Instructor Guide

Import Classes and Load Driver

i
import java.sqi.*; n
import java.io.*;

import java.lang.*;

class MyJDBC {

static {
E try { Class.forNa.me(“COM.ibm.de.j@c.app.DBZDriver");
} catch (Exception e) {

e.printStackTrace() ;

Figure 2-4. Import Classes and Load Driver CG113.0

Notes:
- 1 Every JDBC (and SQLJ) program must import the JDBC package.
« B The appropriate JDBC driver must be loaded.

© Copyright IBM Corp. 2000, 2003 Unit 2. JDBC Programming | 2-11

Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

www
附注
Every JDBC (and SQLJ) program must import the JDBC package.

www
附注
The appropriate JDBC driver must be loaded.

iPad Pro Bro

genius yin

iPad Pro Bro

iPad Pro Bro

Instructor Guide

Connect to Database

public static void main (String argvI[]){

try {
n Connectiog%fo = null;
H String urX = "jdbc:db2:sample";

if (argv.length == 0)
Bl { con = DriverManager.getConnegtion(url); }
else if (argv.length == 2)

{ String userid

argv([0];
String passwd = argv([1l];
n con = DriverManager.getConnection (url,userid,passwd) ;

}

else

{ throw new Exception

("\n Usage: java MyJDBC[,username,password]\n");}

Figure 2-5. Connect to Database CG113.0

Notes:

. Shows declaring the Connection object. The Connection object establishes and
manages the database connection.

« A Shows setting the database URL variable. The DB2 application driver accepts URLs
that take the form of jdbc: db2 : database _name.

. Shows connecting to the database using the ur/ parameter. This establishes a
connection to the database specified by ur/ with the default username and password.
The DriverManager.getConnection () method is most often used with either the
url parameter as shown here, or with url, userid, and password, as shown in [

« [} Shows connecting to the database using url, userid, and password. This establishes
a connection to the database specified by ur/ with the values for username and
password specified by userid and passwd, respectively.

© Copyright IBM Corp. 2000, 2003 Unit 2. JDBC Programming | 2-13

Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

www
附注
The Connection object establishes and
manages the database connection.�

www
附注
setting the database URL variable. The DB2 application driver accepts URLs
that take the form of jdbc:db2:database_name.�

www
附注
connecting to the database using the url parameter. This establishes a
connection to the database specified by url with the default username and password.�

genius yin
附注�
connecting to the database using url, userid, and password.

iPad Pro Bro

iPad Pro Bro

iPad Pro Bro

iPad Pro Bro

Instructor Guide

SELECT Statement

II Statement stmt = con.createStatement () ;

E ResultSet rs = stmt.executeQuery fOI’ SeleCt

("SELECT EMPNO, LASTNAME " +

" FROM TEMPL " +
" WHERE SALARY > 40000 ");

3 while (rs.next()) {
I] System.out.println("empno = " + rs.getString(l) +

"lastname = " + rs.getString(2)):;

}

rs.close();

stmt.close () ;

con.close();

} catch (Exception e) {

2

Figure 2-6. SELECT Statement CG113.0

e.printStackTrace() ;

Notes:

- 1l Creates a statement object. Statement objects are used to send SQL statements to
the database. The createStatement() method returns a Statement object that will
produce a non-scrollable and non-updateable result set.

« B Executes an SQL SELECT statement. The executeQuery () method is used for
SQL statements, like SELECT statements, that return a single result set. The result set
is assigned to a ResultSet object.

« Hretrieves rows from the ResultSet. The ResultSet object allows you to treat a result set
like a cursor in host language embedded SQL. The ResultSet .next () method
moves the cursor to the next row and returns Boolean false if the final row of the
result set has been reached.

« 1 For each row of the result set, print the contents out using the
ResultSet.getString (n) method. ResultSet .getString (n) returns the value
of the nth column as a String object.

« B Closes the result set.

© Copyright IBM Corp. 2000, 2003 Unit 2. JDBC Programming | 2-15

Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

www
高亮

www
高亮

genius yin
高亮�

genius yin
高亮�

genius yin
高亮�

iPad Pro Bro

iPad Pro Bro

iPad Pro Bro

iPad Pro Bro

iPad Pro Bro

iPad Pro Bro

iPad Pro Bro

iPad Pro Bro

iPad Pro Bro

iPad Pro Bro

iPad Pro Bro

iPad Pro Bro

iPad Pro Bro

iPad Pro Bro
for select

iPad Pro Bro

iPad Pro Bro

iPad Pro Bro

iPad Pro Bro

Instructor Guide

UPDATE Statement

n Statement updStmt = con.createStatement();

E int numRows = updStmt.executeUpdate

("UPDATE TEMPL " +
" SET LASTNAME = 'Stohl' " +
" WHERE EMPNO = '000110' ");

System.out.println ("Number of rows updated " + numRows) ;

Figure 2-7. UPDATE Statement CG113.0

Notes:

« 11t is possible for an UPDATE statement to use a statement object just like a SELECT
statement. However, a complete SQL statement must be provided if the Statement
object is used.

« B Executes an SQL UPDATE statement. The executeUpdate method is used for SQL
UPDATE statements. The method returns the number of rows updated as an int
value.

2-18 DB2 Programming Using Java © Copyright IBM Corp. 2000, 2003

Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

iPad Pro Bro

iPad Pro Bro

www
在文本上注释
The method returns the number of rows updated as an int value.

iPad Pro Bro

Instructor Guide

Using Parameter Markers - UPDATE

Kl Preparedstatement pUpd = con.prepareStatement

("UPDATE TEMPL " +

" SET SALARY = 2 " +

" WHERE EMPNO = 2 ");
FJ pUpd.setString(1,argv[l]);

E pUpd.setString(2,argv(2]);
n int numRows = pUpd.executeUpdate() ;

System.out.println ("Number of rows updated " + numRows) ;

B pUpd.close() ;

Figure 2-8. Using Parameter Markers - UPDATE CG113.0

Notes:

« fl When you want to execute the same statement multiple times and allow multiple
variable values on the SET and WHERE clauses, you must create a
PreparedStatement object. Parameter markers (designated by a ? in the statement) are
used to identify where values will be supplied. The statement is prepared once (via the
prepareStatement method) and potentially executed multiple times with different values
supplied for the parameter markers.

A Sets the value for the first parameter marker. The value is obtained from the second
element of array argv in this example.

Sets the value for the second parameter marker. The value is obtained from the third
element of array argv in this example.

Bl Executes the update. From this point, the processing is the same as the
non-parameterized statement.

B Closes the Statement object.

2-20 DB2 Programming Using Java © Copyright IBM Corp. 2000, 2003

Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

iPad Pro Bro

iPad Pro Bro

iPad Pro Bro

iPad Pro Bro

iPad Pro Bro

iPad Pro Bro

iPad Pro Bro

iPad Pro Bro

iPad Pro Bro

iPad Pro Bro

Instructor Guide

Instructor Notes:

Purpose — Identify how to execute an UPDATE using parameter markers.

Details — fl When you want to execute the same statement multiple times and allow
multiple variable values on the SET and WHERE clauses, you must create a
PreparedStatement object. Parameter markers (designated by a ? in the statement) are
used to identify where values will be supplied. The statement is prepared once (via the
prepareStatement method) and potentially executed multiple times with different values
supplied for the parameter markers.

The PreparedStatement setXXX methods are used to provide values for the parameter
markers and must be invoked prior to doing the executeUpdate(). Some other setXXX
methods in addition to setString are setDouble, setint, setShort.

Transition Statement — Let's look at coding an insert statement using JDBC.

