzx eax,bx
movzx ecx,bl
movzx bx,al

88/86
286
386
486

—
—
3
3

MOVZX reg,mem movzx cx,bunsign
movzx edx,wunsign
movzx eax,bunsign

88/86
286
386
486

—
—
6
3

MUL Unsigned Multiply

Multiplies an implied destination operand by a specified source operand. Both operands are treated as
unsigned numbers. If a single 16-bit operand is given, the implied destination is AX and the product
goes into the DX:AX register pair. If a single 8-bit operand is given, the implied destination is AL and
the product goes into AX. On the 80386–80486, if the operand is EAX, the product goes into the
EDX:EAX register pair. The carry and overflow flags are set if DX is not 0 for 16-bit operands or if AH is
not 0 for 8-bit operands.

Flags

 O D I T S Z A P C
± ? ? ? ? ±

Encoding

MUL Unsigned Multiply
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 452

1111011w mod, 100, r/m disp (0, 1, or 2)

Syntax Examples CPU Clock Cycles

MUL reg mul bx
mul dl

88/86
286
386
486

b=70–77,w=118–133
b=13,w=21
b=9–14,w=9–22,d=9–38*
b=13–18,w=13–26,d=13–42

MUL mem mul factor
mul WORD PTR [bx]

88/86
286
386
486

(b=76–83,w=124–139)+EA†
b=16,w=24
b=12–17,w=12–25,d=12–41*
b=13–18,w=13–26,d=13–42

* The 80386–80486 processors have an early-out multiplication algorithm. Therefore, multiplying an
8-bit or 16-bit value in EAX takes the same time as multiplying the value in AL or AX.

† Word memory operands on the 8088 take (128–143)+EA clocks.

NEG Two's Complement Negation

Replaces the operand with its two’s complement. NEG does this by subtracting the operand from 0. If
the operand is 0, the carry flag is cleared. Otherwise, the carry flag is set. If the operand contains the
maximum possible negative value (–128 for 8-bit operands or –32,768 for 16-bit operands), the value
does not change, but the overflow and carry flags are set.

Flags

 O D I T S Z A P C
± ± ± ± ± ±

Encoding

1111011w mod, 011, r/m disp (0, 1, or 2)

Syntax Examples CPU Clock Cycles

NEG reg neg ax 88/86
286
386
486

3
2
2
1

NEG mem neg balance 88/86
286
386
486

16+EA (W88=24+EA)
7
6
3

NOP No Operation

Performs no operation. NOP can be used for timing delays or alignment.

Flags

No change

NOP No Operation
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 453

Encoding

10010000*

Syntax Examples CPU Clock Cycles

NOP nop 88/86
286
386
486

3
3
3
3

* The encoding is the same as XCHG AX,AX.

NOT One's Complement Negation

Toggles each bit of the operand by clearing set bits and setting cleared bits.

Flags

No change

Encoding

1111011w mod, 010, r/m disp (0,1,or2)

Syntax Examples CPU Clock Cycles

NOT reg not ax 88/86
286
386
486

3
2
2
1

NOT mem not masker 88/86
286
386
486

16+EA (W88=24+EA)
7
6
3

OR Inclusive OR

Performs a bitwise OR operation on the source and destination operands and stores the result to the
destination operand. For each bit position in the operands, if either or both bits are set, the
corresponding bit of the result is set. Otherwise, the corresponding bit of the result is cleared.

Flags

 O D I T S Z A P C
0 ± ± ? ± 0

Encoding

000010dw mod, reg, r/m disp (0, 1, or 2)

OR Inclusive OR
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 454

Syntax Examples CPU Clock Cycles

OR reg,reg or ax,dx 88/86
286
386
486

3
2
2
1

OR mem,reg or bits,dx
or [bp+6],cx

88/86
286
386
486

16+EA (W88=24+EA)
7
7
3

OR reg,mem or bx,masker
or dx,color[di]

88/86
286
386
486

9+EA (W88=13+EA)
7
6
2

Encoding

100000sw mod,001, r/m disp (0, 1, or 2) data (1 or 2)

Syntax Examples CPU Clock Cycles

OR reg,immed or dx,110110b 88/86
286
386
486

4
3
2
1

OR mem,immed or flag_rec,8 88/86
286
386
486

(b=17,w=25)+EA
7
7
3

Encoding

0000110w data (1 or 2)

Syntax Examples CPU Clock Cycles

OR accum,immed or ax,40h 88/86
286
386
486

4
3
2
1

OUT Output to Port

Transfers a byte or word (or a doubleword on the 80386–80486) to a port from the accumulator register.
The port address is specified by the destination operand, which can be DX or an 8-bit constant. In
protected mode, a general-protection fault occurs if OUT is used when the current privilege level is
greater than the value of the IOPL flag.

Flags

No change

Encoding

OUT Output to Port
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 455

1110011w data (1)

Syntax Examples CPU Clock Cycles

OUT
immed8,accum

out 60h,al 88/86
286
386
486

10 (88=14)
3
10,pm=4,24*
16,pm=11,31*

Encoding

1110111w

Syntax Examples CPU Clock Cycles

OUT DX,accum out dx,ax
out dx,al

88/86
286
386
486

8 (88=12)
3
11,pm=5,25*
16,pm=10,30*

* First protected-mode timing: CPL < IOPL. Second timing: CPL > IOPL.

OUTS/OUTSB/OUTSW/OUTSD Output String to Port

80186–80486 Only Sends a string to a port. The string is considered the source and must be
pointed to by DS:SI (even if an operand is given). The output port is specified in DX. For each element
sent, SI is adjusted according to the size of the operand and the status of the direction flag. SI is
increased if the direction flag has been cleared with CLD, or decreased if the direction flag has been
set with STD.

If the OUTS form of the instruction is used, an operand must be provided to indicate the size of data
elements to be sent. A segment override can be given. If OUTSB (bytes), OUTSW (words), or OUTSD
(doublewords on the 80386–80486 only) is used, the instruction determines the size of the data
elements to be sent.

OUTS and its variations are normally used with the REP prefix. Before the instruction is executed, CX
should contain the number of elements to send. In protected mode, a general-protection fault occurs if
OUTS is used when the current privilege level is greater than the value of the IOPL flag.

Flags

No change

Encoding

0110111w

Syntax Examples CPU Clock Cycles

OUTS DX, [[segreg:]] src
OUTSB [[DX, [[segreg:]] src]]
OUTSW [[DX, [[segreg:]] src]]
OUTSD [[DX, [[segreg:]] src]]

rep outs dx,buffer
outsb
rep outsw

88/86
286
386
486

—
5
14,pm=8,28*
17,pm=10,32*

* First protected-mode timing: CPL < IOPL. Second timing: CPL > IOPL.

OUTS/OUTSB/OUTSW/OUTSD Output String to Port
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 456

POP Pop

Pops the top of the stack into the destination operand. The value at SS:SP is copied to the destination
operand and SP is increased by 2. The destination operand can be a memory location, a
general-purpose 16-bit register, or any segment register except CS. Use RET to pop CS. On the
80386–80486, 32-bit values can be popped by giving a 32-bit operand. ESP is increased by 4 for 32-bit
pops.

Flags

No change

Encoding

01011 reg

Syntax Examples CPU Clock Cycles

POP reg16
POP reg32*

pop cx 88/86
286
386
486

8 (88=12)
5
4
1

Encoding

10001111 mod,000,r/m disp (2)

Syntax Examples CPU Clock Cycles

POP mem16
POP mem32*

pop param 88/86
286
386
486

17+EA (88=25+EA)
5
5
6

Encoding

000,sreg,111

Syntax Examples CPU Clock Cycles

POP segreg pop es
pop ds
pop ss

88/86
286
386
486

8 (88=12)
5,pm=20
7,pm=21
3,pm=9

Encoding

00001111 10,sreg,001

Syntax Examples CPU Clock Cycles

POP segreg* pop fs
pop gs

88/86
286
386
486

—
—
7,pm=21
3,pm=9

POP Pop
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 457

* 80386–80486 only.

POPA/POPAD Pop All

80186-80486 Only Pops the top 16 bytes on the stack into the eight general-purpose registers. The
registers are popped in the following order: DI, SI, BP, SP, BX, DX, CX, AX. The value for the SP
register is actually discarded rather than copied to SP. POPA always pops into 16-bit registers. On
the 80386–80486, use POPAD to pop into 32-bit registers.

Flags

No change

Encoding

01100001

Syntax Examples CPU Clock Cycles

POPA
POPAD*

popa 88/86
286
386
486

—
19
24
9

* 80386–80486 only.

POPF/POPFD Pop Flags

Pops the value on the top of the stack into the flags register. POPF always pops into the 16-bit flags
register. On the 80386–80486, use POPFD to pop into the 32-bit flags register.

Flags

 O D I T S Z A P C
± ± ± ± ± ± ± ± ±

Encoding

10011101

Syntax Examples CPU Clock Cycles

POPF
POPFD*

popf 88/86
286
386
486

8 (88=12)
5
5
9,pm=6

* 80386–80486 only.

PUSH/PUSHW/PUSHD Push
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 458

PUSH/PUSHW/PUSHD Push

Pushes the source operand onto the stack. SP is decreased by 2 and the source value is copied to
SS:SP. The operand can be a memory location, a general-purpose 16-bit register, or a segment
register. On the 80186–80486 processors, the operand can also be a constant. On the 80386–80486,
32-bit values can be pushed by specifying a 32-bit operand. ESP is decreased by 4 for 32-bit pushes.
On the 8088 and 8086, PUSH SP saves the value of SP after the push. On the 80186–80486
processors, PUSH SP saves the value of SP before the push. The PUSHW and PUSHD instructions
push a word (2 bytes) and a doubleword (4 bytes), respectively.

Flags

No change

Encoding

01010 reg

Syntax Examples CPU Clock Cycles

PUSH reg16
PUSH reg32*
PUSHW reg16
PUSHD reg32*

push dx 88/86
286
386
486

11 (88=15)
3
2
1

Encoding

11111111 mod, 110,r/m disp (2)

Syntax Examples CPU Clock Cycles

PUSH mem16
PUSH mem32*

push [di]
push fcount

88/86
286
386
486

16+EA (88=24+EA)
5
5
4

Encoding

00,sreg,110

Syntax Examples CPU Clock Cycles

PUSH segreg
PUSHW segreg
PUSHD segreg*

push es
push ss
push cs

88/86
286
386
486

10 (88=14)
3
2
3

Encoding

00001111 10,sreg,000

Syntax Examples CPU Clock Cycles

PUSH segreg
PUSHW segreg
PUSHD segreg*

push fs
push gs

88/86
286
386
486

—
—
2
3

PUSH/PUSHW/PUSHD Push
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 459

Encoding

011010s0 data (1 or 2)

Syntax Examples CPU Clock Cycles

PUSH immed
PUSHW immed
PUSHD immed*

push 'a'
push 15000

88/86
286
386
486

—
3
2
1

* 80386–80486 only.

PUSHA/PUSHAD Push All

80186–80486 Only Pushes the eight general-purpose registers onto the stack. The registers are
pushed in the following order: AX, CX, DX, BX, SP, BP, SI, DI. The value pushed for SP is the value
before the instruction. PUSHA always pushes 16-bit registers. On the 80386–80486, use PUSHAD to
push 32-bit registers.

Flags

No change

Encoding

01100000

Syntax Examples CPU Clock Cycles

PUSHA
PUSHAD*

pusha 88/86
286
386
486

—
17
18
11

* 80386–80486 only.

PUSHF/PUSHFD Push Flags

Pushes the flags register onto the stack. PUSHF always pushes the 16-bit flags register. On the
80386–80486, use PUSHFD to push the 32-bit flags register.

