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Linear regression models

Simple regression Multiple regression 



What is a statistical model?

A statistical model:

Embodies a set of assumptions and describes the generation of

a sample from a population

Represents the data generating process

The uncertainty related to a sample of data is described using

probability distributions



Linear regression models

Linear regression is an approach for modeling the relationship

between a dependent variable  and one or more explanatory

variables .

There are many applications for linear models such as

Prediction or forecasting

Quantifying the strength of the relationship between  and 

y

X

y x



Simple regression

In a simple case, the model

includes one explanatory

variable 

R:

lm(y ~ x)

x

y = α + βx + ϵ



Multiple regression

The model can also include

more than one explanatory

variable

R:

lm(y ~ x1 + x2)

y = α + + + ϵβ1x1 β2x2



Assumptions of linear regression models

In linear regression, it is assumed that the relationship between the

target variable  and the parameters ( , ) is linear:

The goal is to estimate the parameters  and , which describe

the relationship with the explanatory variables 

An unobservable random variable ( ) is assumed to add noise to

the observations

Often it is reasonable to assume 

y α β

y = α + Xβ + ϵ

α β

X

ϵ

ϵ ∼ N(0, )σ2



Structure of a linear model

In the simple linear equation 

 is the target variable: we wish to predict the values of  using

the values of .

 is the systematic part of the model.

 quantifies the relationship between  and .

 describes the errors (or the uncertainty) of the model

y = α + βx + ϵ

y y

x

α + βx

β y x

ϵ



Finding the model

The best model is found by

minimizing the prediction

errors that the model would

make

 are the predictions

 are the prediction

errors, called residuals

The model is found by

minimizing the sum of

squared residuals

= + xŷ α̂ β̂

= − yϵ̂ ŷ



Interpreting the parameters

When the model is

The main interest is to estimate the  parameters

Interpretation of an estimate :

When  increases by one unit, the average change in  is 2

units, given that the other variables (here ) do not change.

y = α + + + ϵβ1x1 β2x2

β

= 2β1
^

x1 y

x2



R linear model summary()

For a quick rundown of interpreting R's regression summary, see the 'Calling

summary' section of  or read about coefficients and p-valuesthis blog post

here

Call:
lm(formula = Y ~ some_variable)

Residuals:
    Min      1Q  Median      3Q     Max 
-5.2528 -1.8261 -0.1636  1.5288  5.8723 

Coefficients:
              Estimate Std. Error t value Pr(>|t|)   
(Intercept)   -0.04364    0.49417  -0.088  0.93026   
some_variable  1.81379    0.58925   3.078  0.00463 **
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 2.643 on 28 degrees of freedom
Multiple R-squared:  0.2528,    Adjusted R-squared:  0.2262 
F-statistic: 9.475 on 1 and 28 DF,  p-value: 0.004626

http://blog.yhat.com/posts/r-lm-summary.html
http://blog.minitab.com/blog/adventures-in-statistics-2/regression-analysis-how-do-i-interpret-r-squared-and-assess-the-goodness-of-fit


Advanced example: Polynomial terms

The linearity assumption isn't as

restrictive as one could imagine.

It is possible to add polynomial

terms to the model if the effect

of a variable is non-linear

R:

lm(y ~ x + I(x^2))

y = α + ⋅ x + ⋅ + ϵβ1 β2 x2



Model validation



Model assumptions

A statistical model always includes several assumptions which

describe the data generating process.

How well the model describes the phenomenom of interest,

depends on how well the assumptions fit reality.

In a linear regression model an obvious assumption is linearity:

The target variable is modelled as a linear combination of the

model parameters.

Usually it is assumed that the errors are normally distributed.



Assumptions of linear regression models

Analyzing the residuals of the model provides a method to explore

the validity of the model assumptions. A lot of interesting

assumptions are included in the expression

The errors are normally distributed

The errors are not correlated

The errors have constant variance, 

The size of a given error does not depend on the explanatory

variables

ϵ ∼ N(0, )σ2

σ2



Normality of the errors (QQ-plot)

QQ-plot of the residuals provides a method to explore the

assumption that the errors of the model are normally distributed



Constant variance of errors

The constant variance

assumption implies that the size

of the errors should not depend

on the explanatory variables.

