Universitatsstrafie 38
70569 Stuttgart
Germany

System Description

Damast
vl.l4

Max Franke

May 23, 2022

Institute for Visualization and Interactive Systems
University of Stuttgart
Germany

Damast v1.1.4

Contents

1. Introduction

2. Database
2.1. Table Structure e
2.2. Roles e e
2.3. Other Databases e
2.4, Backups e e

3. Backend Structure
3.1. Server Host Specifications e
3.2. User Authentication e e
3.3. Flask Blueprints L
3.4. REST APL e e

4. Frontend Structure
4.1. Home Page e
4.2. Visualization
4.3. GeoDB-Editor e
4.4. Annotator L
4.5. Place URI Page
4.6. Reporting e
4.7. Other Pages

A. REST API Endpoint Documentation

© 00 =~ b

10
10
13
14
15

16
16
16
39
40
52
53
56

59

Damast v1.1.4 1 INTRODUCTION

1. Introduction

Damast is a comprehensive visual analysis system for the collection, analysis, and export of historical data
regarding peaceful coexistence of religious groups. Damast was developed for the digital humanities project
“Dhimmis & Muslims — Analysing Multireligious Spaces in the Medieval Muslim World”. The project was
funded by the VolkswagenFoundation within the scope of the “Mixed Methods” initiative. The project was
a collaboration between the Institute for Medieval History II of the Goethe University in Frankfurt/Main,
Germany, and the Institute for Visualization and Interactive Systems at the University of Stuttgart, and
took place there from 2018 to 2021.

The objective of this joint project was to develop a novel visualization approach in order to gain new
insights on the multi-religious landscapes of the Middle East under Muslim rule during the Middle Ages
(7th to 14th century). In particular, information on multi-religious communities were researched and made
available in a database accessible through interactive visualization as well as through a pilot web-based
geo-temporal multi-view system to analyze and compare information from multiple sources. A publicly
explorable version! of the research is available at Humboldt-Universitit zu Berlin. An export of the data
collected in the project can be found in the data repository of the University of Stuttgart (DaRUS) [4].

Damast consists of a Flask server backend, which also communicates with a PostgreSQL database, as
well as a web-based frontend. The frontend consists of multiple pages with various functions, including: an
interactive visual analysis component, a table-based database editing interface, a document-based annota-
tion interface for data entry, and various smaller utilities. Damast also supports generating textual reports
based on subsets of the historical data.

The rest of this document is structured as follows: The structure and contents of the main PostgreSQL
database, as well as the user and report databases, are discussed in chapter 2; the structure and function-
alities of the server backend are discussed in chapter 3; and the various front-end facilities are discussed in
chapter 4.

https://damast.geschichte.hu-berlin.de/

https://damast.geschichte.hu-berlin.de/

Damast vi1.1.4 2 DATABASE

2. Database

The main database is a PostgreSQL 10 database. Additionally, the PostGIS plugin is installed into the
database. An easy way to obtain a base database system into which the schema can just be imported is to
use the postgis/postgis:10-3.1 Docker image.

2.1. Table Structure

Figure 1 shows the schematic structure of the PostgreSQL database. Tables are represented as boxes
consisting of three parts, with the table name in the first part, the primary key (if it exists) in the second
part, and the remaining columns in the third part. Foreign key references are indicated by < arrows with
a diamond at the starting point. Weak references are indicated with o— open circles at the starting point,
and one-to-many references® *—» are indicated with six rays at the starting point. The tables are grouped
by function. The individual groups and tables are described in more detail in sections 2.1.1 and 2.1.2.

2.1.1. Data Tables

Table 1.: Confidence values.

Value Comment

false We know the information is not true.
uncertain We are mostly convinced that the information is not true.
contested We are unsure whether the information is true.
probable We are mostly convinced that the information is true.
certain We are as sure as one can be with historical information that the information is true.

Data types. Most data columns have standard PostgreSQL data types such as text, integer, or boolean.
Time and text ranges are stored as the PostgreSQL int4range type, and geographical locations are stored in
the PostgreSQL point type. To qualify the historical data, most tables also have a confidence column, which
contains a NULL-able confidence value. These are stored as an enum, the contents of which are explained in
table 1. For more details on our choice of levels of confidence and the confidence data model, please refer to
our 2019 publication®. The aspects of confidence, and where they are stored, are explained in table 2. To
accommodate for unstructured metadata and notes, most tables also have a NULL-able comment column.

Base data. Places, or cities, are stored in the place table. This contains the primary name for that place,
its geographical location, if known, and a boolean flag indicating whether the place should be included in
the visualization. A place also has a place type (stored in the place_type table). Place types also have
a visibility flag, which affects the visibility of all places with that type in the visualization. Alternative
names for places are stored as entries in the name_var table. An alternative name has a primary name, an

2This type of one-to-many references are realized with PostgreSQL arrays, and are weak references. Strong one-to-many
references in relational databases are handled via intermediary tables, which is done, for example, with the tag_evidence
or time_group table (although the latter, and all instance tables, serve additional purposes).

3Max Franke et al. “Confidence as First-class Attribute in Digital Humanities Data”. In: Proceedings of the 4" VIS4DH
Workshop (Oct. 2019). URL: http://vis4dh.dbvis.de/papers/2019/VIS4DH2019_paper_1.pdf.

http://vis4dh.dbvis.de/papers/2019/VIS4DH2019_paper_1.pdf

Damast vi1.1.4 2 DATABASE

DOCUMENTS & ANNOTATIONS

Documents & Annotation: EVIDENCE PART DATA BASE DATA

docunent 1 -
I EVIDENCH

cccccc

e -
Places & Persons

Figure 1.: Schematic structure of the PostgreSQL database. The tables are represented by boxes, which in
turn are grouped by function. Relationships between tables are indicated by arrows.

optional transcription of the name (for example, if the name is in Arabic script), and optionally one or more
simplified forms that can be used for full-text search. For an alternative name, we also store which language
(stored in the language table) it is a name in, and whether it is a main form of the name that should be
displayed to visitors. Persons are stored in the person table. They have a type (stored in the person_type
table). We also store a time range for persons, which is a free-text field. The name combined with the time
range must be unique; for instance, there can be multiple persons with the name “Marcus”, but each must
have a different time range; which could, for example, consist of a year range, or a qualifier such as “the
Third.” Finally, religions are stored in the religion table, with their name, abbreviation, and color used
in the visualization. Religions are hierarchical, so a religion can optionally reference a parent religion.

External URIs. Part of the data collection effort was put into aligning our base data entities with those of
other databases for historical data, such as Syriaca.org, the Digital Atlas of the Roman Empire (DARE), or
Pleiades. Such external databases are stored in the external_database table with a long and short name,
a URL, and a comment. Namespaces for URIs in those databases are then stored in the uri_namespace
table, with a reference to the external database entry, a name, and a comment. The URI namespace entry
further contains a URI pattern, which is a printf (3)-style string with one %s placeholder. External URI
references for places and persons are then stored in the external_place_uri and external_person_uri
tables. These reference the respective base datum and the URI namespace the URI is based on, and contain
a comment. They further contain a URI fragment, which is the part of the URI that is represented by the
placeholder in the URI namespace entry. For example, the place Edessa on Syriaca.org® could be represented
by a URI namespace with the URI pattern http://syriaca.org/place/%s and a external place URI entry
with the URI fragment 78. The structuring of these tables means that (1) an external database can have

“http://syriaca.org/place/78

http://syriaca.org/place/78

Damast vi1.1.4 2 DATABASE

Table 2.: Aspects of confidence.

Aspect Table Description

Religion confidence religion_instance How confident are we that this is the correct reli-
gion for the evidence?

Person confidence person_instance How confident are we that this is the correct person
for the evidence?

Location confidence place How confident are we about the geographical loca-
tion of this place?

Place attribution confidence place_instance How confident are we that this is the correct place
for the evidence?

Time confidence time_instance How confident are we that this is the correct time
span for the evidence?

Interpretation confidence evidence How confident are we in the general interpretation
of this evidence?

Source confidence source_instance How confident are we that the information about
the evidence we extracted from that source is cor-
rect?

more than one URI namespace, (2) only storing the fragment in the URI references reduces data entry
errors, and (3) it is easier to update all URIs of a database in case it moves hosts®.

Documents and annotations. Historical sources are stored in the source table with a long and short
version of their name, where the long version is a proper citation. A source also has a source type, which is
a reference to an entry in the source_type table, as well as a default interpretation confidence value, which
is suggested for new source instances (see paragraph “Evidence” on p. 7). Digital versions of sources can be
stored in the document table. A document references its source, has a version number, a comment, content
type and content length fields, and the content itself, which is a byte array. Documents can be annotated,
and these annotations are then stored in the annotation table with a reference to the document, the
start and end position of the annotation as an int4range range, and a comment. Annotations are used in
evidence parts (see paragraph “Evidence part data” on p. 6), and based on data already in the database, new
annotations are suggested (see also section 4.4). These are stored in the annotation_suggestion table with
some metadata, alongside a weak reference to the base datum (place, person, or religion) they refer to. The
weak reference consists of an ID and a type string, which can be one of *place’, *person’, or religion’.
Because recalculating the suggestions is expensive, intermediate hashes that only change if there might
be new suggestion results are stored for each document in the annotation_suggestion_document_state
table, and the annotation suggestions are only recalculated if the calculated hashes do not match the stored
ones.

Evidence part data. For each piece of historical evidence, instances of the base data are created. An
instance contains a reference to the respective datum, a confidence value, and a comment. Additionally,
it may contain a reference to an annotation. Instances for places, persons, and religions are stored in the
place_instance, person_instance, and religion_instance tables, respectively. Time spans are grouped
via the time_group table, which consists of only an ID column, and an optional reference to an annotation.
Individual time spans are stored in the time_instance table, with a confidence value, a comment, and a
reference to the time group. The time span itself is stored as an int4range; that is, time is stored in years.

5This happened with DARE in 2019, when the old site at http://dare.ht.lu.se was deactivated and moved to https:
//dh.gu.se/dare/. The new site, however, was not as functional. The creator Johan Ahlfeldt then re-hosted everything at
https://imperium.ahlfeldt.se, but all already-entered URIs had to be updated.

http://dare.ht.lu.se
https://dh.gu.se/dare/
https://dh.gu.se/dare/
https://imperium.ahlfeldt.se

Damast vi1.1.4 2 DATABASE

Evidence. Pieces of historical evidence are stored in the evidence table. Evidence consists of a time
group, a place instance, a religion instance, and optionally a person instance. Instances may be part of
multiple evidences, which is a typical use case with the annotation system (see section 4.4), but are often
connected to only one evidence. Each evidence tuple also has a visibility flag, as well as a confidence value
and a comment. Evidence tuples can be tagged with zero to many tags to categorize them. Tags are stored
in the tag table, with a short name and a comment. Evidence is attributed to tags via entries in the
tag_evidence table. Evidence can also be attributed to zero to many sources via the source_instance
table. Each source instance references a source and an evidence and also contains a free-text page reference
in the source, the interpretation confidence value for that evidence, and a comment.

2.1.2. Provenance

For provenance, data edits relating to evidence tuples are recorded in the user_action table. This stores
a reference to the evidence and the type of action (a reference to an entry in the action_type table, but
typically one of CREATE, UPDATE, or DELETE), alongside a timestamp, a short description of the action,
and the old data entry value before the change, if it exists. Further, the user that did the change is recorded,
which is a reference to an entry in the users table. This table needs to contain an entry for each user that
can log in to the front-end and has the writedb role (see also section 3.2).

2.2. Roles

Each user has a set of roles they are part of. Individual Flask endpoints in turn are set to allow a certain
set of roles. A user is then allowed to use an endpoint if these two sets of roles overlap.

There is a basic user role that gives access to basic functionality behind the login, but just being part of
that role is not enough if the endpoint wants a more specific role. Further, there is a dev role for endpoints
that are important for developing, but not for users, such as the REST API documentation. Finally, there
is an admin role, which should provide access to all endpoints.

For the REST API, there is the distinction between users without REST API access, those that can read,
and those that can read and write. For this, there are two roles, readdb and writedb, and a user has either
none, only readdb, or readdb and writedb. writedb provides access to changing endpoints in the REST
API, which will modify database state, while readdb allows to query, but not modify. In the backend, this
is controlled mainly by differentiating HTTP verbs: GET requests® are read-only, PATCH, PUT and DELETE
are writing”. Read-only users are also passed a read-only cursor to the endpoint code.

For different functionalities of the site, there are more specific roles, where users can just be part of one
or a few:

annotator This role grants the user access to the annotator. The user however requires at least the readdb
role to be able to see the annotator interface, populated with data, properly, as the annotations and
documents are loaded via the REST API. If the user has the writedb role as well, they can annotate
and modify annotations and evidences.

geodb This role grants the user access to the GeoDB-Editor. Similarly to the annotator, the readdb role is
required as well to see the contents of the tables, and the writedb role is required to make changes.

pgadmin This role is historical from when the pgAdming server was still reverse-proxied behind the Damast
server. Now (if there is one on the host system at all), the pgAdmin4 server is reverse-proxied by the

SHEAD requests, which are handled similarly to GET requests by most servers, are also read-only.

"The default behavior is to distinguish the HTTP verbs that way. However, the method decorator that pro-
vides the database cursor and distinguishes between read-only access and writing access (see rest_endpoint in
damast/postgres_rest_api/decorators.py) can take an optional argument controlling which verbs are considered read-
only. This is used for the /rest/find-alternative-names endpoint, which requires a payload and therefore is a POST
request, but can be used with only the readdb role.

Damast vi1.1.4 2 DATABASE

CREATE TABLE users (

id TEXT PRIMARY KEY NOT NULL CHECK(id <> ’visitor’),
password TEXT NOT NULL,

expires DATE DEFAULT NULL,

roles TEXT NOT NULL DEFAULT °’,

comment TEXT DEFAULT NULL

Listing 1: The database schema of the SQLite3 user database.

web-facing reverse proxy server (e.g., NGINX, see fig. 2). If the user has the pgadmin role, a link to
${DAMAST_PROXYPREFIX}/pgadmin/ is shown in the header.

reporting This role grants the user access to the reporting functionality. Because report generation requires
database access, the readdb role is needed as well. In the report list, users with the reporting role
can only see the reports they generated themselves®. Administrators (admin role) can see all reports.

vis This role grants the user access to the visualization. To populate the visualization with the data from
the database, the readdb role is required as well.

visitor This role is given to visitors alongside those in ${DAMAST_VISITOR_ROLES}, if visitor handling is
enabled. There is not yet any use for that role, but it could be used in future to grant visitors access
to an endpoint even if they do not have any of the other roles required for it.

2.3. Other Databases

Beside the main PostgreSQL database, two other databases exist for configuration and storage purposes.
These are SQLite3 database files that are placed in the configuration directory (see section 3.1.2). The first
is the user database, the second stores reports and their metadata.

2.3.1. User Database

The SQLite3 user database (see listing 1) contains only one table, users. The file is stored in the runtime
configuration directory (see section 3.1.2), and its location can be configured using the DAMAST_USER_FILE
environment variable (/data/users.db by default).

Each user is listed here as a separate record, with their user name as the unique id field. Passwords
are stored as htpasswd(1) hashes. The backend supports SHA256 (5), SHA512 (6) and Blowfish
berypt ($2b$ and $2y$) hashes, but berypt is preferred. The user’s roles are stored in the roles field as
comma-separated text (for example, *user,readdb,vis’). Optionally, each user can have a comment.

Account expiry is handled by the expires field, where a YYYY-mm-dd date string is stored. This uses an
extension to SQLite3 for the DATE column format. If the field is empty, the user does not expire. If it is
filled, the user cannot login from the specified day on, inclusively.

2.3.2. Report Database

This SQLite3 database (see listing 2) contains the reports and their metadata (see section 4.6). The file
is stored in the runtime configuration directory (see section 3.1.2), and its location can be configured using
the DAMAST_REPORT_FILE environment variable (/data/reports.db by default).

The UUID of the report is used as a primary key. Regarding metadata, the user provisioning the report,
the start time, the (possibly empty) end time, the and server version are stored. For the completed report,
the number of evidences contained are also stored in the evidence_count field.

8The exception here being visitors with the reporting role. Those cannot see the report list, but only have access to a report
they know the UUID of.

Damast vi1.1.4 2 DATABASE

CREATE TABLE reports (
uuid TEXT NOT NULL PRIMARY KEY,
user TEXT NOT NULL,
started DATETIME NOT NULL,
completed DATETIME DEFAULT NULL,
report_state TEXT NOT NULL DEFAULT ’started’,
server_version TEXT NOT NULL,
filter BLOB DEFAULT NULL,
content BLOB DEFAULT NULL,
pdf_map BLOB DEFAULT NULL,
pdf_report BLOB DEFAULT NULL,
evidence_count INTEGER NOT NULL DEFAULT O

Listing 2: The database schema of the SQLite3 report database.

The state of the report is stored in the report_state field. When the report has been provisioned and
generation is still under way, this is ’started’. If an error occurs during report generation, the value is
’failed’, otherwise it is >completed’.

The report contents themselves are stored in four fields. These fields are of the datatype BLOB, meaning
SQLite3 stores them as a bytestring. Each of the fields’ contents is GZIP-compressed. The filter field
contains the filter and additional metadata that were used for the report generation. The format of this is
a subset of the visualization state (see section 4.2.4.1) used for report generation (see section 4.6.1). The
content of the HTML report (see section 4.6.3) is stored in the content field. The content of the PDF report,
which is produced using IWTEX during report generation (see section 4.6.4), is stored in the pdf_report
field. A PDF version of the map shown both in the HTML and PDF reports is stored separately in the
pdf_map field so it can be included in other documents more easily.

2.4. Backups

Backups need to be arranged for from outside of the host system. The extent of backups depends on how
the Damast system is used: If only the visualization and reporting functionalities are used, and no data
entry is performed, it is not necessary to back up the PostgreSQL database, except for its initial state. If
data entry is done, regular backups are advised. For the PostgreSQL database, pg_dump(1) can be used
for regular, full dumps of the database, or pg_rewind (1) for duplication to a secondary database instance.

If user management is used (as opposed to mainly having visitors without login), backups of the user
SQLite3 database (section 2.3.1) are also advisable, otherwise password changes are lost on data loss.
Similarly, the report SQLite3 database (section 2.3.2) should be backed up if persistent reports are wanted.
For the SQLite3 database, any type of backup can be used that can handle either file system backups or
text dumps from databases. The other contents of the runtime configuration directory (section 3.1.2) need
not be regularly backed up. However, it is advisable to keep an initial backup of the configuration.

Damast v1.1.4 3 BACKEND STRUCTURE

3. Backend Structure

The server backend consists of a PostgreSQL database, discussed in chapter 2, and a Flask server. The rest
of this chapter specifies the host system requirements, and the configuration and maintenance of the Flask
server.

3.1. Server Host Specifications

In the usual setup, the PostgreSQL database runs on the same host as the Damast server. The host machine
should therefore have resources to accommodate both, ideally at least two CPU cores, 8GB of RAM, and
200GB of hard drive space. The Damast server is deployed as a Docker image to encapsulate and pin down
the dependencies. Hence, the host server should have Docker installed, and the Docker daemon running.
It should be noted that the PostgreSQL server can also be easily set up using Docker, see chapter 2. The
Damast server does not handle SSL encryption, so it is sensible to put a reverse proxy in front of the server
which handles SSL, for example nginx.

3.1.1. Infrastructure

Figure 2 shows the structure of the backend on the host server. Here, running the PostgreSQL server in a
Docker container as well is assumed. The Damast docker container expects an internal /data directory to
exist, and to be readable and writable to the www user in the container. This directory should be mounted
to a directory on the host, and contains runtime configuration (section 3.1.2), server logs (section 3.1.3),
override blueprints (section 3.3.2), and the user (section 2.3.1) and report (section 2.3.2) databases. The
directory (/data) in fig. 2) must be readable and writable to the www user in the container. To facilitate
the mapping of the volume and the access rights, this www user should also exist on the host system, and
the host directory should have the appropriate rights. The user ID and group ID of that user on the host
system must then be passed to Docker when building the Docker image, using the USER_ID and GROUP_ID
environment variables.

The deploy script (deploy.sh) in the repository provides more details on how to create the image. The
repository also contains the components for the Dockerfile, the server run script, the systemd service file,
and a sample nginx configuration. For development, a variant of the Docker image can also be built that
mounts the local damast/ directory into the Docker image. This way, the local source files and assets can
be used while the dependencies pinned in the Docker image are available. This Docker image can be built
using the host.sh script in the repository with the -b flag.

3.1.2. Runtime Configuration

Many aspects of the Damast behavior can be configured. Configuration is possible either via environment
variables, some of which are already baked into the Docker image. These can be supplemented or overwritten
by passing values to Docker either with the -—env flag, or by passing a path to an environment variable file
with the ——env-file argument. The sample run script in the repository assumes that a file docker.env is
present in the runtime configuration directory. Configuration values can also be passed via a JSON file, the
path to which (in the Damast Docker container) is passed to Damast with the DAMAST_CONFIG environment
variable. Table 3 lists the configuration options, their environment variables and JSON keys, as well as
their default value and description.

