
Ø Given partially observed snapshots of a dynamic
graph with node attributes, dynamic link prediction
problems are defined as follows:

Dynamic link detection 
Ø Detect unobserved edges in 𝐺(#)

Dynamic link prediction
Ø Predict edges in 𝐺(#%&)

Dynamic new link prediction:
Ø Predict edges in 𝐺(#%&) that are not in 𝐺(#). 
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Introduction

A variational graph recurrent neural network (VGRNN)
by adopting high-level latent random variables in GRNN has
been proposed to

Ø achieve more interpretable latent representations for 
dynamic graphs.

Ø model uncertainty of node latent representation.
Ø capture both topology and node attribute

changes simultaneously.

To further boost the expressive power and interpretability of
our new VGRNN method, we integrate semi-implicit
variational inference with VGRNN. The semi-implicit
VGRNN (SI-VGRNN) is capable of inferring more flexible
and complex posteriors.
Unlike existing dynamic graph models focusing on specific
tasks including link prediction and community detection, (SI-
)VGRNN facilitates end-to-end learning of universal latent
representations for various graph analytic tasks.

Methods

Graphical illustrations of each operation of VGRNN

(a) Computing the conditional prior

(b) Decoder function

(c) Updating the GRNN hidden states using

(d) Inference of the posterior distribution for latent variables

Learning
Ø The objective function of VGRNN is derived from the

variational lower bound at each snapshot

Ø The inner-product decoder is adopted in VGRNN

Semi-implicit VGRNN (SI-VGRNN)
We impose a mixing distributions on the variational
distribution parameters to
Ø Further increase the expressive power of the variational

posterior of VGRNN
Ø Model the posterior of VGRNN with a semi-implicit

hierarchical construction

Learning

Conclusion

Ø We have proposed VGRNN and SI-VGRNN, the first node
embedding methods for dynamic graphs that embed each
node to a random vector in latent space.

Ø We argue that adding high level latent variables to GRNN
not only increases its expressiveness to better model the
complex dynamics of graphs, but also generates
interpretable random latent representation for nodes.

Ø SI-VGRNN is also developed by combining VGRNN and
semi-implicit variational inference for fexible variational
inference.

Ø We have tested our proposed methods on dynamic link
prediction tasks and they outperform competing methods
substantially, specially for very sparse graphs.
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Dynamic link detection.
Ø GRNN outperforms DynAERNN due to the superior

capability of GCN in capturing graph topology compared
to fully connected layers

Ø (SI-)VGRNN compared to GRNN and DynAERNN
supports our claim that latent random variables carry more
information than deterministic hidden states specially for
dynamic graphs with complex temporal changes

Ø SI-VGRNN with flexible variational inference can learn
more complex latent structures

Dynamic (new) link prediction.
Ø Since GRNN is trained as an autoencoder, it cannot

predict edges in the next snapshot.
Ø In (SI-)VGRNN, the prior construction based on

previous time steps allows us to predict links in the
future.

Ø (SI-)VGRNN outperform the competing methods
significantly in both tasks for all of the datasets
which proves that our proposed models have better
generalization, which is the result of including
random latent variables in our model.

Ø The proposed methods improve new link prediction
more substantially which shows that they can
capture temporal trends better than the competing
methods.

Ø Comparing VGRNN with SI-VGRNN shows that
the prediction results are almost the same for all
datasets. The reason is that although the posterior is
more flexible in SI-VGRNN, the prior on which
our predictions are based, is still Gaussian, hence
the improvement is marginal.
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Figure 1: Graphical illustrations of each operation of VGRNN; (a) computing the conditional prior by (2);
(b) decoder function (3); (c) updating the GRNN hidden states using (4); and (d) inference of the posterior
distribution for latent variables by (3.2).

particular, we can write the construction of the prior distribution adopted in our experiments as follows,
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where ⇡(t) denotes the parameter of the generating distribution; 'prior and 'dec can be any highly flexible
functions such as neural networks.

