

 ARL-SR-0471 ● APR 2023

Dshell Developer Guide

by Joshua Edwards and Daniel E Krych

Approved for public release: distribution unlimited.

NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the
Army position unless so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official
endorsement or approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

 ARL-SR-0471 ● APR 2023

Dshell Developer Guide

Joshua Edwards
ICF

Daniel E Krych
DEVCOM Army Research Laboratory

Approved for public release: distribution unlimited.

ii

REPORT DOCUMENTATION PAGE

1. REPORT DATE 2. REPORT TYPE 3. DATES COVERED
START DATE END DATE

April 2023 Special Report February 2023 March 2023
4. TITLE AND SUBTITLE

Dshell Developer Guide

5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER

6. AUTHOR(S)

Joshua Edwards and Daniel E Krych

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

DEVCOM Army Research Laboratory
ATTN: FCDD-RLA-ND
Aberdeen Proving Ground, MD 21005

ARL-SR-0471

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S
ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release: distribution unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT
This report is a guide to plugin development for the decoder-shell (Dshell) framework. It provides basic examples, core function and class
definitions, and an overview of data flow. This guide will help end users develop new, custom plugins as well as modify existing plugins.
Dshell is an open-source, Python-based, network forensic analysis framework developed by the US Army Combat Capabilities
Development Command Army Research Laboratory. It is a modular and flexible framework, which includes over 40 plugins for the
analysis and decoding of network traffic using a variety of network protocols. Dshell plugins are designed to aid in the understanding of
network traffic and present results to the user in a concise, useful manner via command-line interface. Dshell is a tool for network forensic
analysis that can be used out of the box for simple and advanced analyses, or customized to fit an end-user’s needs. Custom Dshell
plugins can be developed to parse and analyze unique network traffic protocols and data, such as malware. Existing plugins can be
modified to extract different information from the protocols they currently parse, customize the programmatic actions performed on the
data, or alter the outputted information when using the plugin. The Dshell GitHub repository contains the current Python 3 version as well
as an archived Python 2 version available as a tarball. This developer guide only applies to the current version.
15. SUBJECT TERMS

Network, Cyber, and Computational Sciences; Dshell; developer; analyst; guide; manual; network; cyber; forensics; traffic analysis;
decode; pcap; monitor; dissection

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES

a. REPORT b. ABSTRACT C. THIS PAGE

UU
39

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED
19a. NAME OF RESPONSIBLE PERSON 19b. PHONE NUMBER (Include area code)

Daniel E Krych (410) 278-5266
STANDARD FORM 298 (REV. 5/2020)

 Prescribed by ANSI Std. Z39.18

iii

Contents

List of Tables v

1. Introduction 1

2. Important Concepts 1

2.1 Data Sources 2

2.2 Plugin Chain and Produce/Consume Model 2

2.3 Parallelization 3

3. Core Object Classes 3

3.1 Packet 3

3.2 Connection 5

3.2.1 Server/Client Versus Destination/Source 6

3.2.2 Blobs 6

3.3 Blob 6

4. Example Plugin – netflow.py 8

5. Plugin Types 9

5.1 PacketPlugin 9

5.1.1 Placeholder Functions 10

5.1.2 Other Functions 11

5.2 ConnectionPlugin 12

Placeholder Functions 12

5.3 DNSPlugin 13

Placeholder Functions 13

5.4 HTTPPlugin 14

5.4.1 Placeholder Functions 14

5.4.2 Custom Classes: HTTPRequest and HTTPResponse 14

6. Building a Plugin 15

6.1 Building an Example Plugin 16

6.1.1 Decide Purpose and Metadata 16

6.1.2 Pick a Parent Plugin 17

iv

6.1.3 Define __init__ 17

6.1.4 Define Handlers 18

6.1.5 Example Plugin Output Using Sample Traffic4 21

6.1.6 Example Pugin Output Using Custom show_zeroes Option
and Sample Traffic4 21

7. Other Example Plugins 22

7.1 Building a Plugin to Extract Key Data from a Known Protocol 22

7.1.1 Decide Purpose and Metadata 22

7.1.2 Pick a Parent Plugin 22

7.1.3 Define __init__ 22

7.1.4 Define Handlers 22

7.1.5 Referer Plugin Output Using Sample Traffic4 (Truncated) 24

7.1.6 Referer Plugin Output Using Custom Simple Option and
Sample Traffic4 (Truncated) 24

7.2 Building a Plugin to Decode Data from a Custom Protocol 24

7.2.1 Decide Purpose and Metadata 24

7.2.2 Pick a Parent Plugin 25

7.2.3 Define __init__ 25

7.2.4 Define Handlers 25

7.2.5 Rot13 Plugin Output Using Example Traffic 26

7.3 Modifying an Existing Plugin 26

7.3.1 Decide Purpose and Metadata 26

7.3.2 Pick a Parent Plugin 26

7.3.3 Define __init__ 26

7.3.4 Define Handlers 27

7.3.5 Netflow_ct Plugin Output Using Sample Traffic4 (Truncated)
 28

8. Dshell Plugin Packs 28

9. References 30

List of Symbols, Abbreviations, and Acronyms 31

Distribution List 32

v

List of Tables

Table 1 Dshell packet object class attributes with descriptions, defined in
dshell/core.py .. 4

Table 2 Dshell connection object class attributes with descriptions, defined in
dshell/core.py .. 5

Table 3 Dshell Blob object class attributes with descriptions, defined in
dshell/core.py .. 7

Table 4 Dshell PacketPlugin public class attributes with descriptions, defined
in dshell/core.py .. 9

Table 5 Dshell PacketPlugin public class attributes with descriptions, defined
in dshell/core.py .. 10

Table 6 Dshell ConnectionPlugin public class attributes with descriptions,
defined in dshell/core.py ... 12

Table 7 Dshell HTTPRequest class attributes with descriptions, defined in
dshell/plugins/httpplugin.py.. 15

Table 8 Dshell HTTPResponse class attributes with descriptions, defined in
dshell/plugins/httpplugin.py.. 15

Table 9 Overview of steps to build a Dshell plugin ... 16

Table 10 “Example” plugin metadata definitions .. 17

1

1. Introduction

This report is a guide to plugin development for the decoder-shell (Dshell)
framework.1 It provides basic examples, core function and class definitions, and an
overview of data flow. This guide will help end users develop new, custom plugins
as well as modify existing plugins.

Dshell1 is an open-source, Python-based, network forensic analysis framework
developed by the US Army Combat Capabilities Development Command
(DEVCOM) Army Research Laboratory (ARL). It is a modular and flexible
framework, which includes over 40 plugins for the analysis and decoding of
network traffic using a variety of network protocols. Dshell plugins are designed to
aid in the understanding of network traffic and present results to the user in a
concise, useful manner via command-line interface (CLI).

Dshell1 was first publicly released as an open-source network forensic analysis
framework on GitHub in 2014, written in Python 2. In 2020 Dshell was rewritten
in Python 3 from the ground up and again made available as open-source software
on GitHub, following the Python 2 language deprecation on 1 JAN 2020.2 Plugins
written for the deprecated Python 2 version of Dshell are not compatible with this
version and vice versa. The Dshell1 GitHub repository contains the current
Python 3 version as well as an archived Python 2 version available as a tarball. This
developer guide only applies to the current version.

Dshell is a tool for network forensic analysis that can be used out of the box for
simple and advanced analyses, or customized to fit an end-user’s needs. Custom
Dshell plugins can be developed to parse and analyze unique network traffic
protocols and data, such as malware. Existing plugins can be modified to extract
different information from the protocols they currently parse, customize the
programmatic actions performed on the data, or alter the outputted information
when using the plugin. For a detailed guide on using the Dshell framework—
including getting started with it, using its full capabilities, and gaining a better
understanding of the framework from a user’s perspective—please see the Dshell
User Guide.3

2. Important Concepts

The Dshell framework involves several concepts that should be understood for
plugin development.