Flags

No change

Encoding

10011100

Syntax Examples CPU Clock Cycles

PUSHF/PUSHFD Push Flags
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 460

PUSHF
PUSHFD*

pushf 88/86
286
386
486

10(88=14)
3
4
4,pm=3

* 80386–80486 only.

RCL/RCR/ROL/ROR Rotate

Rotates the bits in the destination operand the number of times specified in the source operand. RCL
and ROL rotate the bits left; RCR and ROR rotate right.

ROL and ROR rotate the number of bits in the operand. For each rotation, the leftmost or rightmost bit
is copied to the carry flag as well as rotated. RCL and RCR rotate through the carry flag. The carry flag
becomes an extension of the operand so that a 9-bit rotation is done for 8-bit operands, or a 17-bit
rotation for 16-bit operands.

On the 8088 and 8086, the source operand can be either CL or 1. On the 80186–80486, the source
operand can be CL or an 8-bit constant. On the 80186–80486, rotate counts larger than 31 are masked
off, but on the 8088 and 8086, larger rotate counts are performed despite the inefficiency involved. The
overflow flag is modified only by single-bit variations of the instruction; for multiple-bit variations, the
overflow flag is undefined.

Flags

 O D I T S Z A P C
± ±

Encoding

1101000w mod, TTT*,r/m disp (0, 1, or 2)

Syntax Examples CPU Clock Cycles

ROL reg,1
ROR reg,1

ror ax,1
rol dl,1

88/86
286
386
486

2
2
3
3

RCL reg,1
RCR reg,1

rcl dx,1
rcr bl,1

88/86
286
386
486

2
2
9
3

ROL mem,1
ROR mem,1

ror bits,1
rol WORD PTR [bx],1

88/86
286
386
486

15+EA (W88=23+EA)
7
7
4

RCL mem,1
RCR mem,1

rcl WORD PTR [si],1
rcr WORD PTR m32[0],1

88/86
286
386
486

15+EA (W88=23+EA
7
10
4

Encoding

RCL/RCR/ROL/ROR Rotate
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 461

1101001w mod, TTT*,r/m disp (0, 1, or 2)

Syntax Examples CPU Clock Cycles

ROL reg,CL
ROR reg,CL

ror ax,cl
rol dx,cl

88/86
286
386
486

8+4n
5+n
3
3

RCL reg,CL
RCR reg,CL

rcl dx,cl
rcr bl,cl

88/86
286
386
486

8+4n
5+n
9
8–30

ROL mem,CL
ROR mem,CL

ror color,cl

rol WORD PTR [bp+6],cl

88/86

286
386
486

20+EA+4n
(W88=28+EA+4n)
8+n
7
4

Syntax Examples CPU Clock Cycles

RCL mem,CL
RCR mem,CL

rcr WORD PTR [bx+di],cl

rcl masker

88/86

286
386
486

20+EA+4n
(W88=28+EA+4n)
8+n
10
9–31

Encoding

1100000w mod,TTT*,r/m disp (0, 1, or 2) data (1)

Syntax Examples CPU Clock Cycles

ROL reg,immed8
ROR reg,immed8

rol ax,13
ror bl,3 286

88/86
286
386
486

—
5+n
3
2

RCL reg,immed8
RCR reg,immed8

rcl bx,5
rcr si,9

88/86
286
386
486

—
5+n
9
8–30

ROL mem,immed8
ROR mem,immed8

rol BYTE PTR [bx],10
ror bits,6

88/86
286
386
486

—
8+n
7
4

RCL mem,immed8
RCR mem,immed8

rcl WORD PTR [bp+8],
rcr masker,3

88/86
286
386
486

—
8+n
10
9–31

* TTT represents one of the following bit codes: 000 for ROL, 001 for ROR, 010 for RCL, or 011 for RCR.

REP Repeat String

REP Repeat String
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 462

Repeats a string instruction the number of times indicated by CX. First, CX is compared to 0; if it
equals 0, execution proceeds to the next instruction. Otherwise, CX is decremented, the string
instruction is performed, and the loop continues. REP is used with MOVS and STOS. REP also can
be used with INS and OUTS on the 80186–80486 processors. On all processors except the
80386–80486, combining a repeat prefix with a segment override can cause errors if an interrupt
occurs.

Flags

No change

Encoding

11110011 1010010w

Syntax Examples CPU Clock Cycles

REP MOVS dest,src
REP MOVSB [[dest,src]]
REP MOVSW [[dest,src]]
REP MOVSD [[dest,src]]*

rep movs source,dest
rep movsw

88/86
286
386
486

9+17n (W88=9+25n)
5+4n
7+4n
12+3n#

Encoding

11110011 1010101w

Syntax Examples CPU Clock Cycles

REP STOS dest
REP STOSB [[dest]]
REP STOSW [[dest]]
REP STOSD [[dest]]*

rep stosb
rep stos dest

88/86
286
386
486

9+10n (W88=9+14n)
4+3n
5+5n
7+4n†

Encoding

11110011 1010101w

Syntax Examples CPU Clock Cycles

REP LODS dest
REP LODSB [[dest]]
REP LODSW [[dest]]
REP LODSD [[dest]]*

rep lodsb
rep lods dest

88/86
286
386
486

—
—
—
7+4n†

Encoding

11110011 0110110w

Syntax Examples CPU Clock Cycles

REP INS dest,DX
REP INSB [[dest,DX]]
REP INSW [[dest,DX]]
REP INSD [[dest,DX]]*

rep insb
rep ins dest,dx

88/86
286
386

486

—
5+4n
13+6n,pm=(7,27)+6n§
16+8n,pm=(10,30)+8n§

Encoding

11110011 0110111w

REP Repeat String
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 463

Syntax Examples CPU Clock Cycles

REP OUTS DX,src
REP OUTSB [[src]]
REP OUTSW [[src]]
REP OUTSD [[src]]*

rep outs dx,source
rep outsw

88/86
286
386
486

—
5+4n
12+5n,pm=(6,26)+5n§
17+5n,pm=(11,31)+5n§

* 80386–80486 only.
5 if n = 0, 13 if n = 1.
† 5 if n = 0.
§ First protected-mode timing: CPL ≤ IOPL. Second timing: CPL > IOPL.

REPcondition Repeat String Conditionally

Repeats a string instruction as long as condition is true and the maximum count has not been
reached. REPE and REPZ (they are synonyms) repeat while the zero flag is set. REPNE and REPNZ
(they are synonyms) repeat while the zero flag is cleared. The conditional-repeat prefixes should only
be used with SCAS and CMPS, since these are the only string instructions that modify the zero flag.
Before executing the instruction, CX should be set to the maximum allowable number of repetitions.
First, CX is compared to 0; if it equals 0, execution proceeds to the next instruction. Otherwise, CX is
decremented, the string instruction is performed, and the loop continues. On all processors except the
80386–80486, combining a repeat prefix with a segment override may cause errors if an interrupt
occurs during a string operation.

Flags

 O D I T S Z A P C
±

Encoding

11110011 1010011w

Syntax Examples CPU Clock Cycles

REPE CMPS src,dest
REPE CMPSB [[src,dest]]
REPE CMPSW [[src,dest]]
REPE CMPSD [[src,dest]]*

repz cmpsb
repe cmps src,dest

88/86
286
386
486

9+22n (W88=9+30n)
5+9n
5+9n
7+7n#

Encoding

11110011 1010111w

Syntax Examples CPU Clock Cycles

REPE SCAS dest
REPE SCASB [[dest]]
REPE SCASW [[dest]]
REPE SCASD [[dest]]*

repe scas dest
repz scasw

88/86
286
386
486

9+15n (W88=9+19n)
5+8n
5+8n
7+5n#

Encoding

11110010 1010011w

REPcondition Repeat String Conditionally
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 464

Syntax Examples CPU Clock Cycles

REPNE CMPS src,dest
REPNE CMPSB [[src,dest]]
REPNE CMPSW [[src,dest]]
REPNE CMPSD [[src,dest]]*

repne cmpsw
repnz cmps src,dest

88/86
286
386
486

9+22n (W88=9+30n)
5+9n
5+9n
7+7n#

Encoding

11110010 1010111w

Syntax Examples CPU Clock Cycles

REPNE SCAS des
REPNE SCASB [[dest]]
REPNE SCASW [[dest]]
REPNE SCASD [[dest]]*

repne scas dest
repnz scasb

88/86
286
386
486

9+15n (W88=9+19n)
5+8n
5+8n
7+5n*

* 80386–80486 only.
5 if n=0.

RET/RETN/RETF Return from Procedure

Returns from a procedure by transferring control to an address popped from the top of the stack. A
constant operand can be given indicating the number of additional bytes to release. The constant is
normally used to adjust the stack for arguments pushed before the procedure was called. The size of a
return (near or far) is the size of the procedure in which the RET is defined with the PROC directive.
RETN can be used to specify a near return; RETF can specify a far return. A near return pops a word
into IP. A far return pops a word into IP and then pops a word into CS. After the return, the number of
bytes given in the operand (if any) is added to SP.

Flags

No change

Encoding

11000011

Syntax Examples CPU Clock Cycles

RET
RETN

ret
retn

88/86
286
386
486

16 (88=20)
11+m
10+m
5

Encoding

11000010 data (2)

Syntax Examples CPU Clock Cycles

RET immed16
RETN immed16

ret 2
retn 8

88/86
286
386

20 (88=24)
11+m
10+m

RET/RETN/RETF Return from Procedure
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 465

486 5

Encoding

11001011

Syntax Examples CPU Clock Cycles

RET
RETF

ret
retf

88/86
286
386
486

26 (88=34)
15+m,pm=25+m,55*
18+m,pm=32+m,62*
13,pm=18,33*

Encoding

11001010 data (2)

Syntax Examples CPU Clock Cycles

RET immed16
RETF immed16

ret 8
retf 32

88/86
286
386
486

25 (88=33)
15+m,pm=25+m,55*
18+m,pm=32+m,68*
14,pm=17,33*

* The first protected-mode timing is for a return to the same privilege level; the second is for a return to a lesser privilege level.

ROL/ROR Rotate

See RCL/RCR.

SAHF Store AH into Flags

Transfers AH into bits 0 to 7 of the flags register. This includes the carry, parity, auxiliary carry, zero,
and sign flags, but not the trap, interrupt, direction, or overflow flags.

Flags

 O D I T S Z A P C
± ± ± ± ±

Encoding

10011110

Syntax Examples CPU Clock Cycles

SAHF sahf 88/86
286
386
486

4
2
3
2

SAL/SAR Shift
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 466

SAL/SAR Shift

See SHL/SHR/SAL/SAR.

SBB Subtract with Borrow

Adds the carry flag to the second operand, then subtracts that value from the first operand. The result
is assigned to the first operand. SBB is used to subtract the least significant portions of numbers that
must be processed in multiple registers.

Flags

 O D I T S Z A P C
± ± ± ± ± ±

Encoding

000110dw mod, reg, r/m disp (0, 1, or 2)

Syntax Examples CPU Clock Cycles

SBB reg,reg sbb dx,cx 88/86
286
386
486

3
2
2
1

SBB mem,reg sbb WORD PTR m32[2],dx 88/86
286
386
486

16+EA (W88=24+EA)
7
6
3

SBB reg,mem sbb dx,WORD PTR m32[2] 88/86
286
386
486

9+EA (W88=13+EA)
7
7
2

Encoding

100000sw mod,011, r/m disp (0, 1, or 2) data (1 or 2)

Syntax Examples CPU Clock Cycles

SBB reg,immed sbb dx,45 88/86
286
386
486

4
3
2
1

SBB mem,immed sbb WORD PTR m32[2],40 88/86
286
386
486

17+EA (W88=25+EA)
7
7
3

Encoding

0001110w data (1 or 2)

SBB Subtract with Borrow
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 467

Syntax Examples CPU Clock Cycles

SBB accum,immed sbb ax,320 88/86 4
86
386
486

3
2
1

SCAS/SCASB/SCASW/SCASD Scan String Flags

Scans a string to find a value specified in the accumulator register. The string to be scanned is
considered the destination. ES:DI must point to that string, even if an operand is specified. For each
element, the destination element is subtracted from the accumulator value and the flags are updated to
reflect the result (although the result is not stored). DI is adjusted according to the size of the
operands and the status of the direction flag. DI is increased if the direction flag has been cleared with
CLD, or decreased if the direction flag has been set with STD.