© Copyright IBM Corp. 2000, 2003 Unit 2. JDBC Programming | 2-21

Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

genius yin
高亮�

Instructor Guide

Insert Statement

n String sql = null;

sqgql = "INSERT INTO TEMPL (EMPNO, LASTNAME, SALARY)"
H + "VALUES ('000110', 'Roth', 50000)",
EJ stmt = con.createStatement();

VY insertCount = stmt.executeUpdate(sql);

Figure 2-9. Insert Statement CG113.0

Notes:
« il A variable, sq|, of type String is defined and initialized to null.
« B The variable sql is assigned the value of the INSERT statement.
« B The createStatement method returns a newly created Statement object, stmt.

« [l Method executeUpdate() performs the INSERT, and the number of rows inserted is
placed into variable insertCount.

2-22 DB2 Programming Using Java © Copyright IBM Corp. 2000, 2003

Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

Instructor Guide

Delete Statement

PreparedStatement pstmt = null;
String eno = "000110";
String mysql = null;

mysql = "DELETE FROM TEMPL WHERE EMPNO = ?";

pstmt = con.prepareStatement (mysgl) ;

pstmt.setString (1, eno);

~JoNol-~No iR~

deleteCount = pstmt.executeUpdate () ;

Figure 2-10. Delete Statement CG113.0

Notes:
« [l Create the object pstmt.

« H Define the String variable eno and initialize to "000110".
- K] Define the String variable mysql and initialize to null.
« [l Assign the DELETE statement to mysq|l variable.

« B Use the prepareStatement() method since the DELETE statement has a parameter
marker.

« [The setString() method assigns the value of the variable eno to the first parameter
marker. This assignment must be done before the execute Update() method is used.

« [l The executeUpdate() method does the DELETE and returns the number of rows
DELETED to the deleteCount variable.

2-24 DB2 Programming Using Java © Copyright IBM Corp. 2000, 2003

Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

iPad Pro Bro

iPad Pro Bro

iPad Pro Bro

iPad Pro Bro

Instructor Guide

Declaration Considerations for Java

CREATE TABLE SIMPLE
(TITLE CHAR (20) NOT NULL,
NUMBER SMALLINT NOT NULL)

private static String title;
private static short number;
PreparedStatement pstmt;

sql = "SELECT TITLE FROM SIMPLE "
+ "WHERE NUMBER = ?";
pstmt = con.prepareStatement (sql) ;

pstmt.setInt (1, number); SetClob
ResultSet prs = pstmt.executeQuery() ;
While (prs.next())

{ title = prs.getString(1);}

Figure 2-13. Declaration Considerations For Java CG113.0

Notes:

« To support character string data use String class, and to support SMALLINT use short.

« Consult the Application Development Guide for other details, including variations for
declaring storage to support character data.

References:
SC09-4825 Application Development Guide: Building and Running Applications
© Copyright IBM Corp. 2000, 2003 Unit 2. JDBC Programming | 2-33

Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

genius yin
高亮�

genius yin
高亮�

genius yin
高亮�

genius yin
高亮�

iPad Pro Bro

iPad Pro Bro
setClob

iPad Pro Bro

Instructor Guide

Example of Using the wasNull() Method

Statement stmt = con.createStatement();
ResultSet rs = stmt.executeQuery
("SELECT EMPNO, LASTNAME, EDLEVEL " +
" FROM EMP ")
while (rs.next()) {
String eno = rs.getString(1l);
String lname = rs.getString(2);
short edlvl = rs.getShort(3);
if (rs.wasNull())

{ System.out.println ("\n Edlevel is null for EMPNO \n") ;
System.out.println (eno);
} // end if
else
{ System.out.println ("\n Edlevel is: \n") ;

System.out.println (edlvl);

System.out.println ("\n For EMPNO = \n");
System.out.println (eno);
} // end else

Figure 2-16. Example of Using the wasNull() Method CG113.0

Notes:

This example uses the wasNull() method to check if the third column selected, EDLEVEL
(type SMALLINT) contains a null value. The wasNull() applies to the EDLEVEL column
because wasNull() checks to see if the last value read was SQL NULL or not, and the last
value read was done with the getShort(3).

Since EDLEVEL is SMALLINT, the wasNull() method must be used to check for a null
value. A comparison with the Java NULL may give inaccurate results.

2-42 DB2 Programming Using Java © Copyright IBM Corp. 2000, 2003

Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

genius yin
高亮�

iPad Pro Bro

iPad Pro Bro

iPad Pro Bro

Instructor Guide

In some cases, if the column being set to SQL NULL is not an object type in the Java
programming language, then the setNull() method must be used to set a column value to
SQL NULL. The setNull() method, associated with the preparedStatement interface, can be
used to set a column value to null before an insert or update is performed. You would set
an INTEGER column to null as follows:

stmt.setNull (1,java.sdgl.Type.INTEGER) ;

Note that the stmt is a preparedStatement and the first column to be inserted or updated is
set to a null value.

© Copyright IBM Corp. 2000, 2003 Unit 2. JDBC Programming | 2-45

Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

genius yin
高亮�

genius yin
高亮�

genius yin
高亮�

iPad Pro Bro

iPad Pro Bro

iPad Pro Bro

Instructor Guide

Example of Using the setNull() Method

PreparedStatement pstmt = null;

sql = "UPDATE EMP SET EDLEVEL = °? "
+ " WHERE EMPNO = '0000110' ™;

pstmt = con.prepareStatement(sqgql);

if (some condition)

{ pstmt.setNull (1, java.sqgl.Type.SMALLINT); }

else

{ pstmt.setShort(1, 16); }

updateCount| = pstmt.executeUpdate() ;

Figure 2-18. Example of Using the setNull() Method CG113.0

Notes:

This example uses the setNull() method to set the value of the first parameter to SQL NULL
if some condition is {fue. When some condition is false, the value of the first parameter is

set to 16. The setNull() method must be invoked before the executeUpdate() method.

© Copyright IBM Corp. 2000, 2003 Unit 2. JDBC Programming |

Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

2-47

www
高亮

www
线条

iPad Pro Bro

iPad Pro Bro

iPad Pro Bro

iPad Pro Bro

iPad Pro Bro

Instructor Guide

Instructor Notes:

Purpose — Show the use of the setNull() method to set a column value to SQL NULL
before the column is used in an executeUpdate.

Details — The setNull() method must be used in cases where the column being set to SQL
NULL is not an object type in the Java programming language.

Transition Statement — Another way that DB2 can communicate to your application is
through the SQLCA.

2-48 DB2 Programming Using Java © Copyright IBM Corp. 2000, 2003

Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

www
高亮

iPad Pro Bro

Instructor Guide

Error Processing

try {
sql = "DELETE FROM TEMPL WHERE EMPNO = 999";
psstmt = con.prepareStatement (sql);
II deleteCount = psstmt.executeUpdate() ;
E if ((SQLWarn = psstmt.getWarnings()) !=null)
{

System.out.println ("\n Warning received on a DELETE \n");}
} // end try

E] catch (SgLExcegtiQn{;)
0 { if @.qetSQLState(.equals ("42818"))

{ System.out.printlln ("\n Operand data types not compatible \n");

} // end if

else { System.out|/println ("\n Error deleting from TEMPL \n");
System.out|println ("\n Value of SQLCODE is: \n");

la SQLCode =(x).getErrorCode () ;

System.out.println (SQLCode) ;

} // end else

} // end catch

Figure 2-24. Error Processing CG113.0

Notes:

« fl This is similar to code on the prior visual, done within a try block.

A The if statement uses psstmt Statement interface to invoke the getWarnings() method
to check if SQLWARNO in the SQLCA is not null (that is, is equal to "W").

« K SQLException is executed (that is, is true) when the try block returns an
SQLException (SQLCODE less than zero).

« [l Method getSQLState() is invoked to retrieve the SQLSTATE from the SQLCA. An
SQLSTATE value of "42818" means the data types of the operands were not
compatible. In this example, we are trying to compare CHARACTER column EMPNO
with the INTEGER 999, so we will get an SQLSTATE value of "42818".

