
dgswem-v2: User’s Guide

March 7, 2018

Contents

1 Introduction 2
1.1 Problems with dgswem . 2

1.1.1 Difficulty of Adding Features 2
1.1.2 Not Testable . 3
1.1.3 Poor Fortran/C++ Interoperability 3

1.2 Proposed Solution . 4
1.2.1 Written in C++14 . 4
1.2.2 Object Oriented . 4
1.2.3 Test driven design . 4

1.3 Target Audience . 5
1.3.1 Limitations . 5

1.4 Remainder of the Guide . 5

2 Mesh class 6
2.1 Motivation . 6
2.2 The Element Class . 7

2.2.1 Strong Typing . 8
2.2.2 Class Hierachy of Element 9

2.3 Mesh Class . 9

3 Problem Class 11

4 Annontated Examples 12
4.1 Preliminaries . 12
4.2 Manufactured Solution . 12

4.2.1 Generating the mesh . 13
4.2.2 Partitioning the mesh (optional) 14
4.2.3 Running the simulation 15
4.2.4 Intepreting the Output 16

4.3 1D Inlet . 16

5 Input Format 17

6 dgswem to dgswem-v2 Look-up Table 18

1

Chapter 1

Introduction

This document aims to orient new users about the design of dgswem-v2. Before
beginning to discuss what this document is, we will briefly preface what it is not.
Firstly, this document does not contain installation instructions. Those can be
found in the README.md file in the root directory of this repository. Secondly,
this guide is not intended as an API reference. To see API documentation, we
have annotated our functions using doxygen, which can be built via

cd ${dgswem -v2-root}/ documentation

doxygen Doxyfile

Rather this document aims to achieve the following 3 goals:

1. Provide insight into the design philosophy of dgswem-v2,

2. Document input formats and intended usage through annotated examples.

3. Provide a reference for dgswem-users trying to get oriented in this new
code.

1.1 Problems with dgswem

Before discussing the features of dgswem-v2, we will briefly dwell on the prob-
lems with the predecessor of this code. To quote George Santayana, “Those
who cannot remember the past are condemned to repeat it”.

1.1.1 Difficulty of Adding Features

The first two problems outline with dgswem center on issues surrounding de-
veloper productivity. The first issue is centered around the difficulty of adding
features. This is partially centered around limitations of Fortran, but also par-
tially a criticism of the code bases design.

The first point I would like to highlight is the difficulty associated with
implementing new features is the difficulty in maintain old ones. One poignant

2

example of this can be found in src/DG hydro timestep.F. The code currently
supports two timestepping mechanisms: Strong Stability Preserving Runge-
Kutta (SSPRK) methods and Runge-Kutta Chebychev methods. In an attempt
to preserve good performance, the methods can be swapped out at compile time
using compiler macros. However, the SSPRK implementation spans roughly
170 lines of code, and the RKC implementation a similar number of lines. The
issue now being that any modification that happens to one timestepping scheme
needs to be duplicated below. This form of code duplication can be confusing
and complicates supporting the full set of features in any given combination.

The second issue is a more underlying limitation of the use of Fortran. Steven
Brus’ work [?] demonstrates the drastic performance improvements made by the
introduction of curvilinear elements. Due to the varying Jacobians, separate
loops are required to update curvilinear elements. This would then require that
two loops be written into dgswem. However, it is convievable that one might
be interested in implementing quadratic elements as well. Now the number
of loops grow in a comninatorial manner (linear/triangles, curved/triangles,
linear/quadrilateral, and curved/quadrilaterals).

1.1.2 Not Testable

As a procedural code written in a traditional fortran manner. The data of
the simulation are allocated as globally accessible structs of arrays. The global
scoping of the structs obfuscates the actually dependencies. Developing a unit
testing framework would require meticulous teasing out of explicit dependen-
cies for a given function, and then furthermore require convoluted tests cases
to achieve reasonable code coverage. In practice, previous attempts at imple-
menting continuous integration testing for dgswem have centered around imple-
menting correctness tests. While these would at least verify if adding a change
to the code base doesn’t compromise the correctness of the code, these tests fail
to locate the source of the error.

