SUNSPEC

—— ALLIANCE —

SUNSPEC ALLIANCE INTEROPERABILITY SPECIFICATION

CoOMMON MODELS

By: SunSpec Alliance Common Models Workgroup

John Blair, John Nunneley, Karl Lambert, Pat Adamosky, Ronnie Petterson, Lynn Linse, Bill
Randle, Bob Fox, Aaron Parker, Stephen Lapointe

Version 1.6

The SunSpec Alliance Interoperability Specifications describe the information models and
MODBUS register mappings for devices used in Renewable Energy systems. A physical device,
such as an inverter, is represented by a collection of one or more of these logical models.
This document describes the Common Models and model design conventions. All SunSpec
devices must contain the device information common model that describes this particular
device as the first logical model of the device.

Change History

1.3: Added change history

1.3: Allow device aggregation via multiple common models

1.3 Manufacturer ID should be registered with SunSpec

1.3 Added M/0/C column to xIs map.

1.3 Require Manufacturer, Model, and Serial Number to be supplied
1.4 Add Copyright

1.5 Updated Logo

1.5 Corrected Assigned ID range for String Combiner and Module

1.5 Added Assigned ID ranges for Inverter model, version 1.2, Module model, version
1.1, Inverter Controls and Network Interface.

1.5 Added concept of a scale factor as a basic SunSpec type.

1.5 Added concept of SunSpec Device type to Common Model

1.5 Changed over to new names for points

1.5 Added definition for acc64, ipaddr, ipv6addr types

1.5 Scale factor clarification wrt unimplemented

1.5 Align the document with the new short names

1.5 Update Network Configuration, new model ids and some descriptions
1.5 Add recommendation on default serial port settings (9600,8,N,1)

1.5 Removed model table and replaced with reference to the PICS

1.5 Added descriptions for bitfield and enum

1.5 John Blair’s contribution: document new types, terminology, model structure,
best practices, other conventions. Included Control Procedural Requirements

1.6 Updated Title Page
1.6 Updated Copyright
1.6 Updated Abstract

1.6 Added “Protocol Mapping” section

Copyright © SunSpec Alliance 2014. All Rights Reserved.

This document and the information contained herein is provided on an "AS IS" basis
and the SunSpec Alliance DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
INFORMATION HEREIN WILL NOT INFRINGE ANY OWNERSHIP RIGHTS OR ANY
IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE.

This document may be used, copied, and furnished to others, without restrictions of
any kind, provided that this document itself may not be modified in anyway, except
as needed by the SunSpec Technical Committee and as governed by the SunSpec IPR
Policy. The complete policy of the SunSpec Alliance can be found at
WWw.sunspec.org.

Common Elements - Version 1.6

Introduction

The SunSpec Alliance Interoperability Specifications describe the information
models and MODBUS register mappings for devices used in Renewable Energy
systems. A physical device, such as an inverter, is represented by a collection of one
or more of these logical models. This document describes the Common Models and
model design conventions. All SunSpec devices must contain the device information
common model that describes this particular device as the first logical model of the
device.

The data models can be easily moved by XML and other technology, so these
specifications are not tied to the 30-year old MODBUS protocol; MODBUS is the
initial implementation specified because MODBUS is well understood and supported
within renewable energy systems.

Protocol Mapping

The device specifications outlined in this document support Modbus and XML protocol.

Terminology

Device A collection of models including and starting with the Common
model.

Model A complete SunSpec data model, starting with the model ID (DID), the
length and the data.

Block A section of Modbus registers. A canonical SunSpec model consists of two
blocks, each of which is optional.

Instance The repeating sub-section of a repeating, variable-length block. The total
length of the repeating block must be a multiple of the fixed length
instance.

Point A value encoded in one or more Modbus registers using one of the

SunSpec datatypes specified in the Common Model Specification. To
define a machine readable format for model definition we need to
formally specify the structure of a SunSpec model.