« B Method getErrorCode() is invoked to retrieve the SQLCODE from the SQLCA.
Therefore, with JDBC, you must evaluate the result of the executeUpdate() method,
which contains the number of rows affected by the insert, update, or delete that was last
executed.

2-60 DB2 Programming Using Java © Copyright IBM Corp. 2000, 2003

Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

iPad Pro Bro

iPad Pro Bro

iPad Pro Bro

iPad Pro Bro

iPad Pro Bro

iPad Pro Bro

iPad Pro Bro

iPad Pro Bro

iPad Pro Bro

iPad Pro Bro

Instructor Guide

In JDBC, the getWarnings() method and catch (SQLException x) are not recognizing an
SQL_NO_DATA_FOUND condition. Therefore, with JDBC, you must evaluate the result of
the executeUpdate() method, which contains the number of rows affected by the insert,
update, or delete that was last executed. When the number of rows updated value is zero,
then an SQL_NO_DATA_FOUND condition has occurred.

The following example code checks to see if any rows were deleted:

rowCount = stmt.executeUpdate() ;
if (rowCount = 0)
{ system.out.println ("\n No rows deleted - EMPNO is not found \n"};

© Copyright IBM Corp. 2000, 2003 Unit 2. JDBC Programming | 2-61

Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

www
高亮

www
高亮

iPad Pro Bro

Instructor Guide

SELECT Statement Review

II Statement stmt = con.createStatement() ;
E ResultSet rs = stmt.executeQuery
("SELECT EMPNO, LASTNAME " +
" FROM TEMPL " +
" WHERE SALARY > 40000 ");
)] while (rs.next()) {
n System.out.println("empno = " + rs.getString(l) +
"lastname = " + rs.getString(2));
}
E rs.close();
E stmt.close() ;
con.close() ;
bcatch (Exception e) {

e.printStackTrace() ;

}

Figure 3-2. SELECT Statement Review CG113.0

Notes:

- 1l Creates a statement object. Statement objects are used to send SQL statements to
the database. The createStatement() method returns a statement object that will
produce a non-scrollable and non-updateable result set.

« B Executes an SQL SELECT statement. The executeQuery () method is used for
SQL statements, like SELECT statements, that return a single result set. The result set
is assigned to a ResultSet object.

- K} Retrieves rows from the ResultSet. The ResultSet object allows you to treat a result
set like a cursor in host language embedded SQL. The ResultSet .next () method
moves the cursor to the next row and returns Boolean false if the final row of the
result set has been reached.

« 1 For each row of the result set, print the contents out using the
ResultSet.getString (n) method. ResultSet .getString (n) returns the value
of the nth column as a String object.

B Closes the result set.

3-6 DB2 Programming Using Java © Copyright IBM Corp. 2000, 2003

Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

www
高亮

www
高亮

www
高亮

www
高亮

iPad Pro Bro

iPad Pro Bro

iPad Pro Bro

iPad Pro Bro

iPad Pro Bro

iPad Pro Bro

iPad Pro Bro

Instructor Guide

Review of Using Parameter Markers - SELECT

n PreparedStatement pstmt = con.prepareStatement
("SELECT EMPNO, LASTNAME " +
" FROM TEMPL " +
" WHERE EMPNO = ? ");
E pstmt.setString(1l,argv([0]) ;
ﬂ ResultSet prs = pstmt.executeQuery() ;
P while (prs.next()) {
E System.out.println("empno " + prs.getString(l) +
" lastname " + prs.getString(2));

}

E prs.close();

Figure 3-3. Review of Using Parameter Markers - SELECT CG113.0

Notes:

il If you want to execute the same statement multiple times, allowing the value of what
you are comparing to on the WHERE clause to vary, you must create a
PreparedStatement object. Parameter Markers (designated by ? in the statement) are
used to identify where values will be supplied at run time. This can be compared to
SQLJ host variables; the statement is prepared once (via the prepareStatement
method) and potentially executed multiple times with different values supplied for the
parameter marker.

« H Sets the value for the first (and only, in this case) parameter marker in the statement.

« K] Executes the query using the value provided for the parameter marker. The result is
assigned to a ResultSet object. From this point, the execution is like the previous
SELECT example.

« [l Retrieves the rows from the ResultSet.
« B Returns the values of the columns.
« [Closes the ResultSet.

© Copyright IBM Corp. 2000, 2003 Unit 3. JDBC Programming Il 3-9

Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

www
高亮

Instructor Guide

Specifying
Result Set Types and Concurrency Types

II ResultSet prs = null;
!! PreparedState;:ht>pstmt = con.prepareStatement

@'SELECT EMPNO, TNAME " +
" FROM TEMPL " +

" WHERE WORKDEPT = ?_", prs.TYPE FORWARD ONLY,
prs.CONCUR _READ ONLY)/;

l! pstmt.setString(l,argvI[0]);
I] prs = pstmt.executeQuery () ;
B while (prs.next()) {
System.out.println("empno " + prs.getString(l) +
" lastname " + prs.getString(2));

}

prs.close();

Figure 3-4. Specifying Result Set Types and Concurrency Types CG113.0

Notes:

The concurrency type and result set type are specified as values in a prepareStatement
method.

In addition to the CONCUR_READ_ONLY concurrency, which states that a query is a
FETCH ONLY, JDBC 2.0 allows a CONCUR_UPDATEABLE concurrency which allows
FOR UPDATE on a query. However, the DB2 JDBC 2.0 drivers do not support the
CONCUR_UPDATEABLE parameter.

In addition to the TYPE_FORWARD ONLY result set, there are the
TYPE_SCROLL_INSENSITIVE and TYPE_SCROLL_SENSITIVE result sets. The
TYPE_FORWARD_ONLY result set only allows you to scroll forward through a result set.
Both TYPE_SCROLL_INSENSITIVE and TYPE_SCROLL_SENSITIVE result sets let you
scroll backward or forward through result sets. A sensitive result set will show you changes
that have been made to the underlying data if your query the same row more than once. A
scroll-insensitive result set will not reflect these changes until the query is reexecuted.
Later you will see examples of backward scrolling through result sets.

3-12 DB2 Programming Using Java © Copyright IBM Corp. 2000, 2003

Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

www
高亮

www
高亮

www
高亮

www
高亮

www
高亮

www
高亮

iPad Pro Bro

iPad Pro Bro

iPad Pro Bro

iPad Pro Bro

iPad Pro Bro

iPad Pro Bro

iPad Pro Bro

iPad Pro Bro

iPad Pro Bro

iPad Pro Bro

Instructor Guide

Answer Set Materialization

BUFFER OPEN NOMAT
JONES 10000 |[¢— FETCH NOMAT #1 nomat="SELECT NAME,"
+ SALARY FROM EMP'";
ADAMS 15000 [¢— FETCH NOMAT #2
pstmt = con.prepareStatement (nomat) ;

SMITH 12000 |[¢— [} ResultSet rs = pstmt.executeQuery () ;
BAKER 16000 [¢— L4
GATES 20000 [¢— FETCH NOMAT #5

OPEN MAT

e
ADAMS 15000 |[¢— FETCH MAT #1 mat = "SELECT NAME,"

+ "SALARY FROM EMP "

BAKER 16000 [¢— FETCH MAT #2

+ "ORDER BY NAME";

GATES 20000 — [) pstmt2 = con.prepareStatement (mat) ;

ResultSet rs2 = pstmt2.executeQuery() ;

JONES 10000 [¢e— °

SMITH 12000 [&— FETCH MAT #5
Figure 3-5. Answer Set Materialization CG113.0
Notes:

The rows of a results table may be derived at executeQuery() or during execution of
subsequent FETCH statements or next() methods. (Within DB2, the next() method
actually performs FETCHes.)