1.1.3 Poor Fortran/C++ Interoperability

This problem has initially arisen out of the STORM project whose objective was
to implement storm surge codes using HPX, an Asynchronous runtime system.
One of the key difficulties in this project however, remains the interoperability
of Fortran–what dgswem is written in – and C++ –what HPX is written in. The
works by Byerly et al. [?] illustrate some of the difficulties that go into this.
However, this fix is places relatively restrictive limitations on what the code
can do. Furthermore, the development of new C++ libraries present interesting
solutions, which are currently not accessible to fortran based implementations.
In particular, examples include explicit data parallel programming libraries such
as Boost.simd and Vc, as well as novel GPU abstraction mechanisms such
as Kokkos. While certainly pains have been taken to implement a dgswem-
hpx implementation. This is not really affordable, when looking at developer

3

cost. The choice of Fortran as a programming language restricts our abilities to
explore novel solutions to HPC problems.

1.2 Proposed Solution

In an attempt to directly address the issues above dgswem-v2 has been design
with the following features: written in C++14, object-oriented, and test driven
design.

1.2.1 Written in C++14

The simplest solution to address issues with C++ interoperability is to write
the application in C++. Additionally, we have chosen the C++14 standard.
Typical reasons, for not using newer standards hinge around legacy support
issues. However, since the code base is being rewritten in its entirety, we have
no such limitations.

1.2.2 Object Oriented

One of the key features of C++ is it’s support of object oriented programming.
The main principal of object oriented programming is to partition the program
into objects that are responsible for discrete tasks. This modularization allows
users to work on one part of the code without having to worry about unin-
tended effects in the rest of the code base. This is hopefully shorten the amount
of time required for a new user to become productive. Additionally, it allows us
to reasonably partition up the timesteppers. In terms of the previous example
regarding the Runge-Kutta timesteppers, each time stepper would be imple-
mented as a unique class, and its arguments would contain all the functionality
required for function evaluations. This would allow a user to make a change
in the code, and have it automatically propagated to both timesteppers, and
expose an API that the user could use two develop a third timestepper.

1.2.3 Test driven design

The other advantage of object oriented programming is that it strictly scopes
the data it’s working on. This allows us to write tests for small units of code,
e.g. integration or polynomial basis implementations. These changes will then
hopefully indicate where and when code breaks greatly simplifying debugging.
Additionally, existing continuous integration software allows us to run these unit
tests for each commit. Allowing developers to precisely pinpoint the commit
that broke functionality.

4

1.3 Target Audience

There certainly already exist a vast set of finite element libraries out there, e.g.
deal.ii, dune, feel++. Certainly, there are a lot of arguments for using on
of these libraries. However, ultimately we have settled on implementing their
functionality ourselves. We are aiming to solve a much smaller subset of the
problems these libraries attempt to solve. Libraries like deal.ii have quite
intense dependencies, which we simply are not interested in at the moment.
Furthermore, it is worth mentioning that dgswem-v2 isn’t even library, but
rather an application. Our target audience really falls into two user groups:

1. People who are interesting in modeling shallow water equations. In the
same, spirit as adcirc, we hope to provide the functionality, that might
allow a coastal engineer to supply the code with a mesh geometry, and
run a simulation.

2. People who are interested in developing new numerical methods. The bare-
bones API has been designed to expose hooks that mirror the numerical
algorithms as closely as possible. The hope being that these hooks allow
users to rapidly explore new algorithms.

1.3.1 Limitations

While attempts have been made to leave dgswem-v2’s API as open as possible.
It is important to list some of the governing principles. These principals dictate
limitations with what can be naturally achieved with the code.

1. Adding new features should be more important than maintaining the best
performance. While we certainly are not ignore performance in the design
of dgswem-v2, it is of note that we should prefer flexibility of the code
over diehard performance.

2. The code is centered around solving conservation laws using the discon-
tinuous Galerkin Method. The main ramifications of this item, is that all
of our solvers are set-up as explicit. Presumably, there would have to be
significant refactoring to incorporate implicit solvers.