All information in this section is for background purposes to help developers better
understand the inner workings of the Dshell framework. This section covers core

https://www.python.org/doc/sunset-python-2/

2

Dshell framework functionality, which is not intended to be altered by plugin
developers.

2.1 Data Sources

Dshell can read packets from two types of sources: 1) pcap and pcapng files and 2)
network interfaces. This report uses the term “data source” to reference either of
these sources of packets in general terms.

The code for handling data sources is in dshell/decode.py within its main function.
Here, the command line arguments passed when calling decode are parsed,
including an argument setting the data source(s) as an interface or pcap file(s). The
name of the data source can be accessed inside of a plugin from the PacketPlugin
superclass’s current_pcap_file attribute.

Dshell uses the third-party library pcapy-ng to read packets from data sources. Each
raw packet is processed by a third-party library pypacker, then further refined as a
Dshell Packet object.

2.2 Plugin Chain and Produce/Consume Model

When users run Dshell, they can build a chain of sequential plugins to control and
filter packets. In practice, users generally only use one plugin, meaning the chain
will only contain that plugin.

Plugin developers define how those plugins in the chain decide which data are
passed on to the next plugin in the chain. Handler functions in plugins must use
return statements indicating whether a packet, connection, or similar will continue
to the next plugin. The type of object(s) to return depends on the type of handler
but will generally match the types of the handler’s input. Dshell will display a
warning if the return values are not the right type.

The chain is handled in dshell/decode.py. It creates the plugin_chain list from
user-provided arguments and uses its feed_plugin_chain function to send data
source packets to the first plugin in that chain.

Inside the feed_plugin_chain function, each packet is fed to a plugin’s
consume_packet function, defined in the PacketPlugin class in dshell/core.py.
The packet is processed by the plugin, and any handler output is stored in an internal
_packet_queue. The feed_plugin_chain function then takes the packets
from that queue and recursively calls itself with the next plugin in the chain and
each produced packet individually.

3

2.3 Parallelization

Users can choose to run Dshell in multiple processes using the -P or --parallel
arguments. When run this way, Dshell divides the handling of each provided data
source into separate Python processes. This is something to keep in mind when
developing plugins that may handle overall state or need output in a strictly ordered
format.

3. Core Object Classes

Dshell defines three classes that are used when handling data within plugins:
Packet, Connection, and Blob. They are all defined in dshell/core.py alongside the
two main plugin classes described later in this guide: PacketPlugin and
ConnectionPlugin.

All three classes define an info function that generates an overview dictionary of
information about an instantiation. This is most commonly used to populate
arguments when calling a plugin’s write function, providing the information
written out by the plugin to the user via the CLI.

3.1 Packet

After a packet is pulled from a data source and parsed by pypacker, it is further
refined into a Packet object. When initialized, it attempts to populate several
attributes based on the protocols used. The full list of attributes is available in the
class’s docstring and Table 1. Additional information is also provided in bold on
those that are less straightforward. Please refer to the List of Symbols,
Abbreviations, and Acronyms at the end of this report for definitions of terminology
used within the tables.

4

Table 1 Dshell packet object class attributes with descriptions, defined in dshell/core.py

Packet attributes

ts timestamp of packet
The raw float timestamp as extracted directly from the packet.

dt
datetime of packet
Python date–time object derived from the raw timestamp extracted
from the packet.

frame The sequential packet number as it is read from the data source. If not
set, it defaults to 0.

pkt

pypacker object for the packet
The pypacker object derived from the raw packet. Useful if a plugin
needs more specific information from a packet other than what is
extracted by Dshell itself.

rawpkt
raw bytestring of the packet
The raw bytestring of the packet, dynamically pulled using the
pypacker object’s bin function.

pktlen length of packet
byte_count length of packet body
sip source IP
dip destination IP
sip_bytes source IP as bytes
dip_bytes destination IP as bytes
sport source port
dport destination port
smac source MAC
dmac destination MAC
sipcc source IP country code
dipcc dest IP country code
siplat source IP latitude
diplat dest IP latitude
siplon source IP longitude
diplon dest IP longitude
sipasn source IP ASN
dipasn dest IP ASN
protocol text version of protocol in layer-3 header
protocol_num numeric version of protocol in layer-3 header

data
data of the packet after TCP layer, or highest layer. The bytestring of the
datagram section of a packet. Can be overwritten in plugins that alter
packets to automatically update header fields.

sequence_number TCP sequence number, or None
ack_number TCP ACK number, or None
tcp_flags TCP header flags, or None

addra A standard representation of the address: ((self.sip, self.sport), (self.dip,
self.dport)) or ((self.smac, self.sport), (self.dmac, self.dport))

byte_counta Total number of payload bytes in the packet.

packet_tuplea A standard representation of the raw packet tuple: (self.pktlen, self.rawpkt,
self.ts)

rawpkta The raw data that represents the full packet.

dataa Retrieve data bytes from TCP/UDP data layer. Backtracks to data from
highest layer.

infob Provides a dictionary with information about a packet. Useful for calls to a
plugin’s write() function, e.g., self.write(**pkt.info())

a Attributes available via Python class @property decorators
b Class function that provides information about the class data

5

3.2 Connection

Connection objects are used to hold metadata about individual network
connections, collect the network’s connection packets, and reassemble the data
passed by those streams of packets. A connection is instantiated when the first
packet of a new connection is handled. When initialized, it attempts to populate
several attributes based on the protocols used. The full list of attributes is available
in the class’s docstring and Table 2. Additional information about Dshell’s attribute
terminology are also defined and discussed.

Table 2 Dshell connection object class attributes with descriptions, defined in
dshell/core.py

Connection attributes
addr .addr attribute of first packet
sip source IP
smac source MAC address
sport source port
sipcc country code of source IP
siplat latitude of source IP
siplon longitude of source IP
sipasn ASN of source IP
clientip same as sip
clientmac same as smac
clientport same as sport
clientcc same as sipcc
clientlat same as siplat
clientlon same as siplon
clientasn same as sipasn
dip dest IP
dmac dest MAC address
dport dest port
dipcc country code of dest IP
diplat latitude of dest IP
diplon longitude of dest IP
dipasn ASN of dest IP
serverip same as dip
servermac same as dmac
serverport same as dport
servercc same as dipcc
serverlat same as diplat
serverlon same as diplon
serverasn same as dipasn
protocol text version of protocol in layer-3 header
clientpacketsa counts of packets from client side
clientbytesa total bytes transferred from client side
serverpacketsa counts of packets from server side
serverbytesa total bytes transferred from server side
ts timestamp of first packet
dt datetime of first packet
starttime datetime of first packet

6

Table 2 Dshell connection object class attributes with descriptions, defined in
dshell/core.py (continued)

Connection attributes
endtime datetime of last packet
client_state the TCP state on the client side (“init”, “established”, “closed”, etc.)
server_state the TCP state on server side
blobs list of reassembled half-stream Blobs
stop if True, stop following connection

handled used to indicate if a connection was already passed through a plugin’s
connection handler function. Resets when new data for a connection comes in.

durationa Total seconds from start_time to end_time.
closed (bool)a used to indicate if a connection is in a closed state
established
(bool)a used to indicate if a connection is in an established state

blobsa
Iterates the Blobs (or messages) contained in this TCP connection. This is
dynamically generated on-demand based on the current set of packets in the
connection.

infob Provides a dictionary with information about a connection. Useful for calls to a
plugin’s write() function, e.g., self.write(**conn.info()).

a Attributes available via Python class @property decorators
b Class function that provides information about the class data

3.2.1 Server/Client Versus Destination/Source

For the functional purposes of Dshell, the source attributes and the concept of client
attributes are interchangeable; the destination attributes and the concept of server
attributes are also interchangeable.

3.2.2 Blobs
The Blob object is defined in Section 3.3, but the blobs attribute of a connection
object is a dynamically populated iterator of reassembled groups of unidirectional
packets from the connection. In general practice, the preferred method to deal with
Blobs is by using the ConnectionPlugin’s blob_handler function.