If the SCAS form of the instruction is used, an operand must be provided to indicate the size of the
data elements to be processed. No segment override is allowed. If SCASB (bytes), SCASW (words),
or SCASD (doublewords on the 80386–80486 only) is used, the instruction determines the size of the
data elements to be processed and whether the element scanned for is in AL, AX, or EAX.

SCAS and its variations are normally used with repeat prefixes. REPNE (or REPNZ) is used to find the
first element in a string that matches the value in the accumulator register. REPE (or REPZ) is used to
find the first mismatch. Before the scan, CX should contain the maximum number of elements to scan.
After a REPNE SCAS, the zero flag is clear if the string does not contain the accumulator value. After
a REPE SCAS, the zero flag is set if the string contains nothing but the accumulator value.

When the instruction finishes, ES:DI points to the element that follows (if the direction flag is clear) or
precedes (if the direction flag is set) the match or mismatch. If CX decrements to 0, ES:DI points to
the element that follows or precedes the last comparison. The zero flag is set or clear according to the
result of the last comparison, not according to the value of CX.

Flags

 O D I T S Z A P C
± ± ± ± ± ±

Encoding

1010111w

Syntax Examples CPU Clock Cycles

SCAS [[ES:]] dest
SCASB [[[[ES:]] dest]]
SCASW [[[[ES:]] dest]]
SCASD [[[[ES:]] dest]]*

repne scasw
repe scasb
scas es:destin

88/86
286
386
486

15 (W88=19)
7
7
6

* 80386–80486 only

SETcondition Set Conditionally

SETcondition Set Conditionally
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 468

80386–80486 Only Sets the byte specified in the operand to 1 if condition is true or to 0 if condition
is false. The condition is tested by checking the flags shown in the table on the following page. The
instruction is used to set Boolean flags conditionally.

Flags

No change

Encoding

00001111 1001cond mod,000,r/m

Syntax Examples CPU Clock Cycles

SETcondition reg8 setc dh
setz al
setae bl

88/86
286
386
486

—
—
4
true=4, false=3

SETcondition mem8 seto BTYE PTR [ebx]
setle flag
sete Booleans[di]

88/86
286
386
486

—
—
5
true=3, false=4

Set Conditions

Opcode

Mnemonic Flags Checked Description

10010010 SETB/SETNAE CF=1 Set if below/not above or equal
(unsigned comparisons)

10010011 SETAE/SETNB CF=0 Set if above or equal/not below
(unsigned comparisons)

10010110 SETBE/SETNA CF=1 or ZF=1 Set if below or equal/not above
(unsigned comparisons)

10010111 SETA/SETNBE CF=0 and ZF=0 Set if above/not below or equal
(unsigned comparisons)

10010100 SETE/SETZ ZF=1 Set if equal/zero

10010101 SETNE/SETNZ ZF=0 Set if not equal/not zero

Opcode

Mnemonic Flags Checked Description

10011100 SETL/SETNGE SF_OF Set if less/not greater or equal (signed
comparisons)

10011101 SETGE/SETNL SF=OF Set if greater or equal/not less (signed
comparisons)

10011110 SETLE/SETNG ZF=1 or SF_OF Set if less or equal/not greater or
equal (signed comparisons)

10011111 SETG/SETNLE ZF=0 and SF=OF Set if greater/not less or equal (signed
comparisons)

10011000 SETS SF=1 Set if sign

10011001 SETNS SF=0 Set if not sign

10010010 SETC F=1 Set if carry

SETcondition Set Conditionally
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 469

10010011 SETNC CF=0 Set if not carry

10010000 SETO OF=1 Set if overflow

10010001 SETNO OF=0 Set if not overflow

10011010 SETP/SETPE PF=1 Set if parity/parity even

10011011 SETNP/SETPO PF=0 Set if no parity/parity odd

SGDT/SIDT/SLDT Store Descriptor Table

80286-80486 Only Stores a descriptor table register into a specified operand. SGDT stores the
Global Descriptor Table; SIDT, the Interrupt Vector Table; and SLDT, the Local Descriptor Table.
These instructions are generally useful only in privileged mode. See Intel documentation for details on
descriptor tables and other protected-mode concepts.

Flags

No change

Encoding

00001111 00000001 mod,000,r/m disp (2)

Syntax Examples CPU Clock Cycles

SGDT mem48 sgdt descriptor 88/86
286
386
486

—
11
9
10

Encoding

00001111 00000001 mod,001,r/m disp (2)

Syntax Examples CPU Clock Cycles

SIDT mem48 sidt descriptor 88/86
286
386
486

—
12
9
10

Encoding

00001111 00000000 mod, 000,r/m disp (0, 1, or 2)

Syntax Examples CPU Clock Cycles

SLDT reg16 sldt ax 88/86
286
386
486

—
2
2
2

SLDT mem16 sldt selector 88/86
286
386
486

—
3
2
3

SGDT/SIDT/SLDT Store Descriptor Table
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 470

SHL/SHR/SAL/SAR Shift

Shifts the bits in the destination operand the number of times specified by the source operand. SAL
and SHL shift the bits left; SAR and SHR shift right.

With SHL, SAL, and SHR, the bit shifted off the end of the operand is copied into the carry flag, and
the leftmost or rightmost bit opened by the shift is set to 0. With SAR, the bit shifted off the end of the
operand is copied into the carry flag, and the leftmost bit opened by the shift retains its previous value
(thus preserving the sign of the operand). SAL and SHL are synonyms.

On the 8088 and 8086, the source operand can be either CL or 1. On the 80186–80486 processors,
the source operand can be CL or an 8-bit constant. On the 80186–80486 processors, shift counts
larger than 31 are masked off, but on the 8088 and 8086, larger shift counts are performed despite the
inefficiency. Only single-bit variations of the instruction modify the overflow flag; for multiple-bit
variations, the overflow flag is undefined.

Flags

 O D I T S Z A P C
± ± ± ? ± ±

Encoding

1101000w mod,TTT*,r/m disp (0, 1, or 2)

Syntax Examples CPU Clock Cycles

SAR reg,1 sar di,1
sar cl,1

88/86
286
386
486

2
2
3
3

SAL reg,1
SHL reg,1
SHR reg,1
SAR mem,1

shr dh,1
shl si,1
sal bx,1
sar count,1

88/86
286
386
486

2
2
3
3

88/86
286
386
486

15+EA (W88=23+EA)
7
7
4

SAL mem,1
SHL mem,1
SHR mem,1

sal WORD PTR m32[0],1
shl index,1
shr unsign[di],1

88/86
286
386
486

15+EA (W88=23+EA)
7
7
4

Encoding

1101001w mod,TTT*,r/m disp (0, 1, or 2)

Syntax Examples CPU Clock Cycles

SAR reg,CL sar bx,cl
sar dx,cl

88/86
286
386
486

8+4n
5+n
3
3

SHL/SHR/SAL/SAR Shift
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 471

SAL reg,CL
SHL reg,CL
SHR reg,CL

shr dx,cl
shl di,cl
sal ah,cl

88/86
286
386
486

8+4n
5+n
3
3

SAR mem,CL sar sign,cl

sar WORD PTR [bp+8],cl

88/86

286
386
486

20+EA+4n
(W88=28+EA+4n)
8+n
7
4

SAL mem,CL
SHL mem,CL
SHR mem,CL

shr WORD PTR m32[2],cl
sal BYTE PTR [di],cl
shl index,cl

88/86

286
386
486

20+EA+4n
(W88=28+EA+4n)
8+n
7
4

Encoding

1100000w mod,TTT*,r/m disp (0, 1, or 2) data (1)

Syntax Examples CPU Clock Cycles

SAR reg,immed8 sar bx,5
sar cl,5

88/86
286
386
486

—
5+n
3
2

SAL reg,immed8
SHL reg,immed8
SHR reg,immed8

sal cx,6
shl di,2
shr bx,8

88/86
286
386
486

—
5+n
3
2

SAR mem,immed8 sar sign_count,3
sar WORD PTR [bx],5

88/86
286
386
486

—
8+n
7
4

SAL reg,immed8
SHL reg,immed8
SHR reg,immed8

shr mem16,11
shl unsign,4
sal array[bx+di],14

88/86
286
386
486

—
8+n
7
4

* TTT represents one of the following bit codes: 100 for SHL or SAL, 101 for SHR, or 111 for SAR.

SHLD/SHRD Double Precision Shift

80386–80486 Only Shifts the bits of the second operand into the first operand. The number of bits
shifted is specified by the third operand. SHLD shifts the first operand to the left by the number of
positions specified in the count. The positions opened by the shift are filled by the most significant bits
of the second operand. SHRD shifts the first operand to the right by the number of positions specified
in the count. The positions opened by the shift are filled by the least significant bits of the second
operand. The count operand can be either CL or an 8-bit constant. If a shift count larger than 31 is
given, it is adjusted by using the remainder (modulo) of a division by 32.

Flags

SHLD/SHRD Double Precision Shift
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 472

 O D I T S Z A P C
? ± ± ? ± ±

Encoding

00001111 10100100 mod,reg,r/m disp (0, 1, or 2) data (1)

Syntax Examples CPU Clock Cycles

SHLD reg16,reg16,immed8
SHLD reg32,reg32,immed8

shld ax,dx,10 88/86
286
386
486

—
—
3
2

SHLD mem16,reg16,immed8
SHLD mem32,reg32,immed8

shld bits,cx,5 88/86
286
386
486

—
—
7
3

Encoding

00001111 10101100 mod,reg,r/m disp (0, 1, or 2) data (1)

Syntax Examples CPU Clock Cycles

SHRD reg16,reg16,immed8
SHRD reg32,reg32,immed8

shrd cx,si,3 88/86
286
386
486

—
—
3
2

SHRD mem16,reg16,immed8
SHRD mem32,reg32,immed8

shrd [di],dx,13 88/86
286
386
486

—
—
7
3

Encoding

00001111 10100101 mod,reg,r/m disp (0, 1, or 2)

Syntax Examples CPU Clock Cycles

SHLD reg16,reg16,CL
SHLD reg32,reg32,CL

shld ax,dx,cl 88/86
286
386
486

—
—
3
3

SHLD mem16,reg16,CL
SHLD mem32,reg32,CL

shld masker,ax,cl 88/86
286
386
486

—
—
7
4

Encoding

00001111 10101101 mod,reg,r/m disp (0, 1, or 2)

Syntax Examples CPU Clock Cycles

SHRD reg16,reg16,CL
SHRD reg32,reg32,CL

shrd bx,dx,cl 88/86
286
386

—
—
3

SHLD/SHRD Double Precision Shift
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 473

486 3

SHRD mem16,reg16,CL
SHRD mem32,reg32,CL

shrd [bx],dx,cl 88/86
286
386
486

—
—
7
4

SMSW Store Machine Status Word

80286-80486 Only Stores the Machine Status Word (MSW) into a specified memory operand.
SMSW is generally useful only in protected mode. See Intel documentation for details on the MSW
and other protected-mode concepts.

Flags

No change

Encoding

00001111 00000001 mod,100,r/m disp (0, 1, or 2)

Syntax Examples CPU Clock Cycles

SMSW reg16 smsw ax 88/86
286
386
486

—
2
2
2

SMSW mem16 smsw machine 88/86
286
386
486

—
3
3
3

STC Set Carry Flag

Sets the carry flag.