1.4 Remainder of the Guide

The remainder of this guide aims to underscore the design of dgswem-v2. The
two main abstractions are the Mesh and Problem class. The Mesh class abstract-
ing the underlying mesh, and the Problem abstracting the PDE/ discretization
thereof. These two concepts are the intellectual pillars upon which dgswem-v2

is based. Thereafter, we include annotated examples, which will hopefully get
users started.

This is followed-up with a description of the input format, and a chapter
describing where dgswem functionality can be found in the new code.

5

Chapter 2

Mesh class

2.1 Motivation

To understand, the design behind the Mesh class, we would like to begin by
discussing one of the key problems currently faced in dgswem. The issue comes
from Steven Brus’ dissertation [?]. Brus goes on to show that the addition of
curvilinear elements plays a significant role in obtaining high-order accuracy for
real world problems. Simultaneously, these curvilinear elements incur a signif-
icantly higher computational cost. Thus in the interior of the finite element
domain, where the solution doesn’t exhibit mesh geometry to more computa-
tionally effient standard affine elements suffice. While computationally straight
forward, this approach provides a software engineering challenge. Namely, some-
thing like the volume kernel now needs to be split up into two loops, i.e.

Listing 2.1: Näıve implementation of curved and linear finite element kernel

for (auto& elt : linear_elements) {

// Evaluate volume kernel for each linear element

}

for (auto& elt : curved_elements) {

// Evaluate volume kernel for each curved element

}

This can quickly provide a software engineering headache. For instance, the
addition of quadrilateral elements, would suddenly require that each time step
cover 4 loops. The addition of more features will lead to more code bloat
ultimately resulting in maintainable code. The main goal of the Mesh class is
to address specifically the problem, mentioned above.

6

2.2 The Element Class

The object-oriented solution approach is based on the fact that the discontin-
uous Galerkin algorithm ultimately, simply applies integrals over the elements,
remaining mathematically agnostic to the actually implementation of the ap-
proximation. This lends itself to a polymorphic implementation. The idea
behind polymorphism being that functionally all elements should behave iden-
tically. Thus, if we can agree to an interface that we would like to expose. We
should be able to accomplish everything in one loop over the elements without
having to worry about what’s happening under the hood.

Regardless of the type of element, we assume that for any given element, the
approximated solution uh is given in the form

uh(x, t) =

N∑
i=0

un(t)φn(x),

where φn is some basis. The approximated solution is determined by the evo-
lution of the functions un(t). For the Galerkin Method, this evolution is ulti-
mately determined by ensuring that the residuals of the approximate solution
is orthogonal to the space spanned by {φn}. Thus the key functionality that
every element must possess is that ability to compute integrals of the form∫

Ω

fφnx.

for an arbitrary function f . In practice these integrations are approximated by
quadrature rules. However, this provides the basis for the interface, we would
like to expose from a generic element class.

Listing 2.2: Generic Element API

class Element {

// Compute the value of F at the Gauss -points

template <typename F>

void ComputeFgp(const F& f, std::vector <double >& f_gp);

// Compute the value of a function u given by

// basis coefficients u at the Gauss -Points

void ComputeUgp(const std::vector <double >& u,

std::vector <double >& u_gp);

// Compute the gradient of a function given by

// basis coefficients u at the Gauss Points

void ComputeDUgp(const uint dir ,

const std::vector <double >& u,

std::vector <double >& du_gp);

// Compute the integral of u

7

double Integration(const std::vector <double >& u_gp);

//Test u against basis function dof

double IntegrationPhi(const uint dof ,

const std::vector <double >& u_gp);

//Test u against the derivative in direction dir

// of basis function dof

double IntegrationDPhi(const uint dir ,

const uint dof ,

const std::vector <double >& u_gp);

//...

};

That is to say if every element satisfied this API, we would be able to write the
discontinuous Galerkin kernel with only one loop regardless of the element.