10

Damast v1.1.4

3 BACKEND STRUCTURE

Host system

Docker postgis/postgis:10-3.1
PostgreSQL 10
PostGIS 3.1

PostgreSQL Database

Docker damast:v1.1.2-73-gdd376ef nginx Reverse Proxy

Base: continuumio/miniconda3 (debian:latest)
Flask 2.0.1 ${GUNICORN_PORT} ;

}:$(PGPORT)

Flask Server

Database name ocn
Database port 5432
Database host localhost
sty
Default database user api
PoUSER

Default database user's password ~ skxkkrxx

Check user password, roles, accor

unt expiry date,

change password (SQLite3)

Read created report dat:

Reverse proxy count 1

Reverse proxy prefix /

gunicorn port

Host filesystem

/data

PostgreSQL data

User file

users.db|
DAMAST.USERFILE

Report database
reports.db

Access log
access_log

Error log Override directory

error_log

Database files, managed by Docker image.

Docker volume that is mapped to a directory on the host server, for configuration files.

80 (HTTP)

$a43 (HTTPS)

Figure 2.: Backend system structure: The Flask server runs in a Docker container, and a single directory
from the host system is exposed to the container as a volume. This directory contains configura-
tion and logging files. The PostgreSQL database can be anywhere, but usually runs on the same
host as a Docker image. If the Flask server does not manage its own SSL certificates, an nginx
server handles incoming HTTP and HTTPS requests as a reverse proxy.

Table 3.: Configuration options for Damast.

DAMAST_CONFIG

no value

JSON file to load configuration from. All other configu-
ration values in this table can be passed via this file as

key-value entries in the root object, where the key is the
“JSON key” column of this table.

DAMAST_ENVIRONMENT
environment
no value

Server environment (PRODUCTION, TESTING, or PYTEST).
This decides with which PostgreSQL database to con-
nect (ocn, testing, and pytest (on Docker container)
respectively. This is usually set via the Docker image.

DAMAST_VERSION
version
no value

Software version. This is usually set via the Docker im-
age.

DAMAST _USER_FILE
user_file
/data/users.db

Path to SQLite3 file with users, passwords, roles.

DAMAST_REPORT_FILE
report_file
/data/reports.db

File to which reports are stored during generation.

DAMAST_SECRET_FILE
secret_file
no value

File with JWT and app secret keys. These are randomly
generated if not passed, but that is impractical for test-
ing with hot reload (user sessions do not persist). For a
production server, this should be empty.

DAMAST_PROXYCOUNT
proxycount
1

How many reverse proxies the server is behind. This is
necessary for proper HT'TP redirection and cookie paths.

11

Damast v1.1.4

3 BACKEND STRUCTURE

Table 3 — continued from page 11

Environment variable
JSON key
Default value

Description

DAMAST_PROXYPREFIX
proxyprefix

/

Reverse proxy prefix.

DAMAST_OVERRIDE_PATH
override_path
no value

A directory path under which a template/ and static/
directory can be placed. Templates within the template/
directory will be prioritized over the internal ones. This
can be used to provide a different template for a certain
page, such as the impressum.

DAMAST_VISITOR_ROLES
visitor_roles
no value

If not empty, contains a comma-separated list of roles a
visitor (not logged-in) to the site will receive, which in
turn governs which pages will be available without user
account. If the variable does not exist, visitors will only
see public pages.

DAMAST MAP_STYLES
map_styles
no value

If not empty, a relative filename (under /data) on the
Docker filesystem to a JSON with map styles. These will
be used in the Leaflet map. If not provided, the default
styles will be used.

DAMAST _REPORT_EVICTION_DEFERRAL
report_eviction_deferral

no value

If not empty, the number of days of not being accessed be-
fore a reports’ contents (HTML, PDF, map) are evicted.
Evicted reports can always be regenerated from their
state and filter JSON. Eviction happens to save space and
improve performance on systems where many reports are
anticipated. This should not be activated on systems with
changing databases!

DAMAST REPORT_EVICTION_MAXSIZE
report_eviction maxsize

no value

If not empty, the file size in megabytes (MB) of report
contents (HTML, PDF, map) above which reports will
be evicted. If this is set and the sum of content sizes
in the report database after deferral eviction is above
this number, additional reports are evicted until the sum
of sizes is lower than this number. Reports are evicted
in ascending order of last access date (the least-recently
accessed first). The same rules as above apply.

DAMAST_ANNOTATION_SUGGESTION_REBUILD
annotation_suggestion_rebuild

no value

If not empty, the number of days between annotation sug-
gestion rebuilds. In that case, the suggestions are recre-
ated over night every X days. If empty, the annotation
suggestions are never recreated, which might be favorable
on a system with a static database.

FLASK_ACCESS_LOG
access_log
/data/access_log

Path to access_log (for logging).

12

Damast v1.1.4 3 BACKEND STRUCTURE

Table 3 — continued from page 11

Environment variable Description

JSON key

Default value

FLASK_ERROR_LOG Path to error_log (for logging).
error_log

/data/error_log

DAMAST_PORT Port at which gunicorn serves the content.
port Note: This is set via the Dockerfile, and also only used
8000 in the Dockerfile.
PGHOST PostgreSQL hostname.
pghost
localhost
PGPASSWORD PostgreSQL password. This is important to set and de-
pgpassword pends on how the database is set up.
no value
PGPORT PostgreSQL port
pgport
5432
PGUSER PostgreSQL user
pguser
api
3.1.3. Logging

HTTP access to the Flask server is logged to an access log file (/data/access_log by default, see table 3).
Server errors and miscellaneous information is logged to an error log file (/data/error_log by default).
Exceptions in the server are also logged here alongside a UUID, and the UUID is displayed in the HTTP
response. This avoids revealing internal functionalities on errors while still allowing to reconstruct errors
from an issue with the UUID or a screenshot of the response. Logfiles are rotated daily, and old files (with
a .YYYY-mm-dd suffix) kept for ten days. The access log saves the IP address and user name of the user
requesting a resource, and also logs the blueprints handling the response.

3.2. User Authentication

Users log in using the login blueprint. On successful login, a JWT token is returned as a cookie, encrypted
with the server secret. This cookie must be passed with every subsequent HTTP request. Hence, at least
the necessary cookies must be allowed by users to be able to log in.

Role-based access. Access to all pages is restricted based on roles, not users. To be able to successfully
make an HTTP request to a certain endpoint, the user’s roles and the role’s allowed for the endpoint-HTTP
verb pairing must overlap. For the REST API (section 3.4), the endpoints also distinguish between reading
access (with the readdb role, via GET requests), and writing access (with the writedb role, for PUT, PATCH,
and DELETE requests).

Visitors. A special visitor role can be enabled by setting the DAMAST_VISITOR_ROLES variable (see table 3).
If set, this contains a comma-separated list of roles (see section 2.2) that visitors are assigned. These cannot
contain writedb, dev, admin, or any roles that do not exist. If this is enabled, the functionalities allowed

13

Damast v1.1.4 3 BACKEND STRUCTURE

Blueprints Blueprints
—annotator Lrest—api
—annotator-recogito —annotation
| base —annotation-suggestion
|- compress-response — confidence
—docs —document

— annotator — dump
—api-description I evidence
— changelog — language
— index — person
— license - person-instance
— schema - person-list
—user-log |- person-type
—vis I place
— geodb_editor L uri-list

| _
map-styles —place-instance

—login —place-set

—override L uri-list

—reporting —religion
Lfilters

—religion-instance
—uri-namespace

— source
— root-app | tags
—uri —time
Lplace I
uri

L map-styles external-database

—vis external-person-uri

L map-
map-styles external-place-uri

person-uri-list

Figure 3.: Hierarchical list of blueprints in Damast.

to users with the respective roles will also be available to visitors without logging in. For example, setting
DAMAST_VISITOR_ROLES to readdb,user,vis means that visitors can see the start page, the visual analysis
component and the data, as well as some utility pages.

3.3. Flask Blueprints

The different functionalities are split up into separate Flask blueprints. Some blueprints, like the REST
API (section 3.4), are hierarchically split up into sub-blueprints (see fig. 3).

3.3.1. Templates

HTML pages are created by Flask from Jinja2 templates?. Most page templates inherit from a base template,
which has a header with navigation and user management, a main page area, and a footer with additional
links and a copyright statement. The visual analysis component does not inherit from the base template,
but instead defines a more compact layout without a footer.

“https://palletsprojects.com/p/jinja/

14

https://palletsprojects.com/p/jinja/

Damast v1.1.4 3 BACKEND STRUCTURE

<style>
:root {
--home-bg-image: url({{ url_for(’override.static’, filename=’bg.jpg’) }1});

}
</style>

Listing 3: The contents of templates/override/background-image-url.html when providing a custom
background image.

3.3.2. Overriding Templates and Static Files

When running the server, it might be necessary to override some pages; for example, one might want
a different home page, or a different impressum. The server uses the DAMAST_OVERRIDE_PATH environ-
ment variable to load such overrides. If it is set, the Flask server creates an extra blueprint, and the
directory ${DAMAST_OVERRIDE_PATH}/templates/ is added to the Jinja2 template search path with prece-
dence. Further, the files in the ${DAMAST_OVERRIDE_PATH}/static/ directory will be served without re-
quiring any authentication under the URL ${DAMAST_PROXYPREFIX}/override/static/<file path> (use
url_for(’override.static’, filename=’<file path>’) in templates).

Keep in mind that all contents of the static directory will be served without user authentication. For
details on which paths templates must be put under for proper override, refer to the template/ directories
of the blueprints in the repository. For details on how to inherit from the base template, refer to the base
template and other, inheriting templates. Adding static files while the server is running should work without
problems, but templates are not hot-loaded in production systems, so the server needs to be restarted if the
templates change.

Overriding the Start Page Background Image The background image intended for the default start page
cannot be put in the repository. Hence, to use it, or a custom background image visible behind the content,
the following instructions must be followed: The background image can be added as an override static
file, or referenced via an external URL. For the first variant, suppose the image is stored in the override
folder in static/bg.jpg. The contents shown in listing 3 must then be placed in the override folder in
templates/override/background-image-url.html: Alternatively, for an external URL, the contents of
the url() statement would be the URL of the image (e.g., url (https://example.org/bg.jpg)).

3.4. REST API

The REST API provides access to the data in the PostgreSQL database. The API uses JSON as the
main data format for communication, and provides CRUD!Y functionality using the HTTP verbs PUT, GET,
PATCH, and DELETE. Access to the REST API endpoints differentiates between read-only and read-write
access, which are controlled by the readdb and writedb user roles (section 2.2).

The API endpoints are generally conservative in the input they accept, and provide feedback on what
is wrong in the HTTP response via the status code and response body. The endpoints are documented in
the respective Python function docstrings. The docs.api-description blueprint (section 3.3) collects all
endpoints and renders a list with the path, parameters, allowed methods, and docstrings. This list is also
attached in appendix A.

0Create, read, update, delete.

15

Damast v1.1.4 4 FRONTEND STRUCTURE

4. Frontend Structure

The web frontend pages all derive from a base template (section 3.3.1). This has a consistent styling, a
header with all internal links visible to the user’s roles, a main area that is populated by the individual
page’s template, and a footer with additional links, like the imprint.

4.1. Home Page

The home page introduces the project and the Damast system. This page is visible to everyone with the
user role. The home page in the repository uses a background image that cannot be put into the repository
for licensing reasons. For instructions on how to set a custom background image here, see section 3.3.2.

4.2. Visualization

This section then provides documentation on the different parts of the wvisualization, what they show,
and how they can be interacted with. Here, the individual views and their respective functionalities are
explained. These explanations can also be accessed individually from within the visualization by clicking
on the @ question mark icon in the upper right corner of each view. We first introduce the terms we used,
and explain the visualization types.

4.2.1. Visualization Terminology

The explanations provided in the present documentation as well as in the info texts in the visualization use
terminology and concepts from information visualization. We strove to make these texts as accessible as
possible to a wider audience, but some basic understanding of the concepts used is still required.

4.2.1.1. Interactive Visualization

Card et al. [1] formalized the data visualization pipeline'’ in 1999. This pipeline specifies the steps that
data goes through, from its source representation to the point where it is presented to the users using the
visualization. The pipeline consists of four steps, in which certain operations are applied, transforming the
data for the next step. After the last step, the data is present as pixels on a screen (or as ink on paper). The
pipeline allows for viewers to interact with and influence the process during each of the four steps, changing
the end result in different ways. In a first step, the data has been processed into a consistent, clean form,
which is stored in the database. In general, user interaction only applies to the last three steps, and we will
focus on these in what follows.

In a second step, through data transformations, the source data is transformed into data tables (i.e.,
suitably structured data). These transformations can include general data mapping, aggregation (such as
counting or averaging), and filtering (e.g., include data after the year 1000 CE only). By applying filters
in the visualization or changing, for example, the display mode in the settings (see section 4.2.2.3), viewers
influence this second step of data transformation.

In the third step, called the visual mapping, the data tables are mapped to visual structures. For
example, in a bar chart visualization, data items are mapped to rectangles, and the value is mapped to
the height of the respective rectangle. In general, data attributes are mapped to visual variables. Visual
variables include, but are not limited to: position, length (height, width, diameter), area, shape, color value,

"1See https://infovis-wiki.net/wiki/Visualization_Pipeline

16

https://infovis-wiki.net/wiki/Visualization_Pipeline

Damast v1.1.4 4 FRONTEND STRUCTURE

color hue, or texture. Examples for interaction with regard to the visual mappings are to switch between
qualitative and quantitative mode for the timeline (see section 4.2.2.4). In this case, data is either mapped
to rectangles of different colors, or to stacked area. Note: In this example, the data transformation step is
also affected.

In the fourth and last step, the visual structures are then rendered to the views. In this step, the
view transformations, the visual perspective on the data is also modified. This is done via geometric
transformations: translation, scaling, and rotation (although the latter is used less frequently). Viewer
interaction concerning this step includes, for example, zooming and panning (see section 4.2.1.2).

4.2.1.2. Zooming and Panning

Zooming and panning are two types of interaction taking place in the image space of the visualization.
However, they possibly interact with other parts of the information visualization pipeline, rather than just
with the view transformation step.

Zooming is the process of increasing or decreasing the scale of the visualized image. In a map, this means
showing a smaller area of the map in more detail (zooming in), or showing a larger area in less detail
(zooming out). In a timeline, this could mean showing a shorter time span in more detail, or a longer time
span in less detail.

In most cases in information visualization, zooming is not merely a geometrical scaling operation (such
as zooming in on a picture, simply enlarging the size in which pixels are shown). Rather, zooming in means
that data can be displayed with more detail and less aggregated. Similarly, when zooming out, data needs
to be aggregated more. Hence, zooming often involves not only the view transformation step, but also the
data transformation and visual mapping steps as parts in the information visualization pipeline. This type
of zooming is also called semantic zooming, as opposed to geometric zooming, which only affects the view
transformation step.

Panning is the process of changing the geometrical translation of the visualized image. Panning does not
affect visual mapping, but only view transformation. Examples for panning include:

e Moving a map’s center around, such that an area to the east is now shown. In maps, panning is
often possible by clicking, then dragging the mouse, then releasing. In this case, there is no zooming
involved.

e Moving the visible area in a timeline. For example, the timeline first shows the time span from 600
CE to 800 CE. After panning, the time span shown covers the years 650 CE to 850 CE; the timeline
was panned by 50 years.

4.2.1.3. Multiple Coordinated Views

A multiple coordinated views (MCV) visualization consists, as the name implies, of multiple views. These
views are visually separated, either just by empty space between them or by borders. In Damast (see fig. 4),
each view is displayed in a separate user interface (UI) element. These UI elements are called panes and can
be resized, rearranged, or maximized, similar to the way windows can be interacted with in an operating
system such as Microsoft Windows.

In an MCV visualization, each view shows a different perspective on the same data; that is, the view
visualizes a specific aspect of the data. In Damast, one view visualizes the temporal aspect of the data (the
timeline), another view the geospatial aspect (the map), and so on. However, the same underlying data
(pieces of evidence) is shown in each view. Further, the views are coordinated, meaning that interaction
with one of the views is reflected by changes in other views. Figure 4 provides an example: Filtering by
time range in the timeline view also affects the data shown in the map view. After filtering, only places with
evidence from that time range are shown. For more details on the different interactions; see sections 4.2.1.4
to 4.2.1.6.

17

Damast v1.1.4 4 FRONTEND STRUCTURE

> Place Filter (449 /449)

v Placed (416)

mff=fal-]-

olX
X
X
X
X
X
X
X
X
oY
X
X
X
ol
X
X
X
olX
X
X
X
P
X
X

Figure 4.: Screenshot of the visualization, consisting of multiple coordinated views. Each view visualizes
one aspect of the data, and interactions with one view are reflected in the others.

4.2.1.4. Filtering

Damast is a top-down visualization, meaning that initially, all data is shown, and users can then drill down
into that data to find smaller, more specific subsets of the data. The drill-down is realized by applying
filters to the data. A filter decides for each datum whether it matches specific criteria or not. Applying a
filter to a dataset results in a subset of the dataset (not necessarily a proper subset in mathematical terms).

An example for a filter in Damast is to select a time span from the timeline. The filter then specifies
the time span within which the evidence must lie to still be visualized. Another example is to specify one
or more sources that the evidence must be attributed to; in this case, the data visualized stems from these
sources only.

Our MCYV visualization (section 4.2.1.3) implements multi-faceted filtering. That means that each view
can have a separate filter active at the same time. Because the views show different aspects of the same
data, the filters, too, apply to different aspects of the data: The timeline filter applies to the temporal
aspect of the evidence, the map filter applies to the geospatial aspect of the evidence, and so on.

Generally, one should be aware of how these filters work between as opposed to within views. Between
views, the filters are applied in conjuction; that is, a piece of evidence is shown only if it matches all filters.
For example, if the map and timeline both have an active filter, evidence is only visualized if it is within
the specified time span and within the specified geographical region.

Within views, the filters are applied in disjunction; that is, a piece of evidence matches the filter if it
matches any of the criteria. For example, if a religion filter with two religions is active, it matches evidence
that has either one or the other religion. This behavior is logical, in that there can be no evidence that has
both religions at the same time, or is attributed to two places at once.

4.2.1.5. Selection

Selection is a user interaction with the data. In Damast, selection is done by clicking on some visual element
with the computer mouse. For example, clicking a glyph (i.e., a symbol representing one or more places)
in the map informs the visualization that the user selected that glyph. Note that what the visualization

18

Damast v1.1.4 4 FRONTEND STRUCTURE

e & 774
o) e
-
o %~ ® e
® . e
® :
@D @ 80 gp
o % ‘e

o o o o aE E
IODO000000000000ROO000XCe = o

%0
w1
o]
X
]
L8
0
0O
)
X
0
o]
O
]
0
o]
0
0
O
o]
O
0
0
jm|
0
)

18

Figure 5.: Example for brushing and linking. Evidence of two religious groups is visualized (left). After
selecting the Church of the East (COE) in the religion view, evidence of COE is brushed, and the
respective visual representations of that data are linked in all views (right). In the religion view,
all other religions’ representations are desaturated and darkened. In the map, all map glyphs for
places or clusters of places not containing COE evidence are darkened and desaturated.

does in reaction to clicking is no longer part of the selection itself. For the main purpose of selection, see
section 4.2.1.6.

4.2.1.6. Brushing and Linking

Brushing and linking is a process used in interactive MCV visualizations to help users understand the
connection between different views, or rather, between different aspects of the visualized data. First, the
user selects (section 4.2.1.5) some visual element in the visualization. The visualization interprets that
selection, and performs brushing on the underlying data that is represented by that element. Next, the
visualization links the brushed data in all views by applying specific highlighting to them.

In Damast, brushing always happens on a subset of the visualized evidence. The linking is then done in
all views, including the one the selection and brushing originated from. In most views, we display linked
elements by keeping their saturation, while all elements that are not linked are desaturated and darkened.
A notable exception to this behavior is the timeline, where linking will show the temporal data from the
brushed subset only, while all other data will be hidden.

Clicking on the same selected element again will revert the selection and also clear the brushing and
linking. Selecting any other visual element will instead replace the selection and brushing and linking will
apply to the new subset accordingly. In the map, the brushing and linking can also be cleared by clicking
in an empty place.

A source of confusion with the term “brushing” can be that it is interpreted in the sense of “paint brush;”
in that sense, the brushing itself would be a change of the visual representation of the elements (e.g., their
being highlighted). However, this change of the visual representation is the linking part. Rather, brushing
should be understood as in touching (or brushing) with one’s fingers: Selecting a subset of data touches
(brushes) them, and the subset of data is highlighted in all views, thereby visually linking the data to the
selection and providing context.

Figure 5 shows an example of brushing and linking in Damast: Evidence from two religions is visualized.
Clicking on one of these religions in the religion view selects it and brushes the respective evidence. The
visual representations of this subset of evidence is then linked in all views by desaturating the elements that
are not part of the subset.