3.3 Blob

When a connection streams one or more packets in a single direction (excluding
TCP ACK and TCP handshake [SYN, SYN-ACK, ACK] packets), Dshell groups
these packets into objects called Blobs for data reassembly. A new Blob is
instantiated when a connection sees a data-containing packet moving in the
opposite direction of the previous data-containing packet. This new directional
packet is used to instantiate the new Blob. The full list of attributes is available in
the class’s docstring and Table 3.

7

Table 3 Dshell Blob object class attributes with descriptions, defined in dshell/core.py

Blob attributes
addr .addr attribute of the first packet
ts timestamp of the first packet
starttimea datetime of first packet
endtimea datetime of last packet
sip source IP
smac source MAC address
sport source port
sipcc country code of source IP
sipasn ASN of source IP
dip dest IP
dmac dest MAC address
dport dest port
dipcc country code of dest IP
dipasn ASN of dest IP
protocol text version of protocol in layer-3 header
direction direction of the Blob - 'cs' for client-to-server, 'sc' for server-to-client
ack_sequence_numbers set of ACK numbers from the receiver for collected data packets
packets list of all packets in the Blob

hidden (bool)
Used to indicate that a Blob should not be passed to next plugin. Can
theoretically be overruled in a connection_handler to force a Blob to
be passed to next plugin.

all_packetsa (deprecated, replaced with “packets” attribute) list of all packets in the
Blob

start_timea (returns “starttime”) datetime for first packet
end_timea (returns “endtime”) datetime of last packet
framesa The frame identifiers for the packets that contain the message.
sequence_numbersa The starting sequence numbers found within the packets.
sequence_rangea The range of sequence numbers found within the packets.

segmentsa List of valid (sequence number, packet) tuples in order by sequence
number.

dataa Raw data of TCP message.

reassemblea

Rebuild the data string from the current list of data packets. For each
packet, the TCP sequence number is checked. If overlapping or
padding is disallowed, it will raise a SequenceNumberError exception
if a respective event occurs. Allows additional options via the
following arguments:

allow_padding (bool): If data is missing and allow_padding
= True (default: True), then the padding argument will be
used to fill the gaps
allow_overlap (bool): If data is overlapping, the new data is
used if the allow_overlap argument is True (default),
otherwise, the earliest data is kept
padding: Byte character(s) to use to fill in missing data. Used
in conjunction with allow_padding (default: b'\\\\x00')

infob Provides a dictionary with information about a Blob. Useful for calls
to a plugin’s write() function, e.g., self.write(**blob.info()).

a Attributes available via Python class @property decorators
b Class function that returns data

8

A Connection dynamically creates and handles its Blobs after it closes. No Blobs
are cached. This is by design to allow out-of-order or retransmitted packets to be
grouped into their appropriate Blobs.

The reassembled bytestring of a Blob’s data can be accessed via the data attribute
for the raw data or by calling the Blob’s reassemble function, which provides
additional options. By default, reassemble pads any missing data sections with
null characters and overlaps any early data with later data. Instead of null
characters, the padding character can be defined by providing a bytestring to the
padding argument and setting the allow_padding argument to True. If the
argument allow_padding is set to False, any missing data raises a
dshell.core.SequenceNumberError exception. If the argument allow_overlap is
set to False, any data that overlaps existing data raises a
dshell.core.SequenceNumberError exception.

Note that the code defining Blob has several TO DO comments for updates to better
handle edge cases involving partial, corrupted, or misleading connection data.

4. Example Plugin – netflow.py

The simplest plugin available is the Netflow plugin (dshell/plugins/
flows/netflow.py). It simply tracks connections and collects basic information
about them. That information is presented to the user as connections close.
import dshell.core
from dshell.output.netflowout import NetflowOutput

class DshellPlugin(dshell.core.ConnectionPlugin):
 def __init__(self, *args, **kwargs):
 super().__init__(
 name="Netflow",
 description="Collects and displays statistics about
connections",
 author="dev195",
 bpf="ip or ip6",
 output=NetflowOutput(label=__name__),
)

 def connection_handler(self, conn):
 self.write(**conn.info())
 return conn

The two initial import statements: the core Dshell library (dshell.core) with its
definitions for plugins classes and other objects, and an output module that is used
to set the default output format.

9

The class definition follows the import statements. For plugin scripts, Dshell looks
specifically for a class named “DshellPlugin.” It must inherit from one of the core
plugin classes, PacketPlugin or ConnectionPlugin, or one their derivative
subclasses, such as HTTPPlugin.

The initialization function, __init__, is flexible, but should start by calling the
superclass’s __init__ function with values for both the required and optional
developer-defined fields if applicable. Table 4 shows these required and common
(but optional) attributes that the Netflow plugin defines, as well as two it does not.

Table 4 Dshell PacketPlugin public class attributes with descriptions, defined in
dshell/core.py

Required and common (but optional) attributes used by plugins
namea the name of the plugin as presented to the user in help text and logs

descriptiona a brief description of the plugin, shown when listing all available plugins
(decode -l)

authora who wrote the decoder, traditionally using simply the developer’s initials

bpfb the initial Berkeley Packet Filter (BPF) to apply to packets passing through
the plugin

outputb the default output object, as an instantiated Output class

longdescriptionb
a longer description to explain more details of a plugin and its capabilities,
shown when viewing the full help text of a plugin
(decode -h)

optiondictb
a dictionary defining additional, plugin-specific command line options. The
format is a dictionary using the argument names as the dictionary keys and
argparse dictionary format for values.

a Developer-defined values
b Optional developer-defined values

Finally, the plugin defines its key handler function, connection_handler.
Handler functions are described in the following sections, but the Netflow plugin
uses it to simply output the information Dshell has collected about a completed
connection.

5. Plugin Types

Dshell includes two plugin superclasses and several generic subclasses to inherit
when developing new plugins.

5.1 PacketPlugin

PacketPlugin is the base plugin class that all others inherit from and is defined
in dshell.core. This plugin is used to handle individual packets. To handle
reconstructed connections, use the ConnectionPlugin instead.

10

The full list of attributes is available in the class’s docstring as well as in Table 5.
Attributes that are not developer-defined are automatically populated as the plugin
runs and should be treated as read only.

Table 5 Dshell PacketPlugin public class attributes with descriptions, defined in
dshell/core.py

a Developer-defined values
b Optional developer-defined values

5.1.1 Placeholder Functions

Most functions for the class are meant only for internal use within the class, but
several placeholder functions are defined that can be overwritten by subclasses
(custom Dshell plugins) depending on their needs.

• packet_handler: A function called for every packet from a data source. It
receives one argument, pkt, a Packet object. Plugins use this function to
interact with packets. To pass packets back into the plugin chain, it should
return a Packet object.

• premodule: A function called before any data is pulled into the framework.
It is generally used for initialization tasks, such as setting up state, reading
data files, making application programming interface (API) connections,
and so forth.

PacketPlugin public attributes
namea the name of the plugin as presented to the user in help text and logs
descriptiona short description of the plugin (used with decode -l)

longdescriptionb verbose description of the plugin (used with -h). Defaults to
description value, if not provided.

bpfb the initial Berkeley Packet Filter (BPF) to apply to traffic entering
plugin

compiled_bpf a compiled BPF for pcapy, usually created in decode.py

vlan_bpf Boolean that tells whether BPF should be compiled with VLAN
support

authora the plugin author, traditionally written using initials
seen_packet_count number of packets this plugin has seen
handled_packet_count number of packets this plugin has passed through a handler function
seen_conn_count number of connections this plugin has seen

handled_conn_count number of connections this plugin has passed through a handler
function

optiondictb dict of options specific to this plugin, provided in the following
format 'optname'{configdict} translates to –pluginname_optname

outb output module instance, provided using “output” argument
link_layer_type numeric label for link layer of current data source
defrag_ip rebuild fragmented IP packets (default True)
logger plugin-specific logging object for printing log messages

current_pcap_file string containing the name of the data source, either an interface
name or pcap file path

11

• prefile: A function called before a file or interface is processed, but after
premodule is called. It receives one argument, infile, the string filepath
or interface of the data source. If using multiple data files, this function is
called before each. It is generally used for initialization tasks, such as
zeroing counters, printing debug information, and so forth.