2.2.1 Strong Typing

C++ is a strongly typed language. Thus, in exposing any kind of polymorphism
there are two options. (1) Dynamic polymorphism and (2) Static polymorphism.
Dynamic polymorphism is typically achieved through the use of the virtual

keyword. This approach is typically considered the most readable, and typically
be preferred in a first attempt at an implementation. However, virtual objects
typically can’t be resolved by the compiler at runtime. This means that when
the executable is running, the compiler maintains a virtual look-up table, which
it uses to determine which implementation to call, when provided one of these
virtual calls. The cost of this is that there is a virtual overhead associated with
each of these calls. Additionally, the compiler may have trouble inlining and
optimizing virtual function calls. Typically, when the function execution is large
enough this overhead may be treated as negligible. But for our applications,
these function calls are expensive enough that virtualization would seriously
degrade performance.

The other typical approach is the use of static polymorphism. The idea
being that we still maintain a unified API exposed by the class. However, now we
specify the order in which we loop through the elements. That way the compiler
is able to determine each of the function calls. Although ultimately, we will be
able to get away with still only having one loop. The binary code generated
should be equivalent to the code in Listing 2.1. Thus, static polymorphism
provides us with the usage of dynamic polymorphism without the additional
overhead. The downsides include a code base that is more difficult to maintain.
However, given the performance critical nature of these function calls, this is a
downside we’ve decided to accept.

8

Element

Shape Master

Integration Basis

Figure 2.1: Composition of the Element classes.

2.2.2 Class Hierachy of Element

The last subsection describes the exact decomposition of the element. In design-
ing dgswem-v2, we attempted to think of all possible features that one might
want to implement and provide encapsulation to allow for adding of new features
without having to be familiar with the entire code base. Figure 2.1 describes
the major constituents of the element class.

• Shape: The shape class deals with deformations from the master element
to the actual orientation within the mesh. Here features such as curvature
of the mesh (e.g. solving in spherical coordinates) or the element (e.g.
isoparametric or isogeometric) should be implemented.

• Master: The master element is rather similar to the generic element class.
It exposes integration hooks over the master element.

• Basis: This class encapsulates all basis information. Potentially addi-
tional choices of basis include Bernstein, modal, and bases on quadrilateral
elements.

• Quadrature: This class contains all information required to approximate
an integral over the master element.

In addition to adding features by providing new instances of these classes. There
also still remains the ability to add classes through template specialization and
SFINAE. These techniques allow for special implementations to be written in
certain element compositions. For example, one of the large advantages of a
Bernstein basis is the fast matrix inversion formula. Since this formula drasti-
cally deviates from linear elements, one might want to write a specific imple-
mentation for linear triangles using the Bernstein basis.

2.3 Mesh Class

With the decision to strongly type the elements in the Mesh class, the next task
is to develop a container, which represents the mesh. This requires the ability to

9

iterate over interfaces, boundaries, elements, and distributed boundaries. The
key object in allowing this to are the heterogeneous containers in the Utilities
namespace. To explain, what in particular is happening in these containers
assume we have three types of elements in our mesh: EltA, EltB, EltC. Morally,
the heterogeneous vector can be written out as:

using HeterogeneousVector <EltA ,EltB ,EltC > = tuple <vector <EltA >,

vector <EltB >,

vector <EltC >>;

Now assuming, we have a function we would like to execute on each element
regardless of type. We emulate the std::for_each API. So we will define a hook
in the Mesh class, which will execute that function for every element in the
HeterogeneousVector. We have demonstrated what specifically we would like in
Listing 2.3.

Listing 2.3: Moral implementation of iterating over HeterogeneousVector

template <typename Element >

void SomeKernel(Element& e);

template <typename F>

void ForEachImpl(HeterogeneousVector <EltA ,EltB ,EltC >& v,

const F& f) {

vector <EltA >& vA = get <0>(v);

for_each(vA.begin(),vA.end(), f);

vector <EltB >& vB = get <1>(v);

for_each(vB.begin(), vB.end(), f);

vector <EltC >& vC = get <2>(v);

for_each(vC.begin(), vC.end(), f);

}

//Apply SomeKernel to every element in v

MoralForImpl(v, SomeKernel);

In dgswem-v2, this type of implementation can be generalized to arbitrary Het-
ereogeneous vectors through the use of template metaprogramming. However,
ultimately, the code is effectively executing the above code. Allowing the com-
piler to generate these loops is precisely the issue we wanted to address. The
definition of the kernels to be passed into the mesh class are problem specific
and will be addressed in the next chapter. This mechanism is used for bound-
aries, internal interfaces, and distributed interfaces, in addition to elements. In
understanding, this key concept the Mesh class becomes nothing more than a
container. Detailed API descriptions are provided in the doxygen documenta-
tion.