If DB2 can avoid materialization and still provide the correct results set, it will usually
derive the rows of the results set as they are retrieved via a FETCH.

If a sort is required to satisfy the SQL statement, DB2 will retrieve the result set at
executeQuery() and use a workfile for sorting purposes.

In the above example, assume there is no INDEX on NAME. DB2 must use a workfile to
produce the results set in order to return the rows in the requested order. Subsequent
FETCH statements will retrieve the rows from the workfile.

If an index did exist on the NAME column, DB2 MAY use the index to avoid the sort and
the use of a workfile. In this case, the rows would be derived at FETCH.

EXPLAIN can be used to determine if sorts are required.

3-14 DB2 Programming Using Java © Copyright IBM Corp. 2000, 2003

Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

www
在文本上注释
for sorting purposes.

www
高亮

www
高亮

iPad Pro Bro

iPad Pro Bro

Instructor Guide

Result Set Processing - Positioned Updates

// Define SELECT and UPDATE and the cursor name

String mySelect "SELECT LASTNAME, FIRSTNME FROM EMP FOR UPDATE";
String myUpdate = "UPDATE EMP SET FIRSTNME = ? WHERE CURRENT OF ";
String cursorName = null;

//Execute the SELECT statement and process the re set
Statement stmt = con.createStatement ()
ResultSet rs = stmt.executeQuery(ect) ;
cursorName = rs.getCursorName() ;
PreparedStatement ps = con.prepareStatement (myUpdate + cursorName) ;

While (rs.next()) {
E’ String lastname rs.getString (1) ;
String firstnme rs.getString(2);

// Apply business logic to update the firstname

if (lastname.equals("SMITH")) ({

String newFirstnme = "George";
ps.setString(1, newFirstnme) ;
ps.executeUpdate() ;
// end if

} // end while

rs.close();

ps.close();

stmt.close();

Figure 3-6. Result Set Processing - Positioned Updates CG113.0

Notes:

« [l Assigns the SELECT statement to variable mySelect. The FOR UPDATE clause is
used to tell DB2 that updates will be done. Use of the FOR UPDATE clause causes
DB2 to take U locks on selected rows.

« K Assigns the UPDATE statement to variable myUpdate. The WHERE CURRENT OF
clause will cause DB2 to update the currently selected row.

- K Defines variable cursorName which will be used in later processing.

« [l The getCursorName() method in the ResultSet object returns the DB2 UDB defined
cursor name and assigns this name to variable cursorName.

« B The prepareStatement() method prepares the concatenated update statement
(concatenates the UPDATE ..WHERE CURRENT OF.. with the value of cursorName).

« [§ Retrieves the current row values of LASTNAME and FIRSTNME into variables
lastname and firstnme.

- [Updates the FIRSTNME when appropriate and closes objects.

© Copyright IBM Corp. 2000, 2003 Unit 3. JDBC Programming Il 3-17

Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

www
在文本上注释
DB2 to update the currently selected row.

www
在文本上注释
returns the DB2 UDB defined
cursor name and assigns this name to variable cursorName.�

www
在文本上注释
concatenated update statement

iPad Pro Bro

iPad Pro Bro

iPad Pro Bro

iPad Pro Bro

iPad Pro Bro

iPad Pro Bro

iPad Pro Bro

iPad Pro Bro

iPad Pro Bro

iPad Pro Bro

iPad Pro Bro

iPad Pro Bro

iPad Pro Bro

Instructor Guide

Scrollable
Result Set Processing - Backward Scrolling

[**kkkkkxkxkkxkx*Define scrollable result set ***kkkkkkkhkkkkkkkkhkkkkhdn /

scrollrs = null;

/***/

/**** SQL SELECT FROM EMP using scrollable result sets *% /
/***/

"SELECT"

" EMP.FIRSTNME, "

" EMP .LASTNAME"

n FROMII

" EMP"

n WHEREII

n (ll

" (EMP.WORKDEPT = ?)"

LY

stmt = con.prepareStatement (sql
scrollrs.TYPE SCROLL INSENSITIVE, scrollrs.CONCUR READ ONLY) ;

stmt.setString(1, dno);

scrollrs = stmt.executeQuery();

sql

B A . I]

/* Move to the end of the scrollrs resultset and iterate through */
/* the result set in reverse order */

scrollrs.afterLast();

while (scrollrs.previous()) {
// Get values for the current row
firstnme = scrollrs.getString(l);

lastname = scrollrs.getString(2);

}

Figure 3-11. Scrollable Result Set Processing - Backward Scrolling CG113.0

Notes:

« [l Define scrollrs as a result set object.

A In addition to providing the SQL statement to the prepareStatement method, the result
set is defined as a scroll insensitive, read only result set.

The parameter marker is set to the value of variable dno.

Il The executeQuery() method creates the scrollable result set.

B The afterLast() method is a JDBC 2.0 method that positions the cursor after the last
row in the result set.

[The previous method reads backward through the result set retrieving the last row in
the result set first, and the first row in the result set last.

Reminder: In an earlier visual, we already discussed result set types, including
TYPE_SCROLL_INSENSITIVE and CONCUR_READ_ONLY. Please review that visual for

more details.

© Copyright IBM Corp. 2000, 2003 Unit 3. JDBC Programming Il 3-27

Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

www
高亮

www
高亮

www
高亮

iPad Pro Bro

iPad Pro Bro

iPad Pro Bro

iPad Pro Bro

iPad Pro Bro

iPad Pro Bro

iPad Pro Bro

iPad Pro Bro

iPad Pro Bro

iPad Pro Bro

iPad Pro Bro

iPad Pro Bro

Instructor Guide

Instructor Notes:

Purpose — To show how to scroll backward through a result set.

Details — The result set, scrollrs, is defined as a scroll insensitive, read only result set
when the prepareStatement is invoked. The afterLast() method positions the cursor after
the last row in the result set. The previous() method is used to backward scroll through the
result set.

Transition Statement — Let's look at additional scrollable result set methods.

3-28 DB2 Programming Using Java © Copyright IBM Corp. 2000, 2003

Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

www
高亮

Instructor Guide

Scrollable
Result Set Processing - Additional Methods

e There are additional result set methods used to process
through a result set in JDBC 2.0. These methods are:

— The absolute() method allows you to move to an absolute
position in a result set. This method takes a positive or a
negative integer as a parameter. A positive value specifies a
position relative to the beginning of the result set, with the first
row being 1. A negative value specifies a position relative to
the last row of a result set, with -1 being the last row.

— The first() method allows you to move to the beginning of a
result set.

— The last() method allows you to move to the end of a result set.

— The relative() method allows you to specify a row relative to the
current row in the result set. The relative() method takes either
a positive or negative integer as a parameter.

Figure 3-12. Scrollable Result Set Processing - Additional Methods CG113.0

Notes:

Both the first() and last() methods return a Boolean, which indicates that there were no
rows in the result set when the Boolean value is false.

Cursor Movement methods:
beforeFirst () method - The cursor is moved prior to the first row of the result set.
afterLast() method - The cursor is moved after the last row of the result set.

previous() method - Allows the cursor to transverse the result set in a backward direction.