4.2.1.7. Visualization Types

A number of visualization types are used in Damast. The proper scientific terms are used in the description
below, and are introduced here.

19

Damast v1.1.4 4 FRONTEND STRUCTURE

Bar Chart and Stacked Bar Chart In a bar chart, categories are represented by rectangular bars, usually
with a common baseline in one dimension, and a common width. The height of each bar encodes a value
associated with the respective category. Bar charts can be horizontal as well, in which case the height of
the bars is constant, and the width encodes value instead. In Damast, the bar charts used are horizontal,
for example in the source view (section 4.2.12).

A special case of bar charts are stacked bar charts, in which each category, or bar, is further divided.
Each segment of the bar encodes a sub-category’s value. In Damast, stacked bar charts are used in the
untimed data view (section 4.2.10), where each general religious affiliation is represented by a bar, and its
specific religious groups by segments of that bar. In all data mode, all regular bar charts turn into stacked
bar charts, with one segment for active data, and one for filtered-out data. Similarly, in confidence mode, a
segment for each represented level of confidence is shown.

An even more special case is the normalized stacked bar chart, where the width (or height) of the bars
is constant across bars as well. Hence, the width of individual segments encodes their relative proportion
within the parent category. Normalized stacked bar charts appear in the source view (section 4.2.12), where
they show the distribution of religious groups (or confidence levels) within each source.

Stacked Histogram A histogram shows aggregated values of one value in dependence of another value,
usually time, which is split up into bins.. A stacked histogram, similar to a stacked bar chart, is a chart
where multiple such areas are stacked on top of each other for each bin. This representation makes it harder
to read individual values, but provides a better understanding of the sum over all categories and general
trends. In Damast, stacked histograms are used in the quantitative mode of the timeline (section 4.2.9).

Indented Tree An indented tree is a visualization for hierarchies. Nodes of the hierarchy are represented
as elements placed in individual rows, or columns. To signify parent-child relationships, children are indented
further than their parents. Indented trees are often used in file managers to show directory structures, or
in mail programs to display e-mail threads. In Damast, an indented tree visualization is used to show the
religion hierarchy (section 4.2.8).

4.2.2. Settings Pane

This pane shows different settings pertaining to the visualization. It also offers some functionalities to
store or load these settings and to generate reports from the currently shown data.

4.2.2.1. Visualization Settings

These are settings that directly affect the visualization. In particular, they control which data is shown and
in which way.

4.2.2.2. Show filtered data

This switch controls if data is visualized although it does not match the currently applied filters. If
All data is selected, non-matched data is shown in less saturated colors. Otherwise, it is not shown at all.

4.2.2.3. Display mode

This switch controls which aspect of the data is mapped to color. If Religion is selected, religion is used
for coloring, using the color scheme in the religion view.. If Confidence is selected, the level of confidence is
used, using the color scheme in the confidence view. The aspect of confidence used for the visualization can
be selected in the confidence view; there, the currently used aspect is indicated with an eye symbol below
the column.

20

Damast v1.1.4 4 FRONTEND STRUCTURE

Visualization Settings

Show

Figure 6.: The settings pane.

4.2.2.4. Timeline mode

This switch controls whether the timeline shows a qualitative summary or quantitative information.
If Quantitative is selected, the number of pieces of evidence of that type in that year is represented by the
height of the area. The timeline then looks like a stacked histogram. If Qualitative is selected, the timeline
only shows whether there are pieces of evidence of that type each year.

4.2.2.5. Map mode

This switch controls whether map glyphs are clustered or unclustered. By default, glyphs are clustered:
zooming out will lead to religions attributed to different places being clustered (“summarized”). (Note that
for these clusters, all places are treated equally; for example, the distribution of religions of place A and
place B is combined without taking into account any further aspects of A or B.)

If glyphs are unclustered, one small symbol per place and religion is shown. Note: This mode may lead
to overlap of symbols when zooming out even to a relative small scale and should, thus, be used with due
caution when interpreting the results.

4.2.3. Generate Report

With this feature, a detailed text report can be generated, which presents all data matched by the currently
applied filters. The report will also contain information on the filter criteria that led to the selection of
data. After clicking Generate report, a new tab in the browser will open. A report can also be created by
uploading a visualization state that was saved and downloaded beforehand (section 4.2.4.1).

Note: It is not advised to create a report with very broad filter criteria, as it will become very long and
thus difficult to handle.

This section also has a button labeled Describe filters. Clicking this button will open a small window
(a so-called modal window) that describes the currently active filters in text form. This description is the

21

Damast v1.1.4 4 FRONTEND STRUCTURE

same as the one at the top of a report.

4.2.4. Layout Settings

The current layout of the visualization; i.e., the arrangement of the views, can be saved. This feature
is only available if the option All cookies is accepted in the Cookie preferences (accessible through the
menu bar on top). The layout settings will only persist for the currently used browser and computer (using
localStorage). You can also reset the layout to the initial state. Note that this will reload the page.

Note: Depending on your browser settings, cookies may be deleted after closing the browser, which leads
to the loss of the saved layout settings.

4.2.4.1. Persist State

With this feature, the current overall state of the visualization can be saved. In particular, this will save

e the filters that are currently applied,
e the center point, zoom level, and visible layers of the map, and

e the visualization settings (section 4.2.2.1).

These settings are downloaded as a file to the computer. Later, such a file can be uploaded to restore the
state. The file can also be shared to either present your results or to (re-)generate a report based on the
filters.

4.2.5. History Tree

These controls located in the header bar of the page control the interaction history of the visualization.
This allows users to undo, or redo, interactions. Each applied filter counts as an interaction, as do mode
changes in the settings pane (section 4.2.2), and moving or zooming the map.

Buttons The control bar itself has three buttons: The undo button reverts the last interaction (i.e., goes
up one level in the history tree). The redo button re-applies the last undone interaction (i.e., goes down one
level in the history tree). It is disabled if there are no recent undone actions. The last button opens the
history tree in a modal window.

History Tree Window The history tree window shows the interaction tree as a node-link diagram. Each
state is represented by a circle, next to which the age of the state is written. Child states are connected
to their parent by a link, which is straight for the first child, and makes a step for subsequent children.
Children are placed to the right of their parent. The current state’s node is filled. Clicking on a node will
put the visualization in the respective state. Hovering over a node will give additional information in a
tooltip. Three additional buttons in the history tree window allow to manage the visualization:

Clear: This will remove all states but the initial state from the tree, and revert the visualization to the
initial state.

Prune: This will prune all states from the history tree that are not the current state, or direct ancestors
thereof. The result is a linear history from the initial state to the current state.

Prune and condense: This will prune all states from the history tree but the initial state and the current
state. The current state is then the direct child of the initial state, and no other states exist. If the
current state is the initial state, the result will be the same as if clicking Clear.

22

Damast v1.1.4 4 FRONTEND STRUCTURE

- e . 9000 % e
G & oo %o ®
[7] < 5 e N - s
o6 o ° oo) o o o
® e
o e 5
© oo W00 i
o
@0 e o 000, o 00 D@'O ® %moooo 4 %580
@ o e GO Y8 o9 o e o
o O.ﬁ?c’% oo [000 o 855
s g & . 4
o "
e O q
a (¥ L=
e A o
(=© o O.% ¥°
55 © & Co
: e 5 ~ fe'e)

Figure 7.: The map pane in clustered (left) and unclustered (right) map mode.

4.2.6. Map

The map visualizes the geographical aspect of the data, i.e., evidence for the presence of religious groups
at different locations.

4.2.6.1. Content

Map Glyphs. Pieces of evidence are represented by so-called map glyphs. By default, these map glyphs
are clustered (i.e., aggregated, or “summarized”).

This aggregation depends on the data currently active and on the current zoom level of the map; that is,
once the zoom level or filters are changed, the map is populated with glyphs according to the aggregation
rules; simply panning the map will not affect the map glyphs. More details are given below.

This map mode is called clustered. It can be changed in the settings (sections 4.2.2.5 and 4.2.6.1).

Aggregation of Locations. Locations are aggregated to eliminate overlap, and so, by default, each map
glyph represents one or more cities, depending on the zoom level. Note: For this aggregation, all places
are treated equally; that is, the distribution of religions of place A and place B is combined without taking
into account any further aspects of A or B.

When hovering over a glyph, it loses opacity and the aggregated locations are indicated on the map as
small turquoise dots (maybe partially covered by the glyph). While hovering, a tooltip is also shown, which
provides information on the number of pieces of evidence, of religions, and of places related to the glyph.
As long as the glyph does not aggregate more than five places, the toponym, geographical coordinates, and
more information on the pieces of evidence belonging to that place are provided for each place. Even more
details are provided if the glyph only represents one place.

Aggregation of Religions. A map glyph consists of up to four circles, each representing a general
religious affiliation with a distinct symbol and color:

e Christianity: cross, red/orange
e Islam: crescent, green
e Judaism: Star of David, blue

e Other: dot, varying colors
Generally, multiple religious groups belonging to the same general religious affiliation are aggregated to

one circle. This circle then functions like a pie chart: in religion mode (set by default), each piece of the pie
chart represents a different religious group in its respective color and the piece’s size shows the amount of

23

Damast v1.1.4 4 FRONTEND STRUCTURE

pieces of evidence of that religious group relative to the overall evidence of its general religious affiliation.
In confidence mode, the division of the circle or pie chart is based on the pieces of evidence attributed with
different levels of confidence and is colored accordingly.

However, if, regarding all map glyphs currently displayed, no more than four religous groups are to be
represented, there can be more than one circle representing a general religious affiliation. For instance,
if only COE (Church of the East), SYR (Syriac Orthodox Church), and SUN (Sunni Islam) are filtered
using the religion view, any given map glyph cannot have more than three circles. Accordingly, both COE
and SYR will be represented by an individual circle with a cross and the respective color. Note that this
aggregation may result from other filters or interactions with the map, not just filtering using the religion
view, as the map glyphs are dynamically altered based on many different criteria.

Note that placement and aggregation of map glyphs depends on the data currently active as well as the
zoom level—not, however, on the current center of the map. In other words, “all map glyphs currently
displayed” include map glyphs outside the current scope of the map that will appear when panning the
map.

If in at least one glyph currently displayed multiple religious groups are aggregated into one circle, this
same aggregation will apply to all other glyphs as well, even if, in sum, they have less than four circles and
would not be aggregated. Otherwise, the perceived variety and distribution of religions would be skewed; for
example, a location with only two Christian groups would be represented by a map glyph with two circles
for Christianity, while a location with many Christian groups as well as other groups would be displayed
with only one such circle.

In only active mode, data that has been filtered out disappears from the map. Note that this can lead
to glyphs having less circles, if, for example, all Christian data of a glyph has been filtered out. In all data
mode, data that has been filtered out is indicated by less saturated colors.

Unclustered Mode. The aggregation or clustering of places can be turned off in the settings pane. In this
map mode, called unclustered, each location is represented by an individual glyph. Here, the glyphs consist
of smaller circles, one for each religious group. These circles are arranged in a hexagonal pattern. Overlap
can and will happen in this mode, even when zooming out to a relative small scale. Z-ordering of the glyphs
ensures that glyphs with fewer religious groups appear in front of larger glyphs with more religious groups.

Note: For both modes, the specific way of representing the data should be considered when interpreting
the results.

Layers. The map provides multiple layers, which can be controlled from the layer control in the upper
right corner. One of two base layers is always selected and shown: by default, a layer based on a custom
map from MapBox!? is selected, which shows topological features but no geo-political borders (i.e., borders
of modern nation states). As an alternative, a map provided by the Digital Atlas of the Roman Empire'?
(DARE) can be selected as the base layer.

In addition, one or more overlay layers can be shown:

Markers consists of the clustered or unclustered map glyphs. It is shown by default.

Diversity Markers displays all locations, without clustering, each colored according to its religious diversity
(i.e., the number of distinct religions present in each place). The color scale Viridis'* is used, where
low values are mapped to violet, and high values to yellow.

Diversity Distribution shows an estimation of the religious diversity and is colored according to the same
scale as the diversity markers.

Distribution shows an estimation of the density of pieces of evidence.

2https://www . mapbox . com/about /maps
Bhttps://imperium.ahlfeldt.se/
Yhttps://github.com/d3/d3-scale-chromatic#interpolateViridis

24

https://www.mapbox.com/about/maps
https://imperium.ahlfeldt.se/
https://github.com/d3/d3-scale-chromatic#interpolateViridis

Damast v1.1.4 4 FRONTEND STRUCTURE

Note: The two layers for diversity (one displaying markers, the other displaying a heatmap) are alternative
representations of the same data. Thus, they should not be both displayed at the same time. Similarly,
the two layers using markers (the default one displaying map glyphs and the one displaying markers of
diversity) should not be shown together.

What the Map is not Showing. Damast visualizes religious constellations in cities and towns of the
Islamicate world with static Non-Muslim communities. The map does not depict a representation of the
population density in the medieval Middle East. In other words, an area with no or only few map glyphs is
not necesarrily less populated than other areas. The map makes no claim to be complete, nor does it show
the general distribution of religions in a given area.

Empty areas on the map can have multiple reasons:

e The area is outside the geographical scope of Damast, e.g., Europe.
e No data for a city was collected.
e No data on non-Muslim communities was available.

Furthermore, in clustered mode, the overall size of the map glyphs (i.e., the number of circles) does not
directly correlate with the number of religions or pieces of evidence; for instance, a map glyph with three
circles does not necessarily represent more pieces of evidence than one with only two circles.

4.2.6.2. Interaction

The map can be interactively zoomed and panned (i.e., the center of the map is moved).

Selection. Clicking on a map glyph will select the represented places, brush the represented data, and link
the respective data in the rest of the views. Likewise, brushing data in other views will link the respective
places in the map. Also, selecting a place in the location list will pan the map to center on that place.
Map glyphs that are not linked will be displayed in less saturated colors. Linking persists when zooming,
even if clustered glyphs split up or merge. Note, however, that a map glyph often represents more than one
location. In this case, all of the circles belonging to the glyph are highlighted, even if the linking only refers
to part of the evidence. For instance, a place from the location list, which only has pieces of evidence of the
general religious affiliation “Christian”, may be selected. If this place is aggregated with other places that
additionally have, for instance, Islamic pieces of evidence, both the circle with the crescent as well as the
one with the cross are highlighted.

Link to Place URI Page When hovering over a map glyph, more information is shown in a tooltip
(section 4.2.6.1). Normal selection (section 4.2.6.2) will link the places represented by the glyph in the
location list view (section 4.2.7). From there, the place URI page (section 4.5) of each place can be opened
for more information. It is also possible to go to the place URI pages directly from the map: Holding the
shift key down and left-clicking a glyph will directly open the place’s URI page if the glyph represents only
one place. If it represents more than one place, a dialog window opens on top of the visualization with a
list of the place names. FEach of the names functions as a link to the respective place URI page.

Geographical Filtering. Evidence can be filtered by geographical location. This is done by drawing the

respective bounding shapes into the map. For this, the Leaflet plugin for Geoman'® is used. The respective

tools to control the filters are available by clicking on the button with the funnel in the upper left corner of

the map, below the zoom buttons. The button then expands to a set of controls, arranged in three blocks:

the first block for adding elements, the second for editing them, and the third to apply, remove or revert the

filters. These are described in detail below. Tooltips are shown when hovering over the individual buttons.
The first block is for adding new elements to the bounds:

Yhttps://geoman.io/leaflet-geoman

25

https://geoman.io/leaflet-geoman

Damast v1.1.4 4 FRONTEND STRUCTURE

n\

4

(o]
A
‘%.

o

&

W

D

o &

@';uo.o Aap I

Figure 8.: The map pane with the Geoman editor open, and a polygon being edited.

e A rectangular area can be added, by first clicking in the map to select one corner, then moving the
mouse, and clicking again to select the opposite corner.

e The second option is to add a polygon. Here, a new point is appended to the polygon each time you
click in the map. To complete the polygon, click on the first node.

e The last option is to add a circle. Click once to select the center, move the mouse, then click again
once the circle has the appropriate radius. Note that the circle is converted to a GeoJSON polygon
when saving.

The second block contains controls for editing existing elements. It is possible to
e move points on existing shapes,
e move entire shapes,
e cut (subtract) a polygon from an existing shape, and
e remove entire shapes.

Note that polygons can only be moved or removed individually before they have been applied as filters.
The last block contains controls to apply the created bounds to the dataset filter:

e The trash can button removes all existing shapes.

e The undo button reverts the bounds back to the state of the currently active filter, i.e., the geographical
filters applied last. It then collapses the menu.

e The save button applies the new bounds to the dataset filter, and then closes the editor.

4.2.7. Location List

In this view, all locations in the data are listed, using their main toponym as place name. Places can be
searched, selected and filtered.

26

Damast v1.1.4 4 FRONTEND STRUCTURE

* Place Filter (788 / 807)

Y Placed (426)

Figure 9.: The location list. The confidence of location is indicated by a colored marker behind the place
name. Places that match the search term at the top are highlighted in orange if their primary
name matches, or in yellow if an alternative name matches. Names are shown in italics, darker,
and desaturated if their level regarding confidence of location is not currently checked.

4.2.7.1. Contents

The view consists of several sections:

e a search field;
e a place filter; and

e the actual location list, consisting of two lists, Placed and Unplaced, representing locations with and
without geo-coordinates, respectively.

Detailed descriptions how to use the search field and the place filter are found below under “Interaction”
(section 4.2.7.2). In what follows, the two lists are described.

The list Placed contains all locations for which a geographical position is known. The list Unplaced
contains all locations for which a geographical position is not (yet) known; in this case, the confidence of
location is attributed with no value and colored accordingly.

Note: Missing data is normal during research and while entering data is still in progress. However,
missing data can severely affect confidence in the visualization if not properly communicated. We have
therefore chosen to make missing geographical locations and time information explicit in separate views of
this interface (apart from the section Unplaced in the location list, see the untimed data view (section 4.2.10).
This also allows for searches directed at data in need of improvement.

The position of the two lists can be swapped by clicking on the swap button. The following is true for
both lists: Each line in the lists represents one location. Locations are listed using their main toponym as
place name. Accordingly, looking through the lists with a specific place name in mind, if this place name
is not the main toponym, the location is not found and should be searched in the Search field. There,
alternative names are considered as well (section 4.2.7.2).

The place names are sorted alphabetically, disregarding a prefix of apostrophes (e.g., for the letter ’ain)
or Arabic definite articles; for instance, “Amid” comes before “’Amman”, and “Jubayl” comes before “al-
Juma”. In only active mode (section 4.2.2.2), only places with pieces of evidence matching the current
filters are listed. When hovering over the line with the mouse, a tooltip (fig. 10) with additional information
is shown, that is:

e place type,

27

Damast v1.1.4 4 FRONTEND STRUCTURE

Figure 10.: A tooltip in the location list, for the place Antioch.

geographical location (i.e., coordinates),

confidence of location,

alternative names,

external URIs referencing the same place.

Also, while hovering, a link symbol appears at the very end of the line (fig. 10). Clicking the symbol
opens an overview for this place, the so-called place URI page (section 4.5). Note: If the user has rights to
edit the database, clicking the symbol leads to the respective entry of the location in the database instead.

Behind the place name, the confidence of location of each place is shown as a small, colored circle. The
color scale is the same as in the confidence view. In all data mode (section 4.2.2.2), when the filter set for
confidence of location does not match the place’s confidence of location, this confidence circle is not filled.
Also, the name is displayed in italics, darker, and in less saturated colors in that case.

4.2.7.2. Interaction

Selection. Individual locations can be selected by clicking on the respective line of the list. This will
highlight the location, bring it to the top of the list and show a short vertical line to the left of the place
name. Data related to the selected location will be linked in all other views, while non-selected data will be
displayed in less-saturated colors.

Searching for Toponyms. It is possible to search for a specific place using different toponyms in
the search field at the top. Non-Latin scripts can be used for searching, too. Typing a search query in that
field will highlight the search results in bold orange and sort them to the top of the list. The search matches
not only the main toponym but also alternative names; for example, “Edessa” will find the respective place
under its main toponym “al-Ruha”. Matches to alternative names that do not match the main toponym
are sorted after main toponym matches and highlighted in bold yellow.

Apart from toponyms, external URIs can be entered in the search field. For example, syriaca:10 or
syriaca.org/place/10 finds Antioch. The search is partially case-sensitive: ask finds both “Daskara” as
well as “al-Askar Mukram”, while Ask only finds “al-Askar Mukram”. The search field additionally supports

28

Damast v1.1.4 4 FRONTEND STRUCTURE

JavaScript-style regular expressions. For example, searching for Bagh?dad would find “Bagdad” as well
as “Baghdad”, because h followed by ? matches no “h” or exactly one “h”. For further reference, refer to
the MDN documentation'®.

Filtering. The expandable section Place Filter at the top of the view allows to filter evidence by place.
When expanded, a list of all places in the database is shown. If, however, something has been entered into
the search field, only places matching the search are listed.