On the other hand, the backbone GRNN enables flexible modeling of complex dependency involving both
graph topological dynamics and node attribute dynamics. The GRNN updates its hidden states using the
recurrence equation:
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where f is originally the transition function from equation (1). Unlike the GRNN defined in [35], graph
topology can change in different time steps as it does in real-world dynamic graphs, and the adjacency matrix
A(t) is time dependent in VGRNN. To further enhance the expressive power, 'x and 'z are deep neural
networks which operate on each node independently and extract features from X(t) and Z(t), respectively.
These feature extractors are crucial for learning complex graph dynamics. Based on (4), ht is a function of
A(t), X(t), and Z(t). Therefore, the prior and generating distributions in equations (2) and (3) define
the distributions p(Z(t)

|A(<t),X(<t),Z(<t)) and p(A(t)
|Z(t)), respectively. The generative model can be

factorized as

p
⇣
A(T ),Z(T )

|X(<T )
⌘
=

TY

t=1

p
⇣
Z(t)

|A(<t),X(<t),Z(<t)
⌘
p
⇣
A(t)

|Z(t)
⌘
, (5)

where the prior of the first snapshot is considered to be a standard multivariate Gaussian distribution, i.e.
p(Z(0)

i |�) ⇠ N (0, I) for i 2 {1, . . . , N0} and h0 = 0. Also, if a previously unobserved node is added to the
graph at snapshot t, we consider the hidden state of that node at snapshot t� 1 is zero and hence the prior
for that node at time t is N (0, I).
Inference. With the VGRNN framework, the node embedding for dynamic graphs can be derived by
inferring the posterior distribution of Z(t) which is also a function of ht�1. More specifically,
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where µ(t)
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enc denote the parameters of the approximated posterior, and µ(t)
i,enc and �(t)

i,enc are the i-th
row of µ(t)

enc and �(t)
enc, respectively. GNNµ and GNN� are the encoder functions and can be any of the various

types of graph neural networks, such as GCN [24], GCN with Chebyshev filters [3] and GraphSAGE [19].
Learning. The objective function of VGRNN is derived from the variational lower bound at each snapshot.
More precisely, using equation (5) , the evidence lower bound of VGRNN can be written as follows,
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Figure 1: Graphical illustrations of each operation of VGRNN; (a) computing the conditional prior by (2);
(b) decoder function (3); (c) updating the GRNN hidden states using (4); and (d) inference of the posterior
distribution for latent variables by (3.2).
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(b) decoder function (3); (c) updating the GRNN hidden states using (4); and (d) inference of the posterior
distribution for latent variables by (3.2).
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where f is originally the transition function from equation (1). Unlike the GRNN defined in [35], graph
topology can change in different time steps as it does in real-world dynamic graphs, and the adjacency matrix
A(t) is time dependent in VGRNN. To further enhance the expressive power, 'x and 'z are deep neural
networks which operate on each node independently and extract features from X(t) and Z(t), respectively.
These feature extractors are crucial for learning complex graph dynamics. Based on (4), ht is a function of
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Table 1: Dataset statistics.

Metrics Enron COLAB Facebook HEP-TH Cora Social Evolution
Number of Snapshots 11 10 9 40 11 27

Number of Nodes 184 315 663 1199-7623 708-2708 84
Number of Edges 115-266 165-308 844-1068 769-34941 406-5278 303-1172
Average Density 0.01284 0.00514 0.00591 0.00117 0.00154 0.21740

Number of Node Attributes - - - - 1433 168

We learn the parameters of the generative and inference models jointly by optimizing the variational lower
bound with respect to the variational parameters. The graphical representation of VGRNN is illustrated
in Fig. 1, operations (a)–(d) correspond to equations (2) – (4), and (3.2), respectively. We note that if we
don’t use hidden state variables ht�1 in the derivation of the prior distribution, then the prior in (2) becomes
independent across snapshots and reduces to the prior of vanilla VGAE.

The inner-product decoder is adopted in VGRNN for the experiments in this paper– 'dec in (3)–to clearly
demonstrate the advantages of the stochastic recurrent models for the encoder. Potential extensions with
other decoders can be integrated with VGRNN if necessary. More specifically,
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where z(t)i corresponds to the embedding representation of node v(t)i 2 V
(t) at time step t. Note the generating

distribution can also be conditioned on ht�1 if we want to generate X(t) in addition to the adjacency matrix
for other applications. In such cases, 'dec should be a highly flexible neural network instead of a simple
inner-product function.