SunSpec Device Types

Each type of device is defined in a separate document that details the fields and
values specific to that type. Current SunSpec Device Types defined are

1. Inverter
2. Meter

Common Elements - Version 1.6

Weather Station
String Combiner
PV Module
Tracker

MPPT Module
Charge Controller

PN W

Additional device models will be taken up and defined as directed by the SunSpec
Alliance membership.

SunSpec Common Models and Conventions

This document focuses on the elements of the specification that are common to all
device types.

* Common data model

» Standard data formats

e MODBUS register mappings

* Device Specification Format

* Extensibility

* Device Aggregation model

* Network configuration models
* Optionality

Common Elements - Version 1.6

Common Model

All SunSpec devices support a consecutive collection of well defined models, each
prefaced with a well-known Model Identity and length field. This allows a remote
client to browse the contents skipping models with unrecognized Model Identity
(ID) values. The Common Model specifically allows for extensibility in the following

ways:

1.

2.

Definition of new Device Specific Models. New devices are defined and
assigned a new model id.

Revisions of Device Specific Models. Revisions to device models are defined
and assigned a new model id.

Vendor specific extensions. Models may include fields that have vendor
specific values. An example of this is the status and event code fields.
Vendors may also define a Vendor Extension Model that includes fields and
values specific to the vendor. These are assigned a model type id. This
model may be then concatenated to the associated Device Specific Model.
Composite device types. Device Specific Models may be concatenated
together to form a composite device. An example of this is a Weather Station
represented by a collection of environmental models.

Device aggregations. A map may contain multiple Common Models. Each
Common Model marks the start of a new device. This is useful when a map
represents an aggregation of devices. (See the Module/Panel specification
for an example of this usage.)

All SunSpec devices must include at least three models:

The first model is the Common Model, which supplies vendor and model
information for the device.

The second (and subsequent) models will be device specific - for example a
meter model, or a meter model followed by a GPS Location model. Any
vendor extension models would be included here.

The final End Model formally marks the end of the Device Specific Models.

Figure 1 - Example SunSpec Device with two device-specific models

Common Elements - Version 1.6

Data Element Optionality

Data element support may be designated as Mandatory, or Optional. Mandatory
means the attribute is required to be supported. Optional means the element is not
required. Implementations shall return the “Not Supported” value if the element is
not used in this case.

Common Model
The following data elements shall be provided to uniquely identify a SunSpec device.

SunSpec_ID - A well-known value that confirms to the client that this device
has implemented a collection of SunSpec Alliance models.

ID - A well-known value that uniquely identifies the type of SunSpec model.
The IDs are assigned by SunSpec. For the Common Model, this value is “1”.

L - A value that is the length of the device model in Modbus 16-bit registers.
This value does NOT include the ID or L. Le. it is the number of registers that
follow the length. For the Common Model, this value is 66 but may be 65. All
SunSpec models should be of even length. Common Models of length 66 shall
contain the SunSpec pad16 value as the final register.

Mn - A unique value that identifies the Manufacturer of this device.
Manufacturers are encouraged to register their ID with SunSpec to guarantee
uniqueness. SunSpec maintains a database of certified products by
Manufacturer. The Mn should be concise and constrained to simple
alphanumeric text void of spacing.

Md - A manufacturer specific value that identifies the model of this device.
SunSpec maintains a database of certified products by Model. The Md should
be concise and constrained to simple alphanumeric text void of spacing.

Opt - A manufacturer specific value that identifies any model options for this
device.

Vr - A manufacturer specific value that identifies the firmware version of this
device.

SN - A manufacturer specific value that uniquely identifies this device within
the manufacturer name space.

DA - Protocol specific value to address this device instance. For MODBUS
devices, this is the MODBUS device ID.

Pad - SunSpec pad16 register . Must be included for Common Models of
length 66. Not included if length is 65.