This list is used to include or exclude places from the so-called place set, that is, the set of places currently
active. For instance, if Baghdad is excluded from the place set, all pieces of evidence attributed to Baghdad
are filtered out. Keep in mind that, when all data mode is active, pieces of evidence attributed to places
excluded from the place set are visible but displayed in less saturated colors.

A place can be removed from the place set by clicking on the red minus on its right, or added to the place
set by clicking on the green plus. Note that the selection is not applied until the Apply button is clicked.
This button is disabled if the selected filters are matching the data currently visualized.

A symbol to the left of the place name indicates the current state of the place:

e a turquoise check mark if the place is in the currently active place set;
e no mark if the place is not in the currently active place set;
e a grey cross if it will be excluded from a new place set which has not been applied yet; and

e a green check mark if it will be added to a new place set which has not been applied yet.

Place sets can be saved using the Save button under the list. For users with access to the database,
this will store a place set in the database under the name entered by the user. For users without access to
the database, the place set will only be saved to localStorage. This feature is only available if the option
all cookies is accepted in the cookie preferences (accessible through the menu bar on top). By clicking
the Load button, a saved place set can be loaded back into the filter. Note:: Depending on your browser
settings, cookies may be deleted after closing the browser, which leads to the loss of the saved place sets.

Buttons Facilitating Creating Place Sets. Buttons in the top left corner help in editing the place set on
a larger scale:

The revert button will revert the changes to the place set; that is, the place set will match the current
filters.
Note: Because of the functionalities detailed below, the place set will not update from the database
when other filters change; it changes only with the initial load and loads of the visualization state
(section 4.2.4.1). Instead, resetting the place set is left to the user, which allows to build up a place
set incrementally as illustrated by the example below.

The empty circle button will uncheck all places; that is, no place would be included in the intended place
set after application.

The exchange button will invert the current marks; that is, all places that were marked are unmarked,
and vice versa.

The circle button with dot inside will check all places; that is, all places would be included in the intended
place set after application.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Regular_Expressions

29

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Regular_Expressions

Damast v1.1.4 4 FRONTEND STRUCTURE

The set union button will extend the place set (PS) by all places currently shown in the location list (LL)
(section 4.2.7.1). That is, all places that were in the place set before are still there, and additionally
all places from the location list are checked. The result is the set union of the previous place set and
the current location list:

PSpew = PSgq ULL

The set intersection button will restrict the place set to contain only a subset of its current contents,
namely those places that are also in the location list. The result is the set intersection of the place
set set and the current location list:

PShew = PSolqa N LL

The set subtraction button will remowve all places currently in the location list from the place set. The
result is the set difference of the previous place set and the current location list:

PSpew = PSoia \ LL

These last three operations can be used to quickly create a complex place set from a number of criteria.
Note: Since they use the contents of the location list, they only make sense when the only active visualization
mode is active.

To illustrate the possibilities provided by these operations, consider the following case: We want to explore
all pieces of evidence of Christianity in cities between 800 and 900, where there is evidence for Muslims but
not for Jews:

1. Clear all filters (everything is visible).
2. Filter by time range (800-900) in the time line.
3. Filter by religion using the religion view, choosing Islamic groups only, then click Apply.

4. Restrict the place set to only those places currently displayed by clicking the set intersection button.
The place set now contains all places where there is evidence of Islam between 800 and 900.
Important: Do not yet apply the place set. This would affect the other views.

5. Filter by religion using the religion view, choosing Jewish groups only, then click Apply.

6. Remove the shown places from the place set by clicking the set subtraction button. The place set
now only shows places where there are pieces of evidence of Islam between 800 and 900, but not of
Judaism.

7. Apply the place filter by clicking on the Apply button. Note: The map is blank; this is normal as you
have just filtered out all places with presence of Judaism while the religion view is still set to show
Judaism only.

8. Filter by religion using the religion view, choosing Christian groups only, then click Apply.

4.2.8. Religion Hierarchy

This view shows all religious groups contained in the database and allows for selecting and filtering the
data according to religion.

30

Damast v1.1.4 4 FRONTEND STRUCTURE

+ 0 +0 +0
@l @7 @l

® ©
o[Je[Jo

DADIDADI AL DA DA DADIDA DA DA DADI DI DA DA DA] © = ©
e e)

X O
O O
o o
O d
o o
o o
X X
O X
OO
O O
0o o
X O O
e
O O
O O
O O
Oed
0o o
o o
o o
O O
O O
0 [

=

Figure 11.: Left: The religion hierarchy in its default state. At the top are the controls to revert the filter,
the switch between simple and advanced filter mode, and the apply button. The religions are
visualized as an indented tree, and are filtered by enabling the respective checkbox.

Right: The religion hierarchy in advanced mode. The filter limits pieces of evidence to those
from places where two or more of the Syriac Orthodox Church (SYR), the Armenian Church
(ARM), and the Church of the East (COE) are present.

4.2.8.1. Content

The list of religious groups is hierarchical and represented by a tree visualization: each religious group
occupies a line, which is indented according to its rank in the hierarchy. In technical terms, the higher level
is conceptualized as parent, the respective lower levels as children.

Each line consists of an abbreviation for the religious group, a node, displayed as a bar, with the color
associated with the group, and a checkbox used for filtering. Hovering with the mouse over the line displays
a tooltip with the full name of the religious group and the number of pieces of evidence for the group based
on the currently applied filters.

The general religious affiliation (e.g., Christianity) is on the first level of the hierarchy. For other religions
beside Christianity, Islam, and Judaism, we made the pragmatic choice to group them under the category
Other.

The religious groups each have a distinct color. For Christianity (red), Islam (green), and Judaism (blue),
religious groups belonging to these general religious affiliations have hues of the same color. However,
the difference between colors is limited because of the number of religious groups. In confidence mode
(section 4.2.2.3), the bars of the groups are colored based on the average confidence of the represented data.

Details Regarding Coloring and Saturation. Depending on the options show filtered data (all data or
only active) as well as display mode (religion or confidence mode) in the settings, the coloring of the bars
changes:

1. Only active, religion mode
A bar has only one color. If any data related to a religious group is active, the bar has saturated
colors; if all data related to a religious group is filtered out, the bar is shown in a less saturated color.

31

Damast v1.1.4 4 FRONTEND STRUCTURE

2. All data, religion mode
A bar can be divided into two parts, a saturated and a less saturated part. The less saturated part
represents the relative amount of data currently filtered out.

3. Only active, confidence mode
A bar can be divided into several sections. Each section represents the relative amount of data with
a certain level of confidence.

4. All data, confidence mode
A bar can be divided into two general parts: a saturated and a less saturated part, representing the
data currently active or filtered out, respectively. Each part can have several sections, which each
represent the relative amount of data with a certain level of confidence.

The aspect of confidence used for the visualization can be selected in the confidence view. There, the
currently used aspect is indicated with an eye symbol below the column.

4.2.8.2. Interaction

Selection. Clicking on a line will select the religious group. This group will be highlighted, and other
groups will be displayed in less saturated colors. The data represented by the selection will be brushed, and
is linked to related data in all views. For instance, map glyphs in the map representing pieces of evidence
with the selected religion will be highlighted, other locations will be represented by less saturated colors.

Filtering. The checkbox of a religious group can be unchecked, which leads to filtering out this group
throughout the entire visualization. Depending on whether only active or all data mode is selected in the
settings, data that has been filtered out is either hidden or displayed in less saturated colors.

There are two basic modes for filtering by religion (more details further below): In Simple mode, pieces
of evidence matching any of the checked religions are shown. In Advanced mode, only pieces of evidence
from places are shown, where checked combinations of religions were present. Note that, in both modes,
the selection is not applied until the Apply button is clicked, which is enabled once there are changes to the
filter.

Simple Mode. In simple mode, data is filtered simply according to the checked or unchecked religions.
Initially, all religions are checked. To filter out a religion, it can be unchecked in the checkbox column.

Advanced Mode. In advanced mode, it is possible to filter not individual religions but different combi-
nations of religions. For instance, analysis may require to show places where two or more of the following
three religious groups exist together: the Syriac Orthodox Church (SYR), the Armenian Church (ARM),
and the Church of the East (COE)—but not those places where only one of the three is present. In this
case, pieces of evidence are active if, for any combination, all religions of that combination are present at a
place.

Different from simple mode, there are multiple columns of checkboxes. Each column represents a set of
religious groups as described above. To control the filters in advanced mode, columns can be added by
using the plus button above each column. Every column (except the last remaining one) can be deleted by
pressing the delete button above the column.

The following procedure creates a filter corresponding to the analysis described above (fig. 11 right):

Switch to advanced mode.

Create two additional columns by pressing the plus button.

In the first column, check SYR and ARM.

In the second column, check SYR and COE.

32

Damast v1.1.4 4 FRONTEND STRUCTURE

e In the third column, check ARM and COE.

e Click the Apply button.

Note: If only places should match the filter where all of these three religious groups are present, only one
column in advanced mode is necessary with all three groups checked. This must be understood as “pieces
of evidence with COE and ARM and SYR.” In turn, this differs from checking the three religious groups
in simple mode, which equals “pieces of evidence with COE or ARM or SYR.”

Filter Controls. A few additional utilities are available for managing the checkbox columns. The controls
for adding (plus button) and removing (trash can button) are already described in the section 4.2.8.2.
Importantly, columns can only be added in advanced mode, and the last remaining column cannot be
removed. The additional controls in the view are:

Revert filters This button is found in the top left corner of the view. Clicking it reverts the filters back to
the state that is currently shown in the visualization; that is, all changes that are not applied yet are
discarded.

Uncheck all boxes in this column This button is found at the top of each checkbox column. Clicking it
will uncheck all boxes in the column.

Invert all boxes in this column This button is found at the top of each checkbox column. Clicking it will
invert all boxes in the column; that is, boxes that were checked are unchecked, and vice versa.

Check all boxes in this column This button is found at the top of each checkbox column. Clicking it will
check all boxes in the column.

Toggle subtree This button is present to the left of some of the checkboxes in each column; namely re-
garding religions that have children in the hierarchy. Clicking the button will check or uncheck this
religion and all its children in the respective column. Whether clicking checks or unchecks depends
on whether the majority of checkboxes in the subtree are checked.

4.2.9. Timeline

The Timeline shows the distribution of the different religious groups along the overall time period:
600-1400 CE. In confidence mode, the level of confidence is shown instead of religious groups (sections 4.2.2
and 4.2.11).

4.2.9.1. Content

The timeline consists of two graphs: the main timeline and a smaller overview. The graphs are described
in the following.

Also, the view changes depending on the choice of show filtered data in the settings (section 4.2.2): in all
data mode, data that has been filtered out is indicated by less saturated colors. In only active mode, data
that has been filtered out is hidden from the visualization in all views, including the timeline.

Main Timeline. The main timeline shows either a qualitative summary or quantitative information, de-
pending on the timeline mode selected in the settings pane. If quantitative is selected, the number of pieces
of evidence of that type in that year is encoded into the height of the area as a stacked histogram. If
qualitative is selected, the timeline only shows whether there is evidence of that type each year. The colors
used in the graph match the ones used in the religion view or confidence view, depending on the display
mode selected in the settings pane. Importantly, the main timeline can be used to filter the data according
to time (section 4.2.9.2).

33

Damast v1.1.4 4 FRONTEND STRUCTURE

Figure 12.: Top: The timeline in qualitative mode, showing three religious groups. A time range between
830 and 1090 is set as the filter.
Bottom: The timeline in qualitative mode.

Overview. The smaller overview serves as a minimap for the larger main timeline: it always shows the
entire time range contained in the database. By clicking and dragging in the overview, a rectangle can
be drawn which represents a time range. The main timeline zooms to this time range and shows data in
greater detail. The overview represented by the lower graph does not change during this zooming in the
upper graph. Vice versa, if the data is filtered by clicking and dragging in the main timeline (see “Filtering”
(section 4.2.9.2), the selected range is indicated as a thick bar below the overview.

The rectangle representing the time range for zooming can be moved by clicking and dragging or altered
by changing the width of the rectangle. Note the mouse cursor in form of a grabbing hand (or a four-
headed arrow) when hovering over the rectangle or the double-headed arrow when hovering the left and
right borders of the rectangle, respectively. Clicking anywhere in the overview outside the rectangle will
deactivate the zooming.

Tooltips. When hovering over any of the graphs, a tooltip with a summary of pieces of evidence for that
year is displayed. If the main timeline shows a smaller time range than the overview, the year in the tooltip
depends on whether the mouse cursor is on the main timeline or the overview.

When selecting data in other views, through brushing and linking, only the selected data shows in the
timeline. Note: Selecting data in the timeline itself is not possible.

4.2.9.2. Interaction

Filtering. By clicking and dragging in the main timeline, a rectangle can be drawn which represents a time
range. Data outside the time range is filtered out; accordingly, the area outside the rectangle is displayed
in less saturated colors. The time range serves as a time filter for the data across all views.

The rectangle representing the time range for filtering can be moved by clicking and dragging or altered
by changing the width of the rectangle. Note the mouse cursor in form of a grabbing hand when hovering
over the rectangle or the double-headed arrow when hovering the left and right borders of the rectangle,
respectively. Clicking anywhere in the main timeline resets the filter.

34

Damast v1.1.4 4 FRONTEND STRUCTURE

X
20 Ez:.‘-
o [Jo
|:|:::

e

Figure 13.: The confidence view. Aspects of confidence are listed as columns, and confidence levels ordered
into rows. Checkboxes control which confidence levels should be shown for each aspect, and the
number of pieces of evidence for each confidence level and aspect are given.

4.2.10. Untimed Data

Data with missing temporal information cannot be included in the timeline. Accordingly, this data is
visualized in the untimed data view as a stacked bar chart.

4.2.10.1. Content

The chart is divided by the four general religious affiliations along the x-axis. All pieces of evidence that
have no temporal information and belong to one of these religious affiliations are stacked, with the number
of pieces of evidence on the y-axis. The pieces of evidence are grouped and colored according to the religious
group or the level of confidence, depending on the display mode selected in the settings pane (section 4.2.2).

Note: Missing data is normal during research and while entering data is still in progress. However,
missing data can severely affect confidence in the visualization if not properly communicated. We have
therefore chosen to make missing geographical locations and time information explicit in separate views of
this interface (apart from untimed data, see “unplaced data” in the location list (section 4.2.7.1)). This also
allows for searches directed at data in need of improvement.

4.2.11. Confidence View

This view shows the different levels of confidence attributed to the different elements of a piece of evidence
(i.e., place, religious group, time span, etc.).

4.2.11.1. Contents

The view consists of a table, in which each row represents one level of confidence and each column an
aspect of confidence.

For each cell in the table, a checkbox for filtering (section 4.2.11.2) is displayed as well as the number
of pieces of evidence with the respective confidence and aspect. The rows are sorted by descending level
of confidence.

Levels of Confidence. Generally, the confidence of any given information was categorized according to
these 5 degrees:

certain (blue),

probable,

contested,

e uncertain, and

35

Damast v1.1.4 4 FRONTEND STRUCTURE

o false (red).

In addition, a confidence can have no value at all (green).

Note: The attribution with no value is used while data is still being collected and usually does not appear
in a published instance of this visualization. A notable exception are places, especially regions, with no
geographical coordinates. In that case, no attribution of confidence except no wvalue is suitable.

Aspects of Confidence. Confidence is attributed to different aspects of the data:

Timespan confidence signifies the confidence in the veracity of the timespan stored in a piece of evidence.
Pieces of evidence without a time attribute are assigned the confidence no value.

Confidence of location signifies the confidence in the geographical location of a place. Some places, espe-
cially regions, have no value (section 4.2.11.1).

Confidence of place attribution signifies the confidence in assigning a location from the database to a
toponym from a source.

Confidence regarding the source signifies the confidence in the veracity and objectivity of the source itself
regarding a piece of evidence.

Confidence of interpretation signifies the confidence in the correct interpretation and recording of the
source when entering a piece of evidence into the database.

Confidence regarding religion signifies the confidence in the veracity of the presence of a particular religious
group at a given time and place.

4.2.11.2. Interaction

Filtering. For each aspect of confidence and each confidence level, a checkbox is shown in the respective
cell. Unchecking a checkbox will filter out pieces of evidence with this confidence level for that aspect of
confidence. This allows for a very fine-grained control over what data to visualize.

Note that the selection is not applied until the Apply button is clicked. This button is disabled if the
selected filters are matching the data currently visualized.

The filters work in logical conjunction across different aspects of confidence; that is, having filters in place
for multiple aspects of confidence will only show pieces of evidence that match all filters.

Four additional buttons in the top left corner make filtering more convenient:

1. Uncheck all checkboxes.
2. Invert all checkboxes. Checked boxes are unchecked, unchecked boxes are checked.
3. Check all checkboxes.

4. Revert the selection of checkboxes to the default. By default, all confidence levels are selected for
confidence of location, and only certain and probable for the other confidence aspects.

In addition, entire rows or columns of checkboxes can be set to either checked or unchecked by clicking
the row header (the confidence levels) or the column header (the aspects of confidence). Here, the new
value for the new row (or column) is the inverse of what the majority of values (3 or more) was before; for
example, if 4 checkboxes were checked and 2 unchecked for the uncertain row, clicking on the row header
would uncheck all checkboxes in the row.

Visualized Aspect of Confidence. By clicking on the eye in the bottom row of each column, the aspect
of confidence that is visualized in Confidence mode (section 4.2.2.3) can be selected. The currently selected
aspect is indicated by a colored eye. By default, confidence regarding religion is used.

36

Damast v1.1.4 4 FRONTEND STRUCTURE

Figure 14.: The source view.

4.2.12. Source View

This view shows the sources from which the pieces of evidence (i.e., sets of data concerning a place, religious
group, time span, and the respective confidences) were gathered.

4.2.12.1. Contents

The view consists of a table, in which each row represents one source. The rows are sorted by descending
number of pieces of evidence. Note that a piece of evidence can stem from more than one source; therefore,
the sum total of all references to sources can be larger than the sum total of pieces of evidence. In what
follows, the respective columns of one given row are described.

Checkboxes. The first column contains a checkbox that toggles the visibility of evidence from a source.
Keep in mind that a piece of evidence can stem from more than one source: as long as any source associated
with a piece of evidence is checked in this view, the piece of evidence will be active.

Short Names. The second column shows the short name of the source, generally an abbreviation. The
full name of the source with bibliographical details is available via a tooltip; that is, when hovering over the
name with the mouse.

Religion/Confidence Segmentation Visualization. The third column visualizes the segmentation of the
pieces of evidence on the religions or on the levels of confidence, depending on the chosen display mode
(section 4.2.2.3); in confidence mode, instead of religion, the currently selected aspect of confidence is used).
The visualization used is a normalized stacked bar chart. Because the total width of the bars is the same
regardless of the amount of pieces of evidence, the width of each segment signifies the number of pieces of
evidence with that religion or confidence level in relation to the total evidence count for that source.

Evidence Count Visualization. The fourth column visualizes the count of pieces of evidence for each
source. This column uses the same scaling in all rows: the longer the bar, the more pieces of evidence stem
from the respective source. This effectively creates a vertical histogram across the rows.

4.2.12.2. Interaction

Selection. Clicking on a row will select the source, brush the represented data, and link related data in all
views. For instance, locations in the map with pieces of evidence from the selected source will be highlighted,
other locations will be represented by less saturated colors. Clicking on the same row again will reset the

37

Damast v1.1.4 4 FRONTEND STRUCTURE

Figure 15.: The tags view. Three tags were selected.

selection. Selecting a different row, or an element in a different view, will replace the selection; that is, only
one source can be selected at a time.

Filtering. A source can be filtered out from the visualized data in all views by (un-)checking the respective
checkbox. Note that the new filter is not applied until the Apply button is clicked. This button is disabled
if the selected filters are matching the data currently visualized.

Checking multiple (or all) sources works as a logical disjunction: a piece of evidence is matched if it stems
from any of the checked sources.

The source filter works together with filters from other views in logical conjunction; for instance, if only
source X and religion Y are set active in the respective views, only pieces of evidence with source X and
religion Y are matched.

Three additional buttons in the top left corner make filtering more convenient:

1. Uncheck all checkboxes.
2. Invert all checkboxes. Checked boxes are unchecked, unchecked boxes are checked.

3. Check all checkboxes.

Sorting. The order of the shown sources can be changed using the sorting options switch in the center of
the header of the view. The two options are:

1. Sort the sources first alphabetically, in ascending order, by their short name, which is shown in the
second column of the list.

2. Sort the sources first in descending order by the number of visible pieces of evidence derived from
them.

For both sorting modes, the other sorting criterion is considered as secondary criterion. More specifically,

if the sources are ordered by count, and two sources have the same count, the source that would come first
alphabetically is listed first of the two.