3.3 Semi-implicit VGRNN (SI-VGRNN)

To further increase the expressive power of the variational posterior of VGRNN, we introduce a SI-VGRNN
dynamic node embedding model. We impose a mixing distributions on the variational distribution parameters
in (8) to model the posterior of VGRNN with a semi-implicit hierarchical construction:
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specifically, SI-VGRNN draws samples from q� by transforming random noise ✏t via a graph neural network,
which generally leads to an implicit distribution for q�.
Inference. Under the SI-VGRNN construction, the generation, prior and recurrence models are the same
as VGRNN (equations (2) to (5)). We indeed have updated the encoder functions as follows:
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Learning. In this construction, because the parameters of the posterior are random variables, the ELBO
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Direct optimization of the ELBO in SIVI is not tractable [42], hence to infer variational parameters of
SI-VGRNN, we derive a lower bound for the ELBO as follows (see the supplements for more details.).
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4 Experiments
Datasets. We evaluate our proposed methods, VGRNN and SI-VGRNN, and baselines on six real-world
dynamic graphs as described in Table 1. More detailed descriptions of the datasets can be found in the
supplement.
Competing methods. We compare the performance of our proposed methods against four competing
node embedding methods, three of which have the capability to model evolving graphs with changing node
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Direct optimization of the ELBO in SIVI is not tractable [42], hence to infer variational parameters of
SI-VGRNN, we derive a lower bound for the ELBO as follows (see the supplements for more details.).
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Table 1: Dataset statistics.

Metrics Enron COLAB Facebook HEP-TH Cora Social Evolution
Number of Snapshots 11 10 9 40 11 27
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Average Density 0.01284 0.00514 0.00591 0.00117 0.00154 0.21740

Number of Node Attributes - - - - 1433 168

We learn the parameters of the generative and inference models jointly by optimizing the variational lower
bound with respect to the variational parameters. The graphical representation of VGRNN is illustrated
in Fig. 1, operations (a)–(d) correspond to equations (2) – (4), and (3.2), respectively. We note that if we
don’t use hidden state variables ht�1 in the derivation of the prior distribution, then the prior in (2) becomes
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The inner-product decoder is adopted in VGRNN for the experiments in this paper– 'dec in (3)–to clearly
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other decoders can be integrated with VGRNN if necessary. More specifically,
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where z(t)i corresponds to the embedding representation of node v(t)i 2 V
(t) at time step t. Note the generating
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Results

Table 2: AUC and AP scores of inductive dynamic link detection on dynamic graphs.

Metrics Methods Enron COLAB Facebook Social Evo. HEP-TH Cora
VGAE 88.26 ± 1.33 70.49 ± 6.46 80.37 ± 0.12 79.85 ± 0.85 79.31 ± 1.97 87.60 ± 0.54
DynAE 84.06 ± 3.30 66.83 ± 2.62 60.71 ± 1.05 71.41 ± 0.66 63.94 ± 0.18 53.71 ± 0.48
DynRNN 77.74 ± 5.31 68.01 ± 5.50 69.77 ± 2.01 74.13 ± 1.74 72.39 ± 0.63 76.09 ± 0.97

AUC DynAERNN 91.71 ± 0.94 77.38 ± 3.84 81.71 ± 1.51 78.67 ± 1.07 82.01 ± 0.49 74.35 ± 0.85
GRNN 91.09 ± 0.67 86.40 ± 1.48 85.60 ± 0.59 78.27 ± 0.47 89.00 ± 0.46 91.35 ± 0.21
VGRNN 94.41 ± 0.73 88.67 ± 1.57 88.00 ± 0.57 82.69 ± 0.55 91.12 ± 0.71 92.08 ± 0.35
SI-VGRNN 95.03 ± 1.07 89.15± 1.31 88.12 ± 0.83 83.36 ± 0.53 91.05 ± 0.92 94.07 ± 0.44
VGAE 89.95 ± 1.45 73.08 ± 5.70 79.80 ± 0.22 79.41 ± 1.12 81.05 ± 1.53 89.61 ± 0.87
DynAE 86.30 ± 2.43 67.92 ± 2.43 60.83 ± 0.94 70.18 ± 1.98 63.87 ± 0.21 53.84 ± 0.51
DynRNN 81.85 ± 4.44 73.12 ± 3.15 70.63 ± 1.75 72.15 ± 2.30 74.12 ± 0.75 76.54 ± 0.66