Flags

 O D I T S Z A P C
1

Encoding

11111001

Syntax Examples CPU Clock Cycles

STC stc 88/86
286
386
486

2
2
2
2

STC Set Carry Flag
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 474

STD Set Direction Flag

Sets the direction flag. All subsequent string instructions will process down (from high addresses to
low addresses).

Flags

 O D I T S Z A P C
1

Encoding

11111101

Syntax Examples CPU Clock Cycles

STD std 88/86
286
386
486

2
2
2
2

STI Set Interrupt Flag

Sets the interrupt flag. When the interrupt flag is set, maskable interrupts are recognized. If interrupts
were disabled by a previous CLI instruction, pending interrupts will not be executed immediately; they
will be executed after the instruction following STI.

Flags

 O D I T S Z A P C
1

Encoding

11111011

Syntax Examples CPU Clock Cycles

STI sti 88/86
286
386
486

2
2
3
5

STOS/STOSB/STOSW/STOSD Store String Data

Stores the value of the accumulator in a string. The string is the destination and must be pointed to by
ES:DI, even if an operand is given. For each source element loaded, DI is adjusted according to the
size of the operand and the status of the direction flag. DI is incremented if the direction flag has been
cleared with CLD or decremented if the direction flag has been set with STD.

STOS/STOSB/STOSW/STOSD Store String Data
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 475

If the STOS form of the instruction is used, an operand must be provided to indicate the size of the
data elements to be processed. No segment override is allowed. If STOSB (bytes), STOSW (words),
or STOSD (doublewords on the 80386–80486 only) is used, the instruction determines the size of the
data elements to be processed and whether the element comes from AL, AX, or EAX.

STOS and its variations are often used with the REP prefix to fill a string with a repeated value. Before
the repeated instruction is executed, CX should contain the number of elements to store.

Flags

No change

Encoding

1010101w

Syntax Examples CPU Clock Cycles

STOS [[ES:]] dest
STOSB [[[[ES:]] dest]]
STOSW [[[[ES:]] dest]]
STOSD [[[[ES:]] dest]]*

stos es:dstring
rep stosw
rep stosb

88/86
286
386
486

11 (W88=15)
3
4
5

* 80386–80486 only

STR Store Task Register

80286-80486 Only Stores the current task register to the specified operand. This instruction is
generally useful only in privileged mode. See Intel documentation for details on task registers and other
protected-mode concepts.

Flags

No change

Encoding

00001111 00000000 mod, 001, reg disp (0, 1, or 2)

Syntax Examples CPU Clock Cycles

STR reg16 str cx 88/86
286
386
486

—
2
2
2

STR mem16 str taskreg 88/86
286
386
486

—
3
2
3

SUB Subtract

SUB Subtract
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 476

Subtracts the source operand from the destination operand and stores the result in the destination
operand.

Flags

 O D I T S Z A P C
± ± ± ± ± ±

Encoding

001010dw mod, reg, r/m disp (0, 1, or 2)

Syntax Examples CPU Clock Cycles

SUB reg,reg sub ax,bx
sub bh,dh

88/86
286
386
486

3
2
2
1

SUB mem,reg sub tally,bx
sub array[di],bl

88/86
286
386
486

16+EA (W88=24+EA)
7
6
3

Syntax Examples CPU Clock Cycles

SUB reg,mem sub cx,discard
sub al,[bx]

88/86
286
386
486

9+EA (W88=13+EA)
7
7
2

Encoding

100000sw mod,101,r/m disp (0, 1, or 2) data (1 or 2)

Syntax Examples CPU Clock Cycles

SUB reg,immed sub dx,45
sub bl,7

88/86
286
386
486

4
3
2
1

SUB mem,immed sub total,4000
sub BYTE PTR [bx+di],2

88/86
286
386
486

17+EA (W88=25+EA)
7
7
3

Encoding

0010110w data (1 or 2)

Syntax Examples CPU Clock Cycles

SUB accum,immed sub ax,32000 88/86
286
386
486

4
3
2
1

TEST Logical Compare
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 477

TEST Logical Compare

Tests specified bits of an operand and sets the flags for a subsequent conditional jump or set
instruction. One of the operands contains the value to be tested. The other contains a bit mask
indicating the bits to be tested. TEST works by doing a bitwise AND operation on the source and
destination operands. The flags are modified according to the result, but the destination operand is not
changed. This instruction is the same as the AND instruction, except the result is not stored.

Flags

 O D I T S Z A P C
0 ± ± ? ± 0

Encoding

1000010w mod, reg, r/m disp (0, 1, or 2)

Syntax Examples CPU Clock Cycles

TEST reg,reg test dx,bx
test bl,ch

88/86
286
386
486

3
2
2
1

TEST mem,reg
TEST reg,mem*

test dx,flags
test bl,bitarray[bx]

88/86
286
386
486

9+EA (W88=13+EA)
6
5
2

Encoding

1111011w mod,000,r/m disp (0, 1, or 2) data (1 or 2)

Syntax Examples CPU Clock Cycles

TEST reg,immed test cx,30h
test cl,1011b

88/86
286
386
486

5
3
2
1

TEST mem,immed test masker,1
test BYTE PTR [bx],03h

88/86
286
386
486

11+EA
6
5
2

Encoding

1010100w data (1 or 2)

Syntax Examples CPU Clock Cycles

TEST
accum,immed

test ax,90h 88/86
286
386
486

4
3
2
1

* MASM transposes TEST reg,mem; that is, it is encoded as TEST mem,reg.

TEST Logical Compare
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 478

VERR/VERW Verify Read or Write

80286-80486 Protected Only Verifies that a specified segment selector is valid and can be read or
written to at the current privilege level. VERR verifies that the selector is readable. VERW verifies that
the selector can be written to. If the segment is verified, the zero flag is set. Otherwise, the zero flag is
cleared.

Flags

 O D I T S Z A P C
±

Encoding

00001111 00000000 mod, 100,r/m disp (0, 1, or 2)

Syntax Examples CPU Clock Cycles

VERR reg16 verr ax 88/86
286
386
486

—
14
10
11

VERR mem16 verr selector 88/86
286
386
486

—
16
11
11

Encoding

00001111 00000000 mod, 101,r/m disp (0, 1, or 2)

Syntax Examples CPU Clock Cycles

VERW reg16 verw cx 88/86
286
386
486

—
14
15
11

VERW mem16 verw selector 88/86
286
386
486

—
16
16
11

WAIT Wait

Suspends processor execution until the processor receives a signal that a coprocessor has finished a
simultaneous operation. It should be used to prevent a coprocessor instruction from modifying a
memory location that is being modified simultaneously by a processor instruction. WAIT is the same
as the coprocessor FWAIT instruction.

Flags

No change

WAIT Wait
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 479

Encoding

10011011

Syntax Examples CPU Clock Cycles

WAIT wait 88/86
286
386
486

4
3
6
1–3

WBINVD Write Back and Invalidate Data Cache

80486 Only Empties the contents of the current data cache after writing changes to memory. Proper
use of this instruction requires knowledge of how contents are placed in the cache. WBINVD is
intended primarily for system programming. See Intel documentation for details.

Flags

No change

Encoding

00001111 00001001

Syntax Examples CPU Clock Cycles

WBINVD wbinvd 88/86
286
386
486

—
—
—
5

XADD Exchange and Add

80486 Only Adds the source and destination operands and stores the sum in the destination;
simultaneously, the original value of the destination is moved to the source. The instruction sets flags
according to the result of the addition.

Flags

 O D I T S Z A P C
± ± ± ± ± ±

Encoding

00001111 1100000b mod, reg, r/m disp (0, 1, or 2)

Syntax Examples CPU Clock Cycles

XADD mem,reg xadd warr[bx],ax
xadd string,bl

88/86
286
386

—
—
—

XADD Exchange and Add
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 480

486 4

XADD reg,reg xadd dl,al
xadd bx,dx

88/86
286
386
486

—
—
—
3

XCHG Exchange

Exchanges the values of the source and destination operands.

Flags

No change

Encoding

1000011w mod,reg,r/m disp (0, 1, or 2)

Syntax Examples CPU Clock Cycles

XCHG reg,reg xchg cx,dx
xchg bl,dh
xchg al,ah

88/86
286
386
486

4
3
3
3

XCHG reg,mem
XCHG mem,reg

xchg [bx],ax
xchg bx,pointer

88/86
286
386
486

17+EA (W88=25+EA)
5
5
5

Encoding

10010 reg

Syntax Examples CPU Clock Cycles

XCHG accum,reg16*
XCHG reg16,accum*

xchg ax,cx
xchg cx,ax

88/86
286
386
486

3
3
3
3

* On the 80386–80486, the accumulator may also be exchanged with a 32-bit register.

XLAT/XLATB Translate

Translates a value from one coding system to another by looking up the value to be translated in a
table stored in memory. Before the instruction is executed, BX should point to a table in memory and
AL should contain the unsigned position of the value to be translated from the table. After the
instruction, AL contains the table value at the specified position. No operand is required, but one can
be given to specify a segment override. DS is assumed unless a segment override is given. XLATB is
a synonym for XLAT. Either version allows an operand, but neither requires one.

XLAT/XLATB Translate
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 481

Flags

No change

Encoding

11010111

Syntax Examples CPU Clock Cycles

XLAT [[[[segreg:]] mem]]
XLATB [[[[segreg:]] mem]]

xlat
xlatb es:table

88/86
286
386
486

11
5
5
4

XOR Exclusive OR

Performs a bitwise exclusive OR operation on the source and destination operands and stores the
result in the destination. For each bit position in the operands, if both bits are set or if both bits are
cleared, the corresponding bit of the result is cleared. Otherwise, the corresponding bit of the result is
set.

Flags

 O D I T S Z A P C
0 ± ± ? ± 0

Encoding

001100dw mod, reg, r/m disp (0, 1, or 2)

Syntax Examples CPU Clock Cycles

XOR reg,reg xor cx,bx
xor ah,al

88/86
286
386
486

3
2
2
1

XOR mem,reg xor [bp+10],cx
xor masked,bx

88/86
286
386
486

16+EA (W88=24+EA)
7
6
3

XOR reg,mem xor cx,flags
xor bl,bitarray[di]

88/86
286
386
486

9+EA (W88=13+EA)
7
7
2

Encoding

100000sw mod,110,r/m disp (0, 1, or 2) data (1 or 2)

Syntax Examples CPU Clock Cycles

XOR reg,immed xor bx,10h
xor bl,1

88/86
286

4
3

XOR Exclusive OR
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 482

386
486

2
1

XOR mem,immed xor Boolean,1
xor switches[bx],101b

88/86
286
386
486

17+EA (W88=25+EA)
7
7
3

Encoding

0011010w data (1 or 2)

Syntax Examples CPU Clock Cycles

XOR accum,immed xor ax,01010101b 88/86
286
386
486

4
3
2
1

Chapter 5 Coprocessor

Topical Cross-reference for Coprocessor Instructions

Arithmetic

FABS FADD/FIADD FADDP

FCHS FDIV/FIDIV FDIVP

FDIVR/FIDIVR FDIVRP FMUL/FIMUL

FMULP FPREM FPREM1§

FRNDINT FSCALE FSQRT

FSUB/FISUB FSUBP FSUBR/FISUBR

FSUBRP FXTRACT

Compare

FCOM/FICOM FCOMP/FICOMP FCOMPP

FSTSW/FNSTSW FTST FUCOM§

FUCOMP§ FUCOMPP§ FXAM

Load

FLD/FILD/FBLD FLDCW FLDENV

FRSTOR FXCH

Load Constant

FLD1 FLDL2E FLDL2T

FLDLG2 FLDLN2 FLDPI

FLDZ

Processor Control

Chapter 5 Coprocessor
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 483

FCLEX/FNCLEX FDECSTP FDISI/FNDISI*

FENI/FNENI* FFREE FINCSTP

FINIT/FNINIT FLDCW FNOP

FRSTOR FSAVE/FNSAVE FSETPM_

FSTCW/FNSTCW FSTENV/FNSTENV FSTSW/FNSTSW

FWAIT

Store Data

FSAVE/FNSAVE FST/FIST FSTCW/FNSTCW

FSTENV/FNSTENV FSTP/FISTP/FBSTP FSTSW/FNSTSW

Transcendental

F2XM1 FCOS§ FPATAN

FPREM FPREM1§ FPTAN

FSIN§ FSINCOS§ FYL2P1

FYL2X

* 8087 only † 80287 only. § 80387–80486 only.