38

Damast v1.1.4 4 FRONTEND STRUCTURE

4.2.13. Tag View

This view shows tags which are associated with pieces of evidence (i.e., sets of data concerning a place,
religious group, time span, and the respective confidences). Tags were implemented to include additional
information and to make further distinctions possible. For instance, the tag Bishopric is attributed to pieces
of evidence referring to bishoprics as distinguished from metropolitan sees. This way, the visualized data
can be filtered according to additional criteria. Note that, by default, all tags are deselected. This means
that no filters based on tags are active ((section 4.2.13.2).

4.2.13.1. Contents

The view consists of a table, in which each row represents one tag. The rows are sorted by descending
number of pieces of evidence. In what follows, the respective columns of one given row are described.

Checkboxes The first column contains a checkbox used for filtering.

Tag Names The second column shows the name of the tag. Generally, the name should be self-explanatory.
Further information is displayed when hovering with the mouse.

Evidence Count Visualization The third column visualizes the count of pieces of evidence for each source.
The less saturated part of the bar represents pieces of evidence that are not active (i.e., do not match
the current filters).

4.2.13.2. Interaction

Selection. Clicking on a row will select the tag, brush the represented data, and link related data in all
views. For instance, locations in the map with pieces of evidence with the selected tag will be highlighted,
other locations will be represented by less saturated colors. Clicking on the same row again will reset the
selection. Selecting a different row, or an element in a different view, will replace the selection. Only one
tag at a time can be selected.

Filtering. The visualized data can be filtered according to one tag or multiple tags in all views by (un-
)checking the appropriate checkbox or checkboxes. Keep in mind that a piece of evidence can have no tag,
one tag, or multiple tags. If, for instance, it has no tag, its visibility is not affected by the checkboxes. If, on
the other hand, it has multiple tags, its visibility is only affected by (un-)checking all respective checkboxes.
Note that the selection is not applied until the Apply button is clicked.

Checking multiple (or all) tags works as a logical disjunction: a piece of evidence is matched if it is
assigned any of the checked tags. The tag filter works together with filters from other views in logical
conjunction: for instance, if only tag X and religion Y are selected in the respective views, only pieces of
evidence with tag X and religion Y are matched.

Two additional buttons in the top left corner make filtering more convenient:

1. Uncheck all checkboxes; that is, remove all filters based on tags. Note that this is not applied until
the Apply button is clicked.

2. Revert all checkboxes to represent the state of filters applied last.

4.3. GeoDB-Editor

The GeoDB-Editor is a tabular data entry interface for data entry into the PostgreSQL database. Not all,
but the most commonly edited tables, are represented here. The GeoDB-Editor is split into two pages, one
for place-related tables, one for person-related tables.

The tables are hierarchically connected as shown in fig. 16: A row in each table can be selected, which
is indicated by a hand symbol at the start of the row. All tables hierarchically dependent on that table

39

Damast v1.1.4 4 FRONTEND STRUCTURE

2 Pages

- place
name_var

external place_uri
evidence
time_instance

source_instance

L_person

Lexternal,person,uri

Figure 16.: Hierarchical dependence of table editors in the GeoDB-Editor.

will then show entries for that selected row. For example, selecting place P in the place table will only
show external place URIs, alternative names, and evidences for P. Selecting the first evidence E in that
table then shows the time instances and source instances for E in the respective tables. For the evidence
table, a place_instance entry implicitly exists that links the evidence to the place, and columns from
the place_instance, religion_instance, and person_instance tables are shown directly in the evidence
table.

Columns with text type can be edited as text. Columns that reference foreign keys (e.g., religions in the
evidence table) or enums (e.g., levels of confidence) will show a drop-down menu instead. Changes in a
row are indicated by a light green background. Clicking the save (floppy disk) icon at the end of the row
persists the changes to the database. Clicking the revert (left-pointing curved arrow) icon at the end of the
row reverts the row contents to the database state. Clicking the delete (trash can) icon at the end of the
row deletes the row from the database.

The column order can be changed by drag and drop in the column header. Here, some columns also
allow to filter, and to sort. At the top of each table, the columns shown can be toggled individually. The
currently visible rows can also be downloaded as CSV, and the table filters cleared.

A last button at the top allows to create a new entry. If the table is dependent, the respective foreign key
references are implicitly added. The new row will appear at the top of the table, have a yellow background,
and have the word “NEW?” in the ID column. The delete button at the end is also replaced by a cancel button
(striked-through circle), and the save button by an upload button (cloud with arrow pointing upwards). For
deletion, reverting changes, and switching entry when there are changes in depending tables, a confimation
dialog is shown first.

4.4. Annotator

The annotator provides a facility to upload and then annotate digital versions of documents. For now, only
digital text (in the form of plaintext and HTML) are supported, meaning that optical character recognition
(OCR) is required as a preprocessing step. The digital texts are then stored in the PostgreSQL database.
The annotator allows to create annotations in these texts and to attach historical instances (persons, places,
religions, or time information) to individual annotations. By linking the annotations of different types,
evidences can be created.

4.4.1. Database Schema

The data is stored in a relational database. These are exceptionally efficient in the lookup and querying
of specific attributes and subsets of data, as well as complex joins across attributes and tables, at the
cost of the readability and intuitivity of the storage format. In particular, storing relationships such as
an optional relationship, or a one-to-many relationship, cannot be modeled in a straightforward way, but
require intermediate tables. The database structure is, therefore, a bit more complex and fragmented than

40

Damast v1.1.4 4 FRONTEND STRUCTURE

source <1 document <1 annotation
Y])‘4 x (0..1)
e
1 .- . ..
source_instance religion_instance > religion
40..%
! place_instance I place
evidence o T person_instance > person
time_grou > i i
0. .1 group 0 time_instance

Figure 17.: Database structure of tables directly involved in storing historical evidence and annotations.

the mental data model it represents. Still, it is valuable to understand the data model, because the way
evidence is generated from annotations and groups of annotations is based very closely on that model.

Figure 17 shows a simplified entity-relationship diagram of the tables in the database involved in evidence
creation and annotations. One piece of evidence must contain a place and religion, and may contain one
person and one or more time spans. In the database, this is represented by instance tuples, where each
instance also stores meta-information specific to that tuple, such as a comment and confidence. The instance
tuples then point to the base entities (places, religions, persons), which only exist once. The one or more
time spans (time instances) are grouped by a singular time group. The instances may be linked to one
annotation, such that an annotation can either be for a place, religion, person, or set of time spans. Each
annotation is attributed clearly to one document, and each document to one source. An evidence tuple
can be derived from zero or more sources, which is coded via the source instance table. In cases where an
evidence was created using the annotator, there is only one source instance, whose source is the same as
that of the document the annotations belong to.

An evidence created from the annotator, therefore, is a group of two to four annotations, where one
belongs to a place instance, one to a religion instance, zero or one to a person instance, and zero or one to
a time group. Evidences created, for example, using the GeoDB-Editor look exactly the same, except that
their instances do not have a connected annotation. For more information on the database structure, please
reference fig. 1.

4.4.2. Document Selection

When opening the annotator, the first screen shows a list of all available documents, shown in fig. 18. Each
document is represented by a card, which lists some metadata about the document and its source:

e the ID of the source,

e the ID of the document,

the name of the document (its comment field),

the full name of the source,

the type of the source (primary source, literature, ...),

the short name of the source (e.g., “OCN”),

41

Damast v1.1.4 4 FRONTEND STRUCTURE

Source 1D Select Document

Document comment
Document ID

Source long name

Source type and short name
ocument version

Document content type : "
Number of annotations > e : New document

Document preview

Click to open document Click to create new document

Figure 18.: The initial screen of the annotator shows a document selection, where the document to be
annotated can be selected. The documents are shown as cards, displaying additional metadata
about the document and its underlying source. A separate link leads to a form for creating new
documents.

the document version,

the document content type,

the number of annotations in that document,

and a short preview of the document.

The goal of all that metadata is to make perfectly clear which document this is; for example, there could
be multiple versions of one source, each being its own document. This could contain differences in spelling,
whitespace, and other aspects, which in turn affect the positioning of existing annotations. Therefore,
creating new versions of existing documents when the textual content changes is favorable to updating the
existing document, as that might create issues with those existing annotations.

To open a document in the annotator, simply click on the card in question. Besides one card for each
existing document, there is also one card at the very end of the list to create a new document. This will
link to the document creation form, described in section 4.4.3.

4.4.3. Creating a new Document

Creating a new document is fairly simple: This will show a page with a form, the contents of which will then
populate a new record in the document table. The form has five fields, all of them mandatory, described
below:

Source: Each document is attributed to a source, which can be selected here using a drop-down menu. The
source entry must already exist when creating a new document.

Version: A source can have multiple versions of itself as documents, and so each document must have a
version number. This number must be unique for each source (i.e., no two documents of the same
source may have the same version), and only numerical values are allowed.

Comment: This field is the title of the document. Currently, this is a bit badly named and configured on my
part, as “comment” does not really fit the purpose of the field: providing a short and ideally unique
and recognizable label for a document. On that note, the comment field is currently not enforced to
be unique, but it might be favorable to give each document a unique comment in any case. I will at
some point clean this up.

Content type: For the moment, annotatable documents can only have two content types: either, they are
just plain text, or they are marked-up hypertext (HTML). There are subtle differences in how to
calculate text positions between plain text (where each character in the file is visible) and HTML. In

42

Damast v1.1.4 4 FRONTEND STRUCTURE

HTML, a character in the file might have a special meaning, such as making the following text bold,
or forcing a line break. This field is a drop-down menu with those two options. It is important to
select the correct one here to avoid strange effects during annotation.

Content: This is a file selection form field. Select the file containing the document text from your hard

drive, and its contents will be uploaded and put in the database when submitting the form. By default,
the file selection dialog should only show text and HTML files.
Note: The file you select here will be read by the browser and sent to the server. This is one of the
few occasions where the browser is allowed to read your files, or at least one of them. Be careful not
to select any confidential or private file by accident, as its contents will be visible to other users of the
annotator as well.

After filling out all fields properly, a new document is created by clicking on the green Submit button. This
will put the document in the database and navigate back to the document selection page (see section 4.4.2).
Before clicking the button, no data will be sent to the server, and you can clear all form fields by clicking
on the gray Reset form button.

<p>
<strong data-virtual-text="Page 2 ">Elit...
Dolore explicabo excepturi hic nam odit.

</p>

<h2 data-virtual-text="Section 2"></h2>
<p>

Sit minima ex dignissimos ea nam ullam!
Section 2

</p>

Figure 19.: (1) Virtual text in a document cannot be selected, and is not part of annotations. Virtual text
can be placed inline, or as a block element. (r) The HTML source code to produce the virtual
text on the left.

In theory, all HTML files should be fine to use for annotation purposes. For security purposes, many tag
types and tag attributes are stripped from the document before upload!'”. The resulting document in the
database will consist of semantically relevant, but unstyled, HTML tags, and text. However, there might
be special considerations to be made about how you want the text to be represented. Some questions to
think about before creating a HTML document for annotation are:

e Are there sections of the text (e.g., page numbers) that are “not really” part of the text? That means:
those sections should not be selectable or annotatable. Some information on how to incorporate virtual
text is given in the paragraph below.

e Is there text that requires special highlighting or styling? Would such styling interfere with the styling
of annotated text or the evidence links?

"The entirety of <script>, <style>, and <head> tags are discarded, both their content and the DOM nodes themselves.
Disallowed tags are removed, but their contents are kept as plain text and child nodes. Allowed tags are: <a>, <abbr>,
<address>, <article>, <aside>, , <bdi>, <bdo>, <blockquote>,
, <caption>, <cite>, <code>, <col>, <colgroup>,
<dd>, , <details>, <dfn>, <div>, <d1>, <dt>, , <figcaption>, <figure>, <footer>, <h1>, <h2>, <h3>, <h4>,
<h5>, <h6>, <header>, <hr>, <i>, , <ins>, <kbd>, <1i>, <main>, <mark>, <nav>, , <p>, <picture>, <pre>, <g>,
<rp>, <rt>, <ruby>, <s>, <samp>, <section>, <small>, , , <sub>, <summary>, <sup>, <table>, <tbody>,
<td>, <tfoot>, <th>, <thead>, <time>, <title>, <tr>, <u>, , and <wbr>. All attributes are removed from tags, except
for href, title and hreflang for <a> tags; and src, width, height, alt, and title for tags. In addition, the
data-virtual-text attribute can be placed on every tag.

43

Damast v1.1.4 4 FRONTEND STRUCTURE

e Is the text left-to-right (e.g., latin scripts), right-to-left (e.g., Arabic), or even top-to-bottom, right-
to-left (e.g., Chinese)? Is the writing direction mixed (e.g., English headings in Arabic text)?

To add wvirtual text to a document, we use HTML pseudo-elements, which are generated by the browser
and are not part of the textual content of the document. Take note that virtual text, therefore, is only
possible to add when using HTML, not plain text. Virtual text has the advantage of being skipped by
the offset calculations and not being selected, therefore also not being part of the text selection and the
annotation content. For adding virtual text, add the respective HTML element (e.g., <h2> or)
without any text between the tags. The virtual text itself needs to be passed as an element attribute to the
text. The attribute name used is data-virtual-text. The appearance of the virtual text depends on which
type of HTML element you use to represent it. Block-level elements, like headings (<h1>, <h2>, etc.), will
be represented thus, and inline elements, like , , or , will be placed inline, which might
be useful if the virtual text should be within a paragraph (e.g., for sentence numbering). Figure 19 shows
an example document with two instances of virtual text: One inline element, and one block-level
<h2> element. The HTML content of the document to produce this effect looks as listed in fig. 19.

4.4.4. Annotations

An annotation, in general, consists of a start and end position within a document, as well as an instance
(see section 4.4.1 for more details). Annotations are represented in the text by colored background behind
the annotated text passage. In the following, the user controls of the annotator are described, as well as
how to create, edit, and delete annotations.

4.4.4.1. The Annotator Interface

New evidence button
Document information
Document area

Annotation
Evidence link
Swimlanes

ext area
Scrollbar

Editor pane

Figure 20.: The annotator consists of of two main components: the document area on the left, and the
editor pane on the right. A section on the top displays information about the current document.
Annotations are displayed by colored background behind the annotated text. Evidence is repre-
sented by links connecting multiple annotations. The evidence is ordered into vertical pathways
on the left of the document area, so-called swimlanes.

After having selected a document in the document selection screen (section 4.4.2), it and its annotations
and evidences are displayed in the annotator. The annotator interface, shown also in fig. 20, consists of two
main views. The document area on the left shows the document, annotations, and evidences; and the editor
pane on the right shows annotation and evidence editors, when open.

The document area is scrollable, and the document text is displayed here with a large line height to
accomodate links between the rows. A scrollbar on the left of the document area shows the current position
in the document, and the positions of annotations are also indicated here. Annotations within the text

44

Damast v1.1.4 4 FRONTEND STRUCTURE

are indicated by a colored background, where different colors signify different types of annotations (place,
person, religion, time group).

Evidences are groups of one place annotation, one religion annotation, zero or one person annotations,
and zero or one time group annotations (see section 4.4.1). In the annotator, they are represented by a
line connecting all annotations that are part of the evidence. If the annotations are in different lines of the
text, the line takes a detour via the left margin of the document to avoid crossing text. In the margin, the
evidence links are horizonally distributed into swimlanes to avoid overdrawing. For multiple evidence links
going into the same line of text, they are also vertically distributed in the same fashion.

The editor pane is where the annotation or evidence editor is displayed when creating or editing an
annotation. This is described in more detail below. Initially, the editor pane is empty, as no annotation or
evidence is being edited.

4.4.4.2. Creating an Annotation

Click & drag Release

of/\ |exandriaMUEIENGEE

Alexandria|

? Select Annotation Type

You are about to create an annotation for the follov

Please select whic}

A Place
& Person
A

5 Religion

¥ Time group

off t

vith him after the schism that

Figure 21.: Annotation creation starts by selecting a text passage using the mouse. Then, a dialog window
pops up, where the type of annotation is selected. After editing and saving the new annotation,
it appears in the text.

The process for creating a new annotation is shown in detail in fig. 21. Initially, the text passage that is
to be annotated needs to be selected using regular text selection; that is, going over the start of the text
passage with the mouse, push and hold down the left mouse button, drag the mouse until the end of the
text passage, and release the left mouse button. The selection should become highlighted while doing this.

As soon as you release the left mouse button, the selection of the text passage is finished. The selected text
is what will become the annotation. Because there are four types of annotations, depending on which type
of instance is represented (see section 4.4.1), next a pop-up window appears, where the type of annotation
needs to be selected. The window also shows the content of the annotation again, and there are four buttons,
one for each type of annotation. By clicking one of the buttons, that type is selected, the pop-up window is
closed, and the annotation editor is opened. If you want to re-select the text passage or abort the creation

45

Damast v1.1.4 4 FRONTEND STRUCTURE

of the annotation for any other reason, you can either click on the red cross in the top right, or anywhere
outside of the pop-up window.

Next, in the editor pane, an annotation editor appears, where you can fill out the data for that annotation
and the connected instance. This editor window is described in more detail in section 4.4.4.4, as the process
for creating and editing existing annotations is quite similar. The only difference is that:

1. the button for closing the editor will cancel creation without a prompt,
2. the delete button at the bottom is instead labeled “Cancel creation” and serves the same function,

3. the save button at the bottom is instead labeled “Create” and clicking it will persist the new annotation
and instance to the database, and

4. the editor row for changing the text extent of the annotation is missing.

Finally, after clicking “Create” in the editor, the editor will close, and the new annotation will appear
in the document. Annotations may overlap, and may even cover exactly the same text passage. It is
completely fine to do a text selection over an existing annotation in the text. When annotations overlap,
the parts where they do are highlighted in gray instead of the normal annotation colors.

Create Person Annotation

Suggestion source

Pre-selected entity

\
' Annotation suggestion

Figure 22.: Suggestions for new annotations are indicated by yellow curly underlining. These suggestions
are based on known names for entities from the database, as well as existing annotation content.

The server will also generate suggestions for annotations. These are based on known names (place names,
alternative names from other languages, religion and person names) from the database, as well as on existing
annotations in the current document. Figure 22 shows an example: The person Athanasius I bar Gamala
has been annotated in the text previously (under the name “Athanasius”). Based on that, the suggestion for
a person annotation at this position is suggested. Clicking on the annotation suggestion, which is indicated
by a yellow curly underline, will open an annotation editor of the respective type, with the suggested entity
(place, person, or religion) already selected. The editor now also indicates where the suggestion stems from.
Clicking Create will commit the annotation to the database, replacing the suggestion.

4.4.4.3. Selecting an Annotation

Selecting an annotation is as simple as clicking on it in the document area. When hovering over the
annotation with the mouse, it is already outlined. Especially in cases where annotations are very long, or
there are overlaps with other annotations, this outline can be helpful for understanding which annotation
is currently under the mouse cursor. When annotations overlap and you click on the gray section (i.e., the
overlapping part), it is not immediately clear which annotation you want to select. In that case, a pop-up
window appears, listing the different annotation candidates with their type and content (see fig. 23). By
clicking on the intended annotation in the list here, it is selected. The selection process can be cancelled by
clicking on the red cross, or anywhere outside of the pop-up window.

46

Damast v1.1.4 4 FRONTEND STRUCTURE

Annotation

Figure 23.: When clicking on an overlap between two or more annotations, a pop-up window appears, where
you can select which annotation you meant to click on.

Edit Place Annotation

Figure 24.: The annotation editor for a place annotation.

4.4.4.4. Editing an Annotation

In the annotation editor, you can edit the annotation comment, which is the comment field of the record
in the annotation table. This might be useful if there is something special about the placement of the
annotation in the text, or some useful context. You can also see and edit the textual extent of the annotation
(more details in the next paragraph). Further, you can edit the instance data. The editors for the different
types of annotations, therefore, look slightly different. Figure 24 shows an editor for a place annotation:
Here, the annotation comment field is empty. For the place instance, the place itself, the location confidence,
and the comment in the place_instance table can be edited. The place is selected via a drop-down menu,
as is the confidence. The comments are entered using text fields. For person and religion annotations, the
editors look quite similar, but the first drop-down menu lists persons or religions, respectively.

An annotation has a start and end position in the text, which are stored in the annotation table of
the database. As the placement of the annotation could need to be changed, the editors provide a way to
see the current extent, and to edit it. Under the title “Annotation extent,” three elements are visible: A
representation of the start and end position of the annotation, a button to start editing, and a text area
where the textual content of the annotation is shown. To change the extent, click on the button, which is
initially labeled “Reselect annotation” (see fig. 24) The button now turns red and the text says “Cancel”
(see fig. 25), and clicking it again will go back to the previous state. By now selecting a text passage in the
document area, the textual extent of the annotation will be updated. As with all other attributes of the
annotation and instance, the changes will only be put into the database when clicking on the save button.
The annotation’s textual extent can only be edited for existing annotations, and therefore this facility is
not displayed when creating a new annotation.