© Copyright IBM Corp. 2000, 2003 Unit 3. JDBC Programming Il 3-29

Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

www
高亮

www
高亮

www
高亮

www
高亮

www
高亮

iPad Pro Bro

iPad Pro Bro

iPad Pro Bro

iPad Pro Bro

iPad Pro Bro

Instructor Guide

Result Set
Repositioning - JDBC Program (1 of 4)

CREATE TABLE RESTART (VALUE INTEGER NOT NULL) ;

The RESTART table is
a user-created table
that will be utilized
in repositioning

CREATE TABLE RESTART (VALUE INTEGER NOT NULL) ;

int ctr = 0;
int MinValue = 0;
int abValue = 0;

Obtain restart or
initial wvalue

ResultSet rs2 = null;

Statement stmt = con.createStatement () ; A unique index on X
sql = "SELECT VALUE FROM RESTART"; SELELEEE, O i HeR
UPDATE clause cannot
ResultSet rs = stmt.executeQuery(sql) ; be used. The start
position of the result
While (rs.next()) { abValue = rs.getShort(l);} set is determined by

the value provided in
abValue in the
setString.

sqgql2 = " SELECT X, Y, Z FROM T1 "
+ " WHERE X > 2?2 "
+ " ORDER BY X " ;

PreparedStatement pstmt = con.prepareStatement (sgl2,

rs2.TYPE SCROLL INSENSITIVE, rs2.CONCUR READ ONLY) ;
pstmt.setShort (1, abValue);
rs2 = pstmt.executeQuery () ;

Figure 3-14. Result Set Repositioning - JDBC Program (1 of 4) CG113.0

Notes:

The user created table RESTART, is used to store a value of the last successfully retrieved
row in the result set. This value is used to establish an initial value for a normal program
start or a restart value if there is an ABEND condition.

The three variables are: ctr, a counter which will be used to determine when to do a
COMMIT, minValue which is used to determine an initial value for a normal program start,
and abValue, which is used to populate the parameter marker in the SELECT X, Y, Z
FROM T1 SQL statement.

The SELECT VALUE FROM RESTART obtains the initial value or restart value, which is
then placed into abValue by using getShort.

The SELECT X, Y, Z FROM T1 WHERE X > ? ORDER BY X uses either the initial value on
a normal start, or latest successfully processed value before an ABEND to recreate a result
set for processing. Result set rs2 must be defined as a scrollable result set because later in
the example the absolute() method will be used to reset position in this result set, and
absolute() requires a scrollable result set.

© Copyright IBM Corp. 2000, 2003 Unit 3. JDBC Programming Il 3-33

Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

genius yin
高亮�

genius yin
高亮�

iPad Pro Bro

Instructor Guide

Result Set
Repositioning - JDBC Program (2 of 4)

while (rs2.next())

{

storx = rs2.getShort(1l);

story = rs2.getString(2);

storz = rs2.getString(3);

if (some condition)

{

sqgl3 = "UPDATE Tl SET Y = ?, Z = ? "

+ " WHERE X = ? "; // Update current row
PreparedStatement pstmt2 = con.prepareStatement (sql3);
pstmt2.setString(l, newStory):;
pstmt2.setString (2, newStorz) ;
pstmt2.setShort (3, storx);
updateCount = pstmt2.executeUpdate();

ctr = ctr + 1;

Figure 3-15. Result Set Repositioning - JDBC Program (2 of 4) CG113.0

Notes:

For each row, the selected column values are saved to variables storx, story, and storz.
The current row in table T1 is then conditionally updated, and our update counter, ctr, is
incremented by 1 after the update.

The next visual discusses the events that occur when every 500th row has been updated.

3-36 DB2 Programming Using Java © Copyright IBM Corp. 2000, 2003

Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

Instructor Guide

Result Set
Repositioning - JDBC Program (3/4)

if (ctr == 500)

{ sql4 = "UPDATE RESTART SET VALUE = ? "; // Save last value
PreparedStatement pstmt3 = con.prepareStatement (sqgl4);
pstmt3.setShort (1, storx);
updateCount = pstmt3.executeUpdate();
sql5 = "COMMIT";

Statement stmt2 = con.createStatement () ;

Stmt2.executeUpdate (sql5) ;

ctr = 0;
rs2.absolute (storx) ; // position on the last row
// successfully retrieved before COMMIT
}
} // end if some condition

} // end while

Figure 3-16. Result Set Repositioning - JDBC Program (3 of 4) CG113.0

Notes:

When a condition for UPDATE is met, a simple UPDATE is executed and CTR is
incremented by 1. As soon as 500 rows have been updated, the value of storx is saved in
the RESTART table, and a COMMIT is issued. The absolute() method is used to
reestablish position with in the result set so that rs2.next() after the COMMIT will process
the next unprocessed row.

The next visual will show tasks done at a successful end of processing.

Note: Try/catch blocks would normally be implemented to handle failures in any statement.
They have been omitted here because of space limitations.

3-38 DB2 Programming Using Java © Copyright IBM Corp. 2000, 2003

Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

iPad Pro Bro

iPad Pro Bro

iPad Pro Bro

iPad Pro Bro

iPad Pro Bro

Instructor Guide

Result Set
Repositioning - JDBC Program (4 of 4)

// Do the following at successful end of processing

sqgl6é = "UPDATE RESTART SET VALUE = ? ";
PreparedStatement upd = con.prepareStatement (sql6) ;
upd.setShort (1, minValue) ;

UpdateCount = upd.executeUpdate() ;

sqgql7 = "COMMIT";
Statement cstmt = con.createStatement () ;

cstmt.executeUpdate(sql7) ;

Figure 3-17. Result Set Repositioning - JDBC Program (4 of 4) CG113.0

Notes:

Upon successful program execution, the VALUE column is set back to a minimum value for
normal processing on the next execution of the code. The COMMIT saves all uncommitted
changes, including this last update to the RESTART table.

3-40 DB2 Programming Using Java © Copyright IBM Corp. 2000, 2003

Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

iPad Pro Bro

iPad Pro Bro

Instructor Guide

ResultSetMetaData Interface - Introduction

e Metadata is data that describes other data. A
ResultSetMetaData object is obtained from a
ResultSet object. Various methods are used to
get information about result sets.

e Some methods used are:

— The getColumnCount() method, which returns the
total number of columns in the result set.

— The getColumnLabel() method returns the name of
the specified column.

Figure 3-18. ResultSetMetaData Interface - Introduction CG113.0

Notes:

Later you will see and example of using ResultSetMetaData method to process multiple
result sets. This example will be shown in the Stored Procedure unit. That example will
have a client application call a stored procedure that returns multiple result sets. The client
application will use various ResultSetMetaData methods to process the result sets.

The DB2 JDBC drivers do not support two ResultSetMetaData methods - getTableName()
and getSchemaName().

3-42 DB2 Programming Using Java © Copyright IBM Corp. 2000, 2003

Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

iPad Pro Bro

iPad Pro Bro

iPad Pro Bro

Instructor Guide

DatabaseMetaData Interface - Example

El connection sample = DriverManager.getConnection ("jdbc:db2:sample");

ﬂ DatabaseMetaData dbmd = sample.getMetaData() ; /\Q:t EE
E] ResultSet rs = dbmd.getSchemas(); | |D I m %7<

4] while (rs.next()) {

5] String s = rs.getString(1l);
System.out.println("\nSchema Name: " + s);
Figure 3-19. DatabaseMetaData Interface - Example CG113.0
Notes:

Instantiate the connection object named sample and connect to the database.

A Create the DatabaseMetaData object named domd

Create a ResultSet object named rs, that will contain all the schemas of the database.
B Scroll through the result set.

B Retrieve the schema name of the result set.

The DatabaseMetaData object provides information about a database.

3-44 DB2 Programming Using Java © Copyright IBM Corp. 2000, 2003

Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

iPad Pro Bro

iPad Pro Bro
返回一个结果集

iPad Pro Bro

iPad Pro Bro

iPad Pro Bro

iPad Pro Bro

Instructor Guide

ResultSetMetaData Interface - Example

ResultSet rs = stmt.executeQuery ("SELECT * from udba.staff ");

ResultSetMetaData rsmd = rs.getMetaData() ;

int NumberOfColumns = rsmd.getColumnCount () ;

System.out.println ("\nNumber of columns in result set = "

+ NumberOfColumns) ;

Figure 3-20. ResultSetMetaData Interface - Example CG113.0

Notes:
The ResultSetMetaData object provides information about a particular ResultSet.

il When a select statement is issued a ResultSet object is returned containing data that
satisfied the criteria.