• postfile: A function called immediately after a data file is closed. If using
multiple data files, this function is called after each. It is generally used for
cleanup tasks, such as printing file statistics, closing file handles, and so
forth.

• postmodule: A function called after all files and data are processed and the
framework is preparing to close. It is generally used for final cleanup tasks,
such as printing overall statistics, printing debug information, closing API
connections, and so forth.

• filter: A function to determine if a packet should be accepted or dropped by
the plugin. By default, uses the plugin’s defined BPF. It receives one
argument, the Packet object, and must return either True (accept the packet)
or False (drop the packet). It is run after a packet passes through the BPF.
It is generally used for defining more complex filters that cannot be defined
in a BPF, such as conditional logic. Defining a complex filter this way may
significantly increase latency when processing live packet capture.

5.1.2 Other Functions
PacketPlugin also exposes some additional functions for use by plugin
developers inside their plugins but should not be overwritten.

• write: A function used to send output to an output module for user
consumption. It has no defined set of expected arguments but should be
passed as much information as is relevant for the plugin being developed.
Most common arguments for several output modules can be provided by
unpacking (using ** when passing to the function) the info function of
Packet, Blob, or Connection objects.

• recompile_bpf: A function used to recompile the bpf attribute as a pcapy-
compatible object. It should be called when a plugin updates its BPF string
during runtime, such as the ftp plugin dynamically changing its BPF to
allow the processing of data transfer channels established during the
connection.

12

5.2 ConnectionPlugin

ConnectionPlugin is a subclass of PacketPlugin and is intended for handling
reconstructed transmission control protocol (TCP) and user datagram protocol
(UDP) connections. It contains the same attributes as PacketPlugin, but adds a
few additional public attributes for its expanded purpose. The full list of attributes
is available in the class’s docstring and Table 6.

Table 6 Dshell ConnectionPlugin public class attributes with descriptions, defined in
dshell/core.py

ConnectionPlugin public attributes
seen_conn_count how many new connections were seen by the plugin
handled_conn_count how many connections were fully handled by the plugin

mixbloods maximum number of blobs a connection will store before calling
connection_handler

timeout

how long do we wait before deciding a connection is “finished.”
Time is checked by iterating over cached connections and checking
if the timestamp of the connection’s last packet is older than the
timestamp of the current packet, minus this value.

timeout_frequency The number of packets to process between timeout checks

max_open_connections
The maximum number of open connections allowed at one time. If
the maximum number of connections is met, the oldest connections
will be force closed.

It also updates its inherited produce_packets function by waiting for
connections to be successfully handled before yielding any packets inside those
connections.

Placeholder Functions

Most functions for the class are meant only for internal use within the function, but
several additional placeholder functions are defined beyond those of the
PacketPlugin superclass that can be overwritten by subclasses (custom Dshell
plugins) depending on their needs.

• connection_handler: A function called once a connection is considered
closed, passes a time boundary, or passes a defined packet count threshold.
It receives one argument, conn, a Connection object. It is generally used
to interact with reassembled connections. To pass packets back into the
plugin chain, it should return a Connection object. Any Blobs in the
Connection with their hidden attribute set to True will not have their
packets continue through the plugin chain, even if they are part of a
Connection that is returned. This could be used, for example, to filter out
one side of the connection.

13

• connection_init_handler: A function called when the first packet of a new
connection is seen, but after it passes through packet_handler. It
receives one argument, conn, the newly created Connection object. It
returns nothing. It is generally used for initialization tasks, such as zeroing
counters, printing debug information, first pass filtering, and so forth.

• connection_close_handler: A function called when a TCP connection is
properly closed with RST or FIN packets. It receives one argument, conn,
the newly created Connection object. It returns nothing. It is generally
used for cleanup tasks, such as printing or storing connection statistics.
Because this function is called only when a connection properly closes, it
may miss connections that time out, get cut off, or do not end before a data
source finishes processing. If connections must be handled, use the
connection_handler function. The function, connection_handler,
is called on all hanging connections when a data source is closed.

• blob_handler: A function called when a connection closes; its packets are
chunked into groups based on stream direction. It receives two arguments—
conn and blob, a Connection object, and a Blob object, respectively. It
should return two values, a Connection and a Blob, or nothing when a
Blob’s packets should not continue along the plugin chain. It is generally
used when a plugin is only interested in reassembled parts of a connection,
such as the stream of data from a server to client or vice versa.

5.3 DNSPlugin

A DNSPlugin is a subclass of the ConnectionPlugin. It is defined in
dshell.plugins.dnsplugin. It is meant to ease the handling of Domain Name
System (DNS) requests and responses. Any packets that are not associated with
DNS are not handled or passed back into the plugin chain.

Placeholder Functions

Alongside all the functions inherited from its parent classes, it defines an additional
placeholder function: dns_handler.

DNSPlugin defines its own internal connection_handler function; therefore,
plugins should not overwrite it when inheriting. The handler sorts DNS packets in
a connection into requests and responses, and pairs them by their ID numbers. The
request-and-response pairs are passed to dns_handler by each ID group.

• dns_handler: A function called when a connection is handled (see
connection_handler in Section 5.2). It receives three arguments:

14

1) conn: the Connection containing the DNS traffic

2) requests: a list of packets flagged as DNS requests, or None

3) responses: a list of packets flagged as DNS responses associated with
request packets, or None

If the packets continue along the plugin chain, this function should return what it
received as arguments: conn, requests, and responses.

5.4 HTTPPlugin

An HTTPPlugin is a subclass of the ConnectionPlugin. It is defined in
dshell.plugins.httpplugin. It is meant to ease the handling of hypertext
transfer protocol (HTTP) requests and responses. Any packets that are not
associated with an HTTP request or response are not handled or passed back into
the plugin chain.

5.4.1 Placeholder Functions

Alongside all the functions inherited from its parent classes, it defines an additional
placeholder function: http_handler.

HTTPPlugin defines its own internal connection_handler function; therefore,
plugins should not overwrite it when inheriting. It separates Blobs by their direction
and attempts to convert them into HTTPRequest (for client-to-server Blobs) or
HTTPResponse (for server-to-client Blobs) objects, explained as follows.

• http_handler: A function called when a connection is handled (see
connection_handler in Section 5.2). It receives three arguments: conn
(Connection), request (HTTPRequest), and response (HTTPResponse).

If the packets continue along the plugin chain, this function should return what it
received as arguments: conn, request, and response.

5.4.2 Custom Classes: HTTPRequest and HTTPResponse
HTTPPlugin defines two new classes for internal use: HTTPRequest and
HTTPResponse. The two are very similar in how they are constructed but provide
different attributes. The full list of attributes is available in each class’s docstring
as well as Tables 7 and 8.

15

Table 7 Dshell HTTPRequest class attributes with descriptions, defined in
dshell/plugins/httpplugin.py

HTTPRequest attributes
blob the Blob instance of the request

errors a list of caught exceptions from parsing

method the method of the request (GET, PUT, POST, etc.)

uri the URI being requested (host not included)

version the HTTP version (e.g., “1.1” for “HTTP/1.1”)

headers a dictionary containing the headers and values

body bytestring of the reassembled body, after the headers

Table 8 Dshell HTTPResponse class attributes with descriptions, defined in
dshell/plugins/httpplugin.py

HTTPResponse attributes
blob the Blob instance of the request

errors a list of caught exceptions from parsing

version the HTTP version (e.g., “1.1” for “HTTP/1.1”)

status the status code of the response (e.g., “200” or “304”)

reason the status text of the response (e.g., “OK” or “Not Modified”)

headers a dictionary containing the headers and values

body bytestring of the reassembled body, after the headers

Headers are parsed as key-value pairs and stored as a dictionary.