Interpreting Coprocessor Instructions

This section provides an alphabetical reference to instructions of the 8087, 80287, and 80387
coprocessors. The format is the same as the processor instructions except that encodings are not
provided. Differences are noted in the following.

The 80486 has the coprocessor built in. This one chip executes all the instructions listed in the
previous section and this section.

Syntax

Syntaxes in Column 1 use the following abbreviations for operand types:

Syntax Operand

reg A coprocessor stack register

memreal A direct or indirect memory operand storing a real number

memint A direct or indirect memory operand storing a binary integer

membcd A direct or indirect memory operand storing a BCD number

Examples

The position of the examples in Column 2 is not related to the clock speeds in Column 3.

ClockSpeeds

Column 3 shows the clock speeds for each processor. Sometimes an instruction may have more than
one possible clock speed. The following abbreviations are used to specify variations:

Abbreviation Description

EA Effective address. This applies only to the 8087. See the Processor Section, “Timings

Interpreting Coprocessor Instructions
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 484

on the 8088 and 8086 Processors,” for an explanation of effective address timings.

s,l,t Short real, long real, and 10-byte temporary real.

w,d,q Word, doubleword, and quadword binary integer.

to, fr To or from stack top. On the 80387 and 80486, the to clocks represent timings when
ST is the destination. The fr clocks represent timings when ST is the source.

InstructionSize

The instruction size is always 2 bytes for instructions that do not access memory. For instructions
that do access memory, the size is 4 bytes on the 8087 and 80287. On the 80387 and 80486, the size
for instructions that access memory is 4 bytes in 16-bit mode, or 6 bytes in 32-bit mode.

On the 8087, each instruction must be preceded by the WAIT (also called FWAIT) instruction, thereby
increasing the instruction’s size by 1 byte. The assembler inserts WAIT automatically by default, or
with the .8087 directive.

Architecture

The 8087, 80287, and 80387 coprocessors, along with the 80486, have several common elements of
architecture. All have a register stack made up of eight 80-bit data registers. These can contain
floating-point numbers in the temporary real format. The coprocessors also have 14 bytes of control
registers. Figure 5.1 shows the format of registers.

Interpreting Coprocessor Instructions
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 485

Fig. 5.1 Coprocessor Registers

The most important control registers are the control word and the status word. Figure 5.2 shows the
format of these registers.

Interpreting Coprocessor Instructions
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 486

Fig. 5.2 Control Word and Status Word

F2XM1 2X-1

Calculates Y = 2X – 1. X is taken from ST. The result, Y, is returned in ST. X must be in the range 0 ≤
X ≤ 0.5 on the 8087/287, or in the range –1.0 ≤ X ≤ +1.0 on the 80387–80486.

Syntax Examples CPU Clock Cycles

F2XM1 f2xm1 87
287
387
486

310–630
310–630
211–476
140–279

FABS Absolute Value

Converts the element in ST to its absolute value.

Syntax Examples CPU Clock Cycles

FABS fabs 87
287
387
486

10–17
10–17
 22
 3

FADD/FADDP/FIADD Add

Adds the source to the destination and returns the sum in the destination. If two register operands are
specified, one must be ST. If a memory operand is specified, the sum replaces the value in ST.
Memory operands can be 32- or 64-bit real numbers or 16- or 32-bit integers. If no operand is specified,
ST is added to ST(1) and the stack is popped, returning the sum in ST. For FADDP, the source must
be ST; the sum is returned in the destination and ST is popped.

FADD/FADDP/FIADD Add
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 487

Syntax Examples CPU Clock Cycles

FADD [[reg,reg]] fadd st,st(2)
fadd st(5),st
fadd

87
287
387
486

70–100
70–100
to=23–31, fr=26–34
8–20

FADDP reg,ST faddp st(6),st 87
287
387
486

75–105
75–105
23–31
8–20

FADD memreal fadd QWORD PTR [bx]
fadd shortreal

87

287
387
486

(s=90–120,s=95–125)+EA
s=90–120,l=95–125
s=24–32,l=29–37
8–20

FIADD memint fiadd int16
fiadd warray[di]
fiadd double

87

287

387
486

(w=102–137,d=108
–143)+EA
w=102–137,d=108
–143
w=71–85,d=57–72
w=20–35,d=19–32

FBLD Load BCD

See FLD.

FBSTP Store BCD and Pop

See FST.

FCHS Change Sign

Reverses the sign of the value in ST.

Syntax Examples CPU Clock Cycles

FCHS fchs 87
287
387
486

10–17
10–17
24–25
6

FCLEX/FNCLEX Clear Exceptions

Clears all exception flags, the busy flag, and bit 7 in the status word. Bit 7 is the interrupt-request flag

FCLEX/FNCLEX Clear Exceptions
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 488

on the 8087, and the error-status flag on the 80287, 80387, and 80486. The instruction has wait and
no-wait versions.

Syntax Examples CPU Clock Cycles*

FCLEX
FNCLEX

fclex 87
287
387
486

2–8
2–8
11
7

* These timings reflect the no-wait version of the instruction. The wait version may take additional clock cycles.

FCOM/FCOMP/FCOMPP/FICOM/FICOMP Compare

Compares the specified source operand to ST and sets the condition codes of the status word
according to the result. The instruction subtracts the source operand from ST without changing either
operand. Memory operands can be 32- or 64-bit real numbers or 16- or 32-bit integers. If no operand is
specified or if two pops are specified, ST is compared to ST(1) and the stack is popped. If one pop is
specified with an operand, the operand is compared to ST. If one of the operands is a NAN, an
invalid-operation exception occurs (see FUCOM for an alternative method of comparing on the
80387–80486).

Syntax Examples CPU Clock Cycles

FCOM [[reg]] fcom st(2)
fcom

87
287
387
486

40–50
40–50
24
4

FCOMP [[reg]] fcomp st(7)
fcomp

87
287
387
486

42–52
42–52
26
4

FCOMPP fcompp 87
287
387
486

45–55
45–55
26
5

FCOM memreal fcom shortreals[di]
fcom longreal

87
287
387
486

(s=60–70,l=65–75)+EA
s=60–70,l=65–75
s=26,l=31
4

FCOMP memreal fcomp longreal
fcomp shorts[di]

87
287
387
486

(s=63–73,l=67–77)+EA
s=63–73,l=67–77
s=26,l=31
4

FICOM memint ficom double
ficom warray[di]

87

287
387
486

(w=72–86,d=78–91)+EA
w=72–86,d=78–91
w=71–75,d=56–63
w=16–20,d=15–17

FICOMP memint ficomp WORD PTR [bp+6]
ficomp darray[di]

87 (w=74–88,d=80–93)+EA
w=74–88,d=80–93

FCOM/FCOMP/FCOMPP/FICOM/FICOMP Compare
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 489

287
387
486

w=71–75,d=56–63
w=16–20,d=15–17

Condition Codes for FCOM

C3 C2 C1 C0 Meaning

0 0 ? 0 ST > source

0 0 ? 1 ST < source

1 0 ? 0 ST = source

1 1 ? 1 ST is not comparable to source

FCOS Cosine

80387–80486 Only Replaces a value in radians in ST with its cosine. If |ST| < 263, the C2 bit of the
status word is cleared and the cosine is calculated. Otherwise, C2 is set and no calculation is
performed. ST can be reduced to the required range with FPREM or FPREM1.

Syntax Examples CPU Clock Cycles

FCOS fcos 87
287
387
486

—
—
123–772*
257–354†

* For operands with an absolute value greater than π/4, up to 76 additional clocks may be required.
† For operands with an absolute value greater than π/4, add n clocks where n = operand/(π/4).

FDECSTP Decrement Stack Pointer

Decrements the stack-top pointer in the status word. No tags or registers are changed, and no data is
transferred. If the stack pointer is 0, FDECSTP changes
it to 7.

Syntax Examples CPU Clock Cycles

FDECSTP fdecstp 87
287
387
486

6–12
6–12
22
3

FDISI/FNDISI Disable Interrupts

8087 Only Disables interrupts by setting the interrupt-enable mask in the control word. This
instruction has wait and no-wait versions. Since the 80287, 80387, and 80486 do not have an
interrupt-enable mask, the instruction is recognized but ignored on these coprocessors.

Syntax Examples CPU Clock Cycles*

FDISI/FNDISI Disable Interrupts
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 490

FDISI
FNDISI

fdisi 87
287
387
486

2–8
2
2
3

* These timings reflect the no-wait version of the instruction. The wait version may take additional clock cycles.

FDIV/FDIVP/FIDIV Divide

Divides the destination by the source and returns the quotient in the destination.
If two register operands are specified, one must be ST. If a memory operand is specified, the quotient
replaces the value in ST. Memory operands can be 32- or
64-bit real numbers or 16- or 32-bit integers. If no operand is specified, ST(1) is divided by ST and the
stack is popped, returning the result in ST. For FDIVP,
the source must be ST; the quotient is returned in the destination register and ST
is popped.

Syntax Examples CPU Clock Cycles

FDIV [[reg,reg]] fdiv st,st(2)
fdiv st(5),st

87
287
387
486

193–203
193–203
to=88, fr=91
73

FDIVP reg,ST fdivp st(6),st 87
287
387
486

197–207
197–207
91
73

FDIV memreal fdiv DWORD PTR [bx]
fdiv shortreal[di]
fdiv longreal

87

287
387
486

(s=215–225,l=220–
230)+EA
s=215–225,l=220–230
s=89,l=94
73

FIDIV memint fidiv int16
fidiv warray[di]
fidiv double

87

287

387

486

(w=224–238,d=230–
243)+EA
w=224–238,d=230
–243
w=136–140,d=120
–127
w=85–89,d=84–86

FDIVR/FDIVRP/FIDIVR Divide Reversed

Divides the source by the destination and returns the quotient in the destination. If two register
operands are specified, one must be ST. If a memory operand is specified, the quotient replaces the
value in ST. Memory operands can be 32- or 64-bit real numbers or 16- or 32-bit integers. If no operand
is specified, ST is divided by ST(1) and the stack is popped, returning the result in ST. For FDIVRP,
the source must be ST; the quotient is returned in the destination register and ST is popped.

Syntax Examples CPU Clock Cycles

FDIVR/FDIVRP/FIDIVR Divide Reversed
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 491

FDIVR [[reg,reg]] fdivr st,st(2)
fdivr st(5),st
fdivr

87
287
387
486

194–204
194–204
to=88, fr=91
73

FDIVRP reg,ST fdivrp st(6),st 87
287
387
486

198–208
198–208
91
73

FDIVR memreal fdivr longreal
fdivr shortreal[di]

87

287
387
486

(s=216–226,l=221
–231)+EA
s=216–226,l=221–231
s=89,l=94
73

FIDIVR memint fidivr double
fidivr warray[di]

87

287

387
486

(w=225–239,d=231
–245)+EA
w=225–239,d=231
–245
w=135–141,d=121–128
w=85–89,d=84–86

FENI/FNENI Enable Interrupts

8087 Only Enables interrupts by clearing the interrupt-enable mask in the control word. This
instruction has wait and no-wait versions. Since the 80287, 80387, and 80486 do not have
interrupt-enable masks, the instruction is recognized but ignored on these coprocessors.