Note: SunSpec requires that the result of concatenating the three strings Mn,
Md, and SN returns a globally unique string for all of a manufacture’s products.
If the optional Md value is not implemented, then concatenating the two strings
Mn and SN must be a globally unique string. This string may be used (for
example) by logging and uploading functions.

Common Elements - Version 1.6

Device Specific Models
The SunSpec Common Model is then followed by one or more device specific models
of data values. The Device Specific Model begins like the Common Model.

* ID - A well-known value that uniquely identifies the specific type of SunSpec
model this is.

* L - Avalue that is the length of the model in registers. The length should be
even and may contain a rounding pad register. The length does not include
the ID or L register. It is the number of registers that follow.

* Model data fields would follow as required. If the ID is not recognized by the
client, the L value may be used to skip over the model data and move to the
next model.

End of SunSpec Device Marker
The overall SunSpec Device is punctuated by a termination ID ((OxFFFF)) followed
by a length (L) value of zero.

Network Configuration Models

A series of network configuration models are provided to aid in the configuration of
various types of interfaces that may be present on a device. A full communications
interface description consists of an interface header model and a simple network
model, a serial interface model, or a complex model consisting of a link model and
zero or more IPv4 or IPv6 models, and zero or more proxy server models. A
counter model is also provided to capture basic interface statistics.

Standard Data Formats

The MODUBS specification is not explicit on how to encode numbers other than 16
bit integers. Differences do exist between one manufacturer’s implementation and
another’s. Not all implementations of a specific model will support all of the values
defined for that model. Unsupported values are indicated by supplying the
“NOT_IMPLEMENTED” type specific value in response. This specification restricts
values to the following standard data formats.

int : signed integer value.

uint: unsigned integer value

pad: reserved field, used to round a model to an even number of registers
acc: accumulated value, used for ever increasing values that may roll over
enum: enumerated value, used for status and state

bitfield: a collection of bits, multi-valued alarms or state

ip: internet protocol formatted network address

Common Elements - Version 1.6

16 bit Integer Values

Values are stored in big-endian order per the MODBUS specification and consist of a
single register. All integer values are documented as signed or unsigned. All signed
values are represented using two’s-compliment.

Modbus Register 1
Byte 0 1
Bits 15|14 13]12]10]11]9|8|7|6|5]4[3]2]|1]0

int16 Range: -32767 ... 32767
uintl6 Range: 0 ... 65534

accl6 Range: 0 ... 65535

enum16 Range: 0 ... 65534

bitfield16 Range: O ... 0Ox7FFF

pad Range: 0x8000

Not Implemented: 0x8000

Not Implemented: OXFFFF

Not Accumulated: 0x0000

Not Implemented: OXFFFF

Not Implemented: OXFFFF

Always returns 0x8000

NOTE: it is up to the master to detect rollover of accumulated values.

NOTE: if the most significant bit in a bitfield is set, all other bits shall be ignored.

32 bit Integer Values

32 bit integers are stored using two registers in big-endian order

Modbus | 1 2

Register

Byte 0 1 2 3
Bits 31..24 23..16 15..8 7..0

int32 Range: -2147483647 ... 2147483647

uint32 Range: 0 ... 4294967294
acc32 Range: 0 ... 4294967295

enum32 Range: 0 ... 4294967294

bitfield32 Range: O ... 0Ox7FFFFFFF

ipaddr 32 bit IPv4 address

Not Implemented: 0x80000000
Not Implemented: OXFFFFFFFF
Not Accumulated: 0x00000000
Not Implemented: OXFFFFFFFF
Not Implemented: OXFFFFFFFF
Not Configured: 0x00000000

NOTE: it is up to the master to detect rollover of accumulated values.

NOTE: if the most significant bit in a bitfield is set, all other bits shall be ignored.

Common Elements - Version 1.6

64 bit Integer Values
64 bit integers are stored using four registers in big-endian order.