Both classes attempt to parse the body content from the stream. If content length is
available, it attempts to reconstruct the data, and creates a dshell.core.DataError
exception if data is missing. Any DataError exceptions are pushed to the class’s
errors attribute. Handler functions can decide to handle or raise any of the
exceptions stored in the errors attribute.

6. Building a Plugin

There is not a rigidly defined, step-by-step process for creating a new Dshell plugin.
However, there are required parts of a plugin script that must be defined and
developed. These parts can form a pipeline for developing a plugin, as shown in
Table 9.

16

During development, plugins can be stored and tested short-term in the “plugins”
directory of Dshell’s installation location, usually located in Python’s “site-
packages” directory. This allows Dshell to find and use them directly. Plugins
placed in this location may be overwritten when updating Dshell; therefore, it is
encouraged to also back them up outside of this directory. Alternatively, plugins
can be developed in a locally downloaded copy of Dshell. Calling Dshell with
Python directly from within the local directory should find the local plugins,
python3 -m dshell.decode. Lastly, a Dshell plugin pack can be created to
store custom Dshell plugins. See Section 8 for instructions on setting up and using
this method.

Table 9 Overview of steps to build a Dshell plugin

Decide
purpose
and
metadata

Most importantly, define the purpose of the plugin. Then, decide on the values
for the developer-defined fields that make up the plugin, such as a unique name,
an author, a description, and other fields defined in Table 5. Additionally, a
default output module should be chosen if the plugin provides output to a user.

Choose a
parent
plugin

Choose one of the plugin superclasses defined in dshell.core, ConnectionPlugin
or PacketPlugin, or one of their derivatives, such as DNSPlugin or HTTPPlugin.
This sets most of the attributes and functions needed for Dshell to find and use
the new plugin. It also provides a basic idea of how the plugin will handle the
data source, either packet-by-packet in a PacketPlugin or connection-by-
connection in the other plugin types.

Define
__init__

Define how the plugin will initialize itself in its __init__ function. This should
include a call to the superclass’s __init__ function with values providing the
metadata from the previous step.

Define
handlers

A plugin will do most of its work in handler functions, such as packet_handler
and connection_handler. These functions are also where calls to write will
likely be placed, if applicable.

6.1 Building an Example Plugin

This section provides an example of building a toy plugin using the steps defined
in Table 9.

6.1.1 Decide Purpose and Metadata

The goal of this toy plugin is to find and count the number of instances of “.com”
in data ingested from a data source. It will separate these counts between
connections, data sources, and a final grand total.

Since this plugin is an example, we will name it “Example” and define additional
metadata in Table 10.

17

Table 10 “Example” plugin metadata definitions

Name Example

Author test

BPF tcp or udp

Description A plugin to find and count the number of instances of “.com” in connections

Long
description

A plugin development example. This plugin finds and counts the number of
instances of “.com” in connections using most of the handler functions
available to a ConnectionPlugin subclass.

The output from this plugin is simple, so we will use the default Output module.

Finally, we will want a user flag to decide if connections without any instances of
“.com” should appear.

6.1.2 Pick a Parent Plugin

Since this plugin will be grouping results by connection, it will inherit from the
ConnectionPlugin superclass instead of PacketPlugin. This will require importing
the dshell.core module to access the class.
import dshell.core
from dshell.output.output import Output

class DshellPlugin(dshell.core.ConnectionPlugin):

6.1.3 Define __init__

The initialization function of the plugin will use the metadata defined in the first
step and pass it to the superclass’s __init__ function. Included in the call is the
definition of the optiondict. Not all plugins will define the argument, but this
example plugin will allow users to set a flag if they want to see information on
connections and files that did not have instances of “.com.” The key is
“show_zeroes,” which Dshell will automatically convert into the command-line
argument --example_show_zeroes.

After setting the metadata, the plugin will initialize the attributes that store counts.
 def __init__(self):
 super().__init__(
 name="Example",
 author="test",
 bpf="tcp or udp",
 description=" A plugin to find and count the number of
instances of ".com" in connections ",
 longdescription=" A plugin development example. This plugin
finds and counts the number of instances of ".com" in connections using

18

most of the handler functions available to a ConnectionPlugin
subclass.",
 output=Output(label=__name__),
 optiondict={
 "show_zeroes": {
 "action": "store_true",
 "help": "Show connections without \".com\"",
 "default": False
 }
 }
)
 self.total_com_instances = 0
 self.file_com_instances = {}
 self.conn_com_instances = {}

6.1.4 Define Handlers

The functionality of the plugin is defined in its handler functions. In this example,
we will use almost all of them for demonstration purposes. Most of the handler
functions in this example plugin simply initialize counters or print results.

The premodule and postmodule functions set and write the total number of
“.com” instances.
 def premodule(self):
 self.total_com_instances = 0

 def postmodule(self):
 self.write(".com seen {} total
times".format(self.total_com_instances))

The prefile and postfile functions set and write the total number of “.com”
instances in individual files as they are opened and closed, respectively. The
postfile additionally checks the show_zeroes flag to determine if it should
print empty counters.
 def prefile(self, infile):
 self.file_com_instances[infile] = 0

 def postfile(self):
 coms = self.file_com_instances.get(self.current_pcap_file, 0)
 if coms or self.show_zeroes:
 self.write(".com seen {} times in {}".format(coms,
self.current_pcap_file))

The connection_init_handler creates a record for each connection as it
begins and sets it to 0.
 def connection_init_handler(self, conn):
 self.conn_com_instances[conn] = 0

19

The connection_handler function, called near the end of connections, prints
count messages for each connection if any “.com” was seen or if the show_zeroes
flag is set to True. Additionally, it provides the conn.info() output to the write
function for output modules that can use it. It also acts as a final filter, returning
nothing if no “.com” was found and preventing such connections from continuing
along the plugin chain.
 def connection_handler(self, conn):
 coms = self.conn_com_instances.get(conn, 0)
 if coms or self.show_zeroes:
 msg = ".com seen {} times in ({}:{}\t-
>\t{}:{})".format(coms,
 conn.sip, conn.sport, conn.dip, conn.dport)
 self.write(msg, **conn.info())
 return conn
 else:
 return

The blob_handler is the function that counts actual “.com” instances. It
reassembles the stream of data with blob.data and uses Python’s built-in count
function to tally each “.com” in the string of bytes and adds the total to each counter.
If “.com” is not found, it returns nothing, indicating to Dshell that the blob should
not be passed along to the next plugin in the plugin chain.
 def blob_handler(self, conn, blob):
 coms = blob.data.lower().count(b'.com')
 if coms:
 self.conn_com_instances[conn] += coms
 self.file_com_instances[self.current_pcap_file] += coms
 self.total_com_instances += coms
 return conn, blob
 else:
 return

Put together, the example.py plugin will look like this:
import dshell.core
from dshell.output.output import Output

class DshellPlugin(dshell.core.ConnectionPlugin):
 def __init__(self):
 super().__init__(
 name="Example",
 author="test",
 bpf="tcp or udp",
 description="A plugin to find and count the number of
instances of ".com" in connections",
 longdescription="A plugin development example. This plugin
finds and counts the number of instances of ".com" in connections using
most of the handler functions available to a ConnectionPlugin
subclass.",
 output=Output(label=__name__),

20

 optiondict={
 "show_zeroes": {
 "action": "store_true",
 "help": "Show connections without \".com\"",
 "default": False
 }
 }
)
 self.total_com_instances = 0
 self.file_com_instances = {}
 self.conn_com_instances = {}

 def premodule(self):
 self.total_com_instances = 0

 def postmodule(self):
 self.write(".com seen {} total times".format(
 self.total_com_instances))

 def prefile(self, infile):
 self.file_com_instances[infile] = 0

 def postfile(self):
 coms = self.file_com_instances.get(self.current_pcap_file, 0)
 if coms or self.show_zeroes:
 self.write(".com seen {} times in {}".format(coms,
 self.current_pcap_file))

 def connection_init_handler(self, conn):
 self.conn_com_instances[conn] = 0

 def connection_handler(self, conn):
 coms = self.conn_com_instances.get(conn, 0)
 if coms or self.show_zeroes:
 msg = ".com seen {} times in ({}:{}\t-
>\t{}:{})".format(coms,
 conn.sip, conn.sport, conn.dip, conn.dport)
 self.write(msg, **conn.info())
 return conn
 else:
 return

 def blob_handler(self, conn, blob):
 coms = blob.data.lower().count(b'.com')
 if coms:
 self.conn_com_instances[conn] += coms
 self.file_com_instances[self.current_pcap_file] += coms
 self.total_com_instances += coms
 return conn, blob
 else:
 return

To test the plugin, the example.py script should be placed in one of the plugin
directories where Dshell can find it, such as dshell/plugins/misc/. It can then

21

be called like any other Dshell plugin with decode -p example. Additionally, a
user can use the --example_show_zeroes flag to display output for connections
and files without “.com.”