This can be explored with a

simple scatter plot of residuals

versus model predictions.

Any patter in the scatter plot

implies a problem with the

assumptions



Leverage of observations (1)

Leverage measures how much impact a single observation has on

the model.

Residuals vs leverage plot can help identify which observations

have an unusually high impact.

The next two slides show four examples.

Each row of two plots defines a data - model validation pair.



Leverage of observations (2)



Leverage of observations (3)



Logistic regression and cross-
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For IODS by Tuomo Nieminen
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Logistic regression

Odds and probability Predicting binary outcomes 



A conditional look at regression

In regression analysis, the target variable  is modelled as a linear

combination of the model parameters and the explanatory

variables 

Another way to express this is to use conditional expectation

So, linear regression is a model for the (conditional) expected value

of Y.

Y

X

Y = α + Xβ + ϵ

E[Y ∣ X] = α + Xβ



Regression for binary outcomes

If the target variable  is binary, taking only the values

0 (“failure”)

1 (“success”)

with probability , then .

The goal in logistic regression is to define a linear model for the

probability of “success” ( , the expected value of )

The problem is that  only takes on values between 0 and 1

A possible predictor can take on any value. There is no way to

use multiplication and addition to restrict the predictors values

to the range of . What to do?

Y

p E[Y ] = p

p Y

p

p



Odds

The ratio of expected “successes”

to “failures” are called the odds:

Odds are an alternative way of

expressing probabilities

Higher odds corresponds to a

higher probability of success

The value of odds ranges from

zero to infinity

p

1 − p

Odds of 2 to 1: the probability of
success is twice as likely as the
probability of failure, when p = 2/3.



The logit function

To transform  into a completely

unrestricted scale, we can take the

logarithm of odds:

The (natural) logarithm of odds

is called the logit function.

The possible values are all the

real numbers (unrestricted).

p

log ( ) ∈ [−∞,∞]
p

1 − p



Simple logistic regression

In a simple case, the logistic

regression model for the expected

value  of a binary variable , is:

which implies

p Y

log ( ) = α + βx + ϵ
p

1 − p

P ( = 1) = =Yi
1

1 + e−α−β⋅xi
pi



Odds ratio

The ratio of two odds is called the odds ratio. It can be computed by

the following steps:

1. Compute the odds of “success” ( ) for individuals who have

the property .

2. Compute the odds of “success” ( ) for individuals who do not

have property .

3. Divide the odds from step 1 by the odds from step 2 to obtain

the odds ratio (OR).

Odds ratio can be used to quantify the relationship between  and 

. Odds higher than 1 mean that  is positively associated with

“success”.

Y = 1

X

Y = 1

X

X

Y X



Odds ratio example (1)

X = “has X”

X_ = “doesn't have X”

1 = “success”

0 = “failure”

toy data:

X X_ total

1 10 16 26

0 15 4 19

total 25 20 45

The following conditional

probabilities can be calculated

from the (toy) data:

P (Y = 1 ∣ X) = 10/25 = 0.4

P (Y = 0 ∣ X) = 15/25 = 0.6

P (Y = 1 ∣ X_) = 16/20 = 0.8

P (Y = 0 ∣ X_) = 4/20 = 0.2



Odds ratio example (2)

Odds is the ratio of successes to failures:

Odds ratio (OR) is the ratio of the two odds:

Odds(Y ∣ X) = = =
P(Y =1∣X)

P(Y =0∣X)
0.4
0.6

2
3

Odds(Y ∣ X_) = = = 4
P(Y =1∣X_)

P(Y =0∣X_)
0.8
0.2

OR = = =
Odds(Y ∣ X)

Odds(Y ∣ X_)

2/3

4

1

6

toy data:

X X_ total

1 10 16 26

0 15 4 19

total 25 20 45



Interpreting the parameters of logistic
regression

From the fact that the computational target variable in the logistic

regression model is the log of odds, it follows that applying the

exponent function to the fitted values gives the odds:

The exponents of the coefficients can be interpret as odds ratios

between a unit change (vs no change) in the corresponding

explanatory variable.

exp(log ( )) = .
p̂

1 − p̂

p̂

1 − p̂

exp( ) = Odds(Y ∣ x + 1)/Odds(Y ∣ x)βx̂



Cross-validation

https://prateekvjoshi.files.wordpress.com/2013/06/cross-

validation.png



Training and testing sets

A statistical model can be used to make predictions. An intuitive

way of comparing different models is to test their predictive power

on unseen data.