AP DynAERNN 93.16 ± 0.88 83.02 ± 2.59 83.36 ± 1.83 77.41 ± 1.47 85.57 ± 0.93 79.34 ± 0.77
GRNN 93.47 ± 0.35 88.21 ± 1.35 84.77 ± 0.62 76.93± 0.35 89.50 ± 0.42 91.37 ± 0.27
VGRNN 95.17 ± 0.41 89.74 ± 1.31 87.32 ± 0.60 81.41 ± 0.53 91.35 ± 0.77 92.92 ± 0.28
SI-VGRNN 96.31 ± 0.72 89.90 ± 1.06 87.69 ± 0.92 83.20± 0.57 91.42 ± 0.86 94.44 ± 0.52

and edge sets. Among these four, two (DynRNN and DynAERNN [11]) are based on RNN models. By
comparing our models to these methods, we will be able to see how much improvement we may obtain by
improving the backbone RNN with our new prior construction compared to these RNNs with deterministic
hidden states. We also compare our methods against a deep autoencoder with fully connected layers (DynAE
[11]) to show the advantages of RNN based sequential learning methods. More detailed descriptions of these
selected competing methods are described in the supplements.
Evaluation tasks. In the dynamic graph embedding literature, the term link prediction has been used with
different definitions. While some of the previous works focused on link prediction in a transductive setting
and others proposed inductive models, our models are capable of working in both settings. We evaluate
our proposed models on three different link prediction tasks that have been widely used in the dynamic
graph representation learning studies. More specifically, given partially observed snapshots of a dynamic
graph G = {G(1), . . . , G(T )

} with node attributes X = {X(1), . . . ,X(T )
}, dynamic link prediction problems

are defined as follows:

• Dynamic link detection: Detect unobserved edges in G(T ).

• Dynamic link prediction: Predict edges in G(T+1).

• Dynamic new link prediction: Predict edges in G(T+1) that are not in G(T ).

Note that dynamic link detection problem can be addressed as either transductive (in-sample graphs) or
inductive (out-of-sample graphs) problem while the two other link prediction problems are inherently inductive.
Experimental setups. For performance comparison, we evaluate different methods based on their ability
to correctly classify true and false edges. For dynamic link detection problem, we randomly remove 5% and
10% of all edges at each time for validation and test sets, respectively. We also randomly select the equal
number of non-links as validation and test sets to compute average precision (AP) and area under the ROC
curve (AUC) scores. For dynamic (new) link prediction, all (new) edges are set to be true edges and the
same number of non-links are randomly selected to compute AP and AUC scores. For inductive problems,
in all of the datasets, we test the model on the last three snapshots of dynamic graphs while learning the
parameters of the models based on the rest of the snapshots except for HEP-TH where we test the model on
the last 10 sanpshots. For the datasets without node attributes, we consider the Nt-dimensional identity
matrix as node attributes at time t where Nt is the number of nodes at time t.

For all datasets, we set up our VGRNN model to have a single recurrent hidden layer with 32 GRU units.
All '’s in equations (3), (4), and (6) are modeled by a 32-dimensional fully-connected layer. We use two
32-dimensional fully-connected layers for 'prior in (2) and 2-layer GCN with sizes equal to [32, 16] to model
µ(t)

enc and �(t)
enc in (6). For SI-VGRNN, a stochastic GCN layer with size 32 and an additional GCN layer of

size 16 are used to model the µ. The dimension of injected standard Gaussian noise ✏ is 16. The covariance
matrix ⌃ is deterministic and is inferred through two layers of GCNs with sizes equal to [32, 16]. For fair
comparison, the number of parameters are the same for the competing methods. In all experiments, we train
the models for 1500 epochs with the learning rate 0.01. We use the validation set for the early stopping.
The supplement contains additional implementation details with hyperparmaeter selection. We implemented
(SI-)VGRNN in PyTorch [28].