6.1.5 Example Plugin Output Using Sample Traffic4

Dshell> decode -p example ~/pcap/http_with_jpegs.cap
.com seen 5 times in (10.1.1.101:3179 -> 209.225.11.237:80)
.com seen 5 times in (10.1.1.101:3183 -> 209.225.0.6:80)
.com seen 5 times in (10.1.1.101:3184 -> 209.225.0.6:80)
.com seen 5 times in (10.1.1.101:3185 -> 209.225.0.6:80)
.com seen 5 times in (10.1.1.101:3187 -> 209.225.0.6:80)
.com seen 1 times in (10.1.1.101:3191 -> 209.225.0.6:80)
.com seen 1 times in (10.1.1.101:3192 -> 209.225.0.6:80)
.com seen 1 times in (10.1.1.101:3193 -> 209.225.0.6:80)
.com seen 1 times in (10.1.1.101:3194 -> 209.225.0.6:80)
.com seen 29 times in /home/pcap/http_with_jpegs.cap
.com seen 29 total times

6.1.6 Example Pugin Output Using Custom show_zeroes Option and
Sample Traffic4

Dshell> decode -p example --example_show_zeroes
~/pcap/http_with_jpegs.cap
.com seen 0 times in (10.1.1.101:3177 -> 10.1.1.1:80)
.com seen 5 times in (10.1.1.101:3179 -> 209.225.11.237:80)
.com seen 5 times in (10.1.1.101:3183 -> 209.225.0.6:80)
.com seen 5 times in (10.1.1.101:3184 -> 209.225.0.6:80)
.com seen 5 times in (10.1.1.101:3185 -> 209.225.0.6:80)
.com seen 5 times in (10.1.1.101:3187 -> 209.225.0.6:80)
.com seen 0 times in (10.1.1.101:3188 -> 10.1.1.1:80)
.com seen 0 times in (10.1.1.101:3189 -> 10.1.1.1:80)
.com seen 0 times in (10.1.1.101:3190 -> 10.1.1.1:80)
.com seen 1 times in (10.1.1.101:3191 -> 209.225.0.6:80)
.com seen 1 times in (10.1.1.101:3192 -> 209.225.0.6:80)
.com seen 1 times in (10.1.1.101:3193 -> 209.225.0.6:80)
.com seen 1 times in (10.1.1.101:3194 -> 209.225.0.6:80)
.com seen 0 times in (10.1.1.101:3195 -> 10.1.1.1:80)
.com seen 0 times in (10.1.1.101:3196 -> 10.1.1.1:80)
.com seen 0 times in (10.1.1.101:3197 -> 10.1.1.1:80)
.com seen 0 times in (10.1.1.101:3198 -> 10.1.1.1:80)
.com seen 0 times in (10.1.1.101:3199 -> 10.1.1.1:80)
.com seen 0 times in (209.225.11.237:None -> 10.1.1.101:None)
.com seen 0 times in (209.225.0.6:None -> 10.1.1.101:None)
.com seen 0 times in (209.225.0.6:31045 -> 10.1.1.101:26678)
.com seen 0 times in (209.225.0.6:19809 -> 10.1.1.101:12634)
.com seen 0 times in (209.225.0.6:19459 -> 10.1.1.101:15552)
.com seen 0 times in (209.225.0.6:26764 -> 10.1.1.101:8165)
.com seen 0 times in (209.225.0.6:10380 -> 10.1.1.101:49560)
.com seen 0 times in (209.225.0.6:26674 -> 10.1.1.101:25308)
.com seen 0 times in (10.1.1.101:3200 -> 10.1.1.1:80)
.com seen 29 times in /home/pcap/http_with_jpegs.cap
.com seen 29 total times

https://wiki.wireshark.org/SampleCaptures
https://wiki.wireshark.org/SampleCaptures

22

7. Other Example Plugins

7.1 Building a Plugin to Extract Key Data from a Known Protocol

This section provides an example of building a toy plugin using the steps defined
in Table 9.

7.1.1 Decide Purpose and Metadata

The goal of this toy plugin will be to extract the “Referer” field from HTTP web
traffic sessions. This is an optional field that stores the IP address of the webpage
that the user was referred from, and in this way provides a history of the user’s web
browsing.

7.1.2 Pick a Parent Plugin

Since this plugin will be extracting data from HTTP web traffic, the parent plugin
HTTPPlugin can be used, which is a subclass of the ConnectionPlugin and
attempts to parse HTTP Requests and Responses and store their data in dictionaries.

7.1.3 Define __init__

After providing the name, author, and description of the plugin, the BPF should be
set. Following the precedent set by the HTTP plugins native to the Dshell
framework, the BPF can be set to “tcp and (port 80 or port 8080 or port 8000)” to
filter on ports most commonly used for web traffic. Next, looking over the output
options, and those used by other HTTP plugins native to Dshell (web, httpdump,
riphttp) the alertout output module will provide enough detailed information on
the current Blob that the HTTP session is within, so that is chosen and defined.

7.1.4 Define Handlers

The HTTPPlugin parent class defines the http_handler function that can be
used to access the connection data, as well as HTTP request and response data
dictionaries. The “Referer” field is an HTTP header field unique to HTTP Requests;
therefore, a conditional is defined first to only process a request. Next, since the
http_handler has already attempted to parse this information from the HTTP
Request, simply use the Python dictionary .get() method to pull this data if it
exists or a default value otherwise. Finally a call to self.write() with the
referrer data and the unpacked data stored in request.blob.info() will provide
detailed output information on the current blob and the referrer data. Additional
data can be extracted from the HTTP request to provide the end user with a big
picture understanding of the web traffic, such as verbose output including HTTP

23

Request fields detailing websites reached and the referrer to those websites. Pulling
the HTTP Request method, host, and Uniform Resource Identifier (URI) fields in
addition to the “Referer” field will provide this big picture understanding.

Put together, the referer.py plugin will look like this:
referer.py
import dshell.core
from dshell.plugins.httpplugin import HTTPPlugin
from dshell.output.alertout import AlertOutput

class DshellPlugin(HTTPPlugin):
 def __init__(self):
 super().__init__(
 name="referer",
 author="dek",
 description="Extract Referer information from HTTP
sessions",
 bpf="tcp and (port 80 or port 8080 or port 8000)",
 output=AlertOutput(label=__name__),
 optiondict={
 's': {
 'action': "store_true",
 'default': None,
 'help': 'show simple output to just pull "referer"
field, without providing verbose HTTP Request fields details'
 }
 }
)

 def http_handler(self, conn, request, response):
 if request:
 referer = request.headers.get('referer', None)

 # Simple output to just pull 'referer' field
 if self.s:
 self.write(f'\treferer:{referer}',
**request.blob.info())

 # Verbose output (defaut) including HTTP Request fields
detailing
 # websites reached and the "referer" to those websites
 else:
 method = request.method
 host = request.headers.get('host', '')
 uri = request.uri
 self.write(f'{method} {host}{uri} [referer: {referer}]',
 **request.blob.info())
 return conn, request, response