The available data can be split into training and testing sets

Only the training data is used to find the model

The testing data is then used to make predictions and evaluate

the model performance



Accuracy and error

In order to assert model performance, we need to measure it

somehow.

Depending on the nature of the target variable, different

measures might make sense.

If the task is binary classification such as in logistic regression, it

is straight forward to calculate the proportion of correctly

classified observations

The proportion of incorrectly classified observations is the

error (penalty, loss)



Cross-validation (1)

Cross-validation is a powerful general technique for assessing how

the results of a statistical analysis will generalize to an independent

data set.

Utilizes the idea of training and testing sets effectively

Mainly used in settings where one wants to estimate how

accurately a predictive model will perform in practice

Gives a reasonable measure of performance on unseen data

Can be used to compare different models to choose the best

performing one



Cross-validation (2)

One round of cross-validation involves

Partitioning a sample of data into complementary subsets

Performing the analysis on one subset (the training set, larger)

Validating the analysis on the other subset (the testing set,

smaller).

This process is repeated so that eventually all of the data is used

for both training and testing.



K-fold cross-validation

Below is an example of 5-fold cross-validation

The data is divided into subsets K times and eventually all the data

is used for both training and testing.



Clustering and classification

For IODS by Emma Kämäräinen

Powered by Rpresentation. The code for this presentation is here.

https://raw.githubusercontent.com/TuomoNieminen/Helsinki-Open-Data-Science/master/docs/cluster_classification.Rpres


Clustering and classification

Classification:

You know the classes

The classification model is

trained based on data

Classify new observations

Clustering:

Unknown classes / number

of classes is unknown

Find groups within data

based on similarity of the

observations



Clustering and classification

Linear discriminant analysis

Distance measures

K-means



Linear discriminant analysis

Linear discriminant analysis (LDA) is a classification method. It can

be used to model binary variables, like in logistic regression, or

multiple class variables. The target variable needs to be

categorical.

It can be used to

Find the variables that discriminate/separate the classes best

Predict the classes of new data

Dimension reduction (not covered here)

 is a good and simple blog post about LDA. R-Bloggers also

have a post about LDA, see it .

This

here

http://machinelearningmastery.com/linear-discriminant-analysis-for-machine-learning/
https://www.r-bloggers.com/computing-and-visualizing-lda-in-r/


Linear discriminant analysis

Linear discriminant analysis produces results based on the

assumptions that

variables are normally distributed (on condition of the classes)

the normal distributions for each class share the same

covariance matrix

Because of the assumptions, the data might need scaling before

fitting the model. The variables also need to be continuous.

Let's see an example next to wrap our heads around what LDA is

really doing.



LDA example

Call:
lda(Species ~ ., data = d)

Prior probabilities of groups:
    setosa versicolor  virginica 
 0.3333333  0.3333333  0.3333333 

Group means:
           Sepal.Length Sepal.Width Petal.Length Petal.Width
setosa       -1.0111914   0.8504137   -1.3006301  -1.2507035
versicolor    0.1119073  -0.6592236    0.2843712   0.1661774
virginica     0.8992841  -0.1911901    1.0162589   1.0845261

Coefficients of linear discriminants:
                    LD1         LD2
Sepal.Length  0.6867795  0.01995817
Sepal.Width   0.6688251  0.94344183
Petal.Length -3.8857950 -1.64511887
Petal.Width  -2.1422387  2.16413593

Proportion of trace:
   LD1    LD2 
0.9912 0.0088 



LDA predictions

Classifying new observations:

Based on the trained model LDA calculates the probabilities for

the new observation for belonging in each of the classes

The observation is classified to the class of the highest

probability

The math behind the probabilities can be seen  for those

who are interested.  is used to estimate the

probabilities.

You'll see how the predicting is done in the DataCamp

exercises.

here

Bayes theorem

http://scikit-learn.org/stable/modules/lda_qda.html
https://en.wikipedia.org/wiki/Bayes'_theorem


LDA example



Distance measures

How to determine if observations are similar or dissimilar with

each others?