Syntax Examples CPU Clock Cycles*

FENI
FNENI

feni 87
287
387
486

2–8
2
2
3

* These timings reflect the no-wait version of the instruction. The wait version may take additional clock cycles.

FFREE Free Register

Changes the specified register’s tag to empty without changing the contents of the register.

Syntax Examples CPU Clock Cycles

FFREE ST(i) ffree st(3) 87
287
387
486

9–16
9–16
18
3

FIADD/FISUB/FISUBR/ FIMUL/FIDIV/FIDIVR Integer Arithmetic

FIADD/FISUB/FISUBR/ FIMUL/FIDIV/FIDIVR Integer Arithmetic
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 492

See FADD, FSUB, FSUBR, FMUL, FDIV, and FDIVR.

FICOM/FICOMP Compare Integer

See FCOM.

FILD Load Integer

See FLD.

FINCSTP Increment Stack Pointer

Increments the stack-top pointer in the status word. No tags or registers are changed, and no data is
transferred. If the stack pointer is 7, FINCSTP changes it
to 0.

Syntax Examples CPU Clock Cycles

FINCSTP fincstp 87
287
387
486

6–12
6–12
21
 3

FINIT/FNINIT Initialize Coprocessor

Initializes the coprocessor and resets all the registers and flags to their default values. The instruction
has wait and no-wait versions. On the 80387–80486, the condition codes of the status word are
cleared. On the 8087/287, they are unchanged.

Syntax Examples CPU Clock Cycles*

FINIT
FNINIT

finit 87
287
387
486

2–8
2–8
33
17

* These timings reflect the no-wait version of the instruction. The wait version may take additional clock cycles.

FIST/FISTP Store Integer

See FST.

FIST/FISTP Store Integer
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 493

FLD/FILD/FBLD Load

Pushes the specified operand onto the stack. All memory operands are automatically converted to
temporary-real numbers before being loaded. Memory operands can be 32-, 64-, or 80-bit real numbers
or 16-, 32-, or 64-bit integers.

Syntax Examples CPU Clock Cycles

FLD reg fld st(3) 87
287
387
486

17–22
17–22
14
4

FLD memreal fld longreal
fld shortarray[bx+di]

fld tempreal

87

287

387
486

(s=38–56,l=40–60,t=
53–65)+EA
s=38–56,l=40–60,t=
53–65
s=20,1=25,t=44
s=3,l=3,t=6

FILD memint fild mem16
fild DWORD PTR [bx]
fild quads[si]

87

287

387

486

(w=46–54,d=52–60,q=60–68)+EA
w=46-54,d=52-60,q=
60-68
w=61–65,d=45–52,q=56–67
w=13–16,d=9–12,q=
10–18

FBLD membcd fbld packbcd 87
287
387
486

(290–310)+EA
290–310
266–275
70–103

FLD1/FLDZ/FLDPI/FLDL2E/ FLDL2T/FLDLG2/FLDLN2 Load
Constant

FLD1/FLDZ/FLDPI/FLDL2E/FLDL2T/FLDLG2/FLDLN2 Load
Constant

Pushes a constant onto the stack. The following constants can be loaded:

Instruction Constant

FLD1 +1.0

FLDZ +0.0

FLDPI π

Instruction Constant

FLDL2E Log2(e)

FLD1/FLDZ/FLDPI/FLDL2E/FLDL2T/FLDLG2/FLDLN2 Load Constant
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 494

FLDL2T Log2(10)

FLDLG2 Log10(2)

FLDLN2 Loge(2)

Syntax Examples CPU Clock Cycles

FLD1 fld1 87
287
387
486

15–21
15–21
24
4

FLDZ fldz 87
287
387
486

11–17
11–17
20
4

FLDPI fldpi 87
287
387
486

16–22
16–22
40
8

FLDL2E fldl2e 87
287
387
486

15–21
15–21
40
8

FLDL2T fldl2t 87
287
387
486

16–22
16–22
40
8

FLDLG2 fldlg2 87
287
387
486

18–24
18–24
41
8

FLDLN2 fldln2 87
287
387
486

17–23
17–23
41
8

FLDCW Load Control Word

Loads the specified word into the coprocessor control word. The format of the control word is shown in
the “Interpreting Coprocessor Instructions” section.

Syntax Examples CPU Clock Cycles

FLDCW mem16 fldcw ctrlword 87
287
387
486

(7–14)+EA
7–14
19
4

FLDENV/FLDENVW/FLDENVD Load Environment State

FLDENV/FLDENVW/FLDENVD Load Environment State
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 495

Loads the 14-byte coprocessor environment state from a specified memory location. The environment
includes the control word, status word, tag word, instruction pointer, and operand pointer. On the
80387–80486 in 32-bit mode, the environment state is 28 bytes.

Syntax Examples CPU Clock Cycles

FLDENV mem fldenv [bp+10] 87 (35–45)+EA

FLDENVW mem* 287 35–45

FLDENVD mem* 387
486

71
44,pm=34

* 80387–80486 only.

FMUL/FMULP/FIMUL Multiply

Multiplies the source by the destination and returns the product in the destination. If two register
operands are specified, one must be ST. If a memory operand is specified, the product replaces the
value in ST. Memory operands can be 32- or 64-bit real numbers or 16- or 32-bit integers. If no operand
is specified, ST(1) is multiplied by ST and the stack is popped, returning the product in ST. For
FMULP, the source must be ST; the product is returned in the destination register and ST is popped.

Syntax Examples CPU Clock Cycles

FMUL [[reg,reg]] fmul st,st(2)
fmul st(5),st
fmul

87
287
387

486

130–145 (90–105)*
130–145 (90–105)*
to=46–54 (49), fr=
29–57 (52)†
16

FMULP reg,ST fmulp st(6),st 87
287
387
486

134–148 (94–108)*
134–148 (94–108)*
29–57 (52)†
16

FMUL memreal fmul DWORD PTR [bx]
fmul shortreal[di+3]
fmul longreal

87

287

387
486

(s=110–125,l=154–
168)+EA§
s=110–125,l=154
–168§
s=27–35,l=32–57
s=11,l=14

FIMUL memint fimul int16
fimul warray[di]
fimul double

87

287

387
486

(w=124–138,d=130
–144)+EA
w=124–138,d=130
–144
w=76–87,d=61–82
w=23–27,d=22–24

* The clocks in parentheses show times for short values—those with 40 trailing zeros in their fraction because they were
loaded from a short-real memory operand.

† The clocks in parentheses show typical speeds.
§ If the register operand is a short value—having 40 trailing zeros in its fraction because it was loaded from a short-real

memory operand—then the timing is (112–126)+EA on the 8087 or 112–126 on the 80287.

FMUL/FMULP/FIMUL Multiply
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 496

FNinstruction No-Wait Instructions

Instructions that have no-wait versions include FCLEX, FDISI, FENI, FINIT, FSAVE, FSTCW,
FSTENV, and FSTSW. Wait versions of instructions check for unmasked numeric errors; no-wait
versions do not. When the .8087 directive is used, the assembler puts a WAIT instruction before the
wait versions and a NOP instruction before the no-wait versions.

FNOP No Operation

Performs no operation. FNOP can be used for timing delays or alignment.

Syntax Examples CPU Clock Cycles

FNOP fnop 87
287
387
486

10–16
10–16
12
3

FPATAN Partial Arctangent

Finds the partial tangent by calculating Z = ARCTAN(Y / X). X is taken from ST and Y from ST(1). On
the 8087/287, Y and X must be in the range 0 ≤ Y < X < ∞. On the 80387–80486, there is no restriction
on X and Y. X is popped from the stack and Z replaces Y in ST.

Syntax Examples CPU Clock Cycles

FPATAN fpatan 87
287
387
486

250–800
250–800
314–487
218–303

FPREM Partial Remainder

Calculates the remainder of ST divided by ST(1), returning the result in ST. The remainder retains the
same sign as the original dividend. The calculation uses the following formula:

remainder = ST – ST(1) * quotient

The quotient is the exact value obtained by chopping ST / ST(1) toward 0. The instruction is normally
used in a loop that repeats until the reduction is complete, as indicated by the condition codes of the
status word.

Syntax Examples CPU Clock Cycles

FPREM fprem 87
287
387
486

15–190
15–190
74–155
70–138

FPREM Partial Remainder
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 497

Condition Codes for FPREM and FPREM1

C3 C2 C1 C0 Meaning

? 1 ? ? Incomplete reduction

0 0 0 0 quotient MOD 8 = 0

0 0 0 1 quotient MOD 8 = 4

0 0 1 0 quotient MOD 8 = 1

0 0 1 1 quotient MOD 8 = 5

1 0 0 0 quotient MOD 8 = 2

1 0 0 1 quotient MOD 8 = 6

1 0 1 0 quotient MOD 8 = 3

1 0 1 1 quotient MOD 8 = 7

FPREM1 Partial Remainder (IEEE Compatible)

80387–80486 Only Calculates the remainder of ST divided by ST(1), returning the result in ST. The
remainder retains the same sign as the original dividend. The calculation uses the following formula:

remainder = ST – ST(1) * quotient

The quotient is the integer nearest to the exact value of ST / ST(1). When two integers are equally
close to the given value, the even integer is used. The instruction is normally used in a loop that
repeats until the reduction is complete, as indicated by the condition codes of the status word. See
FPREM for the possible condition codes.

Syntax Examples CPU Clock Cycles

FPREM1 fprem1 87
287
387
486

—
—
95–185
72–167

FPTAN Partial Tangent

Finds the partial tangent by calculating Y / X = TAN(Z). Z is taken from ST. Z must be in the range 0 ≤
Z ≤ π / 4 on the 8087/287. On the 80387–80486, |Z| must be less than 263. The result is the ratio Y / X.
Y replaces Z, and X is pushed into ST. Thus, Y is returned in ST(1) and X in ST.

Syntax Examples CPU Clock Cycles

FPTAN fptan 87
287
387
486

30–540
30–540
191–497*
200–273†

* For operands with an absolute value greater than π/4, up to 76 additional clocks may be required.
† For operands with an absolute value greater than π/4, add n clocks where n = operand/(π/4).

FRNDINT Round to Integer
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 498

FRNDINT Round to Integer

Rounds ST from a real number to an integer. The rounding control (RC) field of the control word
specifies the rounding method, as shown in the introduction to this section.

Syntax Examples CPU Clock Cycles

FRNDINT frndint 87
287
387
486

16–50
16–50
66–80
21–30

FRSTOR/FRSTORW/FRSTORD Restore Saved State

Restores the 94-byte coprocessor state to the coprocessor from the specified memory location. In
32-bit mode on the 80387–80486, the environment state takes 108 bytes.

Syntax Examples CPU Clock Cycles

FRSTOR mem
FRSTORW mem*
FRSTORD mem*

frstor [bp–94] 87
287
387
486

(197–207)+EA
†
308
131,pm=120

* 80387–80486 only.
† Clock counts are not meaningful in determining overall execution time of this instruction. Timing is determined by operand

transfers.

FSAVE/FSAVEW/FSAVED/FNSAVE/ FNSAVEW/FNSAVED Save
Coprocessor State

Stores the 94-byte coprocessor state to the specified memory location. In 32-bit mode on the
80387–80486, the environment state takes 108 bytes. This instruction has wait and no-wait versions.
After the save, the coprocessor is initialized as if FINIT had been executed.

Syntax Examples CPU Clock Cycles§

FSAVE mem
FSAVEW mem*
FSAVED mem*
FNSAVE mem
FNSAVEW mem*
FNSAVED mem*

fsave [bp–94]
fsave cobuffer

87
287
387
486

(197–207)+EA
†
375–376
154,pm=143

* 80387–80486 only.
† Clock counts are not meaningful in determining overall execution time of this instruction. Timing is determined by operand

transfers.
§ These timings reflect the no-wait version of the instruction. The wait version may take additional clock cycles.