For the time group annotations, the editor looks a bit different because of the way time groups work: One
time group can have zero or more time instances, and all of them would be attributed to the annotation.
Figure 25 shows an editor for a time group annotation. Besides the annotation comment and textual extent,
time instances are shown as separate items, where the comment, confidence, start time, and end time can be
edited. In this case, start and end time must be numbers, and the end time must be greater than or equal to
the start time. Each time instance can separately be removed by clicking on the “Delete instance” button
in the respective box, and new time instances can be added via the large “New time instance” button. All

47

Damast v1.1.4 4 FRONTEND STRUCTURE

Edit Time Group Annotation

+ New time instance

Figure 25.: The annotation editor for a time group annotation. For the third time instance, the mandatory
end time field is empty, and the input is therefore outlined in red. The user is currently editing
the textual extent of the annotation, and the button in that section of the editor therefore reads
“Cancel.”

changes, additions and deletions are only persisted to the database when the entire time group annotation
is saved with the save button in the lower right, and are not persisted if the editor is closed, discarding the
edits.

Clicking on the reset button in the lower left of the editor will revert the values to their initial state, as if
the editor was freshly opened. The editor can be closed by clicking on the cross in the upper right. If there
are unsaved changes, a prompt will appear to confirm that those changes should be discarded. The green
save button in the lower right will persist all changes to the database. The button will be greyed out and
disabled if there are no changes to the annotation yet. The red delete button will delete the instance and
annotation (see section 4.4.4.5).

All form data in the editor is validated. If a field is empty and mandatory (e.g., no place is selected for a
new place annotation), the field will be outlined in red to signify that. Similarly, if the content of an input
field is invalid (e.g., end time before start time for a time instance), it will be outlined in red as well. In
both cases, the save or create button will be disabled and greyed out.

4.4.4.5. Deleting an Annotation

Really delete annotation?

Do you reall t to delete this annotation? This cannot be r

* Cancel @ Delete

Figure 26.: A confirmation dialog appears when deleting an annotation.

The red delete button in the bottom left of the annotation editor will delete the instance and annotation.

48

Damast v1.1.4 4 FRONTEND STRUCTURE

Deleting an instance is only possible if the instance is not part of an evidence, and therefore this button is
greyed out and disabled if that is the case. When clicking on the button, a confirmation dialog will first
appear to make sure that this is the intended action, see fig. 26. When clicking cancel, the deletion is not
performed. When clicking delete, the annotation and the instance will be removed from the database, and
the annotation will disappear from the document area.

4.4.5. Evidences

An evidence, in general, is a grouping of a place instance, a religion instance, and optionally a person instance
and a time group (see section 4.4.1). In addition, the evidence has a comment field, the interpretation
confidence which specifies how confident you are in the interpretation of the source when creating the
evidence, and a visibility flag that controls whether the evidence will appear in the visualization or not.

Each evidence also has a source instance, which for annotator-generated evidences is created automatically
based on the document’s source. Here, the source confidence, which specifies the source’s trustworthiness
for that specific evidence, can also be set. Last, evidences can be tagged with zero or more tags.

4.4.5.1. Selecting an Evidence

Ubers. v. Da Nilmshurst.tmegro:

[Page 2] BAR HEBRAEUSperson, ECCLESIASTICAL CHROMICLE: igionfON ONE

[1] With the help of [God,sacd we write down this firs

Figure 27.: To select an evidence, hover on the link with the mouse. This will already make the link bolder.
Then clicking the link will select the evidence. The link will then turn blue and start to be
animated, and the contained annotations are also outlined and animated.

When selecting an evidence, it is opened in the evidence editor. When creating a new evidence, that new
evidence is automatically selected for as long as it is edited. An existing evidence is selected by clicking
anywhere on the link. The links are layed out in a way that they overlap as little as possible. To further
distinguish which evidence is currently under the cursor, the link gets bolder when the mouse hovers on it.
Clicking on a link will select that evidence. It is then opened in the evidence editor. Further, the evidence
link and the connected annotations are highlighted differently, with blue color and animation, as shown
in fig. 27. Selecting a different evidence while the editor is opened will switch to editing that evidence;
however, if there are unsaved changes, a confirmation prompt is shown first.

4.4.5.2. Creating an Evidence

To create an evidence, simply click on the “New evidence” button in the top right of the document area
(see fig. 20). This will open the evidence editor with a new evidence (see fig. 28). While the evidence editor
is opened, the button is greyed out and disabled. As with annotations, creating a new or editing an existing
evidence is very similar, and so the description of the editor itself is described below, in section 4.4.5.3. And
again, there are slight differences in the three buttons (compare also fig. 28 and fig. 29).

49

Damast v1.1.4 4 FRONTEND STRUCTURE

Create Evidence

+ Bishopric + Bishopric residence + Church or Monastery
+ Community + DhiMu + Madina

+ Metropolitan Residence + Metropolitan see + Misr

+ Mosque + OCN + Patriarchal residence + Patriarchate

+ Qasaba + Reviewed + Synagogue

% Cancel creation

Figure 28.: Evidence editor for a new evidence. The mandatory place and religion instances are empty,
and the evidence can therefore not be created yet.

1. the button for closing the editor will cancel creation without a prompt,

2. the delete button at the bottom is instead labeled “Cancel creation” and serves the same function,
and

3. the save button at the bottom is instead labeled “Create” and clicking it will persist the new evidence
to the database.

4.4.5.3. Editing an Evidence

Edit Evidence

uncertain

+ Bishopric + Church or Monastery + Community

+ Madina + Metropolitan Residence + Metropolitan see
+ Misr + Mosque + OCN + Patriarchal residence

+ Patriarchate + Qasaba + Reviewed + Synagogue

Figure 29.: Evidence editor for an existing evidence.

The evidence editor, shown in fig. 28 and fig. 29, contains four traditional form fields, which are all
optional. These form fields can be edited in a straightforward manner:

50

Damast v1.1.4 4 FRONTEND STRUCTURE

a text field for the comment field of the evidence,

a drop-down menu for the evidence’s interpretation confidence,

a drop-down menu for the source instance’s source confidence, and

a checkbox to toggle the visibility of the evidence in the visualization'®.

Figure 30.: To toggle membership of an annotation, and its associated instance, to an evidence, click on the
annotation while the evidence editor is opened. The link representing the evidence will update
instantly.

The next four rows represent the place instance, religion instance, person instance, and time group that
are part of the evidence. Here, as the place and religion instance are mandatory, these will show up as red
when empty (see fig. 28). These four fields cannot be directly edited (i.e., by clicking or typing in them),
but instead are controlled via the document area. While the editor is opened, the annotations that are part
of the evidence are outlined in blue and animated. Changing membership of annotations works as follows
(see also fig. 30): To add an annotation and its instance to the evidence, click on the annotation. To remove
an annotation and its instance that are already part of the evidence, also click on the annotation (clicking
toggles membership). If the evidence already contains an instance and annotation of a certain type, clicking
on a different annotation of that type replaces the previous instance and annotation with the new ones;
for example, if there are two place annotations in the text, one for Edessa and one for Damascus, with
Edessa being part of the evidence, clicking on the Damascus annotation would replace the place instance
in the evidence, and the evidence would now be related to the place Damascus. An instance and annotation
can be associated with multiple evidences.

The fields in the editor displaying the instances cannot be interacted with directly. They show more
information on the instances themselves and update automatically. In particular, they show the instance
ID, the name and ID of the entity the instance refers to (place, religion, or person), and the respective
instance confidence. For the time group, a comma-separated list of all time instances, with start time, end
time, and confidence is shown instead. The data about the instances must be fetched from the database

18Fvidence tuples that do not have the visible flag set are never loaded from the database. While most other filters in the
visualization will hide or show evidence dynamically, evidences that are not wisible will never show up. Of course, the
visibility can be changed later.

51

Damast v1.1.4 4 FRONTEND STRUCTURE

when it changes, so directly after opening the editor, or when toggling membership of an annotation and
instance, the data is not available for a short while, and a loading indicator is shown instead.

If no instance of that type is connected, this is indicated instead, as shown in fig. 28. As the place and
religion instances are mandatory, the absence of those is highlighted in red with more urgency.

The last part of the evidence editor is the evidence tags. Evidence can be tagged to create specific
groups of evidences; for example, evidences that refer to Bishopric residences, or evidences that have been
thoroughly reviewed. An evidence can have zero or more tags. Tags that are associated with the evidence
are displayed at the top in green, tags that are not are displayed below in grey, with a plus symbol instead
of the tag symbol. To remove an associated tag, click on it, and it moves to the bottom. Similarly, to add
a tag, click on it, and it moves up and becomes green.

As with the annotation editor, all changes made are only local until you click the save button at the bottom
(or, for new evidences, the create button). Using the reset button, the initial state from the database can
be restored for all fields, discarding all changes. Clicking on the cross in the top right closes the editor if
there are no unsaved changes, otherwise a confirmation prompt is shown first. The same prompt is also
shown when trying to open a different evidence by clicking on the respective link in the document area.
The delete button deletes the evidence, see section 4.4.5.4. The save button will persist all changes to the
database. This button will only be enabled if it is currently possible to save: If there are no changes, it
is disabled and greyed out. Further, if there is invalid input (i.e., no place or religion instance selected),
saving is also not possible.

For evidence that is already saved in the database (i.e., when editing evidence, but not during creation),
the evidence editor also shows a link at the top labeled “View this evidence in the GeoDB-Editor.” Clicking
this link will open the GeoDB-Editor, and there select the place of the evidence, scroll down to the evidence
table, and select the evidence there as well. For evidence created using the annotator, a similar link exists
in the evidence table of the GeoDB-Editor, which opens the appropriate document in the annotator and
opens the respective evidence in the evidence editor.

4.4.5.4. Deleting an Evidence

Really delete evidence?

L to delet evidence? This cannot be r

*+ Cancel i Delete

Figure 31.: A confirmation dialog appears when deleting an evidence.

Clicking on the red delete button in the evidence editor will delete the evidence from the database. A
confirmation dialog (see fig. 31) will appear first to avoid accidental deletions. In the case of new evidences
that have not been saved yet, the button will instead be labeled “Cancel creation.”

Deleting an evidence will not delete the connected annotations and instances. Those will remain in the
database and the document area. It will only delete the evidence itself, the source instance, and all tag
associations. The deletion will be reflected at once in the document area, where the respective link will also
disappear. After deletion, the evidence editor is closed.

4.5. Place URI Page

A page for place search is linked from the header. Here, place names, alternative place names, external
URIs for places, and place comment content can be used to query the database for places. This returns a
list, each of whose entries is a link to the respective place URI page. This page shows details about the
place from the database in a textual form, and the URL (URI) of the page is deterministic and depends on
the place’s ID in the database. This is meant to be a citeable resource by others.

52

Damast v1.1.4 4 FRONTEND STRUCTURE

The place URI page shows the following:

e place name

e geographical position

e place type

e location confidence

e place comment

e alternative names and their language

e external URIs for the same place

e evidences for religions in that place, with time information
e evidences for persons in that place, with time information

e sources referencing this place

a section on how to cite the place

4.6. Reporting

Damast provides the option to generate a report from a specific subset of historical evidence. This subset is
derived from (1) the data contained in the database, and (2) a set of filters concerning different attributes
of that data. The format and options of these filters are formalized as JSONSchema, and they are a part of
the visualization state (see section 4.2.4.1). An appropriate file of filters can be obtained (downloaded) from
the settings pane of the visualization, or from an existing report. Report generation can also be triggered
directly from the visualization, in which case the state is passed to the report generation software behind
the scenes. In both cases, the filters used are those that are currently active in the visualization as well,
meaning that the report will contain the evidences currently shown in the visualization.

The report consists of multiple sections. First, metadata about the report, such as who provisioned it
and when, as well as a textual description of the filters applied within the report, and the cardinality of
data entities matching these filters. Then, the evidences are listed, and their contents are represented as
serialized texts. The entities contained in these evidences (places, religions, and persons) are then listed
individually with the relevant information (such as alternative names for the places), and an overall timeline
is shown. Finally, all sources these evidences were extracted from are listed.

All information in the individual sections is cross-referenced. So, there is a reference from an evidence
mentioning a place to the entry for that place in the report; and vice versa, the places, religions, and persons
reference all evidences they are mentioned in. Further, sources are referenced from the evidences, and the
evidences are again referenced as a list from the source section.

In the section of places, the report also shows a map where they are all marked together with the religions
mentioned in those places. This map is generated using matplotlib [3] and is saved both as an SVG file for
the HTML version of the report, and as a standalone PDF document for the PDF version. The PDF map
is also stored separately for download. The map uses Natural Earth '° vector map data, which is licensed
under CCO (public domain).

53

Damast v1.1.4 4 FRONTEND STRUCTURE

Restart report

e
failed
Report generation fails
" |Metadata in DB
Filter in DB
Error message in DB
started completed
il Report provisioned N _ |Metadata in DB
iiter UUID generated /" |Filter in DB Report finishes successfully ~|Metadata in DB \
Reports empty Filter in DB
Generating Reports in DB
N New report with same filter and new UUID Y,
Report not accessed for certain time or database too large \
evicted
- e/
Report accessed Metadata in DB
Filter in DB
Reports empty

Figure 32.: The lifecycle of report records in the database. After a report gets provisioned, it is in started
state while the report generation code runs. If that fails, it enters failed state, otherwise it
is completed. After a while of not being accessed, the finished report is evicted and only the
filter and metadata remain. On the next access, the report contents are re-generated from the
database.

54

Damast v1.1.4 4 FRONTEND STRUCTURE

4.6.1. Generating a Report

Reports are generated by a separate process within the Docker container that is launched by the server.
Figure 32 shows the lifecycle of reports. First, the Flask server generates a UUID for the report; and writes
that, the metadata, and the filter into the report database. At that point, the state of the report is started.
Then, it launches the report generation process, passing it the UUID. The report generation process then
reads the filter from the database, collects the data from the PostgreSQL database, and generates the report
content. The content is put together via Jinja2 templates into a HTML page (section 4.6.3) and a TEX file,
the latter of which is is then compiled into a PDF file (section 4.6.4).

Once the contents are generated, they are GZIP-compressed and written back into the SQLite3 database.
The state of the report is then set to completed. If an error occurs during report generation, instead an
error message is written to the HTML file content in the SQLite3 database, and the state is set to failed.

The report contents can be several megabytes large, depending on the number of evidences contained. To
limit storage space requirements on long-running installations, it might be desirable to clean up old, unused
reports. This can always be done from the outside, for example with a cron(8) job, working directly
with the SQLite3 database. However, this might not be an ideal solution if generated reports should be
guaranteed to persist. For this, the special evicted report state exists, into which a report can be moved.
In that state, the filters and metadata remain in the database, but the report contents are deleted. The next
access to that report then trigger the re-generation of the report?’, and move it back to the started state.
Report eviction can also be done manually by setting the content fields to NULL in the SQLite3 database,
and the state field’s value to >evicted’. There is also the option to configure the Damast system to handle
this automatically via two environment variables:

DAMAST REPORT_EVICTION DEFERRAL: If this variable exists and is not empty, it specifies a number in days.
A report is moved to the evicted state if it has not been accessed® for at least that many days. A
good number of days to set here could be 90 (three months).

DAMAST_REPORT_EVICTION_MAXSIZE: If this variable exists and is not empty, it specifies a file size number
in megabytes. The server then regularly checks whether the sum of report content sizes exceeds that

size. If so, it will evict the least-accessed reports until that sum is less than that size. A good number
to specify here could be 5,000 (5 GB).

4.6.2. Accessing a Report

Existing reports can be accessed via their UUID. When generating a report, the user is redirected to the
URL where the HTML report (section 4.6.3) is later shown. While the report is in started state, a wait
page is shown that reloads automatically from time to time. In failed state, the error message is shown,
and in evicted state, opening the page triggers re-generation of the report, and the started state’s wait
page is shown again. Separate links exist to the PDF version of the report (section 4.6.4) and the standalone
map. All links require knowledge of the report UUID, or access via the list of exiting reports (section 4.6.5).

4.6.3. HTML Report

The HTML report is rendered from a HT'ML Jinja2 template, which in turn uses many smaller templates
and macros to create the contents. The HT'ML report content stored in the SQLite3 database is rendered
on demand into a template in the website hosted by Damast. Besides its contents, it contains links to the

Yhttps://www.naturalearthdata.com

2Important note about report eviction: If the goal is to guarantee that reports are always recallable in that state, two
other things need to be guarantee on that system: (1) The software version of the Damast system (or at least the report
generation software and templates) must not change, and (2) the contents of the underlying PostgreSQL database must not
change.

2INote that eviction deferral does not consider the time since the creation of the report, but rather the time since its last
access. Reports might be generated and never again accessed, but they might also be accessed on regular basis, in which
case eviction would be deferred.

55

https://www.naturalearthdata.com

Damast v1.1.4 4 FRONTEND STRUCTURE

PDF version, the standalone map, the filters used, a trigger to re-generate the report now, and a link to
the visualization, which is then opened with these filters active.

4.6.4. PDF Report

The PDF report is generated using KTEX, specifically XAlATEX. In a first step, the TgX code is rendered
from a Jinja2 template, which in turn uses many smaller templates and macros to create the contents. The
latexmk utility is then used to compile the TEX code within the Docker container. The resulting PDF file is
stored into the SQLite3 database. Accessing the PDF file?? then offers the PDF file for download. The PDF
version of the map is used in the PDF report and compiled into it by XfgI4TEX. It can also be downloaded
separately?3.

4.6.5. List of Reports

In the miscellaneous pages (see section 4.7), a page that lists existing reports is also available. Users with
the admin role see all reports in the database, other users only see their own. However, this page only exists
for users that are logged in, not for anonymous visitors. This is because visitors (if they have the reporting
role) all generate reports under the visitor pseudo-user, and there is no way to determine which reports
a visitor has provisioned.

The list shows the user, UUID, server version, start time, run duration, and number of evidences. Further,
there are links to the HTML and PDF versions, the standalone PDF map, and the filter file. Another link
will trigger report re-generation with the same filters?*. Lastly, a link to the visualization will open that
with the filters of that report active.

4.7. Other Pages

A few other, miscellaneous pages exist on the docs blueprint. These also include an index page under
${DAMAST_PROXY_PREFIX}/docs/ that shows links to all of these pages that the user is allowed to visit.

4.7.1. Documents

The documents page contains links to a few smaller pages and utilities. Some of these are not available to all
users, but only to developers or administrators. Besides the page links listed in the following, the documents
page also has links to the report creation page and the list of existing reports detailed in section 4.6.

Database edit log. This page is visible only to administrators (role admin). It details the contents of the
user_action table in reverse chronological format. This data can be reviewed for provenance, or to quickly
retrieve an old value from a database entry after a mistake in an edit.

REST API documentation. This page is visible to all developers (role dev), and contains a list of the
endpoints in the REST API (see section 3.4). They are the HTTP endpoints under /rest/, which are listed
in the form they are defined in Flask. The URL and possible HT'TP verbs are extracted from Flask runtime
information, and the documentation string is taken directly from the Python docstring of that method. The
REST API methods’ docstring are all quite detailed and show request and response content types, possible
values and data entries, and payload or response examples, where applicable.

*2Via ${DAMAST_PROXY_PREFIX}/reporting/<uuid>/pdf

?3Via ${DAMAST_PROXY_PREFIX}/reporting/<uuid>/map

24This will create a new report and UUID. Note that this does not make sense on a system where the PostgreSQL database
contents never change.

56

Damast v1.1.4 4 FRONTEND STRUCTURE

Annotator user guide. The annotator user guide explains how the annotator works and is used in great
detail, and with example images. This page is visible to all users with the annotator role. The annotator
user guide is the basis for the text in section 4.4.

PostgreSQL Database Schema. Download link to a PDF of the database structure. This link is available
to all developers (role dev) and to users with the pgadmin role. The PDF is the same as fig. 1, enclosed in
a page with headers and footers.

Download database dump. Download link to a SQL dump of the entire database. The file is served as
GZIP-ed SQL, and is generated on the fly. This functionality is available to all users. However, if the
requesting user does not have the admin role, the dump is data-only, and also omits the action_type,
user, and user_action provenance tables described in section 2.1.2.

4.7.2. GDPR, Imprint, Cookie Preferences

A separate blueprint serves pages for the GDPR?® content. These pages are accessible even without login,
and are available as links in the footer of each page?®. A general data protection page states what data is
collected from visitors, and what rights they have under GDPR. The imprint (Impressum) page contains
information about how to get in touch with the website administrators. Finally, the websites use cookies
and localStorage to store state and information on the user’s computer. These are used for login, but also
for functionalities such as storing table or visualization layout. In accordance to §7 €2 GDPR, consent to
store these cookies needs to be given explicitly by users. For this, they are shown a consent popup when
they first visit the site, with the choices of (1) no cookies, (2) only necessary cookies, or (3) all cookies.
Users must be able to amend or withdraw consent at any time (§7 €3 GDPR), so the consent settings
shown in the popup are also available as a separate page.

Users must consent to necessary cookies (option (2)) to be able to login, as the session cookie must
be stored. Further, the consent itself is stored as a cookie. Consequently, visitors who reject all cookies
(option (1)) will be shown the cookie consent popup each time they open a page, as there is no way to store
their choice. The “all cookies” option (3) is necessary to use additional features such as storing custom
visualization and table layouts.