10

Chapter 3

Problem Class

11

Chapter 4

Annontated Examples

4.1 Preliminaries

This chapter demonstrates the core functionality of the code. In Section 4.2, we
present steps necessary for running a manufactured solution problem.

In this section, we will go through several example problems for running
dgswem-v2. In order to provide succint instructions to the reader, we intro-
duce the following environment variables. We will assume that the following
environment variables have been defined in the users environment:

export DGSWEMV2_REPO=<path/to/dgswemv2_repo >

export DGSWEMV2_BUILD=<path/to/dgswemv2_build >

export DGSWEMV2_EXAMPLES=${DGSWEMV_REPO }/ examples

Additionally, to keep the compile time of the application short, the cmake
configuration does not automatically build the examples. To build the follow-
ing examples, you will need to rerun your cmake build command with the
additional option -DBUILD_EXAMPLES=On.

4.2 Manufactured Solution

The method of manufactured solutions presents an easy means of determining
whether the solution is converging at the rates stipulated by the theoretical
error estimates. In addition, since we obtain exact error estimates, the method
of manufactured solutions may also be used to determine, whether or not errors
have been introduced between parallel and serial implementations.

To avoid the stability-related difficulties associated with greatly varying
mesh refinements, we evaluate the manufactured solution from [?]. For the

12

manufactured solution, we set the solution to be equal to

ζ(x, y, t) = 2ζ0
cos (ω(x− x1)) cos (ω(y − y1)) cos(ωt)

cos (ω(x2 − x1))cos(ω(y2 − y1))

qx(x, y, t) = ζ0
sin (ω(x− x1)) cos (ω(y − y1)) sin(ωt)

cos (ω(x2 − x1)) cos (ω(y2 − y1))

qy(x, y, t) = ζ0
cos (ω(x− x1)) sin (ω(y − y1)) sin(ωt)

cos (ω(x2 − x1)) cos (ω(y2 − y1))

where x1 = 40, 000 m, x2 = 83, 200 m, y1 = 10, 000 m, y2 = 53, 200 m, ζ0 =
0.25 m, ω = 2π/43, 200 rad/s. Additionally, g = 9.81 m/s2, and the bathymetry
is constant with depth H0 = 2 m. The source term is then obtained by applying
the left hand side of the shallow water equations to the target solution.

The manufactured solutions can be run via the three following targets, which
can be made as follows:

cd ${DGSWEMV2_BUILD}

make MANUFACTURED_SOLUTION_SERIAL

make MANUFACTURED_SOLUTION_HPX

make MANUFACTURED_SOLUTION_OMPI

Note that for the HPX and the OMPI manufactured targets, the project must
have the -DUSE_HPX and -DUSE_OMPI options set to On, respectively.

The workflow for building the manufactured solution consists of three parts:
(1) generating a mesh, (2) if necessary, partitioning the mesh, (3) running the
simulation, and (4) interpreting the output.

4.2.1 Generating the mesh

For the generation of meshes, we use a yaml-formatted input file. We have
included an input file in

${DGSWEMV2_EXAMPLES }/ manufactured_solution/input_files/mesh_generator_input.yml

We have provided comments for the individual variables in the yaml files. One
key aspect for improving the accuracy of the solution is the mesh resolution.
To modulate these, num_x_subdivisions and num_y_subdivisions allows one to
refine or coarsen the mesh appropriately. However, for now we leave them at
their defaults. To generate the mesh, run the following commands

cd ${DGSWEMV2_EXAMPLES }/ manufactured_solution/input_files/

${DGSWEMV2_BUILD }/ mesh_generators/rectangular_mesh_generator \

mesh_generator_input.yml

This will generate a rectangular_mesh.14 file in the current directory. This is
an ADCIRC-formatted meshfile.