A The ResultSetMetaData object rsmd will contain the metdata information about the
columns of the ResultSet rs.

Use the ResultSetMetaData method getColumnCount() to determine the number of
columns in the ResultSet rs.

3-46 DB2 Programming Using Java © Copyright IBM Corp. 2000, 2003

Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

iPad Pro Bro

iPad Pro Bro

Instructor Guide

Batch Processing

short [] edLvl = { 14, 18, 16 };

String [] workDpt = { "D11", "DO1l", "BO1l" };

String exSql = "UPDATE EMP SET EDLEVEL = ? "
+ "WHERE WORKDEPT = ? ";

PreparedStatement ps = con.prepareStatement (exSql) ;
for (int i=0; i < edLvl.length; i++) {

ps.setShort (1, edLvl [i]);

ps.setString (2, workDpt [i]);

ps.addBatch () ; // Add a statement to a current batch
int [] rowCounts = ps.executeBatch(); // Run the batch
Figure 3-21. Batch Processing CG113.0
Notes:

When a set of queries is executed against the same DB2 database as a batch, all queries
flow to the DB2 server together, which reduces the number of network flows that would be
required if each query were executed through a separate statement object.

Batch updates are only valid for UPDATE, DELETE, and INSERT statements and for
stored procedures that have no output parameters and do not return any result sets.

The addBatch() method is used to add a statement to a current batch. The executeBatch()
method is called to run the registered batch queries. The executeBatch() method returns
an array of integers, each of which is an update count for the corresponding statement in
the batch of queries.

3-48 DB2 Programming Using Java © Copyright IBM Corp. 2000, 2003

Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

iPad Pro Bro

iPad Pro Bro

Instructor Guide

SQLEXxception - Java Programs

int sglCode = 0;
String sglState = null;
String empno;

String name;

try
#sql { SELECT LASTNAME INTO :name FROM TEMPL WHERE EMPNO = :empno } ;
catch (SQLException e)

sqlCode = e.getErrorCode() ;
sqgqlState = e.getSQLState();
if (sglState.equals ("21000"))

{

System.out.println("One employee expected, multiple found\n");

}

System.out.println("SQLCODE is " + sglCode);

System.err.println(e.getMessage()):;

Figure 4-5. SQLException - Java Programs CG113.0

Notes:

SQLJ clauses use the JDBC class java.sqgl.SQLException for error handling.
SQLJ generates an SQLException when an SQL statement returns a negative
SQLCODE. You can use the getErrorCode method to retrieve SQLCODEs and the
getSQLState method to retrieve SQLSTATEs.

You can access the corresponding SQL message as a Java String object through the
SQLException.getMessage () instance method.

To handle SQL errors in your SQLJ application, import the java.sqgl.SQLException
class, and use the Java error handling try/catch blocks to modify program flow when
an SQL error occurs.

The SELECT...INTO...syntax can only be used to return one or zero rows. Also, the
GROUP BY, HAVING, and ORDER BY clauses are not permitted in this form of
SELECT.

The SQLNullException() method may be used to check for null with primitive Java
types. For example: catch (SQLNullException e).

4-18 DB2 Programming Using Java © Copyright IBM Corp. 2000, 2003

Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

iPad Pro Bro

iPad Pro Bro

iPad Pro Bro

iPad Pro Bro

iPad Pro Bro

iPad Pro Bro

iPad Pro Bro

Instructor Guide

Connecting to a Data Source - Java

#sgl context ctx;

"username" ;

"pass“ ;
"jdbc:db2:sample" ;
Connection con = null ;

String userid
String passwd
String url

try
con = DriverManager.getConnection (url,userid,passwd) ;
DefaultContext ctx = new DefaultContext (con);
DefaultContext.setDefaultContext (ctx) ;
con.setAutoCommit (false) ;

}

catch (Exception e)

{

e.printStackTrace() ;

}

Figure 4-8. Connecting to a Data Source - Java CG113.0

Notes:

In an SQLJ application, as in any other DB2 application, you must be connected to a
data source before you can execute SQL statements.

A connection context (example, ctx) is an instance of a connection context class.

A connection object (example, con) establishes and manages the database
connection.

The DB2 application driver accepts URLs that take the form of jdbc : db2 : dbname.

The DriverManager.getConnection () method is most often used with the
following parameters:

- getConnection (String url) to establish a connection to the database specified
by url with the default username and password.

- getConnection (String url, String userid, String passwd) to establish a
connection to the database specified by url/ with the values for username and
password specified by userid and passwd, respectively.

© Copyright IBM Corp. 2000, 2003 Unit 4. SQLJ Programming 4-25

Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

iPad Pro Bro

iPad Pro Bro

Instructor Guide

Connections in Java

e SQLJ statements are associated with a connection context

#sgl context samplectx; II
samplectx contextsamp =

new samplectx("jdbc:db2:sample", false); E!
#sql [contextsamp] { DELETE FROM TEMPL }]

e Default context may be set

Connection sampleconn =

DriverManager.getConnection ("jdbc:db2:sample”); [

sampleconn.setAutoCommit (false); |

DefaultContext dftctx = new DefaultContext (sampleconn) ; E’
DefaultContext.setDefaultContext (dftctx) ;
#sql { DELETE FROM TEMPL }; 8|

Figure 4-9. Connections in Java CG113.0

Notes:

+ In an SQLJ application, as in any other DB2 application, you must be connected to a
data source before you can execute SQL statements. A data source in DB2 UDB is a
DB2 database.

- If you want to execute an SQL statement at a specific data source, you must either
specify a connection context, enclosed in square brackets, at the beginning of the
execution clause that contains the SQL statement, or you must set up a default context
to be used with statements that do not have a connection context specified.

« In the example,
Shows a connection declaration clause to generate a connection context class.

A Invokes the constructor for the generated class samplectx with arguments
jdbc:db2 : sample to specify the data source (DB2 database SAMPLE), and

false which is a boolean that indicates that autoCommit should be off for this
connection.

4-28 DB2 Programming Using Java © Copyright IBM Corp. 2000, 2003

Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

iPad Pro Bro

Instructor Guide

Program Flow Example - Java Program

/* Import Java Classes */
import java.sql.*;

import sqglj.runtime.*;
import sqglj.runtime.ref.*;

#sql context ctx;
/* Register the class with the db2 Driver */
{ try

{ Class.forName ("COM.ibm.db2.jdbc.app.DB2Driver") ;}

catch (Exception e)

{ System.out.println ("\n Error loading DB2 Driver...");
System.exit (1) ; }

}

ctx eddbcon = new ctx("jdbc:db2:eddb", false) ;

ExecutionContext execCtx = new ExecutionContext();

int updateCount;

try

{ #sql [eddbcon, execCtx] { DELETE FROM TEMPL WHERE SALARY > 50000};
updateCount = execCtx.getUpdateCount () ;

if (updateCount == 0)

System.out.println("No rows updated") ;
else

System.out.println (updateCount + " rows updated");
}

catch (SQLException e)
{ System.out.println(e.getMessage()); }

Figure 4-10. Program Flow Example - Java Program CG113.0

Notes:

« The program sample combines several of the aspects of coding SQL in a Java program
using SQLJ.