4.1 Results and discussion

Dynamic link detection. Table 2 summarizes the results for inductive link detection in different datasets.
Our proposed methods, VGRNN and SI-VGRNN, outperform competing methods across all datasets by
large margins. Improvement made by (SI-)VGRNN compared to GRNN and DynAERNN supports our claim
that latent random variables carry more information than deterministic hidden states specially for dynamic
graphs with complex temporal changes. We note that GRNN outperforms DynAERNN due to the superior
capability of GCN in capturing graph topology compared to fully connected layers. It clearly shows the
advantages of the imposed latent random variables for modelling complex dynamic graphs when comparing
VGRNN with GRNN.

Comparing SI-VGRNN with VGRNN shows that the Gaussian latent distribution may not always be the
best choice for latent node representations. SI-VGRNN with flexible variational inference can learn more
complex latent structures. The results for the Cora dataset, which also includes attributes, clearly magnify
the benefits of flexible posterior as SI-VGRNN improves the accuracy by 2% compared to VGRNN. We also
note that the improvement made by SI-VGRNN compared to VGRNN is marginal in Facebook dataset. The
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Table 3: AUC and AP scores of dynamic link prediction on real-world dynamic graphs.

Metrics Methods Enron COLAB Facebook Social Evo.
DynAE 74.22 ± 0.74 63.14 ± 1.30 56.06 ± 0.29 65.50 ± 1.66
DynRNN 86.41 ± 1.36 75.7 ± 1.09 73.18 ± 0.60 71.37 ± 0.72

AUC DynAERNN 87.43 ± 1.19 76.06 ± 1.08 76.02 ± 0.88 73.47 ± 0.49
VGRNN 93.10 ± 0.57 85.95 ± 0.49 89.47 ± 0.37 77.54 ± 1.04
SI-VGRNN 93.93 ± 1.03 85.45 ± 0.91 90.94 ± 0.37 77.84 ± 0.79
DynAE 76.00 ± 0.77 64.02 ± 1.08 56.04 ± 0.37 63.66 ± 2.27
DynRNN 85.61 ± 1.46 78.95 ± 1.55 75.88 ± 0.42 69.02 ± 1.71

AP DynAERNN 89.37 ± 1.17 81.84 ± 0.89 78.55 ± 0.73 71.79 ± 0.81
VGRNN 93.29 ± 0.69 87.77 ± 0.79 89.04 ± 0.33 77.03 ± 0.83
SI-VGRNN 94.44 ± 0.85 88.36 ± 0.73 90.19 ± 0.27 77.40 ± 0.43

Table 4: AUC and AP scores of dynamic new link prediction on real-world dynamic graphs.

Metrics Methods Enron COLAB Facebook Social Evo.
DynAE 66.10 ± 0.71 58.14 ± 1.16 54.62 ± 0.22 55.25 ± 1.34
DynRNN 83.20 ± 1.01 71.71 ± 0.73 73.32 ± 0.60 65.69 ± 3.11

AUC DynAERNN 83.77 ± 1.65 71.99 ± 1.04 76.35 ± 0.50 66.61 ± 2.18
VGRNN 88.43 ± 0.75 77.09 ± 0.23 87.20 ± 0.43 75.00 ± 0.97
SI-VGRNN 88.60 ± 0.95 77.95 ± 0.41 87.74 ± 0.53 76.45 ± 1.19
DynAE 66.50 ± 1.12 58.82 ± 1.06 54.57 ± 0.20 54.05 ± 1.63
DynRNN 80.96 ± 1.37 75.34 ± 0.67 75.52 ± 0.50 63.47 ± 2.70

AP DynAERNN 85.16 ± 1.04 77.68 ± 0.66 78.70 ± 0.44 65.03 ± 1.74
VGRNN 87.57 ± 0.57 79.63 ± 0.94 86.30 ± 0.29 73.48 ± 1.11
SI-VGRNN 87.88 ± 0.84 81.26 ± 0.38 86.72 ± 0.54 73.85 ± 1.33

Figure 2: Evolution of graph statistics through time.

reason could be that Gaussian latent variables already represent the graph well. Therefore, more flexible
posteriors do not enhance the performance significantly.
Dynamic (new) link prediction. Tables 3 and 4 show the results for link prediction and new link
prediction, respectively. Since GRNN is trained as an autoencoder, it cannot predict edges in the next
snapshot. However, in (SI-)VGRNN, the prior construction based on previous time steps allows us to predict
links in the future. Note that none of the methods can predict new nodes, therefore, HEP-TH, Cora and
Citeseer datasets are not evaluated for these tasks. VGRNN and SI-VGRNN outperform the competing
methods significantly in both tasks for all of the datasets which proves that our proposed models have
better generalization, which is the result of including random latent variables in our model. We note that
our proposed methods improve new link prediction more substantially which shows that they can capture
temporal trends better than the competing methods.