When hosting the Damast system somewhere else, a different imprint than the default one is needed if
the administrators and hosting organization differ. Probably, the data protection page needs to be modified
as well. Here, the blueprint override functionality discussed in section 3.3.2 can come in handy.

4.7.3. Login and Password Management

A blueprint provides login and logout functionality, as well as a page to change the current user’s password.
These are linked in the top right of the page, in the header. If a visitor is not logged in, a link to the login
page is shown there. If they are logged in, the user’s name, a link to the password change page and a link
to log out is shown.

On the password change page, the user must enter their current and their new password, and then
submit. The server backend will check that the old password matches, and that the new password has
sufficient complexity (entropy). If that is the case, the password hash is updated in the user database and
the session token is renewed.

GDPR: Ceneral Data Protection Regulation of the European Union. Called DSGVO (Datenschutzgrundverordnung) in
German.
26Tn the visualization, which has a tighter layout without a footer, these links are placed in the header instead.

57

Damast v1.1.4 FRONTEND STRUCTURE

Bibliography

Stuart K Card, Jock D Mackinlay, and Ben Shneiderman. Readings in information visualization: Using
viston to think. Morgan Kaufmann Publishers Inc., 1999.

Max Franke, Ralph Barczok, Steffen Koch, and Dorothea Weltecke. “Confidence as First-class Attribute
in Digital Humanities Data”. In: Proceedings of the 4 VIS4DH Workshop (Oct. 2019). URL: http:
//vis4dh.dbvis.de/papers/2019/VIS4DH2019_paper_1.pdf.

J D Hunter. “Matplotlib: A 2D graphics environment”. In: Computing in Science & Engineering 9.3
(2007), pp. 90-95. DOL: 10.1109/MCSE. 2007 . 55.

Dorothea Weltecke, Steffen Koch, Ralph Barczok, Max Franke, and Bernd Andreas Vest. Data Collected
During the Digital Humanities Project 'Dhimmis & Muslims - Analysing Multireligious Spaces in the
Medieval Muslim World’. Version 1. DaRUS, Mar. 2022. DOT: 10.18419/darus-2318. URL: https:
//darus.uni-stuttgart.de/dataset.xhtml?persistentId=doi:10.18419/darus-2318.

58

http://vis4dh.dbvis.de/papers/2019/VIS4DH2019_paper_1.pdf
http://vis4dh.dbvis.de/papers/2019/VIS4DH2019_paper_1.pdf
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.18419/darus-2318
https://darus.uni-stuttgart.de/dataset.xhtml?persistentId=doi:10.18419/darus-2318
https://darus.uni-stuttgart.de/dataset.xhtml?persistentId=doi:10.18419/darus-2318

Damast v1.1.4 A REST API ENDPOINT DOCUMENTATION

A. REST API Endpoint Documentation

/rest/annotation-suggestion/<int:as_id> (DELETE) (OPTIONS)

Delete an annotation suggestion.

/rest/annotation/<int:annotation_id> (DELETE) (HEAD) (OPTIONS) (PATCH]

CRUD endpoint to get document metadata for a document.

[al1] @param annotation_id ID of annotation

GET Q@returns application/json

Get the annotation data for annotation ‘annotation_id‘. Example payload:

{
"id": 1,
"document_id": 3,
"span": "(422,431)",
"comment": "comment content"
}
PUT @returns application/json

Create a new annotation. Returns the created annotation tuple’s ID. Example payload:

{
"document_id": 4,
"span": "[0, 101",
"comment": "foo bar"
}
PATCH Q@returns 205 Reset Content; empty body

Modify an existing annotation. Example payload:

{
"comment": "new comment"
X
DELETE Q@returns application/json

Delete an annotation, and its connected instance. This will fail if the
instance is still in use by an evidence tuple. Returns the deleted
annotation’s and instance’s IDs.

/rest/annotator-evidence-list

59

Damast v1.1.4 A REST API ENDPOINT DOCUMENTATION

This endpoint returns a list of ‘evidence_id‘, ‘document_id‘ tuples for all
evidence that was created using the annotator; i.e., all evidence whose
instances are connected to annotations.

Example return value excerpt:

([8122, 1], [8125, 1], [8145, 2], ...]

/rest/confidence-values HEAD) (OPTIONS

Get a list of all confidence values.
@returns application/json
Example return value:

[’false’, ’uncertain’, ’contested’, ’probable’, ’certain’]

/rest/document/<int:document_id> HEAD/J [OPTIONS

CRUD endpoint to get document content for a document.

GET @param document_id ID of document
Oreturns document.content_type

This endpoint gets the actual document data for the document with ID
‘document_id‘. Because those documents can be quite large, this endpoint
supports the ‘Range‘ HTTP header, but only in the following forms:

For ‘text/plain‘ type documents: ‘Range: bytes=[n]-[m]°¢
For ‘text/html‘ type documents: ‘Range: content-characters=[n]-[m]°

where ‘[n]¢ and ‘[m]‘ are both optional numbers. A range

header with more than one range is not supported at the moment. The return
code of the request is either 200 or 206 for successful requests, 416, 400
or 404 for unsuccessful requests.

SIDENOTE: The ‘<unit>=-<suffix-length>‘ variant of the ‘Range‘ header is
currently not supported correctly, but instead is interpreted as
‘<unit>=0-<suffix-length>‘.

/rest/document/<int:document_id>/annotation-list HEAD] (OPTIONS

REST endpoint to get a list of annotations associated with a document.

This is a slice of the ‘annotation_overview‘ VIEW. It contains all the data
from the ‘annotation‘ table, alongside the connected instance IDs and
evidence ID. The ‘span‘ property is an array with the first and last
inclusive index of the annotation. As an instance can be part of multiple
evidence tuples (i.e., an annotation can be in multiple groups), the
‘evidence_ids‘ is an array.

Example return value for ¢/rest/document/1/annotation-list‘:

[
{
"id": 1,
"document_id": 1,

60

Damast v1.1.4 A REST API ENDPOINT DOCUMENTATION

"span": [0, 4 1],

"comment": "test comment",
"place_instance_id": null,
"person_instance_id": 1623,
"religion_instance_id": null,
"time_group_id": null,
"evidence_ids": [3611]

This endpoint can also be requested as in LD-JSON format. In this case, it

is assumed to be required for the Recogito tool. NOTE that to properly show
the annotations in Recogito, the ‘{ mode: ’pre’ }‘ configuration value must
be set, as the DOM annotator we use internally respects all white-space in

the document without collapsing it.

Example return value excerpt for

GET /rest/document/7/annotation-list
Accept: application/ld+json

L
{
"Qcontext": "http://www.w3.org/ns/anno.jsonld",
"body": [
{
"purpose": "tagging",
"type": "TextualBody",
"value": "Religion"
3,
{
"purpose": "tagging",
"type": "TextualBody",
"value": "Christianity"
¥
1,
"id": "#31847",
"target": {
"selector": [
{
"end": 479,
"start": 474,
"type": "TextPositionSelector"
1,
{
"exact": "Amen.",
"type": "TextQuoteSelector"
b
]
s
"type": "Annotation"
3,
{

"@context": "http://www.w3.org/ns/anno.jsonld",
ubodyll : [

61

Damast v1.1.4 A REST API ENDPOINT DOCUMENTATION

"purpose": "tagging",
"type": "TextualBody",
"value": "religion"

3
1,
"id": "#5843_religion",
"motivation": "linking",
"target": [
{
"id": "#31826"
3,
{
"id": "#31840"
X
1,
"type": "Annotation"

s

]
/rest/document/<int:document_id>/annotation-suggestion-list

REST endpoint to get a list of annotation suggestions associated with a document.
@returns application/json

Exemplary return value except:

L
{

"document_id": 3,

"entity_id": 772,

"id": 830681,

"source": [
"name"

1,

"span": [
1372645,
1372657

1,

lltypell: llplacell

1},

]
/rest/document/<int:document_id>/evidence-list
Get a list of evidence tuples based on a document.
@param document_id ID of document
O@returns application/json

An evidence tuple is based on a document if any of its instances’
annotations is located in that document.

Example return value excerpt:

62

Damast v1.1.4 A REST API ENDPOINT DOCUMENTATION

"comment": "Bischof nachgewiesen",
"id": 1632,
"interpretation_confidence": null,
"person_instance_id": null,
"place_instance_id": 1632,
"religion_instance_id": 1632,
"time_group_id": 1632,

"visible": true

]
/rest/document/<int:document_id>/metadata

CRUD endpoint to get document metadata for a document.

GET @param document_id ID of document
Oreturns application/json

Example return value for ‘/document/3/metadata‘:

{
"comment": "Michael Rabo, Chronography",
"content_length": 2926379,
"content_type": "text/html;charset=UTF-8",
"default_source_confidence": null,
"document_version": 1,
"id": 3,
"source_id": 67,
"source_name": "Michael der Syrer; Moosa, Matti (2014): The Syriac ...",
"source_type": "Primary source"

}

/rest/document/list

GET a list of all documents.

Example return value excerpt:

[
{
"comment": "Michael Rabo, Chronography",
"content_length": 3012062,
"content_type": "text/html;charset=UTF-8",
"default_source_confidence": null,
"document_version": 1,
"id": 3,
"source_id": 67,
"source_name": "Michael der Syrer; Moosa, Matti (2014): The Syriac ...",
"source_type": "Primary source"
1,
]

63

Damast v1.1.4 A REST API ENDPOINT DOCUMENTATION

/rest/dump/ HEAD) (OPTIONS

Get a database dump of the PostgreSQL database.
@returns application/sql

This dumps the database and returns the SQL. If the user requesting it is
an administrator, the entire database is dumped, including the user and
provenance tables.

/rest/evidence-list

Get a list of compact evidence tuples from the view ‘place_religion_overview‘.
O@returns application/json

This replaces the ‘/PlaceReligion‘ API endpoint of the old servlet
implementation. Returns a JSON array of objects with a place ID, evidence
tuple ID, religion ID, and a time span. Only evidences with
‘evidence.visible‘, ‘place.visible‘ and ‘place_type.visible‘ are listed!

Example return value excerpt:

[
{

"place_id": 1,

"religion_id": 4,

"time_span": {
"end": 1200,
"start": 800

},

"tuple_id": 1,

"source_ids": [12]

1,

]
/rest/evidence/<int:evidence_id> (DELETE) (HEAD) (OPTIONS) (PATCH]

CRUD endpoint to manipulate evidence tuples.

[all] @param evidence_id ID of evidence tuple, O or ‘None‘ for PUT
C/PUT @payload application/json
Qreturns application/json

Create a new evidence tuple. ‘place_instance_id‘ and ‘religion_instance_id°‘
are required fields, the rest (‘person_instance_id‘, ‘time_group_id°¢,
‘comment‘, ‘interpretation_confidence‘, ‘visible‘) is optional. Returns the
IDs for the created evidence.

Exemplary payload for ‘PUT /evidence‘:

{
"place_instance_id": 202,
"religion_instance_id": 7,
"person_instance_id": 12,
"time_group_id": 4,
"interpretation_confidence": "probable",
"visible": true,

64

Damast v1.1.4 A REST API ENDPOINT DOCUMENTATION

"comment": "evidence comment: test"

R/GET Q@returns application/json

Get one evidence tuple, specified by ‘evidence_id‘. Request takes no
payload and returns a JSON object with data from a bunch of tables
(‘place‘, ‘religion‘, ‘time_span‘, ‘source_instance‘, ‘source‘, and
intermediary tables).

Exemplary reply for ‘GET /evidence/64°¢:

{
"evidence_id": 64,
"interpretation_confidence": null,
"location_confidence": null,
"place_attribution_confidence": null,
"place_comment": "",
"place_geoloc": null,
"place_id": 46,
"place_instance_comment": null,
"place_name": "Beth Sayda",
"religion_confidence": null,
"religion_id": 4,
"religion_instance_comment": null,
"religion_name": "Syriac Orthodox Church",
"sources": [
{
"source_id": 1,
"source_instance_comment": ""
"source_name": "OCN = Fiey, [...]",
"source_page": "179"
1,
{
"source_id": 2,
"source_instance_comment": "Levenq, G. (1935). : s. v. Bé&th Saida. [...],
"source_name": "DHGE = Aubert, [...],
"source_page": "8, 1239-1240"
}
1,
"time_group_id": 64,
"time_spans": [
{
"comment": null,
"confidence": null,
"end": 1277,
"start": 1261
}
]
}
U/PATCH @payload application/json
Q@returns application/json

Update one or more of the fields ‘comment‘, ‘interpretation_confidence®,
‘visible‘, ‘person_instance_id‘, or ‘time_group_id‘. The

65

Damast v1.1.4 A REST API ENDPOINT DOCUMENTATION

‘religion_instance_id‘ and ‘place_instance_id‘ CANNOT be updated for an
existing evidence tuple.

Exemplary payload for ‘PATCH /evidence/12345¢:

{
"visible": false,
"comment": "updated comment...",
"person_instance_id": 1234
3
D/DELETE @param cascade=0]|1

Qreturns application/json

Delete evidence. If the ‘cascade‘ parameter is 1, also delete all related
entities. Write ‘user_action‘ log, return a JSON with all deleted IDs.

/rest/evidence/<int:evidence_id>/source-instances

Get all source instance entries for evidence ‘evidence_id‘.

Oparam evidence_id ID of evidence tuple
Q@returns application/json

Exemplary return value for ‘GET /evidence/3662/source-instances‘:

[
{
"comment": "new comment",
"evidence_id": 3662,
"id": 4702,
"source_id": 3,
"source_page": null,
"confidence": "contested"
},
{
"comment": "new comment 2",
"evidence_id": 3662,
"id": 4703,
"source_id": 1,
"source_page'": "test",
"confidence": "probable"
}
]

/rest/evidence/<int:evidence_id>/tags

Get or set tag set for evidence.
O@param evidence_id ID of evidence
GET

Get list of tag IDs as array.

Q@returns application/json

Return value example for ‘GET /rest/evidence/1/tags‘:

66

Damast v1.1.4

[1,4,6]

PUT

Replace list of tag IDs. Takes a JSON array as payload.

Q@returns nothing

Payload value example for ‘PUT /rest/evidence/1/tags‘:

[1,2]

/rest/find-alternative-names

A REST API ENDPOINT DOCUMENTATION

Retrieve ‘place.id‘ where the alternative name matches the ‘regex‘.

Opayload application/json
Oparam ‘regex‘ ECMA-Script regular expression

@param ‘ignore_case‘ If ‘true‘, regex is case-insensitive

Q@returns application/json

As alternative names are not loaded initially, this API endpoint is used to
retrieve places’ ‘id‘ for text search in the location list, where an
alternative name matches the search term ‘regex‘. This API endpoint then

returns a JSON array of ‘place.id‘ for matching places.

Example response for case-insensitive serarch of "ko[a-g]":

> POST /rest/find-alternative-names HTTP/1.1
> Content-Type: application/json
>
{
"ignore_case": true,
"regex": "kol[a-g]"

3

V V V Vv V

< HTTP/1.1 200 OK
< Content-Type: application/json

L
236,
694,
493
]

/rest/languages-list

AR AN AN AN ANA

Get a list of all religionms.

O@returns application/json

This returns a JSON array of objects with ‘id‘ and ‘name‘ from table
‘language‘. This API endpoint replaces ‘/LanguagesList‘ in the old servlet

implementation.

Example return value excerpt:

67

Damast v1.1.4 A REST API ENDPOINT DOCUMENTATION

C
{
"id": 1,
"name": "Arabic - DMG"
3,
{
"id": 2,
"name": "Arabic - AS"
s
]
/rest/person-instance/<int:person_instance_id> (DELETE) (HEAD) (OPTIONS] (PATCH)

CRUD endpoint to manipulate person instances.

[all] O@param person_instance_id ID of person instance, O or ‘None‘ for PUT
C/PUT @payload application/json
Q@returns application/json

Create a new person instance. ‘person_id‘¢ is a required field.

‘confidence‘, ‘comment‘, and ‘annotation_id‘ are optional. Returns the ID

for the created person instance.

Exemplary payload for ‘PUT /person-instance/0°‘:

{
"person_id": 12,
"confidence": "certain",
"comment": "foo bar"
}
R/GET @returns application/json

Get one person instance.

Exemplary reply for ‘GET /person-instance/64°:

{
"id": 64,
"confidence": "certain",
"comment": "baz",
"annotation_id": null
}
U/PATCH @payload application/json
Q@returns application/json
Update one or more of the fields ‘person_id‘, ‘comment‘, ‘confidence‘, or

‘annotation_id‘.
Exemplary payload for ‘PATCH /person-instance/12345°:

{

68

Damast v1.1.4 A REST API ENDPOINT DOCUMENTATION

"comment": "updated comment...",
}
D/DELETE G@returns application/json

Delete person instance. Write ‘user_action‘ log, return a JSON with all
deleted IDs.

/rest/person-list

Get content of table ‘person‘ as a list of dicts.
@return application/json

Example return value excerpt:

[
{
"comment": null,
nidr: 23,
"name": "John bar Hebraye of Tarsus (appr. 667)",
"person_type": 2,
"time_range": ""
},
]
/rest/person-type-list

Get a list of all person types.
Q@returns application/json

This returns a JSON array of objects with ‘id‘, and ‘type‘ from table
‘person_type‘.

Example return value excerpt:

[
{
"id": 1,
"type" . IIBishopll
},
]
/rest/person/<int:person_id> (DELETE) (HEAD] (OPTIONS] (PATCH]

CRUD endpoint to manipulate person tuples.

[a11] O@param person_id ID of person tuple, O or ‘None‘ for PUT
C/PUT @payload application/json
Q@returns application/json

Create a new person tuple. ‘name‘ is a required field, the rest is optional.
Returns the ID for the created entity. Fails if a person with that name
already exists.

69

Damast v1.1.4 A REST API ENDPOINT DOCUMENTATION

Exemplary payload for ‘PUT /person/0¢:

{
"name": "Testperson",
"comment": "Test comment",
"time_range": "6th century",
"person_type": 2
X
R/GET Q@returns application/json

Get person data for the person with ID ‘person_id‘.

@param person_id Integer, ‘id‘ in table ‘person®
Q@returns application/json

This returns the data from table ‘person‘ as a single JSON object.

Example return value:

{
"id": 12,
"name": "Testperson",
"comment": "Test comment",
"time_range": "6th century",
"person_type": 2
}
U/PATCH @payload application/json
Qreturns application/json
Update one or more of the fields ’comment’, ’name’, ’time_range’,

’person_type’, or ’name’.

Exemplary payload for ‘PATCH /person/12345°:

{
"comment": "updated comment...",
"name": "updated name"
3
D/DELETE Qreturns application/json

Delete a person if there are no conflicts. Otherwise, fail. Returns the ID
of the deleted tuple.

/rest/place-instance/<int:place_instance_id> (DELETE) (HEAD) (OPTIONS] (PATCH)

CRUD endpoint to manipulate place instances.

[al1] O@param place_instance_id ID of place instance, O or ‘None‘ for PUT
C/PUT @payload application/json
Oreturns application/json

70

Damast v1.1.4 A REST API ENDPOINT DOCUMENTATION

Create a new place instance. ‘place_id‘ is a required field.
‘confidence‘, ‘comment‘, and ‘annotation_id‘ are optional. Returns the ID
for the created place instance.

Exemplary payload for ‘PUT /place-instance/0°‘:

{
"place_id": 12,
"confidence": "certain",
"comment": "foo bar"
}
R/GET @returns application/json

Get one place instance.

Exemplary reply for ‘GET /place-instance/64°:

{
"id": 64,
"confidence": "certain",
"comment": "baz",
"annotation_id": null
}
U/PATCH @payload application/json
Qreturns application/json
Update one or more of the fields ‘place_id‘, ‘comment‘, ‘confidence‘, or

‘annotation_id*¢.

Exemplary payload for ‘PATCH /place-instance/12345°¢:

{
"comment": "updated comment...",
}
D/DELETE @returns application/json

Delete place instance. Write ‘user_action‘ log, return a JSON with all
deleted IDs.

/rest/place-list HEAD) (OPTIONS

Get a list of places.

Qarg filter An array of arrays specifying an advanced filter
Q@returns application/json

This returns all tuples from the view ‘place_overview‘ as a JSON array of
objects. The overview contains geographical location, place ID, location
confidence, place name, and place type name.

If ‘filter‘ is specified, the resulting values are restricted.