13

4.2.2 Partitioning the mesh (optional)

Note that this section is only necessary if you are attempting to run the simu-
lation in a distributed manner, i.e. using the OMPI or HPX executable. If you
are only trying to run the simulation in serial, skip to the next subsection.

In order to run the simulation in parallel, the mesh must be broken into
smaller pieces, which can then be assigned to individual processors. Since there
exist stark contrasts in the send latencies between two processors on the same
node versus processors that might be connected via an interconnect, we require
the user to specify the number of localities (i.e. private memory address spaces)
in addition to the number of partitions to allow for the mesh partitioner to
optimize these interconnect effects.

The partitioner executable can be found in

${DGSWEMV2_BUILD }/ partitioner/partitioner

and running the executable without any arguments will provide usage informa-
tion. In particular, the variables mean the following:

• <input filename>: The name of the input file used to run the execution.

• <number of partitions>: The number of partitions the mesh is to be par-
titioned into.

• <number of nodes>: The number of hardware localities the simulation is
to be run on.

• <ranks per locality>: The number of ranks per locality.

• <rank balanced>: Whether or not the constraints should be balanced
across the individual submeshes. Note that the entry options are true

or false. Recommended for OpenMP/MPI.

Our two parallelization strategies rely on different parallel execution models.
Thus the inputs for either version need to be slightly modified. In the following
two subsections we outline, the differences in general, but also provide concrete
numbers to allow the user to proceed.

Partitioning for HPX

The HPX execution model varies from that of traditional parallelization strate-
gies in that the number of partitions does not correspond to any hardware
concept. For example, traditional MPI implementations assigned one rank per
core, and insofar the number of partitions equalled the number of cores. For
HPX, the number of partitions is roughly proportional to the number of tasks
executed on that locality. Oversubscribing meshes — assigning more meshes to
the locality than there are cores — can lead to desirable behavior in the form
of hiding of send latencies. However, the user needs to be careful to avoid ex-
posing too fine grain parallelism in the form of too many meshes, because task
overhead will dominate the execution time and lead performance degradation.

To continue the example for an HPX parallelization, we recommend running:

14

cd ${DGSWEMV2_EXAMPLES }/ manufactured_solution/input_files

${DGSWEMV2_BUILD }/ partitioner/partitioner\

dgswemv2_input .15 4 1

This should generate, 4 meta-formatted mesh files. The meta-format isn’t an offi-
cial mesh format, but rather a simple method of representing the mesh internally
for the dgswem-v2 application, and 4 dbmd-formatted files, which encapsulate
the distributed metadata information required to ensure that submeshes appro-
priately communication with one another. In addition, we will have generated
an updated input file specifically for running parallel meshes. For this example,
it’s dgswemv2_input_parallelized.15.

Partitioning for OpenMP/MPI

Partitioning for the MPI+OpenMP implementation is slightly, different. Ratio
of number of partitions to number of threads should correspond to the number
of threads available on each node. However, it’s also possible to run a flat MPI
implementation by modifying the <ranks per locality> option. This option
will correspond to the number MPI ranks on each node.

Additionally, since submeshes are mapped statically to threads, we recom-
mend setting the <rank balanced> option to true. For applications with varying
load across the elements, e.g. in the case of wetting and drying, we would like
to balance load and memory constraints across the submeshes. Ultimately, the
performance will be constrained along the critical path, for statically mapped
parallelizations optimal performance is achieved when each submesh roughly
has the same amount of work. Note that this is not necessary for the HPX
parallelization, which implements aggressive on-node work stealing.