 (axis-aligned directions)

 (binary/categorical distance measure)

 (distance measure for words/strings)

Euklidean distance

Manhattan/Taxicab distance

Jaccard index

Hamming distance

https://en.wikipedia.org/wiki/Euclidean_distance
https://en.wikipedia.org/wiki/Taxicab_geometry
https://en.wikipedia.org/wiki/Jaccard_index
https://en.wikipedia.org/wiki/Hamming_distance


K -means

K-means is possibly the oldest and used clustering method in

many fields of study

Pro: Easy to use and often finds a solution

Con: Small change in the dataset can produce very different

results

Many variations of k-means: k-means++, k-medoids, k-

medians…



K-means algorithm

1. Choose the number of clusters you want to have and pick initial

cluster centroids.

2. Calculate distances between centroids and datapoints.

3. For all the data points: Assign data point to cluster based on

which centroid is closest.

4. Update centroids: within each cluster, calculate new centroid

5. Update clusters: Calculate distances between data points and

updated centroids. If some other centroid is closer than the

cluster centroid where the data point belongs, the data point

changes cluster.

Continue updating steps until the centroids or the clusters do not

change



K-means example

Source: This R-Bloggers Post

https://www.r-bloggers.com/k-means-clustering-in-r/


K-means notes

Remarks about k-means:

Distance measure in the algorithm:

Different distance measures produce different output

Deciding the best distance is not always easy

Number of clusters as input

Many ways to find the optimal number of clusters

One way is to look at the total within cluster sum of squares

(see next slide)

: hierarchical clustering, silhouette method, cross

validation …

Other ways

https://en.wikipedia.org/wiki/Determining_the_number_of_clusters_in_a_data_set


K-means: Total within sum of squares

Total within sum of squares is calculated by adding the within

cluster sum of squares (WCSS) of every cluster together. The

WCSS can be calculated with the pattern

So you are searching for the number of clusters, where the

observations are closest to the cluster center.

WCSS = ( − centroid∑N
i xi )2



Dimensionality Reduction
Techniques

For IODS by Tuomo Nieminen & Emma Kämäräinen
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Principal component analysis

From high… .. to lower dimensionality 



What is dimensionality?

In statistical analysis, one can think of dimensionality as the number

of variables (features) related to each observation in the data.

If each observation is measured by  number of features, then

the data is  dimensional. Each observation needs  points to

define it's location in a mathematical space.

If there are a lot of features, some of them can relate to the

same underlying dimensions (not directly measured)

Some dimensions may be stronger and some weaker, they are

not equally important

d

d d



Dimensionality reduction

The original variables of high dimensional data might contain “too

much” information (and noise or some other random error) for

representing the underlying phenomenom of interest.

A solution is to reduce the number of dimensions and focus only

on the most essential dimensions extracted from the data

In practise we can transform the data and use only a few

principal components for visualisation and/or analysis

Hope is that the variance along a small number of principal

components provides a reasonable characterization of the

complete data set



Tools for dimensionality reduction

On the linear algebra level, Singular Value Decomposition (SVD) is

the most important tool for reducing the number of dimensions in

multivariate data.

The SVD literally decomposes a matrix into a product of smaller

matrices and reveals the most important components

Principal Component Analysis (PCA) is a statistical procedure

which does the same thing

Correspondence Analysis (CA) or Multiple CA (MCA) can be

used if the data consists of categorical variables

The classification method LDA can also be considered as a

dimensionality reduction technique



Principal Component Analysis (PCA)

In PCA, the data is first transformed to a new space with equal or

less number of dimensions (new features). These new features are

called the principal components. They always have the following

properties:

The 1st principal component captures the maximum amount of

variance from the features in the original data

The 2nd principal component is orthogonal to the first and it

captures the maximum amount of variability left

The same is true for each principal component. They are all

uncorreleated and each is less important than the previous

one, in terms of captured variance.



Reducing dimensionality with PCA

Given the properties of the

principal components, we can

simply choose the first few

principal components to

represent our data.

This will give us uncorrelated

variables which capture the

maximum amount of variation

in the data! The dimensionality of iris reduced to
two principal components (PC). The
first PC captures more than 70% of the
total variance in the 4 original variables.