FSCALE Scale
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 499

FSCALE Scale

Scales by powers of 2 by calculating the function Y = Y * 2X. X is the scaling factor taken from ST(1),
and Y is the value to be scaled from ST. The scaled result replaces the value in ST. The scaling factor
remains in ST(1). If the scaling factor is not an integer, it will be truncated toward zero before the
scaling.

On the 8087/287, if X is not in the range –215 ≤ X < 215 or if X is in the range 0 < X < 1, the result will be
undefined. The 80387–80486 have no restrictions on the range of operands.

Syntax Examples CPU Clock Cycles

FSCALE fscale 87
287
387
486

32–38
32–38
67–86
30–32

FSETPM Set Protected Mode

80287 Only Sets the 80287 to protected mode. The instruction and operand pointers are in the
protected-mode format after this instruction. On the 80387–80486, FSETPM is recognized but
interpreted as FNOP, since the 80386/486 processors handle addressing identically in real and
protected mode.

Syntax Examples CPU Clock Cycles

FSETPM fsetpm 87
287
387
486

—
2–8
12
3

FSIN Sine

80387–80486 Only Replaces a value in radians in ST with its sine. If |ST| < 263, the C2 bit of the
status word is cleared and the sine is calculated. Otherwise, C2 is set and no calculation is
performed. ST can be reduced to the required range with FPREM or FPREM1.

Syntax Examples CPU Clock Cycles

FSIN fsin 87
287
387
486

—
—
122–771*
257–354†

* For operands with an absolute value greater than π/4, up to 76 additional clocks may be required.
† For operands with an absolute value greater than π/4, add n clocks where n = operand/(π/4).

FSINCOS Sine and Cosine

FSINCOS Sine and Cosine
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 500

80387–80486 Only Computes the sine and cosine of a radian value in ST. The sine replaces the
value in ST, and then the cosine is pushed onto the stack. If |ST| < 263, the C2 bit of the status word is
cleared and the sine and cosine are calculated. Otherwise, C2 is set and no calculation is performed.
ST can be reduced to the required range with FPREM or FPREM1.

Syntax Examples CPU Clock Cycles

FSINCOS fsincos 87
287
387
486

—
—
194–809*
292–365†

* For operands with an absolute value greater than π/4, up to 76 additional clocks may be required.
† For operands with an absolute value greater than π/4, add n clocks where n = operand/(π/4).

FSQRT Square Root

Replaces the value of ST with its square root. (The square root of –0 is –0.)

Syntax Examples CPU Clock Cycles

FSQRT fsqrt 87
287
387
486

180–186
180–186
122–129
83–87

FST/FSTP/FIST/FISTP/FBSTP Store

Stores the value in ST to the specified memory location or register. Temporary-real values in registers
are converted to the appropriate integer, BCD, or floating-point format as they are stored. With FSTP,
FISTP, and FBSTP, the ST register value is popped off the stack. Memory operands can be 32-, 64-,
or 80-bit real numbers for FSTP or 16-, 32-, or 64-bit integers for FISTP.

Syntax Examples CPU Clock Cycles

FST reg fst st(6)
fst st

87
287
387
486

15–22
15–22
11
3

FSTP reg fstp st
fstp st(3)

87
287
387
486

17–24
17–24
12
3

FST memreal fst shortreal
fst longs[bx]

87

287
387
486

(s=84–90,l=96–104)+EA
s=84–90,l=96–104
s=44,l=45
s=7,l=8

FSTP memreal fstp longreal
fstp tempreals[bx]

87 (s=86–92,l=98–106,
t=52–58)+EA

FST/FSTP/FIST/FISTP/FBSTP Store
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 501

287

387
486

s=86–92,l=98–106,
t=52–58
s=44,l=45,t=53
s=7,l=8,t=6

Syntax Examples CPU Clock Cycles

FIST memint fist int16
fist doubles[8]

87

287
387
486

(w=80–90,d=82–92)+EA
w=80–90,d=82–92
w=82-95,d=79-93
w=29–34,d=28–34

FISTP memint fistp longint
fistp doubles[bx]

87

287

387

486

(w=82–92,d=84–94,
q=94–105)+EA
w=82–92,d=84–94,
q=94–105
w=82–95,d=79–93,
q=80–97
29–34

FBSTP membcd fbstp bcds[bx] 87
287
387
486

(520–540)+EA
520–540
512–534
172–176

FSTCW/FNSTCW Store Control Word

Stores the control word to a specified 16-bit memory operand. This instruction has wait and no-wait
versions.

Syntax Examples CPU Clock Cycles*

FSTCW mem16
FNSTCW mem16

fstcw ctrlword 87
287
387
486

12–18
12–18
15
3

* These timings reflect the no-wait version of the instruction. The wait version may take additional clock cycles.

FSTENV/FSTENVW/FSTENVD/FNSTENV/FNSTENVW/ FNSTENVD
Store Environment State

Stores the 14-byte coprocessor environment state to a specified memory location. The environment
state includes the control word, status word, tag word, instruction pointer, and operand pointer. On the
80387–80486 in 32-bit mode, the environment state is 28 bytes.

Syntax Examples CPU Clock Cycles†

FSTENV mem
FSTENVW mem*
FSTENVD mem*

fstenv [bp–14] 87
287
387

(40–50)+EA
40–50
103–104

FSTENV/FSTENVW/FSTENVD/FNSTENV/FNSTENVW/ FNSTENVD Store Environment State
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 502

FNSTENV mem
FNSTENVW mem*
FNSTENVD mem*

486 67,pm=56

* 80387–80486 only.
† These timings reflect the no-wait version of the instruction. The wait version may take additional clock cycles.

FSTSW/FNSTSW Store Status Word

Stores the status word to a specified 16-bit memory operand. On the 80287, 80387, and 80486, the
status word can also be stored to the processor’s AX register. This instruction has wait and no-wait
versions.

Syntax Examples CPU Clock Cycles*

FSTSW mem16
FNSTSW mem16

fstsw statword 87
287
387
486

12–18
12–18
15
3

FSTSW AX
FNSTSW AX

fstsw ax 87
287
387
486

—
10–16
13
3

* These timings reflect the no-wait version of the instruction. The wait version may take additional clock cycles.

FSUB/FSUBP/FISUB Subtract

Subtracts the source operand from the destination operand and returns the difference in the destination
operand. If two register operands are specified, one must be ST. If a memory operand is specified, the
result replaces the value in ST. Memory operands can be 32- or 64-bit real numbers or 16- or 32-bit
integers. If no operand is specified, ST is subtracted from ST(1) and the stack is popped, returning the
difference in ST. For FSUBP, the source must be ST; the difference (destination minus source) is
returned in the destination register and ST is popped.

Syntax Examples CPU Clock Cycles

FSUB [[reg,reg]] fsub st,st(2)
fsub st(5),st
fsub

87
287
387
486

70–100
70–100
to=29–37, fr=26–34
8–20

FSUBP reg,ST fsubp st(6),st 87
287
387
486

75–105
75–105
26–34
8–20

FSUB memreal fsub longreal
fsub shortreals[di]

87

287
387

(s=90–120,s=95–125)+EA
s=90–120,l=95–125
s=24–32,l=28–36
8–20

FSUB/FSUBP/FISUB Subtract
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 503

486

FISUB memint fisub double
fisub warray[di]

87

287

387
486

(w=102–137,d=108143)+EA
w=102–137,d=108–
143
w=71–83,d=57–82
w=20–35,d=19–32

FSUBR/FSUBRP/FISUBR Subtract Reversed

Subtracts the destination operand from the source operand and returns the result in the destination
operand. If two register operands are specified, one must be ST. If a memory operand is specified, the
result replaces the value in ST. Memory operands can be 32- or 64-bit real numbers or 16- or 32-bit
integers. If no operand is specified, ST(1) is subtracted from ST and the stack is popped, returning the
difference in ST. For FSUBRP, the source must be ST; the difference (source minus destination) is
returned in the destination register and ST is popped.

Syntax Examples CPU Clock Cycles

FSUBR [[reg,reg]] fsubr st,st(2)
fsubr st(5),st
fsubr

87
287
387
486

70–100
70–100
to=29–37, fr=26–34
8–20

FSUBRP reg,ST fsubrp st(6),st 87
287
387
486

75–105
75–105
26–34
8–20

Syntax Examples CPU Clock Cycles

FSUBR memreal fsubr QWORD PTR [bx]
fsubr shortreal[di]
fsubr longreal

87

287
387
486

(s=90–120,s=95–125)+EA
s=90–120,l=95–125
s=25–33,l=29–37
8–20

FISUBR memint fisubr int16
fisubr warray[di]
fisubr double

87

287

387
486

(w=103–139,d=109–
144)+EA
w=103–139,d=109–
144
w=72–84,d=58–83
w=20–55,d=19–32

FTST Test for Zero

Compares ST with +0.0 and sets the condition of the status word according to the result.

Syntax Examples CPU Clock Cycles

FTST ftst 87
287
387

38–48
38–48
28

FTST Test for Zero
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 504

486 4

Condition Codes for FTST

C3 C2 C1 C0 Meaning

0 0 ? 0 ST is positive

0 0 ? 1 ST is negative

1 0 ? 0 ST is 0

1 1 ? 1 ST is not comparable (NAN or projective infinity)

FUCOM/FUCOMP/FUCOMPP Unordered Compare

80387–80486 Only Compares the specified source to ST and sets the condition codes of the status
word according to the result. The instruction subtracts the source operand from ST without changing
either operand. Memory operands are not allowed. If no operand is specified or if two pops are
specified, ST is compared to ST(1). If one pop is specified with an operand, the given register is
compared to ST.

Unlike FCOM, FUCOM does not cause an invalid-operation exception if one of the operands is NAN.
Instead, the condition codes are set to unordered.

Syntax Examples CPU Clock Cycles

FUCOM [[reg]] fucom st(2)
fucom

87
287
387
486

—
—
24
4

FUCOMP [[reg]] fucomp st(7)
fucomp

87
287
387
486

—
—
26
4

FUCOMPP fucompp 87
287
387
486

—
—
26
5

Condition Codes for FUCOM

C3 C2 C1 C0 Meaning

0 0 ? 0 ST > source

0 0 ? 1 ST < source

1 0 ? 0 ST = source

1 1 ? 1 Unordered

FWAIT Wait

Suspends execution of the processor until the coprocessor is finished executing. This is an alternate
mnemonic for the processor WAIT instruction.

Syntax Examples CPU Clock Cycles

FWAIT Wait
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 505

FWAIT fwait 87
287
387
486

4
3
6
1–3

FXAM Examine

Reports the contents of ST in the condition flags of the status word.

Syntax Examples CPU Clock Cycles

FXAM fxam 87
287
387
486

12–23
12–23
30–38
8

Condition Codes for FXAM

C3 C2 C1 C0 Meaning

0 0 0 0 + Unnormal*

0 0 0 1 + NAN

0 0 1 0 – Unnormal*

0 0 1 1 – NAN

0 1 0 0 + Normal

0 1 0 1 + Infinity

0 1 1 0 – Normal

0 1 1 1 – Infinity

1 0 0 0 + 0

1 0 0 1 Empty

1 0 1 0 – 0

1 0 1 1 Empty

1 1 0 0 + Denormal

1 1 0 1 Empty*

1 1 1 0 – Denormal

1 1 1 1 Empty*

* Not used on the 80387–80486. Unnormals are not supported by the 80387–80486. Also, the 80387–80486 use two codes
instead of four to identify empty registers.

FXCH Exchange Registers

Exchanges the specified (destination) register and ST. If no operand is specified, ST and ST(1) are
exchanged.