To generate a mesh partitioning for this parallelization, we run

cd ${DGSWEMV2_EXAMPLES }/ manufactured_solution/input_files

${DGSWEMV2_BUILD }/ partitioner/partitioner\

dgswemv2_input .15 2 1 2 true

This configuration will result in a flat MPI run. With 2 MPI ranks. Note that
similar to the HPX run, we generate both meta mesh files and dbmd connectivity
information and an updated dgswemv2_input_paralllelized.15 input file.

4.2.3 Running the simulation

For each of the three execution modes — serial, with HPX, and with MPI+OpenMP
— we have a separate executable. To execute the serial implementation, run

cd ${DGSWEMV2_EXAMPLES }/ manufactured_solution/input_files

mkdir -p output

${DGSWEMV2_BUILD }/ examples/MANUFACTURED_SOLUTION_SERIAL\

dgswemv2_input .15

For the MPI and HPX versions, we assume that the parallel launcher, would be
accessible through some <mpirun> command, e.g. on a slurm based system this
might srun. The MPI-version can then be executed via

15

Figure 4.1: Sample output of the manufactured solution output.

cd ${DGSWEMV2_EXAMPLES }/ manufactured_solution/input_files

mkdir -p ouptut

<mpirun > ${DGSWEMV2_BUILD }/ examples/MANUFACTURED_SOLUTION_OMPI\

dgswemv2_input .15

For the HPX version, the execution command depends on the set-up of the
system. If there is no distributed aspect to your computing environment, you
do not need a distributed launcher like srun. Thus, for the reader running the
simulation on their laptop, i.e. with one locality, the HPX example can be run
as

cd ${DGSWEMV2_EXAMPLES }/ manufactured_solution/input_files

mkdir -p output

${DGSWEMV2_BUILD }/ examples/MANUFACTURED_SOLUTION_HPX\

dgswemv2_input .15

4.2.4 Intepreting the Output

dgswem-v2 writes output in several forms. Firstly, in the output folder that
was created in the ${DGSWEMV2} EXAMPLES/manufactured solution directory.
You will find a log file name log and vtk-formatted output. The output can be
visualized using a package like paraview. A sample image of what the output
should look like is shown in Figure 4.1.

4.3 1D Inlet

16

Chapter 5

Input Format

17

Chapter 6

dgswem to dgswem-v2 Look-up
Table

This chapter is aimed at helping users proficient with dgswem orient themselves
in dgswem-v2. Table provides means to look up subroutines from dgswem and
determine the location in dgswemv2. Certain functionality is not present at all
in dgswem-v2. These files and subroutines therein have been omitted from the
table. If you are searching for a subroutine from:

• dg.F

• Diff45 41.F

• flow edge sed.F

• fparser.F90

• fparser.F90

• global 3dvs.F

• globalio.F

• harm.F

• mkodal2nodal.F

• nodalattr.F

• parameters.f90

• pdg debug.F

• sizes.F

• slopelimiter.F

18

• wind.F

• write output.F

the desired functionality has not been implemented in dgswem-v2.

dgswem subroutine dgswem-v2 equivalent function Location in Repository
calc normal Shape::StraightTriangle::GetSurfaceNormal source/shape/shapes 2D/shape straighttriangle.cpp
check errors Not supported
coldstart Not supported
create edge data initialize mesh interfaces boundaries source/preprocessor/initialize mesh.hpp
dg hydro timestep Inlined source/simulation/simulation.hpp

source/hpx simulation.hpp
source/simulation/ompi simulation.hpp

dg timestep Inlined source/simulation/simulation.hpp
source/hpx simulation.hpp
source/simulation/ompi simulation.hpp

dgswem main source/simulation/simulation.hpp
source/hpx simulation.hpp
source/simulation/ompi simulation.hpp

ebarrier edge hydro Not supported
edge int ldg hydro Not supported
edge int ldg sediment Not supported
errorelevsum Not supported

flow edge hydro SWE::Flow::GetEX† source/problem/SWE/swe kernels boundary conditions.hpp
flow edge ldg hydro Not supported
fort dg setup Not supported
Hllc flux Not supported
hotstart Not supported
ibarrier edge hydro Not supported
ibarrier fluxes Not supported

internal edge hydro SWE::Problem::interface kernel† source/problem/SWE/swe kernels processor.hpp
internal edge ldg hydro Not supported