Modbus | 1 2

Register

Byte 0 1 2 3

Bits 63 ...56 55...48 47 ... 40 39..32
Modbus | 3 4

Register

Byte 4 5 6 7

Bits 31..24 23..16 15..8 7..0

int64 Range: -9223372036854775807 ... 9223372036854775807
Not Implemented: 0x8000000000000000
acc64 Range: 0...9223372036854775807 Not Accumulated: 0

NOTE: Only positive values in the int64 range are allowed. Values outside of this
range shall be considered invalid.

NOTE: This value shall rollover after the highest positive value in the int64 range
(Ox7fftfftftfftrer). Itis up to the reader to detect rollover of accumulated values.

128 Bit Integer Values
128 bit integers are stored using eight registers in big-endian order.

ipvb6addr 128 bit IPv6 address Not Configured: 0

String Values

Store variable length string values in a fixed size register range using a NULL (0
value) to terminate or pad the string. For example, up to 16 characters can be
stored in 8 contiguous registers as follows

Modbus 1 2 3 4 5 6 7 8

Register

Byte 0/1/2|3|4|5|6| 7 |8[9]|10|11|12|13 |14 | 15
Character E|/X|A{IM|P|L|E|spc|S|T|R | T |N|G]| ! |NULL

NOT_IMPLEMENTED value: all registers filled with NULL or 0x0000

Common Elements - Version 1.6

Floating Point Values
Floating point values are 32 bits and encoded according to the IEEE 754 floating
point standard.

Modbus | 1

Register

Byte 0 1

Bits 313029 |28|27]26|25|24[23[22|21|20[19]18]17]16
IEEE sign | Exponent Fraction

754

Modbus | 2

Register

Byte 2 3

Bits 15/14 13|12]11]10]9 [8 |7 |6 |5 |4 [3 |2 |1 |0
IEEE Fraction least

754

float32 Range: see IEEE 754 Not Implemented: 0x7FC00000 (NaN)

Scale Factors

As an alternative to floating point format, values are represented by integer values
with a signed scale factor applied. The scale factor explicitly shifts the decimal point
to the left (negative value) or the right (positive value). Scale factors may be fixed
and specified in the documentation of a value, or may have a variable scale factor
associated with it. E.g. A value “Value” may have an associated value “Value_SF” of
type “sunssf” that is a 16 bit two’s compliment integer.

sunssf signed range: -10 ... 10 Not Implemented: 0x8000 or 0x0000

NOTE: Any value outside of the sunssf range shall be considered to be “Not
Implemented”.

Defined Units

No units are defined as part of the Common Model. Units are defined as needed by
specific models. Where units are shared across models, care will be taken to ensure
a common definition of those units.

Assigned Values
Values that are well-known and part of the Common model are defined here.

SunSpec Device ID : 0x53756e53 (“SunS”)
All devices are prefixed with this ID to uniquely identify them as SunSpec devices.

Common Elements - Version 1.6

SunSpec Model ID : Assigned Model IDs
The following model identifiers have been assigned

00X Common Models

001 - Common Model

002 - Aggregator Model

003 - Secure Dataset Read Model

004 - Secure Dataset Write Model

01X Configuration Models

010 - Interface Configuration Model

011 - Ethernet Link Configuration

012 - IPv4 Protocol Configuration

013 - IPv6 Protocol Configuration

014 - Proxy Server Configuration

015 - Interface Packet Counters

016 - Simplified Network Configuration
017 - Serial Interface Configuration

018 - Cellular Link Configuration

019 - PPP Link Configuration

1XX Inverter Models

101 - Single Phase Inverter Model (Integer+SF)
102 - Split Phase Inverter Model (Integer+SF)
103 - 3 Phase Inverter Model (Integer+SF)
111 - Single Phase Inverter Model (Floats)
112 - Split Phase Inverter Model (Floats)
113 - 3 Phase Inverter Model (Floats)