Syntax Examples CPU Clock Cycles

FXCH [[reg]] fxch st(3)
fxch

87
287

10–15
10–15

FXCH Exchange Registers
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 506

387
486

18
4

FXTRACT Extract Exponent and Significand

Extracts the exponent and significand (mantissa) fields of ST. The exponent replaces the value in ST,
and then the significand is pushed onto the stack.

Syntax Examples CPU Clock Cycles

FXTRACT fxtract 87
287
387
486

27–55
27–55
70–76
16–20

FYL2X Y log2(X)

Calculates Z = Y log2(X). X is taken from ST and Y from ST(1). The stack is popped, and the result, Z,
replaces Y in ST. X must be in the range 0 < X < ∞ and Y in the range –∞ < Y < ∞.

Syntax Examples CPU Clock Cycles

FYL2X fyl2x 87
287
387
486

900–1100
900–1100
120–538
196–329

FYL2XP1 Y log2(X+1)

Calculates Z = Y log2(X + 1). X is taken from ST and Y from ST(1). The stack is popped once, and the
result, Z, replaces Y in ST. X must be in the range 0 < |X| < (1 – (√2 / 2)). Y must be in the range –∞ <
Y < ∞.

Syntax Examples CPU Clock Cycles

FYL2XP1 fyl2xp1 87
287
387
486

700–1000
700–1000
257–547
171–326

Chapter 6 Macros

Introduction
Each of the INCLUDE files is listed with the names of the macros it contains. Macros listed take the
form:

Chapter 6 Macros
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 507

<macroname>MACRO[[<variables[[:=<default value>]], ..>]]

Some variables are listed as name:req. In these cases, req indicates that macroname cannot be
called without the variable name supplied.

For specific information on the macros themselves, see the contents of the commented *.INC file.

BIOS.INC

@Cls MACRO pagenum

@GetCharAtr MACRO pagenum

@GetCsr MACRO pagenum

@GetMode MACRO

@PutChar MACRO chr, atrib, pagenum, loops

@PutCharAtr MACRO chr, atrib, pagenum, loops

@Scroll MACRO distance:REQ, atrib:=<07h>, upcol, uprow, dncol, dnrow

@SetColor MACRO color

@SetCsrPos MACRO column, row, pagenum

@SetCsrSize MACRO first, last

@SetMode MACRO mode

@SetPage MACRO pagenum

@SetPalette MACRO color

CMACROS.INC, CMACROS.NEW

These two include files contain the same macros. Use CMACROS.NEW for programs written in
MASM 6.0 and later. Use CMACROS.INC for programs written in MASM 5.1 or earlier, or if you
have problems with CMACROS.NEW.

@reverse MACRO list

arg MACRO args

assumes MACRO s,ln

callcrt MACRO funcname

cBegin MACRO pname

cEnd MACRO pname

cEpilog MACRO procname, flags, cbParms, cbLocals, reglist, userparms

cProc MACRO pname:REQ, attribs, autoSave

cPrologue MACRO procname, flags, cbParms, cbLocals, reglist, userparms

createSeg MACRO segName, logName, aalign, combine, class, grp

CMACROS.INC, CMACROS.NEW
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 508

cRet MACRO

defGrp MACRO foo:vararg

errn$ MACRO l,x

errnz MACRO x

externA MACRO names:req, langtype

externB MACRO names:req, langtype

externCP MACRO n,c

externD MACRO names:req, langtype

externDP MACRO n,c

externFP MACRO names:req, langtype

externNP MACRO names:req, langtype

externP MACRO n,c

externQ MACRO names:req, langtype

externT MACRO names:req, langtype

externW MACRO names:req, langtype

farPtr MACRO n,s,o

globalB MACRO name:req, initVal:=<?>, repCount, langType

globalCP MACRO n,i,s,c

globalD MACRO name:req, initVal:=<?>, repCount, langType

globalDP MACRO n,i,s,c

globalQ MACRO name:req, initVal:=<?>, repCount, langType

globalT MACRO name:req, initVal:=<?>, repCount, langType

globalW MACRO name:req, initVal:=<?>, repCount, langType

labelB MACRO names:req,langType

labelCP MACRO n,c

labelD MACRO names:req,langType

labelDP MACRO n,c

labelFP MACRO names:req,langType

labelNP MACRO names:req,langType

labelP MACRO n,c

labelQ MACRO names:req,langType

labelT MACRO names:req,langType

labelW MACRO names:req,langType

lbl MACRO names:req

localB MACRO name

localCP MACRO n

CMACROS.INC, CMACROS.NEW
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 509

localD MACRO name

localDP MACRO n

localQ MACRO name

localT MACRO name

localV MACRO name,a

localW MACRO name

logName&_assumes MACRO s

logName&_sbegin MACRO

n MACRO

outif MACRO name:req, defval:=<0>, onmsg, offmsg

parmB MACRO names:req

parmCP MACRO n

parmD MACRO names:req

parmDP MACRO n

parmQ MACRO names:req

parmR MACRO n,r,r2

parmT MACRO names:req

parmW MACRO names:req

regPtr MACRO n,s,o

save MACRO r

sBegin MACRO name:req

sEnd MACRO name

setDefLangType MACRO overLangType

staticB MACRO name:req, initVal:=<?>, repCount

staticCP MACRO name:req, i, s

staticD MACRO name:req, initVal:=<?>, repCount

staticDP MACRO name:req, i, s

staticI MACRO name:req, initVal:=<?>, repCount

staticQ MACRO name:req, initVal:=<?>, repCount

staticT MACRO name:req, initVal:=<?>, repCount

staticW MACRO name:req, initVal:=<?>, repCount

MS-DOS.INC

NPVOID TYPEDEF NEAR PTR

FPVOID TYPEDEF FAR PTR

MS-DOS.INC
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 510

FILE_INFO STRUCT

@ChDir MACRO path:REQ, segmnt

@ChkDrv MACRO drive

@CloseFile MACRO handle:REQ

@DelFile MACRO path:REQ, segmnt

@Exit MACRO return

@FreeBlock MACRO segmnt

@GetBlock MACRO graphs:REQ, retry:=<0>

@GetChar MACRO ech:=<1>, cc:=<1>, clear:=<0>

@GetDate MACRO

@GetDir MACRO buffer:REQ, drive, segmnt

@GetDrv MACRO

@GetDTA MACRO

@GetFileSize MACRO handle:REQ

@GetFirst MACRO path:REQ, atrib, segmnt

@GetInt MACRO interrupt:REQ

@GetNext MACRO

@GetStr MACRO ofset:REQ, terminator, limit, segmnt

@GetTime MACRO

@GetVer MACRO

@MakeFile MACRO path:REQ, atrib:=<0>, segmnt, kind

@MkDir MACRO path:REQ, segmnt

@ModBlock MACRO graphs:REQ, segmnt

@MoveFile MACRO old:REQ, new:REQ, segold, segnew

@MovePtrAbs MACRO handle:REQ, distance

@MovePtrRel MACRO handle:REQ, distance

@OpenFile MACRO path:REQ, access:=<0>, segmnt

@PrtChar MACRO chr:VARARG

@Read MACRO ofset:REQ, bytes:REQ, handle:=<0>, segmnt

@RmDir MACRO path:REQ, segmnt

@SetDate MACRO month:REQ, day:REQ, year:REQ

@SetDrv MACRO drive:REQ

@SetDTA MACRO buffer:REQ, segmnt

@SetInt MACRO interrupt:REQ, vector:REQ, segmnt

@SetTime MACRO hour:REQ, minutes:REQ, seconds:REQ, hundredths:REQ

@ShowChar MACRO chr:VARARG

MS-DOS.INC
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 511

@ShowStr MACRO ofset:REQ, segmnt

@TSR MACRO paragraphs:REQ, return

@Write MACRO ofset:REQ, bytes:REQ, handle:=<1>, segmnt

MACROS.INC

@ArgCount MACRO arglist:VARARG

@ArgI MACRO index:REQ, arglist:VARARG

@ArgRev MACRO arglist

@PopAll MACRO

@PushAll MACRO

@RestoreRegs MACRO

@SaveRegs MACRO regs:VARARG

echof MACRO format:REQ, args:VARARG

pushc MACRO op

PROLOGUE.INC

cEpilogue MACRO szProcName, flags, cbParams, cbLocals, rgRegs, rgUserParams

cPrologue MACRO szProcName, flags, cbParams, cbLocals, rgRegs, rgUserParams

WIN.INC

The include file WIN.INC is WINDOWS.H processed by H2INC, and slightly modified to reduce
unnecessary warnings.

Chapter 7 Tables

ASCII Codes

Chapter 7 Tables
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 512

Chapter 7 Tables
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 513

Key Codes

Key Codes
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 514

Key Codes
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 515

Key Codes
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 516

Key Codes
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 517

Key Codes
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 518

MS-DOS Program Segment Prefix (PSP)

 1 Opcode for INT 20h instruction (CDh 20h)
 2 Segment of first allocatable address following the program (used for memory allocation)
 3 Reserved or used by MS-DOS
 4 Opcode for far call to MS-DOS function dispatcher
 5 Vector for terminate routine
 6 Vector for CTRL+C handler routine
 7 Vector for error handler routine
 8 Segment address of program’s environment block
 9 Opcode for MS-DOS INT 21h and far return (you can do a far call to this address to execute

 MS-DOS calls)
10 First command-line argument (formatted as uppercase 11-character filename)
11 Second command-line argument (formatted as uppercase 11-character filename)
12 Number of bytes in command-line argument
13 Unformatted command line and/or default Disk Transfer Area (DTA)

MS-DOS Program Segment Prefix (PSP)
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 519

Color Display Attributes

Background Foreground

Bits Num Color Bits* Num Color
F R G B I R G B

0 0 0 0 0 Black 0 0 0 0 0 Black

0 0 0 1 1 Blue 0 0 0 1 1 Blue

0 0 1 0 2 Green 0 0 1 0 2 Green

0 0 1 1 3 Cyan 0 0 1 1 3 Cyan

0 1 0 0 4 Red 0 1 0 0 4 Red

0 1 0 1 5 Magenta 0 1 0 1 5 Magenta

0 1 1 0 6 Brown 0 1 1 0 6 Brown

0 1 1 1 7 White 0 1 1 1 7 White

1 0 0 0 8 Black blink 1 0 0 0 8 Dark gray

1 0 0 1 9 Blue blink 1 0 0 1 9 Light Blue

1 0 1 0 A Green blink 1 0 1 0 A Light green

1 0 1 1 B Cyan blink 1 0 1 1 B Light cyan

1 1 0 0 C Red blink 1 1 0 0 C Light red

1 1 0 1 D Magenta blink 1 1 0 1 D Light Magenta

1 1 1 0 E Brown blink 1 1 1 0 E Yellow

1 1 1 1 F White blink 1 1 1 1 F Bright White

F Flashing bit G Green bit I Intensity bit
R Red bit B Blue bit
* On monochrome monitors, the blue bit is set and the red and green bits are cleared (001) for underline; all color bits are set

(111) for normal text.

Hexadecimal-Binary-Decimal Conversion

Hex
Number

Binary Number Decimal Digit
000X

Decimal Digit
00X0

Decimal Digit
0X00

Decimal Digit
X000

0 0000 0 0 0 0

1 0001 1 16 256 4,096

2 0010 2 32 512 8,192

3 0011 3 48 768 12,288

4 0100 4 64 1,024 16,384

5 0101 5 80 1,280 20,480

6 0110 6 96 1,536 24,576

7 0111 7 112 1,792 28,672

8 1000 8 128 2,048 32,768

9 1001 9 144 2,304 36,864

Hexadecimal-Binary-Decimal Conversion
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 520

A 1010 10 160 2,560 40,960

B 1011 11 176 2,816 45,056

C 1100 12 192 3,072 49,152

D 1101 13 208 3,328 53,248

E 1110 14 224 3,584 57,344

F 1111 15 240 3,840 61,440

Hexadecimal-Binary-Decimal Conversion
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 521