24

7.1.5 Referer Plugin Output Using Sample Traffic4 (Truncated)
Dshell> decode -p referer /home/pcap/http_with_jpegs.cap
…
[referer] 2004-11-19 17:29:15 10.1.1.101:3188 ->
10.1.1.1:80 ** GET 10.1.1.1/Websidan/index.html [referer:
http://10.1.1.1/] **
[referer] 2004-11-19 17:29:15 10.1.1.101:3189 ->
10.1.1.1:80 ** GET 10.1.1.1/Websidan/images/bg2.jpg [referer:
http://10.1.1.1/Websidan/index.html] **
[referer] 2004-11-19 17:29:15 10.1.1.101:3190 ->
10.1.1.1:80 ** GET 10.1.1.1/Websidan/images/sydney.jpg [referer:
http://10.1.1.1/Websidan/index.html] **
[referer] 2004-11-19 17:29:16 10.1.1.101:3191 ->
209.225.0.6:80 ** GET opera1-
servedby.advertising.com/site=0000127709/mnum=0000162763/genr=1/logs=0/m
dtm=1077726643/bins=1 [referer: None] **
…
[referer] 2004-11-19 17:29:24 10.1.1.101:3200 ->
10.1.1.1:80 ** GET 10.1.1.1/Websidan/2004-07-
SeaWorld/fullsize/DSC07858.JPG [referer:
http://10.1.1.1/Websidan/dagbok/2004/28/dagbok.html] **

7.1.6 Referer Plugin Output Using Custom Simple Option and Sample
Traffic4 (Truncated)

Dshell> decode -p referer --referer_s /home/pcap/http_with_jpegs.cap
…
[referer] 2004-11-19 17:29:15 10.1.1.101:3188 ->
10.1.1.1:80 ** referer:http://10.1.1.1/ **
[referer] 2004-11-19 17:29:15 10.1.1.101:3189 ->
10.1.1.1:80 ** referer:http://10.1.1.1/Websidan/index.html **
[referer] 2004-11-19 17:29:15 10.1.1.101:3190 ->
10.1.1.1:80 ** referer:http://10.1.1.1/Websidan/index.html **
[referer] 2004-11-19 17:29:16 10.1.1.101:3191 ->
209.225.0.6:80 ** referer:None **
…
[referer] 2004-11-19 17:29:24 10.1.1.101:3200 ->
10.1.1.1:80 **
 referer:http://10.1.1.1/Websidan/dagbok/2004/28/dagbok.html **

7.2 Building a Plugin to Decode Data from a Custom Protocol

This section provides an example of building a toy plugin using the steps defined
in Table 9.

7.2.1 Decide Purpose and Metadata

The goal of this toy plugin will be to extract command and control (C2) messages
sent between malware on an infected victim machine and a command server, as
done in the workshop and cybersecurity study, Uncovering and Decoding Malware
Communications with Dshell.5 Through analysis of the traffic, analysts determined

https://wiki.wireshark.org/SampleCaptures
https://wiki.wireshark.org/SampleCaptures
https://wiki.wireshark.org/SampleCaptures

25

the messages were obfuscated with a simple ROT13 rotational cipher, a type of
Caesar cipher that shifts the letters by 13 places forward from their normal location
in the 26 character English alphabet. The ROT13 cipher is a unique cipher in that
by performing the obfuscation twice, the original text is obtained as it shifts the
characters perfectly back to their original locations in the English alphabet.

7.2.2 Pick a Parent Plugin

Since this plugin will be extracting reassembled data from any connection and the
key idea is to obtain a big picture understanding of the C2 messages, it is best to
work at the connection and Blob levels, so a ConnectionPlugin will be used.

7.2.3 Define __init__

After providing the name, author, and description of the plugin, the BPF should be
set. In order to keep the filtering very broad, the BPF can be set to “ip or ip6.” Next,
looking over the output options, the netflowout output module will provide
detailed information on the connection, so that is chosen and defined.

7.2.4 Define Handlers

In order to view all of the C2 messages in one direction of the connection, the data
should be parsed at the Blob level, so the blob_handler can be used. Making
use of Python’s built-in str.maketrans() function, a translation can be defined
that replaces any character seen in the first argument string with the character in the
same location of the second argument string. This translation will be a rotational
translation of 13 characters to implement the ROT13 cipher obfuscation and
decoding. The raw C2 messages are obtained from the Blob data and then the
custom ROT13 translation is applied to obtain the decoded messages. Finally, the
self.write() method is called to output the message along with the general
information from the connection provided by unpacking the data stored in
conn.info(). Put together, the rot13.py plugin will look like this:

rot13.py
"""
Decodes malware C2 messages obfuscated by ROT13 cipher
"""

import dshell.core
from dshell.output.netflowout import NetflowOutput

class DshellPlugin(dshell.core.ConnectionPlugin):
 def __init__(self, *args, **kwargs):
 super().__init__(
 name="ROT13 C2 Decoder",
 description="Decodes malware C2 messages obfuscated by
ROT13",

26

 author="dek",
 bpf="ip or ip6",
 output=NetflowOutput(label=__name__),
)

 def blob_handler(self, conn, blob):
 rot13 = str.maketrans(

 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz',
 'NOPQRSTUVWXYZABCDEFGHIJKLMnopqrstuvwxyzabcdefghijklm')
 c2 = str(blob.data)
 decoded = c2.translate(rot13)
 message = f'\n\tobfuscated:\t{c2}\n\tdecoded:\t{decoded}'
 self.write(message, **blob.info())
 return conn, blob

7.2.5 Rot13 Plugin Output Using Example Traffic

Dshell> decode -p rot13 /home/pcap/rot13_example.pcap
2023-02-27 3:14:15 10.0.0.3 -> 10.0.0.4 (-- -> --) TCP 12345
9999 8 8 256 256 23.4567s
 obfuscated: b’png /rgp/cnffjq’
 decoded: o’cat /etc/passwd'
2023-02-27 3:14:16 10.0.0.3 -> 10.0.0.4 (-- -> --) TCP 12345
9999 8 8 256 256 23.4567s
 obfuscated: b'pbzznaq rkrphgrq'
 decoded: o'command executed'

7.3 Modifying an Existing Plugin

This section provides an example of building a toy plugin using the steps defined
in Table 9.

7.3.1 Decide Purpose and Metadata

The goal of this toy plugin is to collect and display statistics about connections
using custom connection timeout logic, different than that used in the netflow
plugin. The existing netflow plugin can simply be copied and its existing
connection logic can be modified.

7.3.2 Pick a Parent Plugin

Since only the existing netflow plugin’s connection logic will be modified, the
parent plugin will be kept as a ConnectionPlugin.

7.3.3 Define __init__

After providing the name, author, and description of the plugin, the BPF and output
module should be set. Since only the existing netflow plugin’s connection logic will
be modified, the BPF and output module will remain unchanged. Following the
super().__init__() call the connection logic inherited by the parent plugin

27

and stored in self can be modified, including the self.timeout,
self.timeout_frequency, and self.max_open_connections. For an
example—such as to better analyze the traffic commonly seen by a sensor—these
are modified as follows: self.timeout reduced from 1 h to 1 s,
self.timeout_frequency decreased from default of processing 300 packets
before checking for timeout to just 1 packet, and self.max_open_connections
increased from 1,000 to 10,000.

7.3.4 Define Handlers

Since only the existing netflow plugin’s connection logic will be modified, and this
has been accomplished in the __init__ function, the handler will remain
unchanged.