« Note that if both a connection context and an execution context is specified for a
statement, the connection context is indicated first followed by the execution context:

#sql [eddbcon,execCtx] { DELETE FROM TEMPL WHERE SALARY > 50000 };

© Copyright IBM Corp. 2000, 2003 Unit 4. SQLJ Programming 4-31

Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

iPad Pro Bro

iPad Pro Bro

Instructor Guide

JDBC and Stored Procedures

Network

JDBC Program
Client — | Run-Time — ¥ Stored SQLJ Program

Application €—— Client ¢ Procedure
JDBC Program A
v

—>

DB2 >

S < DB2

erver ——Pp Database

«—
Figure 5-2. JDBC and Stored Procedures CG113.0

Notes:

- A JDBC program can be used as the client program or the server program in a stored
procedure scenario. It possibly more common to use the JDBC program as the client
application, since then the stored procedure could be coded statically and have stored
strategies associated with the SQL it contains.

« Applications that use the stored procedures have the following advantages:
- Reduced network traffic
- Improved performance of server intensive work
- Access to features that exist only on the database server.

- Ease of maintenance

5-6 DB2 Programming Using Java © Copyright IBM Corp. 2000, 2003

Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

Instructor Guide

Client versus Server Function Responsibility

Client Server

-

@ CONNECT TO dbname .
myproc
L
— | —
@CALL myproc/ A \ /_ (11, D ,D)
(<, |,) — —
L 4 {
NG /
@ comurr | | |—
@ CONNECT RESET
2 Run-Time }
Client myproc
Figure 5-3. Client versus Server Function Responsibility CG113.0
Notes:

The client application:

1. Declares and initializes storage for the optional data structures and host variables.
Connects to the database.

Invokes the stored procedure through the SQL CALL statement.

Performs a COMMIT or ROLLBACK to the database.

Executes CONNECT RESET.

The server procedure:

o & e

1. Accepts the input and output parameters from the client application.
2. Executes on the database server under the same transaction as the client application.

3. Returns any output data required to the client application.

5-8 DB2 Programming Using Java © Copyright IBM Corp. 2000, 2003

Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

Instructor Guide

JDBC Program as Client Application

II String callName = "OUTSRV2";

!! CallableStatement callableStmt;
String sqgl = "Call " + callName + "(?) ";
callableStmt = con.prepareCall (sql);

callableStmt.registerOutParameter (1, Types.DOUBLE) ;
callableStmt.setDouble (1, 0.00);

Ii boolean initialAutoCommit = con.getAutoCommit () ;
con.setAutoCommit (false); // Enable transactions
try
{ callableStmt.execute ();

con.commit () ;
}
catch (Exception e)
{ con.rollback();
throw e;
}
finally
{ // Restore initial AutoCommit
I] con.setAutoCommit (initialAutoCommit) ;
}

El double medianSalary = callableStmt.getDouble (1) ;

System.out.println("\n Median Salary: " + medianSalary);
I[’ callableStmt.close ();

Figure 5-4. JDBC Program as Client Application CG113.0

Notes:

« 1} Sets up the name of the stored procedure as it was created in the CREATE
PROCEDURE.

A Declares a CallableStatement object.

Prepares the CallableStatement.

[l Registers the output parameter, identifying its type.

B Initializes the output parameter.

[Enables transactions by turning off autocommit during the execution of the stored
procedure.

Executes the call.

B Restores the initial autocommit status.

f] Retrieves the output parameter.
Closes the CallableStatement object.

5-10 DB2 Programming Using Java © Copyright IBM Corp. 2000, 2003

Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

Instructor Guide

Useful Methods for Result Set Processing

® ResultSet getProcedures (String catalog,
String schemaPattern,
String procedureNamePattern)
throws SQLException

® ResultSet getProcedureColumns (String catalog,
String schemaPattern,
String procedureNamePattern,
String columnNamePattern)
throws SQLException

® ResultSetMetaData getMetaData()
throws SQLException

e getColumnCount (), getColumnName (), getPrecision(),
getScale(), getColumnType ()

Figure 5-5. Useful Methods for Result Set Processing CG113.0

Notes:

« getProcedures () returns a ResultSet object containing all stored procedures in the
database. You can set the catalog and schemaPattern to null. Both the schema
pattern and the procedure name pattern use wild card characters as would be specified
in the LIKE expression in SQL.

e getProcedureColumns () returns a result set containing information about one or
more procedure's columns (input and output parameters).

« With these two methods, you could build a client application that could dynamically
select which stored procedure to execute by giving a selection list to the end user.

e getMetaData () allows you to create a ResultSetMetaData object that can be
used for invoking ResultSetMetaData methods in order to get information about the
ResultSet object supplied.

» |tems that can be retrieved from ResultSetMetaData include:

- The number of columns in the ResultSet object (int getColumnCount ()
throws SQLException)

5-12 DB2 Programming Using Java © Copyright IBM Corp. 2000, 2003

Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

www
在文本上注释
returns a ResultSet object containing all stored procedures in the database.

www
在文本上注释
returns a result set containing information about one or
more procedure's columns (input and output parameters).�

www
高亮

www
高亮

www
在文本上注释
allows you to create a ResultSetMetaData object that can be
used for invoking ResultSetMetaData methods in order to get information about the ResultSet object supplied.
�

www
高亮

iPad Pro Bro

Instructor Guide

- The names of the columns by their column position (String
getColumnName (int column) throws SQLException)

- For number types, the number of decimal digits in the column by column position, for
character types, the maximum length of characters for a column by column position,
for binary types, the maximum length of characters for a column by column position
(int getPrecision (int column) throws SQLException)

- The number of digits to the right of the decimal point for a column by column position
(int getScale (int column))

- The JDBC type (from the class java.sqgl . Types) for the column by column
position (int getColumnType (int column))

© Copyright IBM Corp. 2000, 2003 Unit 5. Stored Procedures 5-13

Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

www
高亮

Instructor Guide

JDBC
Calling Application - Multiple Result Sets

String callSQL = "CALL MYPROC ()";

CallableStatement callStmt = con.prepareCall (callSql) ;
ResultSet rs = null;

callsStmt.execute() ;

int rsCount = 0;

while(true)
{E} rs = callstmt.getResultSet();
if(rs != null)

{ rsCount++;
E] fetchAll (rs) ;
3] callStmt.getMoreResults () ;
continue;
}
break;

}

callStmt.close ();
stmt.close ();
con.close ();

Figure 5-7. JDBC Calling Application - Multiple Result Sets CG113.0

Notes:

- Il Defines the result set as being the contents of the first result set returned from the call
to the stored procedure.

« A Call the fetchAll() method to process a result set.
« B Gets the next result set.

- Il Defines the result set as being the contents of the next result set returned from the call
to the stored procedure.

5-18 DB2 Programming Using Java © Copyright IBM Corp. 2000, 2003

Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

iPad Pro Bro

iPad Pro Bro

iPad Pro Bro

iPad Pro Bro

iPad Pro Bro

Instructor Guide

Sample Code: fetchAll()

// s======s============s=====s====sss====ss===s=sss
// Method: fetchAll
// =======s====s==s====s==s=s==s===ss====s==s===s=-
static public void fetchAll(ResultSet rs)
{ try
{
ResultSetMetaData stmtInfo = rs.getMetaData() ;
!l int numOfColumns = stmtInfo.getColumnCount () ;
int r =_0:
E’ while(rs.next())
{ T++;
System.out.print("Row: " + r + ": ");
for(int i=1; i <= numOfColumns; i++)
I] { System.out.print(rs.getString(i));
if(i != numOfColumns) System.out.print(" , ");
}
System.out.println("");
}
}

catch (SQLException e)

{ System.out.println("Error: fetchALL: exception");

System.out.println (e);

}

Figure 5-8. Sample Code: fetchAll()

Notes:

CG113.0

This code makes the assumption that the number of columns that are being returned by the

stored procedure varies and needs to be determined dynamically.

stmtInfo.

Gets the next row from the result set.

Bl Prints the column data for each of the columns of the result set.

A Determines from stmt Info how many columns are in this result set.