About PCA

Unlike LDA, PCA has no criteria or target variable. PCA may

therefore be called an unsupervised method.

PCA is sensitive to the relative scaling of the original features

and assumes that features with larger variance are more

important than features with smaller variance.

Standardization of the features before PCA is often a good

idea.

PCA is powerful at encapsulating correlations between the

original features into a smaller number of uncorrelated

dimensions



About PCA (2)

PCA is a mathematical tool, not a statistical model, which is why

linear algebra (SVD) is enough.

There is no statistical model for separating the sources of

variance. All variance is thought to be from the same - although

multidimensional - source.

It is also possible to model the dimensionality using underlying

latent variables with for example Factor Analysis

These advanced methods of multivariate analysis are not part

of this course



Biplots

Correlations of iris

The correlations (and more) can

be interpret from the biplot on

the left, but how?

        Sep.Len Sep.Wid Pet.Len  
Pet.Wid
Sep.Len    1.00   -0.12    0.87     
0.82
Sep.Wid   -0.12    1.00   -0.43    
-0.37
Pet.Len    0.87   -0.43    1.00     
0.96
Pet.Wid    0.82   -0.37    0.96     
1.00



The 'Bi' in Biplots

A biplot is a way of visualizing two representations of the same

data. The biplot displays:

(1) The observations in a lower (2-)dimensional representation

A scatter plot is drawn where the observations are placed on x

and y coordinates defined by two principal components (PC's)

(2) The original features and their relationships with both each

other and the principal components

Arrows and/or labels are drawn to visualize the connections

between the original features and the PC's.



Properties of biplots

In a biplot, the following connections hold:

The angle between arrows representing the original features

can be interpret as the correlation between the features. Small

angle = high positive correlation.

The angle between a feature and a PC axis can be interpret as

the correlation between the two. Small angle = high positive

correlation.

The length of the arrows are proportional to the standard

deviations of the features

Biplots can be used to visualize the results of dimensionality

reduction methods such as LDA, PCA, Correspondence Analysis

(CA) and Multiple CA.



Multiple Correspondence Analysis



Multiple Correspondence Analysis

Dimensionality reduction method

Analyses the pattern of relationships of several categorical variables

Generalization of PCA and a extension of correspondence analysis

(CA)

Deals with categorical variables, but continuous ones can be used as

background (supplementary) variables

Can be used with qualitative data, so there are little assumptions

about the variables or the data in general. MCA uses frequencies and

you can count those even from text based datasets.



Multiple Correspondence Analysis

For the categorical variables, you can either use the 

 in the analysis

The Indicator matrix contains all the levels of categorical variables

as a binary variables (1 = belongs to category, 0 = if doesn't)

Burt matrix is a matrix of two-way cross-tabulations between all

the variables in the dataset

The general aim is to condense and present the information of the

cross-tabulations in a clear graphical form

Correspondence Analysis (a special case of MCA) works similarly

with a cross-table of only two categorical variables

There are also several other variations of the CA methods

And next, let's look how the MCA outputs look in R!

indicator matrix

or the Burt matrix

https://en.wikipedia.org/wiki/Multiple_correspondence_analysis#As_an_extension_of_correspondences_analysis


MCA summary(1)

Output of MCA summary contains…

Eigenvalues: the variances and the

percentage of variances retained

by each dimension

Individuals: the individuals

coordinates, the individuals

contribution (%) on the dimension

and the cos2 (the squared

correlations) on the dimensions.

Call:
MCA(X = data, graph = FALSE, method = "indicator") 

Eigenvalues
                       Dim.1   Dim.2   Dim.3   Dim.4
Variance               0.413   0.334   0.330   0.256
% of var.             30.992  25.053  24.743  19.212
Cumulative % of var.  30.992  56.045  80.788 100.000

Individuals (the 3 first)
          Dim.1    ctr   cos2    Dim.2    ctr   cos2    Dim.3     
ctr
1      |  0.283  0.065  0.056 | -0.283  0.080  0.056 | -0.534  0.288
2      |  1.055  0.898  0.802 | -0.431  0.185  0.134 | -0.209  0.044
3      |  0.138  0.015  0.035 | -0.048  0.002  0.004 | -0.103  0.011
         cos2  
1       0.199 |
2       0.032 |
3       0.019 |