120 - Inverter Controls Nameplate Ratings

121 - Inverter Controls Basic Settings

Common Elements - Version 1.6

122 - Inverter Controls Measurements and Status
123 - Inverter Controls Immediate Controls

124 - Inverter Controls Basic Storage Control

125 - Inverter Controls Pricing Signal

126 - Inverter Controls Static Volt-VAR Arrays
127 - Inverter Controls Frequency Watt Control
128 - Inverter Controls Dynamic Reactive Current
129 - Inverter Controls LVRT Arrays

130 - Inverter Controls HVRT Arrays

131 - Inverter Controls Watt-Power Factor Arrays
132 - Inverter Controls Voltage-Watt Arrays

133 - Inverter Controls Basic Scheduling

134

135-138

160 - Inverter Multiple Power Point Tracker (MPPT)

2XX Meter Models

201 - Single Phase Meter Model

202 - Split Phase Meter Model

203 - Wye-Connect Meter Model

204 - Delta-Connect Meter Model

211 - Single Phase Meter Model (float)
212 - Split Phase Meter Model (float)
213 - Wye-Connect Meter Model (float)
214 - Delta-Connect Meter Model (float)
3XX Environmental Models

301 - Base Meteorological Model (DEPRECATED)

Common Elements - Version 1.6

302 - Irradiance Model

303 - Back of Module Temperature Model

304 - Inclinometer Model

305 - Location Model

306 - Reference Point Model

307 - Base Meteorological Model (Corrected)
308 - Mini Meteorological Model

4XX String Combiner Models

401 - Basic String Combiner (superseded)

402 - Advanced String Combiner (superseded)
403 - Basic String Combiner 1.1

404 - Advanced String Combiner 1.1

5XX PV Module (Panel) Models

501 - Panel Model (Float)

502 - Panel Model (Integer)

601 - Tracker Model

64XXX Vendor Extension Models

See http://SunSpec.org/AssignedIDs for the latest
65XXX SunSpec Reserved

65535 - End of SunSpec Map (0xFFFF)

C_Status: Assigned Status Codes
Models that support a status code value in the Device Specific Model shall support
the following status values.

C_STATUS_NORMAL 0x00000000 Operating Normally
C_STATUS_ERROR OxFFFFFFFE : Generic Failure
C_STATUS_UNK OxFFFFFFFF : Status Unknown

Device specific status codes shall be defined in corresponding device model.

Common Elements - Version 1.6

MODBUS Register Mappings

All SunSpec devices will have a well-known base address with an alternate base
address that may be used if the base address is unavailable for a particular
manufacturer’s device. The first register in the map shall be the well-known 32 bit
identifier SunSpec_ID. This allows for discovery of SunSpec compatible devices. If
the base register does not return this value, the alternate base register shall be
checked. If this test fails, the device is not SunSpec compatible. The next value
indicates the SunSpec model type. The first device model shall always be the
SunSpec Common Model. The third value is the length of the device model,
followed by the device model values. Additional device model types are
concatenated with their corresponding type, length, and values.

SunSpec Base and Alternate Base Register Addresses (decimal values)
Preferred Base Register: 40001

Alternate Base Register: 50001
Alternate Base Register: 00001

Base registers are actual register offsets that start at 1 - not a function code and not
to be confused with the Modicon convention, which would represent these as
4x40001 and 4x50001.

To read register 40001, use the hexadecimal offset of 0x9C40 (40,000) on the wire.

If you read beyond the end of the device, an exception may or may not be thrown
according to the implementation. If no exception is thrown, then data that comes
after the End Model is invalid and should not be used. Itis recommended that
masters read the common model to determine the contents of the map.

Fixed model sizes must be the size as defined. It is nonconformant to truncate a
fixed size model.

REMINDER: This specification only addresses the format of the data. The data can
be moved via Modbus/TCP or RTU - or any other media which can move Modbus
data. Implementations are responsible for returning measured values as designed.
For example, power and voltage readings may not be in sync depending on the
product design.