Example return value excerpt:

71

Damast v1.1.4 A REST API ENDPOINT DOCUMENTATION

L
{
"geoloc": {
"lat": 36.335,
"lng": 43.11889
3,
"id": 1,
"location_confidence": null,
"name": "Mosul",
"place_type": "Settlement"
1,
]
/rest/place-list-detailed

Get a list of places, with more details.
Q@returns application/json

Example return value excerpt:

[
{

"external_uris": [
"IndAnat:37356",
"https://nisanyanmap.com/?7yer=37356",
"syriaca:285",
"https://syriaca.org/place/285",
"EI2:SIM_0749",
"http://dx.doi.org/10.1163/1573-3912_islam_SIM_0749",
"ET1:SIM_0872",
"http://dx.doi.org/10.1163/2214-871X_eil_SIM_0872",
"EI3:COM_23768",
"http://dx.doi.org/10.1163/1573-3912_ei3_COM_23768"

1,

"name_vars": [
"Arzun, Arzon",
"Arzin, Arzon",

n n
c ooy

"Arzan",
n n

1,

"place_comment": "There are two Arzan. [...]",
"place_id": 36,

"place_name": "Arzan"

1,

]
/rest/place-set (HEAD) (OPTIONS) (POST)

REST endpoint for place sets. Place sets are used as a filtering
possibility in the visualization, and are stored in the database to be
shared between users.

GET Returns a JSON list of all place sets in the database.

POST Accepts ONE JSON place set as a payload. Depending on whether
the UUID exists in the database already, the entry is either

72

Damast v1.1.4 A REST API ENDPOINT DOCUMENTATION

overwritten, or a new entry is created.
/rest/place-type-list
Get a list of all place types.

O@returns application/json

This returns a JSON array of objects with ‘id‘, ‘type‘, and ‘visible‘ from
table ‘place_type‘. This API endpoint replaces ‘/PlaceTypelist‘ in the old

servlet implementation.

Example return value excerpt:

L
{
"id": 1,
"type": "Unknown",
"visible": true

3,

/rest/place/<int:place_id> (DELETE] (HEAD) (OPTIONS] (PATCH)

CRUD endpoint to manipulate place tuples.

[al1] @param place_id ID of place tuple, O or ‘None‘ for PUT
C/PUT @payload application/json
@returns application/json

Create a new place tuple. ‘name‘ is a required field, the rest is optional.
Returns the ID for the created entity. Fails if a place with that name

already exists.

Exemplary payload for ‘PUT /place/O°:

{
"name": "Testplace",
"comment": "Test comment",
"geoloc": "(48.2,9.6)",
"confidence": "contested",
"visible": true,
"place_type_id": 2

¥

R/GET Q@returns application/json

Get place data for the place with ID ‘place_id®.

@param place_id Integer, ‘id‘ in table ‘place®
O@returns application/json

This returns the data from table ‘place‘ as a single JSON object.

Example return value (2020-01-09) of ‘GET /place/12°:

73

Damast v1.1.4 A REST API ENDPOINT DOCUMENTATION

{
"comment": "Gesch\uOOe4tzt nach Iraq and the Persian Gulf [...]",
"confidence": null,
"geoloc": "(33.542,44.3726)",
"geonames": "...",
"google": "...",
"id": 12,
"name": "al-Baradan",
"place_type_id": 3,
"syriaca": null,
"visible": true
}
U/PATCH @payload application/json
Q@returns application/json
Update one or more of the fields ’comment’, ’confidence’, ’visible’,
’place_type_id’, ’geoloc’, or ’name’.

Exemplary payload for ‘PATCH /place/12345°¢:

{
"visible": false,
"comment": "updated comment..."
}
D/DELETE @returns application/json

Delete a place if there are no conflicts. Otherwise, fail. Returns the ID
of the deleted tuple.

/rest/place/<int:place_id>/alternative-name/<int:name_id> DELETE HEAD] [OPTIONS
PATCH

CRUD endpoint to manipulate alternative names.

[al1] @param place_id ID of place tuple
[al1] @param name_id ID of name_var tuple, O or ‘None‘ for PUT
C/PUT @payload application/json

@returns application/json

Create new alternative name. ‘name‘ and ‘language_id‘ are required

Exemplary payload for ‘PUT /place/1234/alternative-name/0°‘:

{
"name": "Testplace",
"language_id": 2
}
R/GET Q@returns application/json

74

Damast v1.1.4 A REST API ENDPOINT DOCUMENTATION

Get alternative name tuple.
Example return value of ‘GET /place/1234/alternative-name/5678°:
{
"id": 5678,
"place_id": 1234,

"name": "Dummy test name",
"language_id": 12

U/PATCH @payload application/json
Qreturns application/json

Update one or more of the fields ’name’ and ’language_id’.
Exemplary payload for ‘PATCH /place/alternative-name/5678°¢:
{
"name": "New name",
"language_id": 13
}

D/DELETE @returns application/json

Delete an alternative name tuple. Returns the ID of the deleted tuple.

/rest/place/<int:place_id>/alternative-name/all

Get a list of all alternative names for place with ID ‘place_id°‘.
Q@returns application/json

Exemplary return value for ‘GET /place/1234/alternative-name/all‘:

L
{
"id": 5678,
"place_id": 1234,
"name": "Dummy test name",
"language_id": 12
3,
{
"id": 5679,
"place_id": 1234,
"name": "Dummy test name 2",
"language_id": 4
X,
]
/rest/place/<int:place_id>/details
Retrieve more details for the place with ID ‘place_id°‘.
@param ‘place_id‘ ‘id¢ in table ‘place’
Q@returns application/json

75

Damast v1.1.4 A REST API ENDPOINT DOCUMENTATION

This API endpoint is aimed at the location list of the visualization, where
tooltips show more details for a place on hover. This information is not
loaded from the server initially for efficiency reasons. Instead, it is
queried when the tooltip is created.

As of now (2020-01-10), the call returns a JSON object containing the place
ID, the ‘comment‘ field from table ‘place‘, and an array of alternative
names for the place together with the respective language name. This will
exclude alternative names that are not main forms.

Example return value excerpt for ‘GET /place/14/details‘:

{
"alternative_names": [
{
"language": "Arabic - AS",
"name": "\u062d\u0644\u0628"

"language": "Arabic - DMG",
"name": "\ule24alab"

"language": "Syriac - SS",
"name": "\u071a\u0720\u0712 "
T,

1,
"comment": "[dummy] Comments are strings or null",
"place_id": 14,
"external_uris": [
"Syriaca:3055",

1,
}

/rest/place/<int:place_id>/evidence

Retrieve religion evidence for the place with ID ‘place_id‘.

@param ‘place_id‘ ‘id‘ in table ‘place’
O@returns application/json

This replaces the ‘/Religions‘ endpoint in the old servlet implementation.

Returns a list of evidences, with comments and confidences, time spans, and
sources.

Example return value excerpt for ‘GET /place/12/evidence‘:

{
"place_id": 12,
"evidence": [
{

"evidence_id": 17,
"interpretation_confidence": null,
"place_attribution_confidence": null,
"place_id": 12,
"place_instance_comment": null,

76

Damast v1.1.4 A REST API ENDPOINT DOCUMENTATION

"religion_confidence": null,
"religion_id": 5,
"religion_instance_comment": null,

"religion_name": "Church of the East",
"sources": [
{
"source_id": 8,
"source_instance_comment": "Neuer Eintrag",
"source_name": "AKg = Jedin, Hubert; Martin, Jochen (Hg.) (1987): [...1",
"source_page": "26"
}
1,
"time_spans": [
{
"comment": null,
"confidence": null,
"end": 1200,
"start": 800
}
]

/rest/place/<int:place_id>/evidence-ids

Get all evidence tuple IDs for the place with ID ‘place_id‘.
@returns application/json

Example return value exerpt for ‘/place/12/evidence-ids‘:

L
1,
5,
12,
191,

]
/rest/place/<int:place_id>/external-uri-list

Get a list of external URIs for a place.

@param place_id ID of place
O@returns application/json

Example return value excerpt for ‘GET /rest/place/12/external-uri-list‘:

[
{
"id": 1,
"place_id": 12,
"uri_namespace_id": 1,
"uri_fragment": "27223",
"comment": null
}
]

7

Damast v1.1.4 A REST API ENDPOINT DOCUMENTATION

/rest/place/<int:place_id>/external-uri-list

Get a list of external URIs for a place.

@param place_id ID of place
@returns application/json

Example return value excerpt for ‘GET /rest/place/12/external-uri-list‘:

[
{
"id": 1,
"place_id": 12,
"uri_namespace_id": 1,
"uri_fragment": "27223",
"comment": null
}
]
/rest/place/all

Get content of table ‘place‘ as a list of dicts.
O@return application/json

Example return value excerpt:

L
{
"comment": "Unknown place",
"confidence": null,
"geoloc": null,
"id": 448,
"name": "Dirigh",
"place_type_id": 4,
"visible": true
1,
]
/rest/places

Get a list of places and their IDs.
O@returns application/json

This returns a list of place names and IDs.
Example return value excerpt:

[
{
"id": 1,
"name": "Mosul",

1,

78

Damast v1.1.4 A REST API ENDPOINT DOCUMENTATION

/rest/religion-instance/<int:religion_instance_id> (DELETE] (HEAD) (OPTIONS] (PATCH)

CRUD endpoint to manipulate religion instances.

[al1] O@param religion_instance_id ID of religion instance, O or ‘None‘ for PUT
C/PUT @payload application/json
Oreturns application/json

Create a new religion instance. ‘religion_id‘ is a required field.
‘confidence‘, ‘comment‘, and ‘annotation_id‘ are optional. Returns the ID
for the created religion instance.

Exemplary payload for ‘PUT /religion-instance/0°¢:

{
"religion_id": 12,
"confidence": "certain",
"comment": "foo bar"
}
R/GET Q@returns application/json

Get one religion instance.

Exemplary reply for ‘GET /religion-instance/64°:

{
"id": 64,
"confidence": "certain",
"comment": "baz",
"annotation_id": null
}
U/PATCH @payload application/json
@returns application/json
Update one or more of the fields ‘religion_id‘, ‘comment‘, ‘confidence‘, or

‘annotation_id*¢.

Exemplary payload for ‘PATCH /religion-instance/12345°¢:

{
"comment": "updated comment...",
}
D/DELETE @returns application/json

Delete religion instance. Write ‘user_action‘ log, return a JSON with all
deleted IDs.

/rest/religion-list HEAD) (OPTIONS

Get a list of religion names and IDs.

Q@returns application/json

79

Damast v1.1.4 A REST API ENDPOINT DOCUMENTATION

Example return value excerpt:

[
{
"id": 1,
"name": "Christianity",
"parent_id": null
},
{
"id": 5,
"name": "Church of the East",
"parent_id": 1
},
]

/rest/religions

Get a hierarchy of religions.

@returns application/json

This utilizes the ‘parent_id‘ attribute in the table ‘religion‘ to build a
list of trees. The return value is an array of JSON objects. Each root node
is a main religion, and one of its attributes is ‘children‘, holding an

array of children, which may again hold children, and so on.

Each node of each tree has the following, exemplary (2020-01-09) structure:

{
"abbreviation": "MARO",
"children": [...],
"color": "hs1(10, 80%, 50%)",
"id": 3,
"name": "Maronite Church",
"parent_id": 98

}

/rest/source-instance/<int:source_instance_id> (DELETE] (HEAD) (OPTIONS) (PATCH]

CRUD endpoint to manipulate source instance entries.

[al1] @param source_instance_id ID of tuple, ignored for PUT (use 0)
C/PUT @payload application/json
@returns application/json

Create a new source instance tuple. ‘source_id‘ is required in the payload,
‘source_page‘ and ‘comment‘ are optional. Returns the ‘id¢ of the created
tuple on success.

Exemplary payload for ‘PUT /source-instance/0°:

{
"comment": "new instance via PUT, 2",
"source_id": 3,
"source_page": "1--2",
"source_confidence": "contested",

"evidence_id": 12

80

Damast v1.1.4 A REST API ENDPOINT DOCUMENTATION

R/GET Q@returns application/json
Get one source instance tuple.

Exemplary return value for ‘GET /source-instance/4702¢:

{
"comment": "new comment",
"evidence_id": 3662,
"id": 4702,
"source_id": 3,
"source_page": null,
"source_confidence": "contested"
}
U/PATCH @payload application/json
Q@returns application/json

Update one or more of the fields ‘comment‘ or ‘source_page‘. All other fields or

connected entities must be modified via their respective endpoints.

Exemplary payload for ‘PATCH /source-instance/567‘:

{
"comment": "updated comment...",
"source_page": "6--7"
}
D/DELETE G@returns application/json

Delete all related entities, write ‘user_action‘ log, return a JSON with all deleted IDs.
Exemplary return valye for ‘DELETE /source-instance/5678°¢:
{
"deleted": {
"source_instance": 5678

}
}

/rest/sources-list HEAD) (OPTIONS

Get a list of all sources.

@returns application/json

This returns a JSON array of objects with ‘id‘ and ‘name‘ from table
‘source‘. This API endpoint replaces ‘/SourcesList‘ in the old servlet
implementation.

Example return value excerpt:

[

81

Damast v1.1.4 A REST API ENDPOINT DOCUMENTATION

{
"id": 32,
"name": "Bar Ebroyo / Wilmshurst",
"short": "Bar Ebroyo / Wilmshurst",
"default_confidence": "probable"

},

{
"id": 1,
"name": "Fiey, Jean Maurice (1993): Pour un Oriens [...]",
"short": "OCN",
"default_confidence": "certain"

},

]
/rest/tag-list

Get a list of tags.
Q@returns application/json

Example return value excerpt:

[
{
"id": 1,
"tagname": "bishopric",
"comment": "test comment"
1,
]
/rest/tag-sets HEAD) (OPTIONS

Get the set of evidence IDs for each tag.
Q@returns application/json

Example return value excerpt:

L
{
"tag_id": 1,
"evidence_ids": [1,2,3,6,37]
1,
{
"tag_id": 2,
"evidence_ids": [1,3]
1,
]
/rest/time-group/<int:time_group_id> (DELETE) (HEAD) (OPTIONS] (PATCH)

CRUD endpoint to manipulate time_group entries.

[all] Q@param time_span_id ID of tuple, ignored for PUT (use 0)
C/PUT @payload application/json
Oreturns application/json

82

Damast v1.1.4 A REST API ENDPOINT DOCUMENTATION

Create a new group tuple. Optionally takes a valid ‘annotation_id®.
Returns the ‘id¢ of the created tuple on success.

Exemplary payload for ‘PUT /time-group/0°¢:

{
"annotation_id": 412
X
R/GET Qreturns application/json

Get one time_group tuple.

Exemplary return value for ‘GET /time-group/3658°:

{
"annotation_id": null,
"time_group_id": 3658,
"time_spans": [
{
"comment": null,
"confidence": null,
"end": 988,
"start": 985,
"time_instance_id": 3658
¥
]
}
U/PATCH @payload application/json

Q@returns 204 NO CONTENT
Update the ‘annotation_id‘ field to a valid value, or ‘null‘.

Exemplary payload for ‘PATCH /time-group/789°:

{
"annotation_id": 456
}
D/DELETE @returns application/json

Delete all related entities, write ‘user_action‘ log, return a JSON with all deleted IDs.
Exemplary return value for ‘DELETE /time-group/5678°:

{

"deleted": {
"annotation": 4211,
"time_group": 5678,
"time_instance": [

19221,

83

Damast v1.1.4 A REST API ENDPOINT DOCUMENTATION

19222,
32115

/rest/time-group/<int:time_group_id>/time-instance/<int: time_instance_id>DELETE]
(HEAD) (OPTIONS) (PATCH)

CRUD endpoint to manipulate time_instance entries. The ‘time_group_id‘ and
‘time_instance.time_group_id‘ must match.

[al1] @param time_group_id ID of time_group tuple

@param time_instance_id ID of time_instance tuple, ignored for PUT
C/PUT @payload application/json

Q@returns application/json

Create a new timespan tuple. Optionally takes start, end, comment and
confidence. Returns the ID of the created tuple.

Exemplary payload for ‘PUT /time-group/2/time-instance/0°¢:

{
"start": 1200,
"end": 1300,
"comment": "New comment",
"confidence": "contested"
}
R/GET Qreturns application/json

Get one time_instance tuple.
Exemplary return value for ‘GET /time-group/3659/time-instance/3670°:

{
"comment": "new comment",
"confidence": "probable",
"end": 1299,
"id": 3669,
"start": null,
"time_group_id": 3659

U/PATCH @payload application/json
Q@returns 204 NO CONTENT

Update the start, end, confidence, or comment fields.

Exemplary payload for ‘PATCH /time-group/789/time-instance/1000°¢:

{
"start": 1238,

84

Damast v1.1.4 A REST API ENDPOINT DOCUMENTATION

"comment": "Start year now confirmed",
"confidence": "probable"
X
D/DELETE G@returns application/json

Delete tuple, write ‘user_action‘ log, return a JSON with deleted ID.

Exemplary return value for ‘DELETE /time-group/5678/time-instance/1234¢:

{
"deleted": {
"time_instance": 1234
}
}
/rest/uri/external-database-list HEAD] (OPTIONS

Get a list of external databases registered.
Q@returns application/json
This returns a list of all external_database tuples in the database as an array.

Example return value excerpt:

[
{
"id": 1,
"name": "Foo: the foo database",
"short_name": "Foo",
"url": "http://foo.bar/",
"comment": null
},
]
/rest/uri/external-person-uri-list

Get a list of external person URIs.
O@returns application/json

Example return value excerpt for ‘GET /rest/uri/external-person-uri-list‘:

[
{
"id": 1,
"person_id": 12,
"uri_namespace_id": 1,
"uri_fragment": "27223",
"comment": null
}
]

85

Damast v1.1.4 A REST API ENDPOINT DOCUMENTATION

/rest/uri/external-person-uri/<int:uri_id> (DELETE) (HEAD) (OPTIONS] (PATCH)

CRUD endpoint to manipulate external person URIs.

[al1] @param uri_id ID of tuple, O or ‘None‘ for PUT
C/PUT @payload application/json
@returns application/json

Create a new person URI tuple.

Required fields: ‘person_id‘, ‘uri_namespace_id‘, ‘uri_fragment°‘.
Optional fields: ‘comment‘.

Returns the ID for the created entity.

Exemplary payload for ‘PUT /uri/external-person-uri/0°¢:

{
"person_id": 12,
"uri_namespace_id": 1,
"uri_fragment": "1234",
"comment": "comment"
}
R/GET Q@returns application/json

Get data for the person URI.
Oreturns application/json

Example return value of ‘GET /uri/external-person-uri/1°¢:

{
"id": 1,
"person_id": 12,
"uri_namespace_id": 1,
"uri_fragment": "1234",
"comment": "comment"
}
U/PATCH @payload application/json
Q@returns 205 RESET CONTENT
Update one or more of the fields ‘person_id‘, ‘uri_namespace_id‘,

‘uri_fragment‘, or ‘comment‘.

Exemplary payload for ‘PATCH /uri/external-person-uri/12345°¢:

{
"uri_fragment": "1236",
"comment": "updated comment..."
X
D/DELETE @returns application/json

86

Damast v1.1.4

Delete the tuple and return the ID of the deleted tuple.
/rest/uri/external-place-uri/<int:uri_id>

CRUD endpoint to manipulate external place URIs.

[al1] @param uri_id ID of tuple, O or ‘None‘ for PUT
C/PUT @payload application/json
Oreturns application/json

Create a new place URI tuple.

Required fields: ‘place_id‘, ‘uri_namespace_id‘, ‘uri_fragment‘.

Optional fields: ‘comment‘.
Returns the ID for the created entity.

Exemplary payload for ‘PUT /uri/external-place-uri/0°‘:

{
"place_id": 12,
"uri_namespace_id": 1,
"uri_fragment": "1234",
"comment": "comment"
}
R/GET Q@returns application/json

Get data for the place URI.
Q@returns application/json

Example return value of ‘GET /uri/external-place-uri/1¢:

{
"id": 1,
"place_id": 12,
"uri_namespace_id": 1,
"uri_fragment": "1234",
"comment": "comment"
}
U/PATCH @payload application/json
Oreturns 205 RESET CONTENT
Update one or more of the fields ‘place_id‘, ‘uri_namespace_id‘,

‘uri_fragment‘, or ‘comment‘.
Exemplary payload for ‘PATCH /uri/external-place-uri/12345°¢:

{
"uri_fragment": "1236",
"comment": "updated comment..."

3

A REST API ENDPOINT DOCUMENTATION

(DELETE] (HEAD) (OPTIONS] (PATCH)

87

Damast v1.1.4 A REST API ENDPOINT DOCUMENTATION

D/DELETE @returns application/json

Delete the tuple and return the ID of the deleted tuple.

/rest/uri/uri-namespace-list HEAD) (OPTIONS

Get a list of URI namespaces registered.
Q@returns application/json
This returns a list of all uri_namespace tuples in the database as an array.

Example return value excerpt:

[
{
midr: 1,
"external_database_id", 1,
"uri_pattern": "https://first.db/place/%s",
"short_name": "first:%s",
"comment": null
}
]

88

	Introduction
	Database
	Table Structure
	Roles
	Other Databases
	Backups

	Backend Structure
	Server Host Specifications
	User Authentication
	Flask Blueprints
	REST API

	Frontend Structure
	Home Page
	Visualization
	GeoDB-Editor
	Annotator
	Place URI Page
	Reporting
	Other Pages

	REST API Endpoint Documentation