Comparing VGRNN with SI-VGRNN shows that the prediction results are almost the same for all datasets.
The reason is that although the posterior is more flexible in SI-VGRNN, the prior on which our predictions
are based, is still Gaussian, hence the improvement is marginal. A possible avenue for further improvements
is constructing more flexible priors such as semi-implicit priors proposed by Molchanov et al. [27], which we
leave for future studies.

To find out when VGRNN and SI-VGRNN show more improvements compared to the baselines, we
take a closer look at three of the datasets. Figure 2 shows the temporal evolution of density and clustering
coefficients of COLAB, Enron, and Facebook datasets. Enron shows the highest density and clustering
coefficients, indicating that it contains dense clusters who are densely connected with each other. COLAB
have low density and high clustering coefficients across time, which means that although it is very sparse but
edges are mostly within the clusters. Facebook, which has both low density and clustering coefficients, is very
sparse with almost no clusters. Looking back at (new) link prediction results, we see that the improvement
margin of (SI-)VGRNN compared to competing methods is more substantial for Facebook. Moreover, the
improvement margin diminishes when the graph has more clusters and is more dense. Predicting the evolution
very sparse graphs with no clusters is indeed a very difficult task (arguably more difficult than dense graphs),
in which our proposed (SI-)VGRNN is very successful. The stochastic latent variables in our models can
capture the temporal trend while other methods tend to overfit very few observed links.

6

Table 3: AUC and AP scores of dynamic link prediction on real-world dynamic graphs.

Metrics Methods Enron COLAB Facebook Social Evo.
DynAE 74.22 ± 0.74 63.14 ± 1.30 56.06 ± 0.29 65.50 ± 1.66
DynRNN 86.41 ± 1.36 75.7 ± 1.09 73.18 ± 0.60 71.37 ± 0.72

AUC DynAERNN 87.43 ± 1.19 76.06 ± 1.08 76.02 ± 0.88 73.47 ± 0.49
VGRNN 93.10 ± 0.57 85.95 ± 0.49 89.47 ± 0.37 77.54 ± 1.04
SI-VGRNN 93.93 ± 1.03 85.45 ± 0.91 90.94 ± 0.37 77.84 ± 0.79
DynAE 76.00 ± 0.77 64.02 ± 1.08 56.04 ± 0.37 63.66 ± 2.27
DynRNN 85.61 ± 1.46 78.95 ± 1.55 75.88 ± 0.42 69.02 ± 1.71

AP DynAERNN 89.37 ± 1.17 81.84 ± 0.89 78.55 ± 0.73 71.79 ± 0.81
VGRNN 93.29 ± 0.69 87.77 ± 0.79 89.04 ± 0.33 77.03 ± 0.83
SI-VGRNN 94.44 ± 0.85 88.36 ± 0.73 90.19 ± 0.27 77.40 ± 0.43

Table 4: AUC and AP scores of dynamic new link prediction on real-world dynamic graphs.

Metrics Methods Enron COLAB Facebook Social Evo.
DynAE 66.10 ± 0.71 58.14 ± 1.16 54.62 ± 0.22 55.25 ± 1.34
DynRNN 83.20 ± 1.01 71.71 ± 0.73 73.32 ± 0.60 65.69 ± 3.11

AUC DynAERNN 83.77 ± 1.65 71.99 ± 1.04 76.35 ± 0.50 66.61 ± 2.18
VGRNN 88.43 ± 0.75 77.09 ± 0.23 87.20 ± 0.43 75.00 ± 0.97
SI-VGRNN 88.60 ± 0.95 77.95 ± 0.41 87.74 ± 0.53 76.45 ± 1.19
DynAE 66.50 ± 1.12 58.82 ± 1.06 54.57 ± 0.20 54.05 ± 1.63
DynRNN 80.96 ± 1.37 75.34 ± 0.67 75.52 ± 0.50 63.47 ± 2.70