Default Serial Port Settings

All SunSpec compatible devices that support an RS-232 or RS-485 serial port
interface shall support the configuration of the serial port baud rate to 9600. In
order to support out-of-the-box interoperability it is strongly recommended that the
factory settings be (9600,8,N,1).

e Baud Rate - 9600

Common Elements - Version 1.6

* DataBits-8
* Parity - None
* StopBits-1

N.B. - This recommendation is NOT the same as in the Modbus specification but
rather reflects common industry practice and defacto usage. The method used for
configuration of the settings is not specified.

Modbus/TCP Settings

It is recommended that the Modbus Unit Identifier should start at address ‘0’.
Additional devices should be numbered as 1, 2, etc. with no gaps in the sequence to
facilitate device discovery. Default TCP port shall be 502.

Common Elements - Version 1.6

SunSpec MODBUS Model Mapping

MODUBS maps are defined using the SunSpec Model Definition XML (SMDX). Please
reference the SMDX file. The SMDX files are also compiled into a spreadsheet called
PICS.xls for human consumption. The SMDX and PICS are the definitive models.
Where discrepancies between the SMDX and PICS exist, the SMDX shall be
authoritative.

SunSpec Model Structure

Canonical Structure

The original common model specification defines common features of a SunSpec
data model. It requires every model to start with a fixed 2 register header
specifying the ID of the model and the length of the data portion of the Modbus
registers (in 16 bit words) following this header.

Out of the need to support a variable number of points the following canonical
structure has been developed:

Header
(Model ID + Length)

Fixed Length Block
(may be zero length)

Repeating Block
(may be zero length)

The repeating block is composed of one or more repeating instances, where an
instance is a sequence of points defined in the model's specification.

Thus the length of the repeating block is constrained to be a whole number multiple
of the length of an individual instance.

We can formalize this structure as follows:

Component Size (Modbus Registers) Comments

DID (Model ID) 1 well known value

Model Length 1 length of data portion
(fixed length block + total
repeated block length)

Fixed Length Data Block |data block length may be optional (zero

Common Elements - Version 1.6

Component Size (Modbus Registers) | Comments

length)
Repeating Block number of instances * may be optional (zero
instance length length)

All SunSpec data models must adhere to this format. Reading applications, such as
data loggers, depend on this structure to properly parse discovered data models.
The structure also allows reading applications to ignore models it does not
understand yet continue to parse any models it does understand.

Determining the Number of Repeating Instances
In all cases the reading application determines the number of repeating instances by
using the following formula:

n=(1-f)/i

n number of repeating instances in the repeating block
[total length of the model, as provided by the device
f length of the fixed length block, in registers

i length of the repeated block, in registers

There may be cases where a model also indicates the number of instances in the
repeating section in a point, usually named N. The reading application must not rely
on this value but should instead compute the number of instances based on the total
indicated length.

Cases Derived From the Canonical Structure

The specified structure gives rise to 3 main classes of models, plus 1 degenerate
case. We will consider each case in turn along with corresponding examples of
existing data models. Length values will be indicated using the n, i, f, I notation
described above.

Fixed Length Data Models
The fixed length block is the easiest to understand. The number of registers is fixed.
The repeating section is zero length and thus omitted.

Model ID id

Length f

Fixed Length fregisters
Block

Common Elements - Version 1.6

Examples of data models with this structure are 1: Common Model, 101: Single
Phase Inverter Model and 201: Single Phase Meter Model.

Since there is no repeating section the length the length indicated by the device
must match the specified length for a given model.

Repeating Models
The repeating model contains no fixed length section.

Model ID id

Length n*i

Repeating n*i
Block registers

Examples of this structure are 302: Irradiance Model, 303: Back of Module
Temperature Model and 304: Inclinometer Model.