Categories (the 3 first)
           Dim.1     ctr    cos2  v.test     Dim.2     ctr     
cos2  v.test
Label1 |   1.199  28.599   0.471  11.862 |  -0.786  15.197   0.202   
-7.775
Label2 |  -0.569  16.801   0.584 -13.214 |  -0.121   0.935   0.026   
-2.803
Label3 |   0.639   3.627   0.051   3.887 |   2.468  66.852   0.753   
15.002
           Dim.3     ctr    cos2  v.test  
Label1 |  -0.274   1.875   0.025  -2.714 |
Label2 |  -0.092   0.553   0.015  -2.142 |
Label3 |   1.154  14.813   0.165   7.018 |

Categorical variables (eta2)
         Dim.1 Dim.2 Dim.3  
Var1   | 0.608 0.832 0.171 |
Var2   | 0.079 0.154 0.741 |
Var3   | 0.553 0.017 0.078 |



MCA summary(2)

Output of MCA summary contains…

Categories: the coordinates of the

variable categories, the

contribution (%), the cos2 (the

squared correlations) and v.test

value. The v.test follows normal

distribution: if the value is

below/above  1.96, the

coordinate is significantly different

from zero.

Categorical variables: the

squared correlation between each

variable and the dimensions. If the

value is close to one it indicates a

±

Read more from  and 

Call:
MCA(X = data, graph = FALSE, method = "indicator") 

Eigenvalues
                       Dim.1   Dim.2   Dim.3   Dim.4
Variance               0.413   0.334   0.330   0.256
% of var.             30.992  25.053  24.743  19.212
Cumulative % of var.  30.992  56.045  80.788 100.000

Individuals (the 3 first)
          Dim.1    ctr   cos2    Dim.2    ctr   cos2    Dim.3     
ctr
1      |  0.283  0.065  0.056 | -0.283  0.080  0.056 | -0.534  0.288
2      |  1.055  0.898  0.802 | -0.431  0.185  0.134 | -0.209  0.044
3      |  0.138  0.015  0.035 | -0.048  0.002  0.004 | -0.103  0.011
         cos2  
1       0.199 |
2       0.032 |
3       0.019 |

Categories (the 3 first)
           Dim.1     ctr    cos2  v.test     Dim.2     ctr     
cos2  v.test
Label1 |   1.199  28.599   0.471  11.862 |  -0.786  15.197   0.202   
-7.775
Label2 |  -0.569  16.801   0.584 -13.214 |  -0.121   0.935   0.026   
-2.803
Label3 |   0.639   3.627   0.051   3.887 |   2.468  66.852   0.753   
15.002
           Dim.3     ctr    cos2  v.test  
Label1 |  -0.274   1.875   0.025  -2.714 |
Label2 |  -0.092   0.553   0.015  -2.142 |
Label3 |   1.154  14.813   0.165   7.018 |

Categorical variables (eta2)
         Dim.1 Dim.2 Dim.3  
Var1   | 0.608 0.832 0.171 |
Var2   | 0.079 0.154 0.741 |
Var3   | 0.553 0.017 0.078 |

here here

http://www.sthda.com/english/wiki/multiple-correspondence-analysis-essentials-interpretation-and-application-to-investigate-the-associations-between-categories-of-multiple-qualitative-variables-r-software-and-data-mining
http://factominer.free.fr/classical-methods/multiple-correspondence-analysis.html


MCA biplot(1)

Visualizing MCA:

You can plot for variables, individuals and background (supplementary variables) separately or

you can draw them in the same plot.

plot.MCA() function in R (from FactoMineR) has a lot of options for plotting

See a  of MCA (plotting options start at 5:36).

Let's look at a minimal example on the next slide.

video

https://www.youtube.com/watch?v=reG8Y9ZgcaQ


MCA biplot(2)

On the right we have MCA factor map

(biplot), where are variables drawn on the

first two dimensions

The MCA biplot is a good visualization to

see the possible variable patterns

The distance between variable

categories gives a measure of their

similarity

For example Label2 and Name2 are

more similar than Label2 and Level2 and

Label3 is different from all the other

categories




