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Introduction

A variational graph recurrent neural network (VGRNN)
by adopting high-level latent random variables in GRNN has
been proposed to

» achieve more interpretable latent representations for
dynamic graphs.

A\

model uncertainty of node latent representation.

capture = both  topology
changes simultaneously.

Y

and node attribute

» Given partially observed snapshots of a dynamic
graph with node attributes, dynamic link prediction
problems are defined as follows:

Dynamic link detection

> Detect unobserved edges in G (7
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» To show that VGRNN learns more interpretable
latent representations, we simulated a dynamic
graph with three communities 1n which a node
(red) transfers from one community into another in
two time steps.
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Unlike existing dynamic graph models focusing on specific s
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representations for various graph analytic tasks.
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Dynamic new link prediction:
> Predict edges in GT+D that are not in G(7.

» The variance of a node whose community doesn’t
change in time (colored with green contour) does
not increase over time.

» We argue that the uncertainty helps to better
encode non-smooth evolution, 1n particular abrupt
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(c) Updating the GRNN hidden states using

h, =f (A®,¢* (XV) " (2) by s ),

(d) Inference of the posterior distribution for latent variables
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Learning

» The objective function of VGRNN 1s derived from the
variational lower bound at each snapshot

L= Z{ Z(t)Nq Z(t) |A(<t) X (£t) Z(<t))10gp ( (t) ’ Z(t)>
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» The inner-product decoder is adopted in VGRNN
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Semi-implicit VGRNN (SI-VGRNN)

We 1mpose a mixing distributions on the variational
distribution parameters to

» Further increase the expressive power of the variational
posterior of VGRNN

» Model the posterior of VGRNN with a semi-implicit
hierarchical construction
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Dynamic link detection.
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» GRNN outperforms DynAERNN due to the superior
capability of GCN 1n capturing graph topology compared
to fully connected layers

» (SI-))VGRNN compared to GRNN and DynAERNN

supports our claim that latent random variables carry more
information than deterministic hidden states specially for
dynamic graphs with complex temporal changes

» SI-VGRNN with flexible variational inference can learn
more complex latent structures

Dynamic (new) link prediction.

» Since GRNN is trained as an autoencoder, it cannot
predict edges 1n the next snapshot.

» In (SI-)VGRNN, the prior construction based on

previous time steps allows us to predict links 1n the
future.

» (SI-)VGRNN outperform the competing methods
significantly in both tasks for all of the datasets
which proves that our proposed models have better
generalization, which 1s the result of including
random latent variables 1n our model.

» The proposed methods improve new link prediction
more substantially which shows that they can
capture temporal trends better than the competing
methods.

» Comparing VGRNN with SI-VGRNN shows that
the prediction results are almost the same for all
datasets. The reason 1s that although the posterior 1s
more flexible 1n SI-VGRNN, the prior on which
our predictions are based, 1s still Gaussian, hence
the improvement 1s marginal.
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Conclusion

» We have proposed VGRNN and SI-VGRNN, the first node
embedding methods for dynamic graphs that embed each
node to a random vector 1n latent space.

» We argue that adding high level latent variables to GRNN
not only increases its expressiveness to better model the
complex dynamics of graphs, but also generates
interpretable random latent representation for nodes.

» SI-VGRNN is also developed by combining VGRNN and
semi-implicit variational inference for fexible variational
inference.

» We have tested our proposed methods on dynamic link
prediction tasks and they outperform competing methods
substantially, specially for very sparse graphs.
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