To determine the number of repeated instances the reading application must know,
from the specification, the length of an instance in a given model. The reading
application divides the indicated total model length by the known instance length to
determine the number of instances present.

For example, if the reading application discovers Model 304 with a length of 18. It
knows that the length of the repeating instance in Model 304 is 6, so applying the
formula from above it determines there are 3 repeated instances.

3=(18-0)/6

Combined Model with Both a Fixed Length Block and Variable Length Block
A model may contain both a fixed length section and a repeating section.

Model ID id

Length f+(n*i)

Fixed Length n registers
Block

Repeating n*i
Block registers

Common Elements - Version 1.6

For example, Model 403, the String Combiner, is composed of a fixed length block of
16 registers followed by a repeating block with an instance length of 8 registers. If a
device reports the total length is 112 registers then there must be 12 instances in
the repeating section.

12=(112-16)/8

Zero Length Model

The zero length model is included for the sake of completeness. The only zero
length model allowed is the SunSpec end marker, with ID OxFFFF. In the canonical
model, both the fixed length block and the repeated block are length zero.

ID OxFFFF

Length 0

Best Practices for Model Design

We've spent several years developing data models for multiple classes of devices. In
addition to the model design described previously, we have come up with the
following list of best practices. These are not hard-and-fast rules; in fact, most of
them are violated by one or more models. However, going forward we would like all
data models to follow these guidelines.

Group scale factors

Scale factors should be grouped together in a block rather than scattered
throughout the model. Grouping the scale factors instead of intermixing them with
datapoints reduces the number of registers a Modbus master will need to read.

For example, model 403, the String Combiner Model shows the scale factors
grouped in the fixed-length section at the start of the mode. Actually, there are two
groups, since InDCA_SF and InDCAhr_SF were added when 401 was deprecated.

Model 101, the single phase inverter model, puts the scale factors in the model close
to the datapoints they modify. While mitigated by the fact the entire model fits into
a single Modbus read, this design requires the scale factors to be read to retrieve all
the measurements.

Use Instance Scale Factors When Appropriate

Keep in mind that for a device with many subcomponents represented by instance
variables, it may not be appropriate to use the same scale factor for aggregated
values and instance values. This mistake was made with the first versions of the
String Combiner (401 and 402). The same scale factor was used, for example, for
aggregated current and individual string current. This meant the dynamic range of

Common Elements - Version 1.6

the string current value was limited to the range required by the entire combiner.
This issue was corrected in models 403 and 404.

Use PAD to keep 32 and 64 bit alignment

As a consideration to low resource devices model designers should align all 32 and
64 bit values on even numbered offsets. A PAD register should be added at the end
of the fixed length block and/or at the end of a repeating block to ensure both add

up to an even number of registers. Arrange the other points as needed to place the
PAD at the end of the block.

Official SunSpec models should not have more than two PAD registers: one for the
fixed length block and one for the repeating block. Vendor models may use PAD to
mark ranges of registers as reserved for future use.

Reuse point IDs from other models
Use the same ID as existing models to represent the same physical quantity. This
will aid implementation and interpretation of the data model.

Reuse status and events from other models

When two models share similar behavior please re-use existing status and event
values. Mark unneeded vales as RESERVED. Compare the inverters models (101,
102 and 103), the Smart Panel models (501 and 502) and the Multiple MPPT Inveter
Extension (160) for an example.

SunSpec Inverter Control Procedural Requirements

Error Handling
There is a need to handle errors in a consistent way for conformance testing and
interoperability. Applications need a known way to detect errors and handle them.

Unimplemented Registers
Optional registers may not be supported by an implementation.

READ: The value returned is the SunSpec unimplemented value.

WRITE: The written value is ignored. No exception is generated.

A setting is assumed to be a field in a SunSpec model that is defined in the
specification as read /write.

Invalid Setting Value
A setting is written that is not a supported value for the implementation.