Put together, the netflow-ct.py plugin will look like this:
netflow_ct.py
import dshell.core
from dshell.output.netflowout import NetflowOutput
Added to update Connection timeout logic
import datetime

class DshellPlugin(dshell.core.ConnectionPlugin):
 def __init__(self, *args, **kwargs):
 super().__init__(
 name=”Netflow Custom Timeout”,
 description=”Collects and displays statistics about
connections,\
 using custom Connection timeout logic”,
 author=”dek”,
 bpf=”ip or ip6”,
 output=NetflowOutput(label=__name__),
)
 # Update Connection timeout logic to better handle custom needs
 # Connection timeout, decreased from default of 1 hour
 self.timeout = datetime.timedelta(seconds=1)
 # Packets to process before checking for timeout,
 # decreased from default of 300
 self.timeout_frequency = 1
 # Maximum number of connections allowed,
 # increased from default of 1000
 self.max_open_connections = 10000

 def connection_handler(self, conn):
 self.write(**conn.info())
 return conn

28

7.3.5 Netflow_ct Plugin Output Using Sample Traffic4 (Truncated)
Dshell> decode -p netflow_ct ~/pcap/http_with_jpegs.cap
2004-11-19 17:29:14 10.1.1.101 -> 10.1.1.1 (-- -> --)
TCP 3177 80 1 1 476 435 0.1368s
2004-11-19 17:29:15 10.1.1.101 -> 10.1.1.1 (-- -> --)
TCP 3188 80 1 4 574 4601 0.1278s
2004-11-19 17:29:14 10.1.1.101 -> 209.225.11.237 (-- -> US)
TCP 3179 80 2 2 993 1224 1.3282s
2004-11-19 17:29:15 10.1.1.101 -> 10.1.1.1 (-- -> --)
TCP 3189 80 1 6 597 8566 0.1643s
2004-11-19 17:29:15 10.1.1.101 -> 10.1.1.1 (-- -> --)
TCP 3190 80 1 7 600 9330 0.3300s
2004-11-19 17:29:15 209.225.11.237 -> 10.1.1.101 (US -> --)
TCP 1 0 736 0 0.0000s
…

8. Dshell Plugin Packs

As an option for distribution and keeping custom plugins separate from those native
to the framework, groups of custom plugins can be organized and installed as a
plugin pack. Updates to the Dshell Python package will overwrite plugins stored in
the Dshell installation directories: [...]/site-packages/dshell/ and
[…]Dshell/dshell/plugins but will not overwrite plugin packs. A pack is configured
and built using the setuptools Python module and defining plugins as entry points.

When developing a setup.py script for a plugin pack, it is necessary to define a
"dshell_plugins" key in the entry_points argument dictionary. Dshell’s
decode.py checks this entry point key for plugins and adds them to the list of
available plugins. Additionally, the install_requires argument should include
“Dshell.”

For example, imagine a project of custom plugins. The project is arranged with a
top-level directory, a setup.py script, and a subdirectory containing the plugins
example.py and test.py:

Project/
Project/setup.py
Project/example_plugins/
Project/example_plugins/example.py
Project/example_plugins/test.py

The following script is an example of a setup.py that can package the custom
plugins into a plugin pack accessible by Dshell. It provides a name and other
metadata for the plugin pack, lists “Dshell” as an installation requirement, and
includes the “example,” “referer,” “rot13,” and “netflow-ct” import paths in the
"dshell_plugins" entry_point key.

https://wiki.wireshark.org/SampleCaptures

29

setup.py
from setuptools import find_packages, setup

setup(
 name="Dshell-Example-Pack",
 version="0.1",
 author="USArmyResearchLab",
 description="A collection of Dshell plugins used for example
purposes",
 url="https://github.com/USArmyResearchLab/Dshell",
 python_requires='>=3.8',
 packages=find_packages(),
 install_requires=[
 "Dshell",
],
 entry_points={
 "dshell_plugins": [
 "example = example_plugins.example",
 "referer = example_plugins.referer",
 "rot13 = example_plugins.rot13",
 "netflow_ct = example_plugins.netflow_ct",
],
 }
)

With the setup.py script, the plugin pack can be installed directly from the project
directory using Python’s package installer pip: pip3 install.

Alternatively, the plugin pack can be packaged for distribution using setup.py
directly. Python’s setuptools provides many options for creating a distribution
package, but a general command line call would look like this: python3
setup.py sdist. Following the creation of the package, usually stored in the
project’s dist directory, it can be installed with pip: pip3 install [package
file].

An installed plugin pack can be removed using a standard pip command: pip3
uninstall [package file].

30

9. References

1. Dshell. DEVCOM Army Research Laboratory. 2020 [accessed 2023 Mar 24].
https://github.com/USArmyResearchLab/Dshell.

2. Sunsetting Python 2. Python Software Foundation; n.d. [accessed 2023 Mar
24]. https://www.python.org/doc/sunset-python-2/.

3. Krych DE, Edwards J. Dshell user guide. DEVCOM Army Research
Laboratory (US); 2023 Apr. Report No.: ARL-SR-0470.

4. SampleCaptures. WireShark; n.d. [accessed 2023 Mar 24].
https://wiki.wireshark.org/SampleCaptures.

5. Krych DE, Acosta JC. Hands on cybersecurity studies: uncovering and
decoding malware communications with Dshell. DEVCOM Army Research
Laboratory (US); 2020. Report No.: ARL-TR-8986.

31

List of Symbols, Abbreviations, and Acronyms

API application programming interface

ARL Army Research Laboratory

ASN autonomous system number

BPF Berkeley Packet Filter

C2 command and control

CLI command-line interface

DEVCOM US Army Combat Capabilities Development Command

DNS Domain Name System

Dshell decoder-shell

HTTP hypertext transfer protocol

ID identification

IP Internet protocol

MAC Media Access Control

TCP transport control protocol

UDP user datagram protocol

URI uniform resource identifier

VLAN virtual local area network

32

 1 DEFENSE TECHNICAL
 (PDF) INFORMATION CTR
 DTIC OCA

 1 DEVCOM ARL
 (PDF) FCDD RLB CI
 TECH LIB

 2 DEVCOM ARL
 (PDF) FCDD RLA ND
 J EDWARDS
 D KRYCH

	List of Tables
	1. Introduction
	2. Important Concepts
	2.1 Data Sources
	2.2 Plugin Chain and Produce/Consume Model
	2.3 Parallelization

	3. Core Object Classes
	3.1 Packet
	3.2 Connection
	3.2.1 Server/Client Versus Destination/Source
	3.2.2 Blobs

	3.3 Blob

	4. Example Plugin – netflow.py
	5. Plugin Types
	5.1 PacketPlugin
	5.1.1 Placeholder Functions
	5.1.2 Other Functions

	5.2 ConnectionPlugin
	Placeholder Functions

	5.3 DNSPlugin
	Placeholder Functions

	5.4 HTTPPlugin
	5.4.1 Placeholder Functions
	5.4.2 Custom Classes: HTTPRequest and HTTPResponse

	6. Building a Plugin
	6.1 Building an Example Plugin
	6.1.1 Decide Purpose and Metadata
	6.1.2 Pick a Parent Plugin
	6.1.3 Define __init__
	6.1.4 Define Handlers
	6.1.5 Example Plugin Output Using Sample Traffic4
	6.1.6 Example Pugin Output Using Custom show_zeroes Option and Sample Traffic4

	7. Other Example Plugins
	7.1 Building a Plugin to Extract Key Data from a Known Protocol
	7.1.1 Decide Purpose and Metadata
	7.1.2 Pick a Parent Plugin
	7.1.3 Define __init__
	7.1.4 Define Handlers
	7.1.5 Referer Plugin Output Using Sample Traffic4 (Truncated)
	7.1.6 Referer Plugin Output Using Custom Simple Option and Sample Traffic4 (Truncated)

	7.2 Building a Plugin to Decode Data from a Custom Protocol
	7.2.1 Decide Purpose and Metadata
	7.2.2 Pick a Parent Plugin
	7.2.3 Define __init__
	7.2.4 Define Handlers
	7.2.5 Rot13 Plugin Output Using Example Traffic

	7.3 Modifying an Existing Plugin
	7.3.1 Decide Purpose and Metadata
	7.3.2 Pick a Parent Plugin
	7.3.3 Define __init__
	7.3.4 Define Handlers
	7.3.5 Netflow_ct Plugin Output Using Sample Traffic4 (Truncated)

	8. Dshell Plugin Packs
	9. References
	List of Symbols, Abbreviations, and Acronyms