Gets the metadata associated with this result set into the ResultSetMetaData object

5-20 DB2 Programming Using Java

Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2000, 2003

iPad Pro Bro

iPad Pro Bro

Instructor Guide

Sample JDBC Stored Procedure

/*** JDBC Stored Procedure Sample ***/

import java.sql.*; // JDBC classes

public class Myproc

{

public static void myproc (ResultSet[] rs) throws SQLException, Exception

{

// Get connection to the database
Connection con = DriverManager.getConnection("jdbc:default:connection") ;
PreparedStatement stmt = null;

String sql;

sql = "SELECT EMPNO FROM EMP";
stmt = con.prepareStatement(sql);
rs[0] = stmt.executeQuery();

if (con != null) con.close();

Figure 5-10. Sample JDBC Stored Procedure CG113.0

Notes:

This sample JDBC stored procedure, myproc, executes a SELECT against the EMP table
to return a result set containing EMPNO values for all employees in the EMP table.

Note that the JDBC stored procedure uses the getConnection method, but uses the default
connection (that is, the connection established by the client program). The stored
procedure does not establish its own new connection.

The prepareStatement() and executeQuery() methods are invoked to return the desired

rows.

5-24 DB2 Programming Using Java © Copyright IBM Corp. 2000, 2003

Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

Instructor Guide

JDBC LOB Data Access - Example

LOB DATA AT
bio SERVER

startper

startdpt

4

N
®

rs=pstmt.executeQuery()

resume=rs.getClob()
resume.getSubString()

Figure 6-4. JDBC LOB Data Access - Example CG113.0

Notes:

« This visual shows the use of startper and startdpt to point to starting locations of data
within the LOB column. The visual also shows that the result set is created when the
executeQuery() method is done. The getClob() and getSubString() JDBC 2.0 methods
are used to retrieve the required CLOB data and return this data in String format.

- [l The byte number where the starting location of Personal can be found in the CLOB
is returned to startper.

- B The byte number where the starting location of Department can be found in the
CLOB is returned to startdpt.

- B The data represented by information before Personal and after Department is
identified when the SQL SELECT statement is issued.

- [l The data is returned to the application via assignment statement.

© Copyright IBM Corp. 2000, 2003 Unit 6. Using Object-Relational Capabilities 6-11

Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

iPad Pro Bro

Instructor Guide

JDBC Lob
Data Access - Example Code (1 of 3)

String resume = null;
"000130";
int startper, startperl, startdpt = 0;

String empnum

PreparedStatement stmtl, stmt2, stmt3 = null;

String sqll, sgql2, sgl3 = null;
String empno, resumefmt = null;
Clob resumelob = null;
ResultSet rsl, rs2, rs3 = null;
sqll = "SELECT POSSTR (RESUME, 'Personal') "
+ "FROM EMP RESUME "
+ ! ERE EMPNO = ? AND RESUME FORMAT = 'ascii'

stmtl = cpn.prepareStatement (sqll);
stmtl.setString (1, empnum);
rsl = stitl.executeQuery();
while (gsl.next()) {
startper = rsl.getInt(1l);
} // end while

ne.
I

Figure 6-5. JDBC LOB Data Access - Example Code (1 of 3)

Notes:

CG113.0

« [l This SELECT will retrieve the byte number where the starting location of 'Personal’

can be found in the CLOB.
A The statement is prepared from the sql1 variable.

§] The parameter marker is set to the value of variable empnum.

Il The executeQuery() method executes the SQL in sqgl1 and creates a result set.

B The getint() method is used to return the byte starting location of 'Personal' to startper.

© Copyright IBM Corp. 2000, 2003 Unit 6. Using Object-Relational Capabilities 6-13

Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

www
在文本上注释
The getInt() method is used to return the byte starting location of 'Personal' to startper.

www
高亮

iPad Pro Bro

iPad Pro Bro

iPad Pro Bro

iPad Pro Bro

iPad Pro Bro

iPad Pro Bro

iPad Pro Bro

iPad Pro Bro

Instructor Guide

JDBC LOB
Data Access - Example Code (2 of 3)

sqgl2 = "SELECT POSSTR(RESUME, 'Department') "
+ "FROM EMP RESUME "
+ "WHERE EMPNO = ? AND RESUMEFORMAT = 'ascii' ";
stmt2 = con.prepareStatement (sql2);
stmt2.setString (1, empnum);
rs2 = stmt2.executeQuery();

while (rs2.next()) {

startdpt = rs2.getInt(1l);
} // end while

Figure 6-6. JDBC LOB Data Access - Example Code (2 of 3) CG113.0

Notes:

« [l This SELECT will retrieve the byte number where the starting location of 'Department’
can be found in the CLOB.

A The statement is prepared from the sql2 variable.

§] The parameter marker is set to the value of variable empnum.

Bl The executeQuery() method executes the SQL in sqgl2 and creates a result set.

B The getint() method is used to return the byte starting location of 'Department' to
startdpt.

© Copyright IBM Corp. 2000, 2003 Unit 6. Using Object-Relational Capabilities 6-15

Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

iPad Pro Bro

Instructor Guide

JDBC LOB
Data Access - Example Code (3 of 3)

n startperl = startper - 1;
sql3 = "SELECT EMPNO, RESUME FORMAT, "
+ "SUBSTR (RESUME,1,?) || SUBSTR(RESUME,?) AS RESUME "
+ "FROM EMP RESUME "
H + "WHERE EMPNO = ? AND RESUME FORMAT = 'ascii' ;

E stmt3 = con.prepareStatement (sgl3);
stmt3.setInt (1, startperl);
stmt3.setInt (2, startdpt);

n stmt3.setString (3, empnum);

B rs3 = stmt3.executeQuery();
while (rs3.next()) {

empno = rs3.getString(1l);

resumefmt = rs3.getString(2);

B resumelob = rs3.getClob(3);
long len = resumelob.length();
E int lenl = (int)len;
ﬂ String resumeout = resumelob.getSubString(l, lenl);
} // end while
Figure 6-7. JDBC LOB Data Access - Example Code (3 of 3) CG113.0
Notes:

« l Startper1 will define the offset to one position before 'Personal’ data in the CLOB.

A The required contents of the CLOB column are retrieved using the SUBSTR function.

The statement is prepared from the sql3 variable.

Il The parameter markers are set to the value of variables startper1, startdpt, and
empnum.

B The executeQuery() method executes the SQL in sql3 and creates a result set.

[The getClob() method is used to retrieve the contents of the CLOB column data.

Variable len is defined as type long, and is assigned the length of the retrieved CLOB
data.

B Variable len1 is defined as type int and assigned the value in len.

B The getSubString() method is used to return the value of the CLOB in String format
into variable resumeout.

© Copyright IBM Corp. 2000, 2003 Unit 6. Using Object-Relational Capabilities 6-17

Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

iPad Pro Bro

iPad Pro Bro

iPad Pro Bro

iPad Pro Bro

iPad Pro Bro

iPad Pro Bro

iPad Pro Bro

iPad Pro Bro

iPad Pro Bro

iPad Pro Bro

iPad Pro Bro

iPad Pro Bro

Instructor Guide

LOB Locators - An Example

LOB DATA AT
bio SERVER
7Patti
@ ﬂ e
startper @ --------------- Personal Info
startdpt ‘\ @
A ettt
/ ----- Department -----------
nameiter.Resume @ e e e e m e m e
resume
Figure 6-9. LOB Locators - An Example CG113.0
Notes:

« This visual illustrates the processing resulting from the statements shown in the prior
visual.

- 0 The byte number where the starting location of Personal can be found in the CLOB
is returned to startper.

- B The byte number where the starting location of Department can be found in the
CLOB is returned to startdpt.

- B The data represented by information before Personal and after Department is
identified when the SQL SELECT statement is issued.

- [l The data is returned to the application via assignment statement.

© Copyright IBM Corp. 2000, 2003 Unit 6. Using Object-Relational Capabilities 6-21

Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