AP DynAERNN 85.16 ± 1.04 77.68 ± 0.66 78.70 ± 0.44 65.03 ± 1.74
VGRNN 87.57 ± 0.57 79.63 ± 0.94 86.30 ± 0.29 73.48 ± 1.11
SI-VGRNN 87.88 ± 0.84 81.26 ± 0.38 86.72 ± 0.54 73.85 ± 1.33

Figure 2: Evolution of graph statistics through time.

reason could be that Gaussian latent variables already represent the graph well. Therefore, more flexible
posteriors do not enhance the performance significantly.
Dynamic (new) link prediction. Tables 3 and 4 show the results for link prediction and new link
prediction, respectively. Since GRNN is trained as an autoencoder, it cannot predict edges in the next
snapshot. However, in (SI-)VGRNN, the prior construction based on previous time steps allows us to predict
links in the future. Note that none of the methods can predict new nodes, therefore, HEP-TH, Cora and
Citeseer datasets are not evaluated for these tasks. VGRNN and SI-VGRNN outperform the competing
methods significantly in both tasks for all of the datasets which proves that our proposed models have
better generalization, which is the result of including random latent variables in our model. We note that
our proposed methods improve new link prediction more substantially which shows that they can capture
temporal trends better than the competing methods.

Comparing VGRNN with SI-VGRNN shows that the prediction results are almost the same for all datasets.
The reason is that although the posterior is more flexible in SI-VGRNN, the prior on which our predictions
are based, is still Gaussian, hence the improvement is marginal. A possible avenue for further improvements
is constructing more flexible priors such as semi-implicit priors proposed by Molchanov et al. [27], which we
leave for future studies.

To find out when VGRNN and SI-VGRNN show more improvements compared to the baselines, we
take a closer look at three of the datasets. Figure 2 shows the temporal evolution of density and clustering
coefficients of COLAB, Enron, and Facebook datasets. Enron shows the highest density and clustering
coefficients, indicating that it contains dense clusters who are densely connected with each other. COLAB
have low density and high clustering coefficients across time, which means that although it is very sparse but
edges are mostly within the clusters. Facebook, which has both low density and clustering coefficients, is very
sparse with almost no clusters. Looking back at (new) link prediction results, we see that the improvement
margin of (SI-)VGRNN compared to competing methods is more substantial for Facebook. Moreover, the
improvement margin diminishes when the graph has more clusters and is more dense. Predicting the evolution
very sparse graphs with no clusters is indeed a very difficult task (arguably more difficult than dense graphs),
in which our proposed (SI-)VGRNN is very successful. The stochastic latent variables in our models can
capture the temporal trend while other methods tend to overfit very few observed links.

6

Discussion

Ø To show that VGRNN learns more interpretable
latent representations, we simulated a dynamic
graph with three communities in which a node
(red) transfers from one community into another in
two time steps.

Ø We embedded the node into 2-d latent space using
VGRNN and DynAERNN.

Ø Uncertainty is directly related to structural
evolution of nodes in dynamic graphs.

Ø The variance of the latent variables for the desired
node increases in time (left to right) colored with
red contour.

Ø The variance of a node whose community doesn’t
change in time (colored with green contour) does
not increase over time.

Ø We argue that the uncertainty helps to better
encode non-smooth evolution, in particular abrupt
changes, in dynamic graphs.

Ø VGRNN can separate the communities in the latent
space more distinctively than DynAERNN.

We truly appreciate helpful comments from all three reviewers. Our main modeling and methodological contributions1

are: 1) A novel generative model, (SI-)VGRNN, is proposed to achieve more interpretable latent representations2

for dynamic graphs as shown below. To the best of our knowledge, this is the first method modeling uncertainty of3

node latent representations for dynamic graphs, capturing both topological evolution and dynamic attribute changes4

simultaneously. 2) By imposing semi-implicit variational inference, we have further extended our original VGRNN5

model to increase the expressive power of the inferred posterior. 3) Unlike existing dynamic graph models focusing on6

specific tasks including link prediction and community detection [Kim et al., 2017], (SI-)VGRNN facilitates end-to-end7

learning of universal latent representations for various graph analytic tasks.8

R1 asked how (SI-)VGRNN deals with deletions and additions of nodes. If the9

graph is growing with addition of new nodes, we assume that the prior of latent10

representations for the newly observed nodes is zero mean with unit variance11

Gaussian distribution. If node deletion occurs, we assume that the identity of nodes can be maintained thus removing a12

node is equivalent to removing all the edges connected to it. More specifically, the sizes of A and X can change in time13

while their latent space maintains across time. Note our model is not designed to predict the occurrence of new nodes.14