land edge hydro SWE::Land::GetEX† source/problem/SWE/swe kernels boundary conditions.hpp
land edge ldg hydro Not supported
LDG hydro Not supported
llf flux SWE::LLF flux source/problem/SWE/swe LLF flux.hpp
Message abort Not supported
Message fini Inlined source/problem/SWE/ompi main swe.cpp
message init Inlined source/problem/SWE/ompi main swe.cpp
met forcing Not supported
msg blocksync finish Not supported
msg blocksync start Not supported
msg start elem OMPICommunicator:InitializeCommunication source/communication/ompi communicator.cpp
msg table elem OMPICommunicator::OMPICommunicator source/communication/ompi communicator.cpp
msg types elem Not supported
ncp flux Not supported
numerical flux Inlined
nws112interp region Not supported
nws12get Not supported
nws12init Not supported
nws12interp basin Not supported
ocean edge hydro Not supported
ocean edge hydro post Not supported
ocean edge hydro strict Not supported
ocean edge ldg hydro Not supported
ocean flow edge hydro Not supported
orthobasis Basis::Dubiner 2D::GetPhi

Basis::Dubiner 2D::GetDPhi
source/basis/bases 2D/basis dubiner 2D.cpp

orthobasis area Basis::Dubiner 2D::GetPhi
Basis::Dubiner 2D::GetDPhi

source/basis/bases 2D/basis dubiner 2D.cpp

orthobasis edge Basis::Dubiner 2D::GetPhi source/basis/bases 2D/basis dubiner 2D.cpp
p enrichment Not supported
para max Not supported

19

para min Not supported
para sum Not supported
prep DG initialize mesh source/preprocessor/initialize mesh.hpp
prep slopelim Not supported
quad pts area Integration::Dunabant 2D::GetRule source/integration/integrations 2D/integration dunavant 2D.cpp
quad pts edge Integration::GaussLegendre 1D::GetRule source/integration/integrations 1D/integration gausslegendre 1D.cpp
radiation edge hydro Not supported
radiation edge ldg hydro Not supported
read fixed fort dg Not supported
read input InputParameters::InputParameters source/preprocessor/input parameters.hpp
read keyword fort dg Not supported

rhs dg hydro SWE::Problem::volume kernel†

SWE::Problem::source::kernel†
source/problem/SWE/swe kernels processor.hpp

rhs ldg hydro Not supported
rk time Stepper::Stepper source/simulation/stepper.cpp
roe flux Not supported

scrutinize solution SWE::Problem::scrutinize solution kernel† source/problem/SWE/swe kernels processor.hpp
sta basis Integration::Dunabant 2D::GetRule source/integration/integrations 2D/integration dunavant 2D.cpp
sta location Not supported
tidal potential Not supported
updatei elem Not supported
updatelz elem Not supported
updatemz elem Not supported
updater elem Not supported
updater elem mod OMPICommunicator::SendAll

OMPICommunicator::ReceiveAll
OMPICommunicator::WaitAllSends
OMPICommunicator::WaitAllReceives

source/communication/ompi communicator.hpp

updater elem mod2 OMPICommunicator::SendAll
OMPICommunicator::ReceiveAll
OMPICommunicator::WaitAllSends
OMPICommunicator::WaitAllReceives

source/communication/ompi communicator.hpp

updater elem mod3 OMPICommunicator::SendAll
OMPICommunicator::ReceiveAll
OMPICommunicator::WaitAllSends
OMPICommunicator::WaitAllReceives

source/communication/ompi communicator.hpp

wetdry Not supported
write results SWE::Problem::extract VTK data kernel

SWE::Problem::extract modal data kernel
source/problem/SWE/swe kernels postprocessor.hpp

Table 6.1: The names of Fortran subroutines with the corresponding dgswem-v2
function calls and the location of their implementation. Not supported routines are
not implemented in dgswem-v2. The dagger (†) signifies that a given implementation
is defined element-wise, whereas typical dgswem implementations loop over the entire
mesh.

20