Common Elements - Version 1.6

WRITE: An exception “3” Illegal Data Value shall be returned and processing of the
write operation shall terminate. I.e. previous registers may have been written but
no subsequent registers shall be written.

NOTE: Such limitations may be documented in the PICS for the implementation.
There is no other SunSpec defined method for specifying or determining limits at
this time.

Read-Only and Write-Only Registers
Attempting to write to a read-only register or read from a write-only register.

WRITE to R: The written value is ignored. No exception is generated.

READ from W: If the register is supported returns 0 else returns the unsupported
value.

Incomplete Enumeration

An incomplete enumeration occurs when the values for a setting are expressed as an
enumerated value and some of the possible valid enumerations in the specification
are not valid in the implementation.

Modelers should include a register to indicate which enumerations are supported.
READ: Returns the current value

WRITE: Handled same as an Invalid Setting. The value is not changed and an
exception “3” shall be generated.

Incomplete Operation

SunSpec only defines READ and WRITE operations. Some operations may not take
place in time for a Modbus response. If it desired to return an Exception “5”
ACKNOWLEDGE, the model must support a completion register. Otherwise,
Exception “5” ACKNOWLEDGE shall not be returned. No exception shall be
returned.

Organization of Control Read/Write Values

It is desirable to organize related settings values within the Modbus map in a way
that minimizes the number of writes necessary to accomplish updating and
activating the settings. Control operations that rely on a group of settings shall
have a register to control the activation (enabling / disabling) of the control.

To facilitate that goal, the following guidelines are recommended:

* Related writable settings field are organized in a contiguous block
* Activation fields are located at the end of the settings block
* Activation fields only operate on the behavior related to that settings block

Common Elements - Version 1.6

Procedure for Enabling/Changing Settings Requiring Multiple Write Operations
Implementations must re-enable to control for setting changes to take effect. Itis
not required or recommended to disable the control to update the settings.

Enable Procedure:

1. All settings are written
2. The activation field is enabled

Change Procedure

1. Changed settings are written. Changes do NOT take effect, even if the
activation field is already enabled, until the activation field is enabled.
2. The activation field is enabled

Disable Procedure

1. The activation field is disabled

Certification

The SunSpec Certified™ program is designed to instill buyer confidence in SunSpec
member product solutions by establishing objective criteria for verifying compliance of
communication interfaces to SunSpec specifications. This program has been in
operation since 2012 and 25 companies have been awarded certification.

The SunSpec Alliance Certification Test consists of submitting a SunSpec PICS (Protocol
Implementation Conformance Statement) and successfully executing the SunSpec
Alliance Compliance test. Both certification and interoperability testing can be
completed over the Internet. Certification is currently offered to SunSpec Alliance
Contributing members free of charge.

The SunSpec Alliance has a program to accommodate companies that would like to offer
SunSpec Certified products but can’t join the SunSpec Alliance as members. This
program, called the SunSpec Certified Partner Program, is for equipment manufacturers
and software developers seeking to have their products SunSpec Certified™ without
needing to join the SunSpec Alliance.

The SunSpec Certified mark instills buyer confidence in the quality and interoperability
of your company’s products. Some additional benefits include:

* Rigorous testing of product interface to SunSpec Alliance standards

Common Elements - Version 1.6

* In-depth interoperability testing with other SunSpec Certified solutions

* Right to display SunSpec Certified mark on products

* Right to use of SunSpec Alliance logo in marketing materials

* Product listing in SunSpec Certified catalog

* Inclusion in the bidding process for system builders specifying SunSpec
compatibility

Support

The Alliance provides ongoing support for members and non-members utilizing SunSpec
Alliance specifications. If you have any questions, concerns, or thoughts, please visit
http://www.sunspec.org or email us at info@sunspec.org.

Common Elements - Version 1.6

	tp_commonmodel_spec
	SunSpec-Alliance-Specification-Common-Models-v1.6