To show that VGRNN learns more interpretable latent representations (R1, R3, R4), we simulated a dynamic graph with15

three communities in which a node (red) transfers from one community into another in two time steps (1st Fig.). We16

embedded the node into 2-d latent space using VGRNN (2nd Fig.) and DynAERNN (the best performed baseline; 3rd17

Fig.). While the advantages of modeling uncertainty for latent representations and its relation to node labels (classes)18

for static graphs have been discussed in Bojchevski & Gunnemann [2018], we argue that the uncertainty is also directly19

related to structural evolution of nodes in dynamic graphs.20

More specifically, the variance of the latent variables for the21

desired node increases in time (left to right) colored with22

red contour. In time steps 2 and 3 (where the node is mov-23

ing in the graph), the information from previous and cur-24

rent time contradicts each other; hence we expect the repre-25

sentation uncertainty to increase. We also plotted the vari-26

ance of a node whose community doesn’t change in time (colored with green contour). As we expected,27

the variance of this node does not increase over time. We argue that the uncertainty helps to better encode28

non-smooth evolution, in particular abrupt changes, in dynamic graphs. Moreover, at time step 2, the mov-29

ing node have multiple edges with nodes in two communities. Considering the inner-product decoder, which30

is based on the angle between the latent representations, the moving node can be connected to both of the31

communities which is consistent with the graph topology. We note that DynAERNN fails to produce such32

an interpretable latent representation. We can also see that VGRNN can separate the communities in the latent space33

more distinctively than DynAERNN.34

R4 asked what additional information Zt provides in Eq. 4: While Eq.35

2 constructs the “prior” distribution for Zt, as conditioned on the state36

variable ht�1, the posterior of Zt has been fed to ht in recurrence37

step, i.e. Eq. 4. Note that the posterior of Zt has been inferred based38

on the information of At, Xt and ht�1, i.e. Eq. 6. From this point of39

view, the information of Zt is more than ht�1. We have to feed ht�1 in Eq. 4 to maintain the RNN structure.40

R4 also asked about reconstructing node attributes. As (SI-)VGRNN contribution is to have a model for diverse41

dynamic graph analytic tasks, the main goal of our method is node embedding. Hence, we are only interested in42

reconstructing the graph topology instead of the node attributes. This is a common practice in node embedding methods43

that use node attributes for better node embedding. Potential extensions with other decoders can be integrated with44

(SI-)VGRNN to construct the node attributes if needed. Regarding the dimension of variables (R4), as (SI-)VGRNN is45

a node embedding method for dynamic graphs, each node is embedded to a point in the latent space. Hence, the first46

dimension of Xt and Zt are the same and the second dimension of Zt is user specified latent dimension. If we reduce47

the first dimension of Zt, it would be “graph embedding” method rather than a “node embedding” technique, which is48

an interesting extension to our work.49

Regarding the advantages of our work compared to related work (R1): 1) Dynamic network embedding is pursued50

with various techniques such as matrix factorization [Zhu et al.,2016], deep learning [Seo et al., 2016], and random51

walks [Yu et al., 2018], many of which are task specific methods and do not focus on representation learning. 2) Most52

existing methods either capture topological evolution or attribute changes to learn dynamic node embeddings [Yang et53

al., 2017;Sarkar et al., 2007] but only a few model both changes simultaneously [Trivedi et al., 2019]. 3) None of the54

existing methods model the uncertainty of the latent representations. While generative models in form of parametric55

temporal point processes [Trivedi et al., 2017] and deep temporal point processes [Trivedi et al., 2019] have been used56

for modeling dynamic graphs, to the best of our knowledge, (SI-)VGRNN is the first variational based deep generative57

model for representation learning of dynamic graphs. A more comprehensive related work section will be added.58


